Introduction to Computer Architecture: exam

R. Pacalet

2024-12-11

The text in black is the original one. The text in red is examples of the expected
correct answers. Only this text was expected, possibly in shorter form, nothing
more. The text in blue is extra comments about the expected correct answers.
Warning: the course changes frequently (content, vocabulary, examples. . .); some
questions and answer proposals can thus be partly or completely out of scope.
Warning: some questions can be answered in many different ways; the proposed
answers are just examples and they are not exhaustive.

You can use any document but communicating devices are strictly forbidden.
Please number the different pages of your paper and indicate on each page your
first and last names. You can write your answers in French or in English, as you
wish. Precede your answers with the question’s number. If some information
or hypotheses are missing to answer a question, add them. If you consider a
question as absurd and thus decide to not answer, explain why. If you do not
have time to answer a question but know how to, briefly explain your ideas.
Note: copying verbatim the slides of the lectures or any other provided material
is not considered as a valid answer. Advice: quickly go through the document
and answer the easy parts first.

The first question is worth 6 points. The second and third questions are worth 7
points each.

1 CMOS logic

The 2-1 0AI logic gate has 3 inputs A, B and C, one output X and the following
truth table:

el ===l
R OORKRFEOO| W
—o RO RORO|IAN
Ob—‘O)—‘Ob—\b—ﬂ)—‘x

1. Draw the CMOS schematic of 2-1 0AI using only N and P transistors.

2. Write the boolean equation of the X output of 2-1 0AI using the NOT,
AND and OR operators and parentheses. Do not assume any precedence
between the boolean operators, use parentheses to make your equation non
ambiguous.

3. Imagine a graphical symbol for 2-1 0AI and draw it.

1. The CMOS schematic is represented on Figure 1.

B—y,

A X
—B

C—

Figure 1: CMOS schematic of the 2-1 0AI gate

We can observe that the 2-1 0AI output is 0 if and only if the C input is 1
and at least one of A or B is also 1. This immediately gives the network of
N transistors between the ground and the 2-1 0AI output: a N transistor
which grid is C in a series with a group of 2 N transistors in parallel which
grids are A and B respectively. This way, if C is 0 or if A and B are 0
there is no path between the ground and the output, while in all other
circumstances there is such a path and the output is 0. As always with
CMOS logic the network of P transistors between the power supply and
the 2-1 0AI output is dual of the network of N transistors: a P transistor
which grid is C in parallel with a group of 2 P transistors in a series which
grids are A and B respectively.

2. X = NOT (C AND (A OR B)) = (NOT C) OR ((NOT A) AND (NOT B))

3. Using the style seen in class we could represent the 2-1 0AI gate as shown

on Figure 2.
A
B X
C

Figure 2: Symbol of the 2-1 0AI gate

2 Binary representation of data

There are several ways to represent signed integers using bits. In computer
systems, the two most frequently encountered are sign and magnitude and
two’s complement. In the following we denote a,_1a,_3...a1a9 the n-bits
representation of integer A where ag is the Least Significant Bit (LSB).

1. Consider decimal values 12, -59 and -66. We want to represent them all in
two’s complement on the same number of bits m. What is the minimum
value of m?

. Consider decimal values 12, -59 and -66. Convert them in m-bits two’s
complement (where m is your answer to the preceding question).

. A p-bits adder is a hardware device that takes two p-bits inputs, adds
them as if they were unsigned integers, and outputs the p 4+ 1-bits result.
We denote A =ap_1...a1a0, B ="bp_1...b1by the two p-bits inputs and
S = sp...525150 the p 4 1-bits output of a p-bits adder. Example: with
a 3-bits adder, if inputs are A = 101(5) and B = 011(3), the output
is S = 1000(8). If, instead of considering the inputs and the output as
unsigned integers, we consider them as signed numbers represented in sign
and magnitude, the result is sometimes correct, sometimes not.

¢ Give an example of two 3-bits sign and magnitude inputs for which
the output of a 3-bits adder is the correct 4-bits sign and magnitude
representation of their sum.

o Give an example of two 3-bits sign and magnitude inputs for which the
output of a 3-bits adder is not the correct 4-bits sign and magnitude
representation of their sum.

e Express the mnecessary and sufficient condition on inputs
A = ap_1...a100 and B = bp_1...b1bg such that a p-bits ad-
der outputs the correct sign and magnitude representation of their
sum.

. What is the tetradecimal (base 14, symbols 0,1,2...9, A, B,C, D) repres-
entation of decimal value 6047

.8

8 bits are sufficient: —27 = —128 < —66,—59,12 < 27 — 1 =127 but 7 are
not: —66 < —25 = —64. So 8 bits are the minimum.

