
DOI: 10.1111/cgf.14517 COMPUTER GRAPHICS forum
Volume 0 (2022), number 0 pp. 1–16

Delaunay Painting: Perceptual Image Colouring from Raster
Contours with Gaps

Amal Dev Parakkat,1,2 Pooran Memari3 and Marie-Paule Cani3

1Delft University of Technology, Delft, Netherlands
2LTCI—Telecom Paris, Institut Polytechnique de Paris, Palaiseau, France

memari@lix.polytechnique.fr
3LIX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France

memari@lix.polytechnique.fr,marie-paule.cani@polytechnique.edu

Abstract
We introduce Delaunay Painting, a novel and easy-to-use method to flat-colour contour-sketches with gaps. Starting from a
Delaunay triangulation of the input contours, triangles are iteratively filled with the appropriate colours, thanks to the dynamic
update of flow values calculated from colour hints. Aesthetic finish is then achieved, through energy minimisation of contour-
curves and further heuristics enforcing the appropriate sharp corners. To be more efficient, the user can also make use of our
colour diffusion framework, which automatically extends colouring to small, internal regions such as those delimited by hatches.
The resulting method robustly handles input contours with strong gaps. As an interactive tool, it minimizes user’s efforts and
enables any colouring strategy, as the result does not depend on the order of interactions. We also provide an automatized version
of the colouring strategy for quick segmentation of contours images, that we illustrate with applications to medical imaging and
sketch segmentation.

Keywords: sketch coloring, image processing, assistive interfaces, interaction, computational geometry, modelling, shape com-
pletion

CCS Concepts: • Computing methodologies → Image manipulation; Shape analysis; • Applied computing → Fine arts; •
Theory of computation → Computational geometry

1. Introduction

Colouring raster contour images, such as line arts, is an essential
step in many image manipulation tasks. Flood-fill, applied by the
bucket filling tool present in most standard software such as Mi-
crosoft Paint or GIMP, is a simple solution for colour filling. Un-
fortunately, it cannot handle contours with gaps, although gaps are
a common error in hand-drawn line art. Professional artists may
also voluntarily leave gaps (also called a ‘Professional Gaps’) as
part of their style while sketching line art. These gaps are small
breaks in a line mimicking the light reflecting off an object. Gaps
are also considered as an easy way to create transitions while draw-
ing curves or long lines. Movies like ‘Ernest and Celestine’ or
‘Le Grand Méchant Renard et Autres Contes’ use such minimalist
sketching style with gaps, enhanced with colouring. Though they
make perfect sense from an artist’s perspective, colouring line arts
with gaps is a difficult, and time-consuming task for digital artists,

which is more hectic when it needs to be done for a full animation
movie.

We present a specialized algorithm, which efficiently handles
such colouring process, and is—contrary to flood-fill—robust to the
absence of well-defined boundaries in the input. To achieve this,
we rely on a novel, yet intuitive Delaunay-based framework. The
main idea is to use Delaunay triangulation to create a graph between
regions delimited by the contours, and then control a colour flow
through graph edges, from a few, input colour hints.

We introduce two versions of our colouring procedure, depending
on how the colour hints are obtained: an interactive version, and an
automatic version. While the interactive colouring procedure is use-
ful for artistic colouring of contour drawings (where the colour hints
fully depend on the artist’s creativity, and cannot be predicted auto-
matically), the automatic colouring approach can be used for auto-
matically segmenting contour sketches into regions. We illustrate it

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

1

http://creativecommons.org/licenses/by-nc/4.0/

2 A.D. Parakkat, P. Memari & M.P. Cani / Delaunay Painting: Perceptual image coloring from raster contours with gaps

Figure 1: From left to right: A simple line-art and a more complex sketch along with user hints, and the corresponding results.

by an application to medical image segmentation. While such auto-
matic colouring is straightforward, making the interactive colouring
approach usable for colouring line-arts brings additional challenges
such as the response time, intuitiveness and aesthetic beauty of the
final results. Hence, the following objectives are taken into consid-
eration while designing the interactive method:

• The tool should be as simple to use as Flood-fill: Everyone is
familiar with the bucket-fill tool. It is easy to use and straightfor-
ward to understand. Such intuitive interaction is required.

• Visually pleasing results: Unless the gaps are correctly filled, the
final coloured results will not look complete. So the border of
coloured regions delimited by disconnected contours should re-
connect gaps in an aesthetically pleasing way.

• Minimum user-interaction: The user should be able to colour vi-
sually salient regions in the contour with minimum interaction.
Hence, an appropriate colour flowmechanism should be provided
to spread colours.

To achieve the first point, our method uses an intuitive flow-based
colour propagation process on the underlying Delaunay triangula-
tion [PCS21], making it as simple to use as Flood-fill. Second, in-
stead of reconnecting gaps in the contours with straight lines, which
would affect the aesthetic beauty of the final result, we make use of
local contour information around gaps for generating the border of
coloured regions. More precisely, we make use of the concept of
Scale Invariant Minimum Variation Curves (SIMVC) and a sharp
corner detection heuristic to delimit the coloured region in a visu-
ally pleasing way (see Figure 1, left). Lastly, we introduce a sim-
ple colour diffusion mechanism to achieve the objective of mini-
mal user input, even for drawings with additional information such
as texture or hatches. In existing methods, contours sharply bounds
colour spreading, requiring the user to paint each region separately,
whatever their size. This becomes a cumbersome taskwhen there are
many small regions, which commonly occurs with complex raster
sketches (see Figure 1, right). In contrast, we use a simple diffusion
method based on the perceptual distance between regions (applica-
ble even without any gap between them), enabling colours to seam-
lessly spread from user coloured areas to the uncoloured parts of the
image. This colour spreading procedure is reversible and also can be
easily updated.

Overall, the proposed interactive Delaunay colouring method is
straightforward and saves the user from many hurdles when colour-
ing raster contour images with gaps: As simple as flood-fill, it only
requires a minimal number of colour hints, the colour filling is fast

and easily predictable, and the user can easily correct any mistake,
since our method is order-independent and reversible.

In summary, while our method reuses the flow mechanism from
Parakkat et al. [PCS21] in the new context of colouring raster con-
tour images with minimal user inputs, it also makes new technical
contributions:

• A colour diffusion mechanism to minimize user efforts by propa-
gating colours to uncoloured small regions (for examples hatches)

• An aesthetic curve completion technique to fill gaps in the input
contours in a visually pleasing way

• An automatic colouring algorithm with possible applications in
segmentation of medical images and sketches

2. Related Work

Related work can be classified into two categories, namely auto-
matic versus user-guided colourization methods.

Automatic colourization methodsmake use of prior knowledge
to colour an input image without any user intervention [LWCO*07,
ISSI16, YBC*19, SCH20].Most recent works use machine learning
techniques for colourizing greyscale photographs, where the colour
to be used is predicted through an analysis of the input [ISSI16,
YBC*19, SCH20]. This kind of work is not applicable to our line
art colouring problem, due to the absence of extra information such
as scales of grey in our input. Moreover, results would then be lim-
ited to quite standard, learned colouring palettes, with no user con-
trol. Another set of similar works [HA17, FHOO17] make use of a
single, reference coloured image to identify the appropriate colours
to be used, which again restricts the set of colours as well as the
colouring style.

