Introduction to Computer Architecture: exam

R. Pacalet

2023-11-30

The text in black is the original one. The text in red is examples of the expected
correct answers. Only this text was expected, possibly in shorter form, nothing
more. The text in blue is extra comments about the expected correct answers.
Warning: the course changes frequently (content, vocabulary, examples. . . ); some
questions and answer proposals can thus be partly or completely out of scope.
Warning: some questions can be answered in many different ways; the proposed
answers are just examples and they are not exhaustive.

You can use any document but communicating devices are strictly forbidden.
Please number the different pages of your paper and indicate on each page your
first and last names. You can write your answers in French or in English, as you
wish. Precede your answers with the question’s number. If some information
or hypotheses are missing to answer a question, add them. If you consider a
question as absurd and thus decide to not answer, explain why. If you do not
have time to answer a question but know how to, briefly explain your ideas.
Note: copying verbatim the slides of the lectures or any other provided material
is not considered as a valid answer. Advice: quickly go through the document
and answer the easy parts first.

1 CMOS logic (6 points)

In the CMOS logic gate of Figure 1 a, b, ¢ are the 3 inputs, x is the output.

L

—

[
Tt

il

Figure 1: CMOS schematic of logic gate



1. Write its truth table, that is, the table giving the value of x for each of the
8 value combinations of a, b and c.

2. Write the corresponding boolean equation using only symbols a, b, c,
parentheses and the boolean operators NOT, OR, AND. Do not assume
precedence between boolean operators, use parentheses to make your

equation non ambiguous. Example of non ambiguous boolean equation:
NOT(((NOT a) AND ¢) ORb).

1. The truth table is:

a b ¢ «x
0 0 0 O
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 O
1 0 1 1
1 1 0 1
1 1 1 1

Building the truth table is straightforward after we observe that there
are 2 logic gates in one: the two rigthmost transistors form an inverter
that inverts the output of the left part. We can thus first express the
condition on the inputs values for the output of the left gate to be 0,
that is, the condition for the network of N transistors to be passing:
(a AND (b OR c¢)) OR (b and c). Next we fill the table with the inverse
(because of the inverter on the right), that is, set « to 1 when the condition
is true, 0 when it is false.

2. 2 = (a AND (bOR ¢)) OR (b AND ¢)

2 RISC-V assembly (8 points)

In this question we use RV32IM, the RISC-V Instruction Set Architecture (ISA)
and the ILP32 Application Binary Interface (ABI) seen during lectures and labs.
Reminder: the size of a stack frame must be at least 32 bytes and must be
a multiple of 32 bytes; the general purpose saved registers are sp, gp, tp, s0,
s1, ..., s11. Use the provided RISC-V cheat sheet if you don’t remember the
RV32IM ISA or the ILP32 ABI.

Functions foo and bar take a 32 bits input and return a 32 bits result. bar
has already been coded in RV32IM assembly. It fully complies with the ILP32
ABI but you do not know how it has been coded: it possibly modifies any
non-saved general purpose register (except, of course, the zero register).

foo calls bar twice: first on its input parameter and then on the result. It
returns the bitwise AND of the 2 bar results. The pseudo-code of foo could be
the following, in which val represents the input of foo:

foo(val) {



tmp = bar(val)
return tmp AND bar (tmp)
}

Write the code of function foo in RV32IM assembly. Your code must fully
comply with the ILP32 ABI. Comment each instruction on the same line after a
# sign as in the following example:

add tO0,t1,t2 # tO0 = t1 + t2

.text

foo:
addi sp,sp,—-32
SW ra,0(sp)
sw s0,4(sp)
jal ra,bar a0 = bar(val)
mv s0,a0l s0 = bar(val)

# allocate 32 bytes stack frame
#
#
#
#
jal ra,bar # a0 = bar(bar(val))
#
#
#
#
#

save ra in stack frame
save s0 in stack frame

and a0,s0,a0 a0 = bar(val) AND bar(bar(val))
1w s0,4(sp) restore s0 from stack frame

lw ra,0(sp) restore ra from stack frame
addi sp,sp,32 restore sp

jalr zero,0(ra) return

As for any function we first allocate a stack frame to store the return address
(in register ra) and all saved register that we intend to use (register s0 in our
case). 32 bytes are more than the needed 8 bytes but the recommendation is
that the size of the stack frames shall be a multiple of 32 bytes. Note: in the
real ABI the recommendation is 16 bytes, not 32. As always the stack grows
towards the low addresses so we subtract 32 from the stack pointer (register
sp). sp now contains the base address of the new stack frame.