. 000011003 scomp. = 1210
110001012’5(:0’m,p4 - *5910
101111102’500777@4 - *6610

. Signed additions in sign and magnitude with a p-bits adder

° Ooosignfnwm + OOOsi,qnfmag. - Oooosignfmag.(o'lo + 010 - 0]0) is
correct.

° 10157’,gnfma,g. + 001sign7’mag. - Ollosv’,gnf'ma,g.(*llo + 110 - 610) is
not correct.

e We denote 0" the all zero n-bits string and ?" any n-bits string.
We denote Q(A, B) the property “the output of the p-bits adder is
the correct sign and magnitude representation of the sum of the A
and B inputs considered as signed numbers in sign and magnitude
representation”. QQ(A, B) is true if and only if one of the 3 following
conditions is satisfied:

ap—1 = bp—l
A=010""2 and B =117P"2
A=117""2 and B = 0102

Proof: for any n bits string X = z,_12,_2...2129 we denote u(X)
the unsigned integer it represents and sm(X) the signed integer it
represents in sign and magnitude. Example: if X = 1001, u(X) =9
and sm(X) = —1. With these notations we can model the output
S = A+ B of the p-bits adder with u(S) = u(A) + u(B) and the
question becomes “under what condition do we also have sm(S) =
sm(A) 4+ sm(B)?” By definition of unsigned and sign and magnitude
representations we have:

3
ks
]

(~1)7* @(X) ~ 012")
= (=1)" " u(X) + zp_g 2"
w(X) = (=1)"tsm(X) + z,_ 12"

From which we can rewrite u(S) = u(A4) + u(B) as:

(—1)°rsm(S) + 5p2° =

Ap— —1 b, _ -1 (1)

(=)= tsm(A) + ap—12P"" + (=1)"""*sm(B) + bp—12°
By definition of the p-bits adder, ap—1 = bp,—1 = 0 = s, = 0, and
ap—1 =by,_1 = 1= s, =1. This leaves only 6 possible cases for a,_,
bp—1 and sp:

1. ap—1 = bp—1 = s, = 0. Equation 1 becomes sm(S) = sm(A) +
sm(B) < Q(A, B).

2. ap—1 = bp—1 = s, = 1. Equation 1 becomes —sm(S) + 2P =
—sm(A) +2P~1 — sm(B) + 2771 & sm(S) = sm(A) + sm(B)
Q(A, B).

3. ap—1 = 0,bp,—1 = 1,5, = 0. Equation 1 becomes sm(S) =
sm(A) — sm(B) +2P~1. And we immediately see that we cannot
also have sm(S) = sm(A) + sm(B) because this would require
sm(B) = —sm(B) +2P71 & sm(B) = 272 & B = 010772
which contradicts the b,_1 = 1 hypothesis.

4. ap_1 = 1,b,1 = 0,5, = 0. Equation 1 becomes sm(S) =
—sm(A)+2P~1 +sm(B). And we immediately see that we cannot
also have sm(S) = sm(A) + sm(B) because this would require
sm(A) = —sm(A)+2P71 & sm(A) = 2P~2 & A = 01072 which
contradicts the a,_; = 1 hypothesis.

5. ap—1 =0,b,_1 =1,s, = 1. Equation 1 becomes —sm(S) + 2 =
sm(A)—sm(B)+2P~! < sm(S) = —sm(A)+sm(B)+2P~1. And
we immediately see that we can also have sm(S) = sm(A)+sm(B)
if and only if sm(A) = —sm(A) + 2P~ & sm(A) =22 & A=
01072,

6. ap—1 =1,bp,_1 =0,s, = 1. Equation 1 becomes —sm(S) + 2P =
—sm(A)+2P~ 1 +sm(B) & sm(S) = sm(A)—sm(B)+2P~1. And
we immediately see that we can also have sm(S) = sm(A)+sm(B)
if and only if sm(B) = —sm(B) +2P~! & sm(B) =2P"? & B =
01072,

The 2 first cases can be merged as condition ap—1 = b,—1 (4 and B
have same leftmost bit). This ensures property Q(A, B).

The fifth case must be slightly refined to translate the s, = 1 hypo-
thesis into a constraint on A and B. With A = 0107~2 and b,_; =1
we can have s, = 1 if and only if b,_» = 1. The condition on A and
B is thus A = 0107~2 and B = 11??~2. This also ensures property

Q(A, B).