User-guided colourization methods were introduced to give
more freedom to digital artists. The latter are asked to provide ad-
ditional hints to guide colourization, such as colour brush-strokes,
or even text input such as specifying the region and the colour that
should be used to fill it [ZMG*19, KJPY19, CSG*17]. Indeed, this
last category of methods can only be used for colouring meaning-
fully, well-identified shapes enhanced with semantic information,
and hence cannot be used for generic inputs. It is worth noting that a
few learning-based methods, such as Shi et al. [SZC*20] enabled to
colour line arts in videos as well. In this paper, we focus on colour-
ing methods based on user-defined coloured brush strokes, which
were extensively developed.

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

A.D. Parakkat, P. Memari & M.P. Cani / Delaunay Painting: Perceptual image coloring from raster contours with gaps 3

Figure 2: Comparison with Parakkat et al. [PMGC20]. (a) Input sketch, (b) segmentation and (c) colouring result using [PMGC20], (d) our
colouring result. The main differences can be seen in the insets ((e) top: Parakkat et al. [PMGC20], bottom: ours, (f) Parakkat et al. [PMGC20]
and (g) ours).

Figure 3: (a) Input sketch, (b) Delaunay triangulation of extracted
sketch pixel positions, (c) Delaunay triangulation after padding
points.

One of the prominent works in brush-based assisted colouring
is Lazybrush [SDC09], where the authors express the problem of
colouring based on user hints as an energy minimization prob-
lem. Various machine learning-based solutions were also intro-
duced [LWCO*07, ZLW*18, HJRD19, Pai20]. As will be shown
in Section 8.1, these methods do not necessarily generate a flat
colouring result. Moreover, the context of Luan et al. [LWCO*07],
in which users apply colour-strokes to a greyscale photograph, is
quite different from ours. Closer to our sketch-colouring goals,
Zhang et al. [ZLW*18], Hati et al. [HJRD19], PaintsChainer [Pai20]
and Zhang et al. [ZLSS*21] address the lack of user control of pure,
learning-based approaches by enabling the user to add multiple, ad-
ditional colour hints to influence the result. However, when not ap-
plied to a specific category of drawings on which the model could
be trained (e.g. manga characters), such solutions typically require
extensive user intervention, since the same region may need to be
recolouredmultiple times until the desired output is achieved.When
the goal is not to address a specific class of drawings, methods that
do not use machine learning may thus be more suitable.

Colouring contour sketches may also be considered as a variant of
a contour closing problem, a problem tackled since 1994 [GTF94],
and which was recently investigated using learning-based ap-
proaches [SISSI17, LDL*19]. In Parakkat and Muthuganapathy
[PM16], the authors pose the classical curve reconstruction prob-
lem as a way to connect gaps in a contour sketch, enabling the

newly created regions to be coloured using the standard flood-fill
tool. Though more generic curve reconstruction methods were later
proposed (e.g. [PMM18]), the effectiveness of these algorithms typ-
ically depend on sampling density and stroke positions. Moreover,
using standard flood-fill after reconnecting contours reduces user’s
freedom, since only uniform colours can then be applied within the
newly closed regions. This prevents the user from giving multiple
colours hints within a given region, as we did, for instance, on the
wrist of the hand in Figure 1. Instead of creating connections as in
curve reconstruction to fill gaps, Fourey et al. [FTR18] connected
appropriate strokes to create a set of segments in the contours. The
regions are then interactively updated and coloured with the help
of the user. The method, which was later embedded in Gimp as a
line-art colouring tool, is easier to use than the previous ones. How-
ever, user freedom is still limited since it can colour only a set of
segments, and the boundaries of the resulting sketches are not nec-
essarily well formed, as will be shown through comparison to our
solution in Section 8.1.

In this work, our goal is to propose a simple and flexible colour-
ing technique that can be used as a user-friendly toolbox in various
sketch colouring scenarios. We, therefore, do not rely on any op-
timization or machine-learning-based approach, which avoids the
need for extensive user input. Our solution belongs to geometry-
based methods, but specifically addresses the issues of user freedom
and quality of the resulting coloured sketches, by introducing an in-
tuitive and light-weight framework for colouring of raster contour
sketches with gaps.

Related Delaunay-based techniques: Note that a former im-
age colouring from the same authors was published as a short pa-
per [PMGC20], but the later used a time-consuming sketch seg-
mentation algorithm, which also brought restrictions on colouring
freedom, since only pre-segmented regions could be coloured (e.g.
regions shown in Figure 2b). Moreover, this early solution did not
generate visually pleasing boundaries for coloured regions, and did
not include any colour diffusion mechanism between neighbouring
regions. In contrast, user-freedom, visual quality and efficiency are
all improved by our new interactive method, which comes as well
with an automatic companion method. The latter can be used as
an auxiliary or corrective segmentation tool for medical images or
freehand sketches, as shown by our preliminary results. In addition,
we reused the first step shared by our two methods, the so-called

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

4 A.D. Parakkat, P. Memari & M.P. Cani / Delaunay Painting: Perceptual image coloring from raster contours with gaps

Figure 4: Overview of our method. (a) Input contours (sketch) with colour hints, (b) result of Delaunay grouping, (c) aesthetically completed
curves, (d) result after aesthetic curve completion, (e) result after colour diffusion.

Delaunay grouping technique detailed in Section 4, in a recent paper
aimed at the structuring and vectorization of rough stroke sketches
(a quite different purpose compared to colouring, see also Favreau
et al. [FLB16]), with a focus on user experience [PCS21]. Lastly,
let us mention that the colouring flow we introduce is funda-
mentally different from the flow defined in Dey et al. [DGG03],
which is based on Delaunay balls radii and designed for shape
segmentation.

3. Overall Framework

We aim to propose a flat colouring method for contour images,
where contours may have gaps. We will first present an interactive
method and then an automatic companion method that we illustrate
with a few basic examples in the context of medical image and free-
hand sketch segmentation.

For the main interactive method, our goal is to make the interac-
tion process as easy for the user as using the flood-fill tool, while
robustly handling non-closed contours. In particular, the method
should work for colouring minimalist sketches with open strokes,
such as those used in several recent animation movies. In contrast
with previous work, our solution relies on computational geometry.

The entire process starts with the user providing a raster, contour
drawing with a set of unbounded regions that has to be bounded by
colouring or segmenting it (throughout the remaining of this paper,
we will be calling these regions Bounded regions). Though through-
out this paper we used raster images (mostly hand-drawn) as inputs,
one can also use vector images along with a curve sampler. Initially,
the pixels that are part of the contours are extracted, and their posi-
tions are used to compute a Delaunay triangulation. Figure 3 shows
a sample contour along with the computed Delaunay triangulation.
As the name suggests, our method paints these Delaunay triangles
as per the requirement. To facilitate colouring the background, there
should be some triangles present in the background as well. To do
that, we pad four points on the input image corners, which ensures

that the entire image is triangulated. Figure 3c shows the updated
Delaunay triangulation after inserting the padding points.

The initial Delaunay triangulation is further used for Delaunay
grouping [PCS21] (Section 4). In Delaunay grouping, using a set of
hints, the bounded regions are coloured iteratively. The input to this
step is a set of contours along with colour hints (which are either
interactively defined by the user or computed automatically) repre-
senting the bounded regions (as in Figure 4a), and the result is a set
of flat coloured bounded regions (as in Figure 4b).