Next we save registers ra and s0 in the stack frame, respectively at offset 0 and
4 from the base address of the new stack frame.

Next we call function bar. The input parameter is already in register a0 because
it is the same as the input parameter of function foo and we did not modify
it since the entry in foo. The call is simply jal ra, bar, or the equivalent
pseudo-instruction call bar, that stores the return address in ra and jumps at
the first instruction of bar. After the function returns we must save the result
(also in register a0) because we will need it for the final computation while the
second call to bar will overwrite register a0. So, we copy it in saved register sO.
We cannot use a temporary register or one of the a0, ..., a7 registers because
these are not saved registers and the call to bar could modify them. This is the
reason why we chose s0, and also why we first saved this register in the stack
frame: we modify its content so we must be able to restore it before we return.

Next we call function bar a second time. Again, the input parameter is already
in register a0 because it is the result of the first call and we did not modify it.
After the function returns the result is in register a0, the result of the first call
is in register sO (and the call did not modify it because s0 is a saved register).



We thus simply compute the bitwise AND of a0 and s0, and store the result in
a0, because it is where any function like foo must store its result.

The final part simply consists in restoring ra and s0 from the stack frame,
restoring sp by adding the opposite of what was subtracted when entering the
function (32), and returning with jalr zero,0(ra) or the equivalent pseudo-
instruction ret.

Note: instead of using s0 to store the result of the first call we could have saved
it in the stack frame. There would be no need to save, use, and restore s0. This
new version has 1 instruction less than the other:

.text

foo:
addi sp,sp,-32
sSW ra,0(sp)
jal ra,bar a0 = bar(val)
swW a0,4(sp) save a0 in stack frame

# allocate 32 bytes stack frame
#
#
#
jal ra,bar # a0 = bar(bar(val))
#
#
#
#
#

save ra in stack frame

1w t0,4(sp) restore first result in tO0 from stack frame
and a0,t0,a0 a0 = bar(val) AND bar (bar(val))

1w ra,0(sp) restore ra from stack frame

addi sp,sp,32 restore sp

jalr zero,0(ra) return

3 Binary representation of numbers (6 points)

All given integer values are in base 10.

1. We want to represent —256, +267, —169 and +63 in 2’s complement on
the same number of bits n. What is the minimum value of n (only one
answer)?

2. Write the n bits 2’s complement representation of —256, 4267, —169 and
+63.

3. We consider a 32 bits signed integer A which 2’s complement representation
a310a30 - - - a1ag is stored in RISC-V general purpose register t0. We shift
t0 to the left by 2 positions with the RISC-V instruction s11i t0,t0,2
and denote B the new t0 content, considered as a 32 bits signed integer in
2’s complement. Under what condition on A do we have B =4 x A?

n =10

. 1100000000, 0100001011, 1101010111 and 0000111111
asy = asg = asg, that is, —2%29 < A < 2%

—= W N =

n = 10 because +267 has the largest absolute value of the 4 numbers,
and 9 bits can only represent numbers in the [-2%...2% — 1] range, that
is, [—256...255]. This is not enough while with 10 bits we can represent
numbers in the [-22...2% — 1] range, that is, [-512...511].