The sixth case is the symmetrical of the fifth: A = 11?7~2 and B =
0107~2. This also ensures property Q(A, B).

4. 604=3x196+1x14+2=3x 142 +1 x 14! +2 x 149 = 312y,

3 RISC-V assembly

In this question we use RV32IM, the RISC-V Instruction Set Architecture (ISA)
and the ILP32 Application Binary Interface (ABI) seen during lectures and labs.
Reminder: the size of a stack frame must be at least 16 bytes and must be
a multiple of 16 bytes; the general purpose saved registers are sp, gp, tp, s0,
s1, ..., s11. Use the provided RISC-V cheat sheet if you don’t remember the
RV32IM ISA or the ILP32 ABI.

Study the code of function qux in Listing 4.

qux:

addi sp,sp,-16
sw ra,0(sp)
nv s0,a0l
mv a0, zero

L1:
andi t1,s0,1
add a0,al,tl
srli s0,s0,1
addi al,al,-1
bne al,zero,L1l
1w ra,0(sp)
addi sp,sp,16
ret

Listing 1: Listing of function ‘qux*

How many input parameters does function qux take? In what register(s)? How
many output results does function qux return? In what register(s)? Explain
what function qux does.

Function qux has 2 input parameters passed in registers a0 and al. It returns
one result in register a0. Function qux counts the number of bits equal to one
among the al right bits of a0.

N =

00~ O Ut Ww

=W N =

O © 00Ot

J—y

Does function qux fully comply with the ILP32 ABI? Explain why. If it does
not explain how to fix it.

No, function qux does not fully comply with the ILP32 ABI. It uses and modifies
saved register s0O without saving its content first and restoring it before it returns
to the caller. This is a violation of the ABI and can cause errors if the this
register is in use when function qux is called. The function could be fixed by
storing the content of s0 in the stack frame before modifying it, and by restoring
it from the stack frame before returning, as it does for register ra:

qux:
addi sp,sp,-16 # allocate a 16 bytes stack frame
sw ra,0(sp) # save ra in stack frame
sw s0,4(sp) # save s0 in stack frame
nv s0,a0 # s0 <- a0
mv a0, zero # a0 <- 0 (initialize bit count)
L1:
andi t1,s0,1 # t1 <- sO0 AND 1 (righmost bit of s0)
add a0,al,t1 # a0 <- a0 + t1 (count)
srli s0,s0,1 # s0 <- s0 >> 1 (logical right shift)
addi al,al,-1 # al <- al - 1 (loop index)
bne al,zero,L1 # goto L1 if al != 0
1w s0,4(sp) # restore s0 from stack frame
1w ra,0(sp) # restore ra from stack frame
addi sp,sp,16 # restore sp
ret # return to caller

Listing 2: Listing of function ‘qux‘

Could function qux be optimized for speed? If yes explain how.

Yes, it could be optimized for speed by completely avoiding the use of saved
registers and the need to save and restore them in the stack frame. As it does
not call another function it could even avoid saving and restoring ra. Thanks to
this there is no need to allocate and deallocate a stack frame and 6 instructions
are saved:

qux:
mnv t0,a0l # t0 <- a0
mv a0, zero # a0 <- 0 (initialize bit count)
L1:

andi t1,t0,1
add a0,al0,t1l
srli t0,t0,1
addi al,al,-1
bne al,zero,L1
ret

tl1 <- tO0 AND 1 (righmost bit of t0)
a0 <- a0 + t1 (count)

t0 <- t0 >> 1 (logical right shift)
al <- al - 1 (loop index)

goto L1 if al != 0

return to caller

H W K R R W

Listing 3: listing of function ‘qux‘

Another possible optimization would be to stop counting as soon as the shifted
value is equal to 0:

nv t0,a0l
mv a0, zero

beq tO0,zero,L2
andi t1,t0,1
add a0,a0,tl
srli t0,t0,1
addi al,al,-1
bne al,zero,L1l

ret

Note that, as this adds one more test, whether it optimizes or not depends on the
input parameters. For instance, with a0 = 0 and al = 32, this last optimization
completely skips the loop, that is, 5 x 32 = 160 instructions. However, with
32, it adds 32 test, that is, 32 instructions. Deciding
to use this optimization or not shall thus depend on the statistics of the input

a0 = Oxffffffff andal =

parameters.