After Delaunay grouping, the bounded regions’ boundaries will
be represented by a set of straight lines (Delaunay edges)—which
are not convenient for some applications, such as colouring line-arts.
The user can thus make use of an aesthetic curve completion step
(Section 5), which replace straight Delaunay edges (were they con-
necting the gaps between the contours or adjacent regions not sep-
arated by a contour) with visually pleasing curves, using the notion
of SIMVC and sharp-corner detection heuristics. Figure 4d shows
the effect of aesthetic curve completion. The input is a Delaunay
grouping result, and the output is a set of bounded regions with vi-
sually pleasing finishing applied on the boundaries (the aesthetically
completed curves can be seen in 4c).

To make interactive colouring easier, we also provide the user
with an optional, colour diffusion framework (Section 6). From only
a few colour hints, the latter helps to spread the colours into un-
coloured small regions delimited by hatches or textures, avoiding
the burden of individually colouring them. The input is the result
after Delaunay grouping (as in Figure 4d), and the output is a full
colouring, where colours have been spread to all the uncoloured re-
gions (Figure 4e). The complete pipeline of our colouring frame-
work is shown in Figure 5.

Since the position of colour hints directly impacts the grouping of
Delaunay triangles (Section 4), such hints have to be automatically
placed at relevant locations to achieve automatic segmentation of
an input image. In Section 7, we discuss a strategy to generate such
colour hints and automatically generate a meaningful segmentation.

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

A.D. Parakkat, P. Memari & M.P. Cani / Delaunay Painting: Perceptual image coloring from raster contours with gaps 5

Figure 5: A complete pipeline of our colouring framework on a complex sketch. From left to right: input sketch with colour hints, result of
interactive Delaunay grouping (with steps shown inside the box), result after colour diffusion, final result after adding aesthetic contours.

Given a set of colour hints and the straightforward pre-process
that we have explained, let us now describe two key steps of our
method, namelyDelaunay grouping and aesthetic curve completion.

4. Delaunay Grouping

The Delaunay grouping process described in this section is based on
an intuitive flow mechanism that we have already introduced in the
short version of this paper [PMGC20] and further used in Parakkat
et al. [PCS21], as a part of a sketch simplification algorithm.

A region adjacency graph G is initially computed, in which each
Delaunay triangle (seen as a region in the input) is denoted as a
vertex, and an edge is created between two vertices if they share a
Delaunay edge, which is not part of the input contour (i.e. no edge
is created between regions separated by a contour stroke). As we
will see, this construction will prevent the merging of regions sep-
arated by a closed contour. A weight w is assigned to each edge
of the graph G, and is set to its Euclidean length. In addition, a
(Color_Strength()) parameter is associated to each graph vertex to
represent the amount of colour already assigned to the correspond-
ing region. This parameter is initially set to zero.

Once this graph is created, regions are iteratively merged based
on the successive colour hints given by the user in the form of mouse
clicks, as follows.

Once a user picks a colour and clicks (filling colour) at a specific
position, the region R and its corresponding graph vertex v (denoted
as vertex(R)) are identified from the location of the mouse click. All
the regions in the graph that are reachable from region R are then
filled with the selected colour. Note that this process is initially sim-
ilar to the bucket fill tool (since all vertices inside a closed boundary
do have a path between them).

After filling this colour, the Color_Strength(u) of all vertices u,
which are reachable from vertex v, is updated to the value of the flow
that can reach u when coloured at v, denoted by Edge_Flow(u, v),

Figure 6: Priority based path selection

constrained by the the length of the shortest transition edge along
the way—i.e. the smallest weight along a graph path, defined as:

Edge_Flow(u, v) = max(f (X) : ∀ paths X f rom u to v)

f (X) = min(Weight(u, v) : ∀ (u, v) ∈ X)
(1)

The user then iteratively picks different colours and clicks on a
chosen position in the contour (as in bucket filling). Based on the
region R the user selected, the colour is recursively spread to the
neighbouring regions Ri, but only if theColor_Strength(vertex(Ri))
is smaller than or equal to the Edge_Flow(vertex(Ri), vertex(R)).

We use a priority queue to ensure that the colour spreads through
the largest gap first. For example, as shown in Figure 6, once a colour
is applied on a point p, it can spread to another point q through
various paths (path1, path2 and path3). Flow-through each of these
paths is restricted by the shortest edges in their path, in this case, |
ab |, | cd | and | e f | for path1, path2 and path3, respectively. Usage
of priority queue ensures that the colour spreads from p to q through
path2 (since that is the path having the maximum flow value). The
priority queue is maintained as follows.

When a user clicks on a region R, the region is filled with the user-
selected colour, theColor_Strength(vertex(R)) is updated to∞ and
each neighbour u of vertex(R) is inserted into the priority queue
with Edge_Flow(u, vertex(R)) as priority. After that, vertices v are

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

6 A.D. Parakkat, P. Memari & M.P. Cani / Delaunay Painting: Perceptual image coloring from raster contours with gaps

Algorithm 1. Filling algorithm

iteratively taken from the priority queue and ifColor_Strength(v) is
smaller thanEdge_Flow(v, vertex(R)), then the region correspond-
ing to v is coloured accordingly. In particular, theColor_Strength(v)
is updated to Edge_Flow(v, vertex(R)) and all neighbours of v are
inserted to the queue. This procedure runs until the priority queue
is empty. The overall procedure is summarized in Algorithm 1.

Figure 7 shows various steps in the iterative colouring procedure.
In the first row, from left to right, the results of iterative Delaunay
colouring are shown after giving each colour hint. The colour hints,
along with the colour maps showing the influence of each mouse
click on the underlying Delaunay triangles, are shown in the second
row. The impact at a triangle Ti after clicking at Tj is computed as
Color_Strength(Region(Ti))

||Longest_Edge(Tj)|| (where Longest_Edge(Tj) is the longest edge in

the triangle Tj). The largest to least influence is coloured from a
spectrum varying from red to yellow, and if there is no influence,
then it is coloured in white.

Since each triangle is given independent control, our algorithm
is order-independent: indeed, whatever the order in which colours
were applied, we end up in the same final result, thanks to the graph

Figure 8: Sharp corners: (a) input sketch, (b) expected result, (c)
result of Delaunay colouring, (d) result after gap filling procedure.

Figure 9: (a) Input sketch, (b) expected result, (c) result of Delau-
nay colouring, (d) result after our gap filling procedure.

flow mechanism, which models how much a transition edge in the
contour is likely to be suppressed.

5. Aesthetic Curve Completion

Simply applying Delaunay grouping to the Delaunay triangulation
of the input separates the resulting coloured regions by straight
edges. Using straight lines to connect gaps between curved contours
is, however, not perceptually appropriate. Our aesthetic curve com-
pletion technique identifies the Delaunay edges connecting contour
gaps and if needed, replaces themwith appropriate curves, i.e. either
sharp corners or smooth cubic curves (see Figures 8 and 9).

Our algorithm starts by evaluating the tangents at the endpoints
of each contour gap to be filled. To achieve a robust computation of
tangents on raster data, use a one-pixel width skeleton of the input
sketch, as follows:

• Once the Delaunay grouping is over, the interior and exterior
of the required contour boundary get different colours. The
Delaunay edges connecting endpoints of the gap therefore share

Figure 7: First row: intermediate results of our Delaunay painting, Second row: cumulative influence of mouse clicks (shown inside white
squares.)

