Computer Architecture exam (2 hours)

Renaud Pacalet - 2025-03-19

The text in black is the original one.

The text in red is examples of the expected correct answers. Only this text was expected, possibly in shorter
form, nothing more.

(The text in blue is extra comments about the expected correct answers. )

Warning: the course changes frequently (content, vocabulary, examples...); some questions and answer proposals
can thus be partly or completely out of scope. Warning: some questions can be answered in many different
ways; the proposed answers are just examples and they are not exhaustive.

You can use any document but communicating devices are strictly forbidden. Please number the different pages
of your paper and indicate on each page your first and last names. You can write your answers in French or
in English, as you wish. Precede your answers with the question’s number. If some information or hypotheses
are missing to answer a question, add them. If you consider a question as absurd and thus decide to not
answer, explain why. If you do not have time to answer a question but know how to, briefly explain your ideas.
Note: copying verbatim the slides of the lectures or any other provided material is not considered as a valid
answer. Advice: quickly go through the document and answer the easy parts first. The questions are worth 10
points each.

1. Gray code counter

With the standard binary representation of unsigned numbers a value can differ from the next in more than
one bit. On 3 bits for instance, the standard binary representation of 5 is 101, which differs in 2 bits from the
representation of 6 (110).

A Gray code (after Frank Gray, a physicist and researcher at Bell Labs) is another way of representing unsigned
numeric values in binary such that any value differs from its predecessor and successor values in only one bit,
and the representation of the largest value (2" — 1 on n bits) also differs in only one bit from the representation
of 0. Gray codes are used in various circumstances, for instance to exchange information between different
synchronous digital designs with different clock frequencies.

e Invent a 3-bits Gray code to represent numeric values 0 to 7. Represent your solution in the form of a table
like Table 1 where you will fill the third row. The representations of 0 and 7 are already provided, do not
change them (note that they differ in only one bit):

Value 0 1 2 3 4 5 6 7
Standard 000 001 010 0611 100 101 110 111

Gray code 000 100

Table 1: Incomplete Gray code

(A possible Gray code is shown in Table 2. )
Value 0 1 2 3 4 5 6 7
Standard 000 001 06010 611 160 101 110 111
Gray code 000 0601 011 016 110 111 101 100

\_ Table 2: Gray code )

e We want to design the combinatorial circuit named next gc that computes the successor value of an input
Gray code; when the input is the code of 7 (100) it shall output the code of 0 (000). The external view of
next gc is represented on Figure 1 where A, B, C are respectively the left, middle and right bits of the input
Gray code and X, Y, Z are the left, middle and right bits of the output Gray code.
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Figure 1: The external view of next gc

So, if the input is set to ABC = 100, after the propagation delay, the output shall become XYZ = 000. Same
for the 7 other input values, according the table of the Gray code you designed.

Design the schematic of the internals of next gc using only the logic gates and symbols of Figure 2. Try to
optimize your design such that it uses as few hardware as possible.
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Figure 2: Logic gates and symbols
(The truth table of XYZ shown in Table 3 is easily deduced from the previous table. h
ABC 000 0601 011 010 116 111 101 160
XYz 001 011 016 110 111 1061 100 000
Table 3: Truth table
From which we can deduce the 3 boolean equations:
» X = (B and (not C)) or (A and C)
» Y = (B and (not C)) or ((not A) and C)
» Z = ((not A) and (not B)) or (A and B) = A xnor B
From which we can draw the schematic shown on Figure 3.
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\_ Figure 3: Schematic of the next gc circuit )

2. RISC-V assembly

In this question we use RV32I, the RISC-V Instruction Set Architecture (ISA) without multiplications and
divisions, and the ILP32 Application Binary Interface (ABI) seen during lectures and labs. Reminder: according
the ABI, the size of a stack frame must be a multiple of 16 bytes; the general purpose saved registers are
sp, gp, tp, sO, s, .., s11; the general purpose non-saved registers are ra, t0, t1, .., t6, a0, al, .., a7. Use the
provided RISC-V cheat sheet if you don’t remember the RV32IM ISA or the ABI.
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Function avg2 has already been coded by one of your colleagues. You do not know its code, you do not know
which registers it uses, you must assume that it can modify any non-saved registers. All you know is that:

o it is fully ABI compliant,

e its inputs are two 32 bits unsigned integers, denoted z and y in the following,

o its single output is a 32 bits unsigned integer, LmTJ”yJ, the rounded average of the two inputs; the rounding
is toward 0 (|3 =0),

o it is written in a way that completely avoids overflows, the returned value is always correct.