®* #

HOH R R W B

H*

t0 <- a0
a0 <- 0 (initialize bit count)

goto L2 if t0 == 0 (early exit)

tl <- tO0 AND 1 (righmost bit of tO0)
a0 <- a0 + t1 (count)

t0 <- t0 >> 1 (logical right shift)
al <- al - 1 (loop index)

goto L1 if al != 0

return to caller

Listing 4: listing of function ‘qux*

(s)anjeA windy - Le - ge
syuswinb.e uondund - £ - o€
39]|ed Aq paAeS - L LS - 0S
si9)s16a1 Aresodwa) - 93 - 03

Jautod peaiyy - dy
J91od [eqo|b - d6

J91ui0d ydeys - ds
SS2Ippe UIN}al - B4

93 [+% 3 €3 LEJ 0EJ 624 8ZJ apoddo [SIZIPSLtL) m
spoddo SeIpawwl uny 154 zs! S1eIpawwl as
LLs oLs 65 8s 129 924 szd vzd
apoddo [J] ouny] 9)eIpawwl |
Ls 9s ss s €Y 7y 74 0zJ
spoddo p1 uny 154 zs! suny M
€5 s Le B Gl el Ll o5 0 L z £ v s 9|z 8 6 oL LL|Zl €L vl|SL oL £l 8L 6L|0Z 1z T € vT[ST 9T LZ 8T 6Z OF LE
se ve €8 ze TSR NI AN AN Jjewlo} uondonisul Jgq-g¢
e e d [AN] oLd 6J 8J JWeYs << LSJd = pJ eipauiwy Juweys ‘LsJd ‘pJd IVYS
4 (o] s /05 snswyie ybu ys
2 13 0} dy L3 94 S 7J JWBYS << LSJ - pJd JWeYs ‘LsJ ‘pJ IT¥S
b | ds & | oz & @ . > JWUS >> 1S » P Wweys LSy py ITTS
ZLWT + |SJ - Od .
sasel|y 1915169y 9|14 1935163y v+ 3d > py ! s=as1624 uy) pue duinf (b59)ZIWUT TPy ¥TVC 754 << 1SJ » Pd M SnawWYIe WYBL YIS ZSJ LSy ‘pJ WS
QZWWT + 2d » Xd d .
wuT ‘pJ
o ‘os0z ‘otz 100y S on ¥+ 2d > pJ m AUl pue dwing zuuy pJ WL 25 << 1SJ - pJ] 1ea160] 3yBu Yys FANERIEN IR N, Y
L >> ZLWWT + >d » >d e paubisun o3 G G (e
(eJ)o ‘0Jdz ¥IVC 3UNNOIQNS WOJ) UIN1RY 13y s Ueus ss3| youelg i Z5d >> 1S > pJ Y [e2160] 43| Yiys Z5J ‘1sJ ‘pd TS
‘ il 8 o 20 ZLWWT ‘Zsd ‘LS 179
S ey sss| youeig T
[0:11]1395330 ‘By ‘BJ WV 25J > ISJ 4T] .
[Z1:1€]1395430 ‘R IdINV (4eg) BUNNOIGNS || 395340 TIVD ZWWT v 1SJ > PJ SleIpawwi YoX Ziwwt f1sd ‘pJd TYOX
ZLWWWT + >d - dd as paubisun enba ZLWUT ‘7SJ ‘LSJ N3G
Zsd =< |ISJ 4T 10 ueyy 193ealb youelg ZWWT | 1sJd - pJ | eIpawwi YO ZLWWT ‘LsJd ‘pJ I¥O
71335330 ‘BJ ‘BJ YL (deau) sunnoiqns led 713954340 T1VD
WuT + 3d » dd N ‘ ‘
ziuwut +NmL e gas JENSE— wﬂ:mwm ZWWUT ¢ZsJ ‘LsJ 399 ZIWWT B LSJ > pJ | 2jeIpawwi ANY ZLWWT ‘LSJ ‘pJd IANY
395440 ‘0437 WL duwnf feuomipuosun ws40 € j DA e
e 25J v 1SJ > PJ] HOX Zsd ‘1SJ ‘PJ ¥OX
o ,ML tmL . as |enba Jou youeig ZIWWT ‘ZsJd ‘LsJ aINg
335440 €1SJ ‘0J3Z 178 0< LS! J1youeig 185430 ‘|SJ 7199 (SRR EENE 754 | 1sd - pd ¥ ¥o 75J “1sJ P WO
ZLWWWT + >d - d 5 TR %0 TS0 GEY . ,