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

A.D. Parakkat, P. Memari & M.P. Cani / Delaunay Painting: Perceptual image coloring from raster contours with gaps 7

two triangles of different colours. We call such edges ‘transition
edges’.

• For each endpoint of a transition edge, the nearest point p1 in the
one-pixel skeleton of the input contour sketch is identified.

• A flood-fill procedure is initiated from p1 within the contour, and
stopped when we reach a pixel p2 lying at a given distance (set to
5 pixels in our experiments).

• The contour’s tangent at p1 is set to the vector joining p2 to p1.

Once tangents are identified, we conduct three tests (discussed
next) to check whether the gap should be completed using a sharp
corner, or a smooth curve. If any of the sharp corner test fails, then
a smooth cubic curve is used to fill the gap.

5.1. Sharp corners

In this section, we propose a method to identify and handle the
boundaries that need to be connected using sharp corners (see Fig-
ure 8). To do so, let eAB be the edge to be replaced and TA and TB
be the corresponding tangents, respectively. We check the following
three constraints for a gap to be qualified for getting replaced by a
sharp corner:

• Angle constraint, based on the angle between the tangent: The
constraint is said to be qualified if the angle between the tangents
is less than π/3;

• Perpendicular constraint, based on the distance from the edge to
be replaced, to the point where the tangent directions intersect:
The qualifier is satisfied if the perpendicular distance from the in-
tersection point pip to the edge eAB is less than 2∗ || AB || (which
prevents adding long an thin spikes to the contours);

• Linearity constraint, based on how linear the contours are near
the gap. The criterion is said to be qualified if the pixels lying
close to the endpoints are linearly arranged (we check whether the
maximum distance from the pixels lying near the contour endings
to the line defined by the tangent is less than a given threshold).

If these three constraints are qualified (a criteria which can also be
tuned), we identify it as a sharp corner and replace eAB by eApip and
epipB.

5.2. Minimum variation curves

If any of the constraints above is not satisfied, we use a smooth cubic
curve to connect the gap (see Figure 9). To achieve a perceptually
pleasing result, we use SIMVC, which tend to minimize changes
of curvature [Mor92]. As in Entem et al. [EPB*19], we define the
SIMVC curve based on the tangents at the endpoints of the contours
to be connected.

Let us TA and TB be the two tangents at the end-point of a (initially
straight) transition edge. To achieve our objective of generating a
perceptually pleasing curve between them, we connect A and Bwith
a cubic Bezier curve defined by four control points (A,P1,P2,B),
where P1 = A+ c1TA and P2 = B+ c2TB (P1 and P2 are the control
points in the tangent directions from A and B, respectively). We op-

Figure 10: (a) User input with endpoints circled over, (b) possible
configurations of curves connecting the gaps, (c) selected curves,
(d) final result.

timize the free parameters c1 and c2 for minimizing the SIMVC en-
ergy. The latter was initially introduced [Mor92] as:

ESIMVC−Moreton = (
∫
ds)3

∫
(
dκ (s)

ds
)2ds (2)

and later modified in Entem et al. [EPB*19] to create slightly shorter
curves connecting the gaps as:

ESIMVC−Entem = (
∫
ds)5

‖B− A‖2
∫
(
dκ (s)

ds
)2ds (3)

Where C(s) is the parametric 2D curve with curvature κ (s).

We made use of 7-15 Gauss–Kronrod quadrature rule [KMN89]
for numerically solving the integration and used Gradient-descent
for minimizing the energy function.

As shown in most of our examples (e.g. the wrist region of the
hand at the right of Figure 1), the gaps that have to be filled along
transition edges are not always between two ends of contour curves.
Indeed, one (or both) of the contours may continue further, which
gives two possible tangent orientations at the endpoint(s) of the
transition edge (see Figure 10). For selecting the appropriate tan-
gent, we initially identify all possible tangents at each endpoint for
each transition edge. Then for each pair of tangents across the edge,
we compute the MVC connecting them. Among all these pairs, the
pair having minimum SIMVC energy is selected. Figure 10 shows a
coloured sketch with endpoints marked as circles, all possible con-
figurations of SIMVC, the selected curves with least SIMVC, and
the final result, respectively.

In practice, to achieve interactive results, we restrict the search
of the free parameters by a scale of 5 of the tangent length. We also
skipped the SIMVC computation if the gap is too small (we quantify
too small as gaps smaller than 8 pixels) since the difference will not
be visible. Figure A.4 shows a few line-arts coloured using our tool.

6. Colour Diffusion

The input contours sometimes have many small regions (for exam-
ple, hatches). Although we could use our tool to fill each of these
regions one by one, this would be tedious and time consuming. We
thus introduce a colour diffusion mechanism, enabling propagate
colour from coloured areas to the uncoloured areas.

As shown in Figure 1, while giving additional information like
hatching or stippling, the artists usually make use of thin brush

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

8 A.D. Parakkat, P. Memari & M.P. Cani / Delaunay Painting: Perceptual image coloring from raster contours with gaps

Algorithm 2. Colour diffusion

strokes (compared to the stroke size they used to draw the main
sketch). The main intention behind this is to make the viewer clearly
distinguish the sketched contours from the hatch strokes. Based on
this observation, we introduce a simple, iterative colour diffusion
framework in which, the colour from the best possible coloured re-
gion is iteratively diffused to an adjacent, uncoloured region. To
quantify this ‘best possible coloured region’, we define a diffusion
strength parameter between pairs of adjacent regions Ri and Rj, de-
noting how much strength a colour needs, to diffuse between them.
It is defined as the shortest possible distance between any two pixels
(pi, pj) such that pi ∈ Ri and pj ∈ Rj.

The colour is then recursively spread from coloured region to
the uncoloured regions in the order of increasing diffusion strength.
First, the regions are classified into two groups based on whether
the user coloured them or not. The diffusion strength from the un-
coloured regions to the coloured regions are computed. The tuple
having the least strength is used to transfer the colour. The regions
(coloured and uncoloured) are updated, and the procedure is re-
peated until all regions are coloured.

Though the procedure is simple and straightforward, identifying
the regions with minimum diffusion strength in a brute force way is
computationally expensive. To make it fast, we again make use of
the underlying Delaunay structure. The complete colour diffusion
process, summarized in Algorithm 2, proceeds as follows.

We start with a random flood-fill algorithm to decompose the con-
tour into different regions. Since the pixels contributing to the mini-
mal diffusion strength can only (trivially) lies on the boundaries, we
extract the boundary of each decomposed region. Then we compute
the Delaunay triangulation of the extracted boundary pixels. Based
on the user colouring, the regions are classified intoColRegions (re-
gions which user coloured) and UncolRegions (where the colour
could not reach yet). Since the Delaunay edges connecting pixels
inside a region are of no relevance and only results in more compu-
tation time, we apply a Delaunay filtering to filter out all such De-
launay edges (by removing Delaunay edges connecting pixels from
the same region). Among all unfiltered Delaunay edges, the valid

Delaunay edge with the smallest edge length is identified (where a
Delaunay edge becomes valid only if it is between one coloured and
one uncoloured region). Once a valid edge is identified, the colour
is diffused from the coloured region to the uncoloured region. Since
the uncoloured region under consideration is now coloured, we up-
date the regions appropriately. The procedure is continued until all
the uncoloured regions get a colour through diffusion. Figure 11
shows a toy example demonstrating our colour diffusion procedure.
It has to be noted that the method is not limited to hatched regions,
as illustrated on Figure 11.