Assembly coding

Write in RV32IM assembly the code of function avg4 that takes four 32 bits unsigned integers as inputs (denoted
z,y, 2z, t in the following), calls avg2 three times to compute their average rounded toward zero, and returns it.
Your code must fully comply with the ABI. Comment each instruction on the same line after a # sign as in
the following example:

addi t0,t1l,0 # tO = tl (+0)

rAssembly coding h

Listing 1 shows a possible source code of avg4. Note that it does not compute exactly the average of x,y, z, ¢
rounded toward zero (see the extended explanations).

.text

# inputs x,y,z,t in a0,al,a2,a3 respectively
# output in a0

avg4:

addi sp,sp,-16 # allocate 16 bytes stack frame
Ssw ra,0(sp) # save ra in stack frame
sw a2,4(sp) # save z in stack frame
sw a3,8(sp) # save t in stack frame
call avg2 # a0 = avg2(x,y)
sw a0,12(sp) # save a® = avg2(x,y) in stack frame
lw a0,4(sp) # a0 = z
lw al,8(sp) # al = t
call avg2 # a0 = avg2(z,t)
lw al,12(sp) # al = avg2(x,y)
call avg2 # a0 = avg2(a0,al) = avg2(avg2(z,t), avg2(x,y))
lw ra,0(sp) # restore ra from stack frame
addi sp,sp,16 # restore sp
ret # return
\_ Listing 1: The avg4 function )

(Per the ABI, function inputs are passed in a0, al, ..., a7 and results are returned in a0 and al. So, we receive )
our four inputs x,y, z,t in a0, al, a2 and a3, and we must store our final result in a0 before returning. We
call avg2 three times and each time we pass the two inputs in a® and al, and get the result in a@:

o a first time to compute the average of x and y,
e a second time to compute the average of z and ¢,
¢ a third time to compute the average of the two averages.

As for any function that calls other functions we must allocate a stack frame and store register ra in it before
calling any other function. This is because it contains our return address and any call to other functions
overwrites it. If we do not first save it, our own return address is lost and we cannot return to our own caller.

There are three other important data that we must save:

e As they are non-saved registers, the first call to avg2 could modify a2 and a3 that contain our z and ¢
inputs; so we must absolutely save them somewhere before the first call. We could copy them in saved
registers but we would then have to first save these saved registers in the stack frame because, per the
ABI, we must restore them before returning. And of course we would have to restore them from the stack
frame before returning. We simplify a bit and save several instructions by saving a2 and a3 directly in the
stack frame.

e The result of the first call to avg2 is returned in a® that we need for the third call; so we must also

. absolutely save it somewhere before the second call; for the same reasons we also save it in the stack frame.
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(16 bytes are sufficient to store these four 4-bytes values. As always the stack grows toward the low addresses |
so we start our function by subtracting 16 from the stack pointer sp (Line 5). sp now contains the base
address of the new stack frame.

We save registers ra, a2 and a3 in the stack frame, at offsets 0, 4 and 8 from the base address of the new
stack frame, respectively (Lines 6 - 8).

We call function avg2 that returns the average of x and y in a0 (Line 9). The input parameters are already
in registers a0 and al because we did not modify them since the entry in avg4. We save the result a0 in the
stack frame, at offset 12 from the base address of the new stack frame (Line 10).

We restore z and ¢ from the stack frame in registers a0 and al (Lines 11 - 12), and we call avg2 a second time
(Line 13); it returns the average of z and ¢ in a®. We restore the result of the first call from the stack frame
in register al (Line 14), and we call avg2 a last time (Line 15); it returns the average of the two averages in
a0, which is where we want it per the ABI.

The final part simply consists in restoring ra from the stack frame (Line 16), restoring sp by adding 16, the
opposite of what was subtracted when entering the function (Line 17), and returning with pseudo-instruction
ret (Line 18).