195440 LSy ‘0usz 399 05 LS4 Jiyoueig 195440 ‘LsJ 7379 754 = LSJ 4T o e : By =R Y anv B2 80 T @
395440 ‘0432 “1SJ 309 07=/15 Jlpueig 335440 15 7308 uondudsag adA uondNIsu| SluowBu uondudsag adAL Dnasu|
395340 ‘04dZ ‘LSJ 3NG 0# LSt Jiyouelg 395430 ‘USJ ZaNg mc_r_ucm_m suonesado _mu_mon_
395440 €049z ‘|SJ 039 0= 1! Jiyoueig 395440 ‘IsJ 7639
[ZiwwT + Lsd]waw « (S 314q 21015 (1SJ)ZLWWT ‘ZSJ @S wwT J Dd 0} Wt ‘pd
b ZL >> 0ZWUT + Xd - P. n areipawwi saddn ppy ozwwt ‘pJ dINV
395440 ‘LSJ ‘ZsJ n3og Nm‘__.mmntr._tcmhu 395330 ZsJ ‘LsJ N31g
s |
[ZiwwT + psaJuwsw « (S piomjley 21035 (1SJd)ZIWWT ZSJ HS ZL >> QZWWT - pJ n ajeipawwy saddn peot ozwwt ‘pJ INT
subisun
395340 ‘ISJ ‘ZsJ NL1E zs1< me_vb_ :u:m‘_m‘ 395330 ‘ZsJ ‘LsJ nlog
g [ZU0UT + |SJ]UBL « (0:1€)ZSd s piom 21015 (1S9)ZUUT ‘Z5J MS 00L& ZUWT > 1S > pJ | Ezm_mcscwﬂﬁwﬁ%m_ ZUWT 1S pd NILTS
395340 ‘Isd ‘ZsJ 399 TSI |S1 Jiyouelg 395340 ‘ZsJ ‘LS4 319
[ZLwwT + LSJJwaw « ZSJ S ploma|qnop 31035 (LsJd)zZiwwt ‘zsJ as O 1L é&Zsd > Isd - pd o paubisun uey) ss9| 195 Zsd ‘1sJ ‘pJ NLIS
‘ ‘ . ‘
395440 ‘ISJ ‘zsJ 17d 7SI<LSIjiyouelg | 335440 ‘ZSJ ‘ISJ 199 . 08 DA IR S 180 < [\ Sjeipaww T 9080 T TSR
[Ziwwt + psa]waw - pJ | paubisun a14q peo (Lsy)ziwwt ‘pd nal uey) ssa3| 195
SJ foJdz ‘pJ dns Juswa|dwod s,om| sJ ‘pd 93IN pauBisun 01L& 754> 1Sd o pd] uey) ssa| 195 ZsJ ‘LsJ ‘P LTS
[ZLwwT + LsJ]waw - pJ | piomyey nmS (1sJ)ZLWWT “pJ NH1
L- ‘SJ ‘pJ THOX juawajdwiod spuQ SJ ‘pd LON TLWT + |SJ > PJ | djeIpawwi ppy ZWWWT ‘LsJ ‘pd IQQY
0 ‘sJ “pJ TAQY 115631 Adon 4 tpy " [ZiwwT + LsJJwaw - pJ I paubisun piom peoq (LSJ)zZLwwt ‘pd AM1 254 - 1SJ - pJ M engns 754 “1Sd pu ans
[0:LL]WRS ‘py ‘pJ IAQY S —— 0B G W [ZiwwT + |sJ]waw - pJ | 214q peo (LsJ)ziwwt ‘pd @1 ZSJ + LSJ > pJ Y PPV ZsJd ‘LsJd ‘pd aav
[zL:1g]uhs ‘py ddINV {e) ssaippe pec
WUT + LSJJWAW » PJ SJ)ZLWWT ‘pd
p— [epuwr + 1s4] P ! piomjjey peol (1sd)zuwre s H1 uondudsaq adAL uondnAsu| Suowaupy
0:liJwwt ‘py Py IQAV
T wut ‘py
[zL:€lut Py IM (o) drelpauiul peoy G [ZuT + LSJJuaw pJ | piom peot (1s9)zLwT Py M1
ZlWWT ‘oJsz ‘pJ 10V (1eaU) D3RIPAWIWI PROT it ‘py 11 [Ziwwt + LsJ]wsw » pJ | piomajgnop peo (1sd)ziwwt ‘py @1 CO_“m_OQO dhL_uwyIly
(s)uondnajsul aseg uondnJsu| JluowBu uondudssg adAL uondNsu| Sluowsupy <WwoxeWAWIRYBUSHLS> WiIBYBUI YT
ag-uononnsul A-OSIY
SuoldNJIsuU| opnasd mCO_umthO 9101S / peo “ w .

	CMOS logic
	Binary representation of data
	RISC-V assembly