Since the diffusion process ultimately depends on the stroke size
between the regions, sometimes, the result might not match the user
expectation. Fortunately, thanks to our interactive colour filling and
independent colour diffusion, the user can provide extra hints to re-
colour the regions. Figure 12 shows such an example, after giving
a set of colour hints (Figure 12a), using the Delaunay grouping, the
sketch is coloured. Since a few wool chunks (represented using cir-
cular strokes) are closed, Delaunay grouping will leave those re-
gions uncoloured (Figure 12b). To colour these uncoloured regions,
we applied colour diffusion. Unfortunately, as shown in Figure 12c,
a couple of chunks on the head mistakenly got the colours diffused
from the background. The user then provides extra colour hints (as
in Figure 12d) to get a perfectly coloured region. Figure 12e shows
the final result of our framework.

A few results of our painting algorithm can be seen in Figures A.5
and A.6.

7. Automatic Colouring Algorithm

Motivated by applications such as automatic colouring and art line
completion, we now introduce an automatic variant of the proposed
colouring algorithm. Although the automatic prediction of colours
that have to be filled inside a contour is nearly impossible since it
heavily depends on the artistic imagination, our automatic colour-
ing results can be further adjusted by the artist. Alternatively, the
method can be used as a lightweight tool to segment contours of a
raster image into plausible regions.

To simplify computations and avoid any unnecessary complica-
tions due to stroke width, the automatic colouring starts by thinning
the contours (i.e. the black regions in the input image) to make it
single-pixel width. After thinning, potential endpoints that can con-
tribute to gaps to be filled are found by identifying the open contours
(using the neighbourhood information available at each pixel). As in
Delaunay grouping, our main objective for ‘Automatic colouring’ is
to segment the region by appropriately connecting these endpoints
with proper Delaunay edges. So, next, we compute the Delaunay
triangulation as in Section 4 but using the image with thinned con-
tours as the input. Assuming the contour is Delaunay confirming,
the next step is to pair the endpoints. To do so, we pick all Delaunay
edges connecting two endpoints. If there are multiple such edges,
the smallest edge connecting this pair of vertices is preserved. De-
pending on the contour, not all endpoints can be paired; and such
endpoints might have to be connected to a non-endpoint. To address
such cases, if an endpoint is not paired with other endpoints, adapt-
ing the idea fromNN-Crust [DK99], we choose the shortest adjacent
Delaunay edge, which makes an angle > π/2 with the contour.

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

A.D. Parakkat, P. Memari & M.P. Cani / Delaunay Painting: Perceptual image coloring from raster contours with gaps 9

Figure 11: Representative workflow of colour diffusion in a hashed region: top row: (a) a result after Delaunay grouping with four uncoloured
regions (shown in white colour), (b) boundary samples (only a few of them are shown for a clearer illustration), (c–f) filtered Delaunay edges
with smallest valid edge shown in blue colour. Bottom row: (g) result of RandomFloodFill() on (a); (h) Delaunay triangulation of (b), (i–l)
Respective updated coloured regions from (c–f).

Figure 12: (a) Input sketch with colour hints, (b) result of Delaunay
grouping, (c) result after colour diffusion, (d) adding extra colour
hints to the existing hints, (e) our final result.

Once the right Delaunay edges connecting the endpoints (let them
be called segmenting edges) are identified, we use it to split the re-
gions. In other words, we ensure that the triangles (TriA and TriB)
sharing the segmenting edges are labelled differently in the auto-
matic colouring procedure. To facilitate the labelling, depending on
the current labels of TriA and TriB, two situations can arise: In the
first one, both TriA and TriB can be unlabelled, in which we can
initiate Delaunay grouping from TriA and then TriB, ensuring them
to have different labels. Another possibility is for TriA and TriB to
have the same labels. In this case, initiating Delaunay grouping from
both the triangles will over segment the regions, and randomly initi-
ating Delaunay grouping from one of the triangles might not always
assign different labels to both the triangles. To tackle this, we keep
track of the flow direction during Delaunay grouping, i.e. the trian-
gle from which the current triangle is getting coloured, and do the
following:

• FLOW (TriA)= TriB—means the colour flows from TriB to TriA.
In this case, we can safely initiate the Delaunay colouring with
new colour from TriA.

• FLOW (TriB) = TriA—case under which the colour flows from
TriA to TriB. In which, the colouring can be initiated from TriB.

• FLOW (TriA) �= TriB and FLOW (TriA) �= TriB—special case in
which there is a larger path from TriA to TriB without crossing
the segmenting edge under consideration. In this case, we can ar-

Figure 13: Various steps in the automatic segmentation algorithm.
The order is shown using yellow colour arrows, segmenting edges
are shown in red colour, the edge under consideration is marked
using orange colour circle.

bitrarily pick TriA or TriB and start colouring. The intermediate
previously coloured triangle in the path will prevent the colour
flowing from TriA to TriB and vice versa.

The algorithm automatically picks and groups/labels the triangles
appropriately in the decreasing order of the edge length to result in
the required segmented contour. An input sample contour and the
various steps in our automatic segmentation are shown in Figure 13.

7.1. Applications to automatic image segmentation

Our automatic colouring method can be particularly relevant for
fast image segmentation. One such, exciting application is medical

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

10 A.D. Parakkat, P. Memari & M.P. Cani / Delaunay Painting: Perceptual image coloring from raster contours with gaps

Figure 14: Tumour labelling (left to right: Input MRI, result after
thresholding and inverting Canny edges, result of automatic colour-
ing, labelled MRIs using our method). [Image source: [PBG09].

image segmentation, which is a very well-studied and challenging
area. While efficient, advanced tools have been specifically devel-
oped for segmentation tasks, the question of properly segmenting
pathological cases is still open. For instance, the medical imaging
community has a special interest in identifying tumours in a med-
ical image, especially from MRI scans [PBG09]. In particular to
better guide the 3D segmentation input of many recent learning-
based methods, manual labelling in 2D is still used for training data.
We made a simple test for this application scenario, as a first at-
tempt to alleviate this user-intensive task. Since our algorithm can
only deal with contour images, we pre-processed the input MRI
grey-scale images using a Canny edge detector, followed by bi-
nary thresholding and then image inversion. Figure 14 shows a
few MRI scans and various steps in the automatic labelling pro-
cedure. These preliminary while promising results show that our
technique may potentially be used either for an initial segmenta-
tion process, or as a complementary tool to adjust and correct some
resulting segmentation, for which the expert could click in the inter-
est regions and highlight the desired regions appropriately. In sum-
mary, we hope that some ideas of our Delaunay painting method
can inspire further work in automatic or interactive pathological
2D images labelling, and enrich or simplify this time-consuming
process.

Another interesting use-case for this automatic segmentation al-
gorithm is the segmentation of freehand sketches into possibly over-
lapping regions. The problem itself is a non-trivial one [ST16] be-
cause of the presence of significant gaps, absence of strokes and
boundaries represented by multiple strokes. Luckily, our segmenta-
tion algorithm can fill large gaps, group regions bounded by various
strokes, and group strokes shared between various regions. To get
a meaningful result by appropriately resolving ambiguities and oc-
clusion, the automatically generated segments are manually picked
and merged. During this manual picking and merging, the user was
also given the flexibility to split the regions (if needed). Figure 15
shows the segmentation generated in this way on different challeng-
ing cases.