2. Converting from decimal to 2’s complement on 10 bits simply consists
in decomposing the absolute values in powers of 2, and, for the negative
numbers, taking the one’s complement and adding 1. Example for —256:



256 = 28 = 01000000005 — 1011111111 + 1 = 1100000000. Example for
267: 267 =256 4+8+2+1 =28 +23 4+ 21 + 20 =01000010115.
3. The value of A is:

=30
A:7231Xa31+ E szai
i=0

When shifting to the left, the two leftmost bits (a1 and agp) are dropped and
two 0 bits enter on the right. So, the value of B is:

i=28
_ 31 i+2
B=-2 ><a29+2 2% X ay
i=0

1=28
= 22 X (—229 X 29 + Z 21 X ai)
=0
= 22 X (A+ 231 X a3 — 230 X azp — 229 X ag9 — 229 X azg)

= 22 X (A+231 X asi —230 X azp — 230 X agg)

So, B = 4 x A if and only is 23! x a3; — 23° x azy — 239 x ag9 = 0, that is,
as) = aszp = azg. The 3 leftmost (most significant) bits of A must be equal. We
can thus rewrite A as:

1=28
A= (—2% 4204+ 9%) xag + Y 2 xa
=0
1=28
:—229XGQQ+ZQZXGi
1=0

= -9 < A < 2%

Said differently, B = 4 x A if and only if the 32 bits number A would also fit on
30 bits only.



(s)anjeA windy - Le - ge
syuswinb.e uondund - £ - o€
39]|ed Aq paAeS - L LS - 0S
si9)s16a1 Aresodwa) - 93 - 03