Note that the implementation of Listing 1 does not compute exactly the average Jrounded1 tovgard zero of
bJ;erJ =i =
0, while [WJ = 1. It can be shown that this computing error happens if and ouly if (z + y) mod4 =1
and (z 4+ t) mod 4 = 3 or the opposite. This can easily be detected beforehand by computing a = (z @ y) A 3
and b= (z@®1t) A 3, where @ and A are the bitwise exclusive OR and the bitwise AND, respectively. If a A
b=1and a® b= 2 we are in the error case and adding 1 to any of the four parameters fixes the issue.

the four parameters: if we call avg4 with z =0,y =1,z = 1,t = 2, the returned value is {

Listing 2 shows a fixed source code of avg4 where the error detection and fix are between Lines 6 and 16.

avg4 fixed:
addi sp,sp,-16 # allocate 16 bytes stack frame
Sw ra,0(sp) # save ra in stack frame
sw a2,4(sp) # save z in stack frame
sw a3,8(sp) # save t in stack frame
xor 1t0,a0,al # t0 = x xor y
andi t0,to0,3 # t0 = t0 and 3 = a
xor tl,a2,a3 # tl = z xor t
andi t1,t1,3 # tl =tl and 3 =D
and t2,t0,tl # t2 = t0 and t1 = a and b
addi t2,t2,-1 #t2 =12 -1
bne t2,zero,ok # if t2 != 0 goto ok (no need to fix)
xor t3,t0,tl # t3 = t0 xor tl = a xor b
addi t3,t3,-2 # t3 =13 - 2
bne t3,zero,ok # if t3 != 0 goto ok (no need to fix)
addi a0,a0,1 # a0 = a0 + 1 =x + 1 (fix)
ok:
call avg2 # a0 = avg2(x,y)
sw a0,12(sp) # save a0 = avg2(x,y) in stack frame
lw a0,4(sp) # a0 = z
lw al,8(sp) # al = t
call avg2 # a0 = avg2(z,t)
lw al,12(sp) # al = avg2(x,y)
call avg2 # a0 = avg2(a0,al) = avg2(avg2(z,t), avg2(x,y))
lw ra,0(sp) # restore ra from stack frame
addi sp,sp,16 # restore sp
ret # return

Listing 2: The fixed avg4 function

But of course, not using avg2 at all, contrary to the specifications, would be much simpler as shown in
Listing 3.

avg4 simple:

add a0,a0,al
add a0,a2,a3
srli a0,2
ret
\ Listing 3: The simple avg4 function y
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Accuracy

Under what condition on the four inputs of avg4 is the output result the exact average (no rounding)?

The output result of avg4 is the exact average of x,y, z,t if and only if z 4+ y and z + ¢ are even and = + y +
z +t is a multiple of 4 ((x + y)mod2 = (2 + t)mod 2 = (z + y + 2z + t) mod 4 = 0).

(We denote: )
e P: the output result of avg4 is the exact average of x,y, z, t

e Qi (x+y)mod2 =0

e Q5 (z+t)mod2=0

e Qi (x+y+z+t)modd =0

QR: Q1 NQy N Qs

Q@ = P is immediate. For the other direction we first remark that, as the rounding is always toward zero, one
rounding error cannot compensate for another. So: P = LwTﬂ’J = mT-&-y = ;. Symmetrically, P = LZTHJ =
ZT’L“’ = @,. Finally,

P {L%”J;L%”JJ _ 1 (|22 + | 222 ) moaz =0

2 2 2

r+y+z+t
2

t
:(x+y+z+

> 5 )mod2=0:>(

)mod2=0:>Q3

Combining the 3 implications:

\ P=Q NQ:NQ3=0(m

Avoiding overflows

If you were asked to code function avg2 how would you avoid overflows? Explanations in natural language are
enough, you do not have to provide RV32I code, but you can code if you wish or if it helps explaining.

rAvoiding overflows in avg2 is easy: we use the bitwise AND to save the modulo 2 of the two inputs in )
temporary registers (Lines 5 - 6 of Listing 4), then we use the logical right shift to divide the two inputs by
2 (Lines 7 - 8), we add them together (Line 9), add 1 if the two saved modulo are 1s (Lines 10 - 11), and
we return (Line 12). There is no overflow because after dividing the two inputs by 2 their range is [0...230 =
1], so the range of their sum is [0...231 — 2]. Even if they are odd the final addition of 1 does not cause an
| overflow, the range of the result is [0...2°" —1]. )
fL- : N\

isting 4 shows the source code of avg2.

1 .text

2 # inputs x,y in a0,al respectively

# output in a0

4 avg2:

5 andi t0,a0,1 # t0 = a0 modulo 2

6 andi tl1,al,1 # t1 = al modulo 2

7 srli a0,a0,1 # a0 = ab / 2

8 srli al,al,l # al =al / 2

9 add a0,a0,al # ad = ad + al

10 and t0,to,tl # t0 = t0 and tl

1 add a0,al,t0@ # ad = a® + tO

12 ret # return
\ Listing 4: The avg2 function y
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