Figure 15: Few sketches (from [ST16]), segmented using our
method and merged manually.

Figure 16: A sketch coloured using same colours in different orders
(the colour hint number and the final result are shown in the right).

8. Results and Discussion

Implementation: The method was implemented in C++, using the
CGAL and OpenCV libraries: we used CGAL for Delaunay tri-
angulation and its Delaunay data-structure for the efficient im-
plementation of Delaunay painting. Whereas, image processing
and interaction-related functions were implemented using OpenCV.
Zhang-Suen’s algorithm [ZS84] was used for computing the skele-
ton of contour images.

Qualitative results: Though we explored a solution for automatic
colourization, which has many applications on its own, the interac-
tive version of our method is the most relevant for artistic colour-
ing, where the artists needs to be in the loop to pick and drop the
appropriate colours (irrespective of whether the underlying contour
is segmented or not). Figures A.4–A.6 show that artists are able to
generate visually pleasing results.

Moreover, a demo of our system is given in the companion video.

Time: Our tool is light-weight and responds at an interactive rate.
The experimentation was conducted on a Core i3 processor @ 1.70
GHz speed and 4GB RAM. In average, the Delaunay computation,
Delaunay grouping, colour diffusion and aesthetic curve completion
took around 0.1, 0.1, 0.5 and 88 s, respectively. The time required
for colour filling and colour diffusion is negligible compared to the
gap-filling procedure, which fortunately needs to be done only once
at the end of the colouring procedure. Colouring order: Since we
give independent control to each triangle, we can attain the expected

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

A.D. Parakkat, P. Memari & M.P. Cani / Delaunay Painting: Perceptual image coloring from raster contours with gaps 11

Figure 17: Influence of colouring near the prominent gap. Case 1: Giving colour hints in two steps as in (a) and then (b), Case 2: Giving
colour hint near the prominent gap in the boundary required only one input as in (c).

Figure 18: Delaunay painting versus related work. First row shows the input given to respective algorithms and second row shows the
resulting coloured sketches.

result irrespective of the colouring order. Figure 16 shows a sample
sketch coloured in several different orders. The user might need to
give more hints depending on the order chosen, but thanks to our
simple flowmechanism, the expected result can always be achieved.

Tips and tricks: The results and the time taken demonstrate that
our tool is straightforward to use. Still, we can make colouring tasks
easier by using a couple of tricks. The first one is to pre-fill the
most significant region at the border of the image by a specific back-
ground colour.

This avoids the unwanted spreading of other colours to the back-
ground, hence reducing the need for recolouring and unneces-
sary confusions. Second, whenever filling a region with a colour,
we encourage the user to click near the largest, unwanted gap in
the boundary.

This indeed will help the system to pick the locally largest De-
launay triangle and hence will prevent the need of clicking again on
some other part to fill the same colour. Figure 17 shows an exam-

ple of how the colouring near a prominent gap influenced the final
result (Note that, depending on the gap size and on the number of
gaps around a region, the user sometimes has to give multiple hints
to satisfactorily colour a region).

8.1. Comparative colouring scenarios and results analysis

Let us now compare our colouring framework with related exist-
ing works through an example illustrated in Figure 18. First, Fig-
ure 18a shows the result of Lazybrush [SDC09] for a sample set of
contours. As can be seen in this result and as discussed in their pa-
per, the boundaries are not good-looking in an aesthetic sense. Also,
colouring a drawing using a LazyBrush is not necessarily straight-
forward for a novice user, since the colouring highly depends on
the stroke size and strength (and hence is more appropriate for a
professional user). The user may have to repaint the same region
multiple times to get the desired result. Figures 18(b), 18(d) and
18(e) show the result of colouring using Zhang et al. [ZLW*18],
PaintsChainer [Pai20] and Hati et al. [HJRD19] methods. As seen in

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

12 A.D. Parakkat, P. Memari & M.P. Cani / Delaunay Painting: Perceptual image coloring from raster contours with gaps

Figure 19: Visual comparisons (differences are highlighted).

Figure 20: Curve completion by various algorithms (magnified
version of Figure 21). From left to right: increasing gap size.

the figures, these methods result in relevant and satisfactory colour-
ing. However, learning-based approaches, following relatively time-
consuming process, are highly dependent on the training data and
cannot work for random artistic drawings (cannot be learned in ad-
vance since it depends on artist’s imagination). Lastly, Figure 18c
shows a sample contour coloured using the line art colouring tool
in GIMP (an implementation of Fourey et al. [FTR18]). As can be
seen, the contour is not coloured properly and multiple user inputs
are required to paint even a small area, which might perceptually
look like a single region. Also note that the colouring of this sketch
required 203 mouse clicks, which is a hectic task for the user. Fig-
ure 19 shows further visual comparisons between our solution and
previous ones, on a few complex examples, showing that the quality
of results can often be improved using our method.

A magnified visual comparison of the curve completion proce-
dure for filling gaps used by various algorithms is provided in Fig-
ure 20 , while Figure 21 shows the full images. Note that except

Figure 21: Curve completion experimentation. From left to right:
Input sketch, altered sketch after manually adding gaps of various
size, results of colouring using Sykora et al. [SDC09], Fourey et al.
[FTR18] and our tool.

Figure 22: (a) Expected result, (b) input sketch, (c) result generated
using our method, (d) required input sample, (e) result of colouring
on required sketch.

for small gaps (on which contour beautification was ignored to save
time), our method was able to generate visually pleasing gap-filling
curves, close to the expected ones.

To still go further in this evaluation, we conducted a user study
(with a style inspired from Zhang et al. [ZLW*18]) that we report
in Appendix.

8.2. Limitations

Though the proposed method is easy to use and has many advan-
tages, it also has a few limitations. The first limitation is that, as
the name suggests, our method can only be used for flat-colouring
and is not designed for applying shading. Shading could, however,
be easily applied on top of our flat-colouring results using existing
methods such as Johnston [Joh02], Sykora et al. [SKv*14] or Hudon
et al. [HGP*19].

Also, we expect a few strokes to be present to define the boundary
that has to be coloured. For example, for colouring a contour as in
Figure 22a, the input sketch shown in Figure 22b is not enough since
the inner shape does not have any contours. But, once we add a
few sketch strokes to define the inner border as in Figure 22d, our
method can achieve the expected result.

Failure case: Sometimes, the Delaunay edge connecting a gap in a
contour may be missing, and thus this contour cannot be completed.
The problem occurs when there is no empty circle containing both
endpoints of a gap (see Figure 23). In other words, we expect the in-
put contours to be ‘Delaunay confirming’. Also, the heuristics used
in our curve completion step are not guaranteed to always give a
perceptually correct result, and are also prone to noise since they
rely on pixel operations.

Lastly, our method only works for handling contour drawings and
was not designed for colouring greyscale images, which are a failure
case for us (contrary to the method in Iizuka et al. [ISSI16]).

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

A.D. Parakkat, P. Memari & M.P. Cani / Delaunay Painting: Perceptual image coloring from raster contours with gaps 13

Figure 23: Limitation of Delaunay-based colouring: (a) expected
boundary, (b) input sketch, (c) underlying Delaunay triangulation.

Figure 24: Parakkat et al. [PCS21] analysis: from left to right: ini-
tial Colouring, interactively generated segments, result after merg-
ing regions.

9. Conclusion

In this paper, we introduced a simple framework for colouring
raster sketches with gaps in the contours. We first presented a novel
Delaunay-triangulation-based colouring method, using an intuitive
flow mechanism introduced in Parakkat et al. [PCS21] (where there
is no notion of colours, but two options as shown in Figure 24 to in-
teractively segment or merge regions, which are tailored for this spe-
cific application). Using the SIMVC concept and a few sharp corner
heuristics, we introduced a method to connect gaps in the contour,
enabling to give an aesthetic finish to the coloured sketch. Finally,
a colour diffusion method was used to save user efforts, avoiding
them to individually colour each region in areas with dense patterns
such as hatches. With minimum effort, the artist/user can modify or
adjust the result. Our interactive method is an easy-to-use tool from
different aspects, such as comparatively minimal input, independent
colour-ordering and quick response time. As our results show, our
simple framework can be used to colour a wide variety of hand-
drawn sketches in a visually pleasing way.

We have also presented an automatic companion method and ap-
plied it to efficient image segmentation. Our pipeline provides a
handy tool for automatic pre-segmentation and fast interactive seg-
mentation correction for 2Dmedical images, which is a well-studied
while still challenging application.

In the future, we would like to strengthen the colour diffusion
process to appropriate regions by analysing the contour globally, in
combination with our current Delaunay-based local analysis. Lastly,

Figure A.1: Visualization of our user study. From left to right:
LazyBrush, PaintsChainer, GIMP and ours.

Figure A.2: Time taken (average time is shown in red bold line) by
various users to colour the sketches using different tools

Figure A.3: Second user study: Evaluation of our solution.

we plan to investigate the temporal consistency of our method,
by exploring the robust propagation of colour hints through the
sketches corresponding to the different frames of an animation.

Acknowledgement

The authors would like to thank Harihara Gowtham, Karan Singh
and Prudhviraj Madipally (for their help with our previous related
works - [PMGC20] and [PCS21]), Even Entem (for his help with the
SIMVC implementation), Yliess Hati and Lvmin Zhang (for helping
us with the comparison), the users (for participating in our study),
and reviewers (for their valuable comments that helped us to im-
prove the manuscript).

Figure A.4: A few results of colouring given using our tool.

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

14 A.D. Parakkat, P. Memari & M.P. Cani / Delaunay Painting: Perceptual image coloring from raster contours with gaps

Figure A.5: A few results of colouring given on simple sketches using our tool.

Figure A.6: Various complex sketches coloured using our method (original sketches taken from Pixabay).

Appendix A: User Study

Inspired by Zhang et al. [ZLW*18], we conducted a user study to
evaluate the strengths and weaknesses of the proposed system. We
invited eight non-experts users, aged between 18 and 45 to partic-
ipate in the interactive colouring session remotely. The users were
given an initial tutorial on how to use the interface and then asked to
randomly pick and colour one of the sketches shown in Figure A.6
using our tool and the other three openly available colouring tools
(LazyBrush [SDC09], PaintsChainer [Pai20] and GIMP [FTR18]).
It has to be noted that the users were explicitly directed to define the
background colour first, to make the colouring process intuitive. At
the end of the colouring process, the users were asked to participate

in a multi-dimensional survey to grade each interface (on a scale of
0–10) based on the following aspects:

• Easiness (E)—How easy it is to give colouring
• Time consumption (TC)—How time-consuming the entire pro-
cess is

• Predictability (P)—How easy it is to identify where colours
should be given to get the expected results

• Aesthetic beauty (AB)—How good looking the final results are
• Region obedience (RO)—Whether the user was able to capture
the expected boundary

• Control (C)—How easy it is to control the colour propagation

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

A.D. Parakkat, P. Memari & M.P. Cani / Delaunay Painting: Perceptual image coloring from raster contours with gaps 15

As it can be seen in the results of Figure A.1, our proposed method
has largely outperformed the competitors from all these aspects. Let
us report some common observations made by various users.

• LazyBrush: Difficult to predict and control the effect of brush
size. It was easy to colour small regions and users did not have to
worry about precise mouse location.

• PaintsChainer: The final result was having an artistic feeling (like
in a painting). But colour bleeding along with random colours
made the final result look bad. Also, this method was not able to
capture the boundaries correctly.

• Fourey et al. (GIMP): Colouring small pieces makes it time-
consuming. Difficult to control the colours near borders. Small
uncoloured regions are left in some areas.

Users were also asked to comment on the advantages and disad-
vantages of our tool, and which resulted in the following remarks:

+ Easy to use without worrying about the gaps;
+ Less work since colours are spreading;
+ Captures the borders well;
- Editing/refining small regions or redoing colours is time con-
suming. A ‘lazy’ paint brush as in LazyBrush would have been
nice;

- Should have included a better colour palette.

In general, though our tool currently does not support function-
alities like undo/redo and does not have an advanced colour palette,
our simple interface allowed the users to colour the sketches without
worrying about contour gaps. Our method could not only capture
the user’s intended boundaries, but also simplify user interaction
and provide aesthetically pleasing results. We also report the time
taken by different users to colour the sketch using various tools in
Figure A.2. It can be seen that users were able to quickly colour
complex sketches using our tool. To get a feedback of how easy our
interface is (without comparing to other methods), 10 other users
aged between 13 and 50 were asked to evaluate our interface, by
grading each attribute on a scale of 0–10. The results are shown in
Figure A.3, with the following comments:

• Following the guideline, it is a convenient and light interface.
• Cannot add free-form shapes.
• Very practical as far as we start by background colour toward
more detailed ones.

• A pre-visualization of colour change (before click) may be useful.

References

[CSG*17] Chen J., Shen Y., Gao J., Liu J., Liu X.: Language-
based image editing with recurrent attentive models. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (2017). http://arxiv.org/abs/

[DGG03] Dey T. K., Giesen J., Goswami S.: Shape segmentation
and matching with flow discretization. In Algorithms and Data
Structures. F. Dehne, J. -R. Sack and M. Smid (Eds.). Springer,
Berlin Heidelberg (2003), pp. 25–36.

[DK99] Dey T. K., Kumar P.: A simple provable algorithm for
curve reconstruction. In SODA’99: Proceedings of the Tenth

Annual ACM-SIAM Symposium on Discrete Algorithms (USA,
1999), Society for Industrial and Applied Mathematics, pp. 893–
894.

[EPB*19] Entem E., Parakkat A. D., Barthe L., Muthugana-
pathy R., Cani M.-P.: Automatic structuring of organic shapes
from a single drawing. Computers & Graphics 81 (2019), 125–
139.

[FHOO17] Furusawa C., Hiroshiba K., Ogaki K., Odagiri
Y.: Comicolorization: Semi-automatic manga colorization. In
SA’17: Proceedings of the SIGGRAPH Asia 2017 Technical
Briefs (New York, NY, USA, 2017), Association for Computing
Machinery.

[FLB16] Favreau J.-D., Lafarge F., Bousseau A.: Fidelity vs.
simplicity: A global approach to line drawing vectorization.ACM
Transactions on Graphics 35, 4 (July 2016), 1–10.

[FTR18] Fourey S., Tschumperlé D., Revoy D.: A fast and ef-
ficient semi-guided algorithm for flat coloring line-arts. In EG
VMV’18: Proceedings of the Conference on Vision, Modeling,
and Visualization (Goslar, DEU, 2018), Eurographics Associa-
tion, pp. 1–9.

[GTF94] Gangnet M., Thong J.-M. V., Fekete J.-D.: Automatic
gap closing for freehand drawing. In SIGGRAPH’94: Proceed-
ings of the Technical Sketch Submission (Dec. 1994).

[HA17] Hensman P., Aizawa K.: cgan-based manga coloriza-
tion using a single training image. In Proceedings of the 2017
14th IAPR International Conference on Document Analysis and
Recognition (ICDAR) (Los Alamitos, CA, USA, Nov. 2017), vol.
3, IEEE Computer Society, pp. 72–77.

[HGP*19] Hudon M., Grogan M., Pagés R., Ondřej J., Smolić
A.: 2DToonShade: A stroke based toon shading system.Comput-
ers & Graphics: X 1 (2019), 100003.

[HJRD19] Hati Y., Jouet G., Rousseaux F., Duhart C.:
Paintstorch: A user-guided anime line art colorization tool with
double generator conditional adversarial network. In CVMP’19:
Proceedings of the European Conference on Visual Media Pro-
duction (New York, 2019), Association for Computing Machin-
ery.

[ISSI16] Iizuka S., Simo-Serra E., Ishikawa H.: Let there be
color!: Joint end-to-end learning of global and local image pri-
ors for automatic image colorization with simultaneous classi-
fication. ACM Transactions on Graphics (Proc. of SIGGRAPH
2016) 35, 4 (2016).

[Joh02] Johnston S. F.: Lumo: Illumination for cel animation. In
NPAR’02: Proceedings of the 2nd International Symposium on
Non-Photorealistic Animation and Rendering (New York, 2002),
Association for Computing Machinery, pp. 45.

[KJPY19] Kim H., Jhoo H. Y., Park E., Yoo S.: Tag2Pix: Line art
colorization using text tag with SECat and changing loss (2019).
http://arxiv.org/abs/1908.05840.

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

http://arxiv.org/abs/
http://arxiv.org/abs/1908.05840

16 A.D. Parakkat, P. Memari & M.P. Cani / Delaunay Painting: Perceptual image coloring from raster contours with gaps

[KMN89] Kahaner D., Moler C., Nash S.: Numerical Methods
and Software. Prentice-Hall, Inc., USA, 1989.

[LDL*19] Liu F., Deng X., Lai Y.-K., Liu Y.-J., Ma C., Wang H.:
Sketchgan: Joint sketch completion and recognition with gener-
ative adversarial network. In Proceedings of the 2019 IEEE/CVF
Conference onComputer Vision and Pattern Recognition (CVPR)
(2019), pp. 5823–5832.

[LWCO*07] Luan Q., Wen F., Cohen-Or D., Liang L., Xu Y.-
Q., Shum H.-Y.: Natural image colorization. In Rendering Tech-
niques. J. Kautz and S. Pattanaik (Eds.). The Eurographics Asso-
ciation (2007).

[Mor92] Moreton H.: Minimum curvature variation curves, net-
works, and surfaces for fair free-form shape design. PhD thesis,
(1992) Berkeley, CA, USA.

[Pai20] PaintsChainer: Petalica paint, online demo (by preferred
networks, inc.). https://petalica-paint.pixiv.dev/index_en.html.
Accessed June 2020.

[PBG09] PrastawaM., Bullitt E., Gerig G.: Simulation of brain
tumors in MR images for evaluation of segmentation efficacy.
Medical Image Analysis 13, 2 (2009), 297–311. Includes Special
Section on Functional Imaging and Modelling of the Heart.

[PCS21] Parakkat A. D., Cani M.-P., Singh K.: Color by num-
bers: Interactive structuring and vectorization of sketch imagery.
In Proceedings of the CHI’21, Association for Computing Ma-
chinery (2021), pp. 1–11.

[PM16] Parakkat A. D., Muthuganapathy R.: Crawl through
neighbors: A simple curve reconstruction algorithm. Computer
Graphics Forum 35, 5 (2016), 177–186.

[PMGC20] Parakkat A. D., Madipally P., Gowtham H. H.,
Cani M.-P.: Interactive flat coloring of minimalist neat sketches.
In Eurographics 2020—Short Papers (2020), A. Wilkie and F.
Banterle (Eds.), The Eurographics Association.

[PMM18] Parakkat A. D., Methirumangalath S.,
Muthuganapathy R.: Peeling the longest: A simple gen-
eralized curve reconstruction algorithm. Computers & Graphics
74 (2018), 191–201.

[SCH20] Su J.-W., ChuH.-K., Huang J.-B.: Instance-aware image
colorization (2020). http://arxiv.org/abs/2005.10825.

[SDC09] Sýkora D., Dingliana J., Collins S.: Lazybrush: Flex-
ible painting tool for hand-drawn cartoons. Computer Graphics
Forum 28, 2 (2009), 599–608.

[SISSI17] Sasaki K., Iizuka S., Simo-Serra E., Ishikawa
H.: Joint gap detection and inpainting of line drawings. In
Proceedings of the 2017 IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR) (2017), pp. 5768–
5776.

[SKv*14] Sýkora D., Kavan L., Čadík M., Jamriška O., Jacob-
son A., Whited B., Simmons M., Sorkine-Hornung O.: Ink-
and-ray: Bas-relief meshes for adding global illumination effects
to hand-drawn characters. ACM Transactions on Graphics 33, 2
(Apr. 2014), pp. 1–15.

[ST16] Schneider R. G., Tuytelaars T.: Example-based sketch
segmentation and labeling using CRFs. ACM Transactions on
Graphics 35, 5 (July 2016), 1–9.

[SZC*20] Shi M., Zhang J.-Q., Chen S.-Y., Gao L., Lai Y.-K.,
Zhang F.-L.: Deep line art video colorization with a few refer-
ences (2020). http://arxiv.org/abs/2003.10685.

[YBC*19] Yoo S., Bahng H., Chung S., Lee J., Chang
J., Choo J.: Coloring with limited data: Few-shot coloriza-
tion via memory-augmented networks, In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR) (2019).

[ZLSS*21] ZhangL., Li C., Simo-SerraE., Ji Y.,WongT.-T., Liu
C.: User-guided line art flat filling with split filling mechanism.
In Proceedings of the IEEE/CVFConference on Computer Vision
and Pattern Recognition (CVPR) (2021).

[ZLW*18] Zhang L., Li C., Wong T.-T., Ji Y., Liu C.: Two-stage
sketch colorization. ACM Transactions on Graphics 37, 6 (Dec.
2018), 1–14.

[ZMG*19] Zou C., MoH., Gao C., Du R., Fu H.: Language-based
colorization of scene sketches. ACM Transactions on Graphics
38, 6 (Nov. 2019), 1–16.

[ZS84] Zhang T. Y., Suen C. Y.: A fast parallel algorithm for thin-
ning digital patterns. Communications of the ACM 27, 3 (Mar.
1984), 236–239.

Supporting Information

Additional supporting information may be found online in the Sup-
porting Information section at the end of the article.

Data Video S1

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

https://petalica-paint.pixiv.dev/index_en.html
http://arxiv.org/abs/2005.10825
http://arxiv.org/abs/2003.10685