Jautod peaiyy - dy
J91od [eqo|b - d6

J91ui0d ydeys - ds
SS2Ippe UIN}al - B4

93 [+% 3 €3 LEJ 0EJ 624 8ZJ apoddo [ SIZIPSLtL) m
spoddo SeIpawwl uny 154 zs! S1eIpawwl as
LLs oLs 65 8s 129 924 szd vzd
apoddo [J] ouny ] 9)eIpawwl |
Ls 9s ss s €Y 7y 74 0zJ
spoddo p1 uny 154 zs! suny M
€5 s Le B Gl el Ll o5 0 L z £ v s 9|z 8 6 oL LL|Zl €L vl|SL oL £l 8L 6L|0Z 1z T € vT[ST 9T LZ 8T 6Z OF LE
se ve €8 ze TSR NI AN AN Jjewlo} uondonisul Jgq-g¢
e e d [AN] oLd 6J 8J JWeYs << LSJd = pJ eipauiwy Juweys ‘LsJd ‘pJd IVYS
4 (o] s /05 snswyie ybu ys
2 13 0} dy L3 94 S 7J JWBYS << LSJ - pJd JWeYs ‘LsJ ‘pJ IT¥S
b | ds & | oz & @ . > JWUS >> 1S » P Wweys LSy py ITTS
ZLWT + |SJ - Od .
sasel|y 1915169y 9|14 1935163y v+ 3d > py ! s=as1624 uy) pue duinf (b59)ZIWUT TPy ¥TVC 754 << 1SJ » Pd M SnawWYIe WYBL YIS ZSJ LSy ‘pJ WS
QZWWT + 2d » Xd d .
wuT ‘pJ
o ‘os0z ‘otz 100y S on ¥+ 2d > pJ m AUl pue dwing zuuy pJ WL 25 << 1SJ - pJ ] 1ea160] 3yBu Yys FANERIEN IR N, Y
L >> ZLWWT + >d » >d e paubisun o3 G G (e
(eJ)o ‘0Jdz ¥IVC 3UNNOIQNS WOJ) UIN1RY 13y s Ueus ss3| youelg i Z5d >> 1S > pJ Y [e2160] 43| Yiys Z5J ‘1sJ ‘pd TS
‘ il 8 o 20 ZLWWT ‘Zsd ‘LS 179
S ey sss| youeig T
[0:11]1395330 ‘By ‘BJ WV 25J > ISJ 4T ] .
[Z1:1€]1395430 ‘R IdINV (4eg) BUNNOIGNS || 395340 TIVD ZWWT v 1SJ > PJ SleIpawwi YoX Ziwwt f1sd ‘pJd TYOX
ZLWWWT + >d - dd as paubisun enba ZLWUT ‘7SJ ‘LSJ N3G
Zsd =< |ISJ 4T 10 ueyy 193ealb youelg ZWWT | 1sJd - pJ | eIpawwi YO ZLWWT ‘LsJd ‘pJ I¥O
71335330 ‘BJ ‘BJ YL (deau) sunnoiqns led 713954340 T1VD
WuT + 3d » dd N ‘ ‘
ziuwut +NmL e gas JENSE— wﬂ:mwm ZWWUT ¢ZsJ ‘LsJ 399 ZIWWT B LSJ > pJ | 2jeIpawwi ANY ZLWWT ‘LSJ ‘pJd IANY
395440 ‘0437 WL duwnf feuomipuosun ws40 € j DA e
e 25J v 1SJ > PJ ] HOX Zsd ‘1SJ ‘PJ ¥OX
o ,ML tmL . as |enba Jou youeig ZIWWT ‘ZsJd ‘LsJ aINg
335440 €1SJ ‘0J3Z 178 0< LS! J1youeig 185430 ‘|SJ 7199 (SRR EENE 754 | 1sd - pd ¥ ¥o 75J “1sJ P WO
ZLWWWT + >d - d 5 TR %0 TS0 GEY . ,
195440 LSy ‘0usz 399 05 LS4 Jiyoueig 195440 ‘LsJ 7379 754 = LSJ 4T o e : By =R Y anv B2 80 T @
395440 ‘0432 “1SJ 309 07=/15 Jlpueig 335440 15 7308 uondudsag adA uondNIsu| SluowBu uondudsag adAL Dnasu|
395340 ‘04dZ ‘LSJ 3NG 0# LSt Jiyouelg 395430 ‘USJ ZaNg mc_r_ucm\_m suonesado _mu_mon_
395440 €049z ‘|SJ 039 0= 1! Jiyoueig 395440 ‘IsJ 7639
[ZiwwT + Lsd]waw « ( S 314q 21015 (1SJ)ZLWWT ‘ZSJ @S wwT J Dd 0} Wt ‘pd
b ZL >> 0ZWUT + Xd - P. n areipawwi saddn ppy ozwwt ‘pJ dINV
395440 ‘LSJ ‘ZsJ n3og Nm‘_\_.mmntr._tcmhu 395330 ZsJ ‘LsJ N31g
s |
[ZiwwT + psaJuwsw « ( S piomjley 21035 (1SJd)ZIWWT ZSJ HS ZL >> QZWWT - pJ n ajeipawwy saddn peot ozwwt ‘pJ INT
subisun
395340 ‘ISJ ‘ZsJ NL1E zs1< me_vb_ :u:m‘_m‘ 395330 ‘ZsJ ‘LsJ nlog
g [ZU0UT + |SJ]UBL « (0:1€)ZSd s piom 21015 (1S9)ZUUT ‘Z5J MS 00L& ZUWT > 1S > pJ | Ezm_mcscwﬂﬁwﬁ%m_ ZUWT 1S pd NILTS
395340 ‘Isd ‘ZsJ 399 TSI |S1 Jiyouelg 395340 ‘ZsJ ‘LS4 319
[ZLwwT + LSJJwaw « ZSJ S ploma|qnop 31035 (LsJd)zZiwwt ‘zsJ as O 1L é&Zsd > Isd - pd o paubisun uey) ss9| 195 Zsd ‘1sJ ‘pJ NLIS
‘ ‘ . ‘
395440 ‘ISJ ‘zsJ 17d 7SI<LSIjiyouelg | 335440 ‘ZSJ ‘ISJ 199 . 08 DA IR S 180 < [ \ Sjeipaww T 9080 T TSR
[Ziwwt + psa]waw - pJ | paubisun a14q peo (Lsy)ziwwt ‘pd nal uey) ssa3| 195
SJ foJdz ‘pJ dns Juswa|dwod s,om| sJ ‘pd 93IN pauBisun 01L& 754> 1Sd o pd ] uey) ssa| 195 ZsJ ‘LsJ ‘P LTS
[ZLwwT + LsJ]waw - pJ | piomyey nmS (1sJ)ZLWWT “pJ NH1
L- ‘SJ ‘pJ THOX juawajdwiod spuQ SJ ‘pd LON TLWT + |SJ > PJ | djeIpawwi ppy ZWWWT ‘LsJ ‘pd IQQY
0 ‘sJ “pJ TAQY 115631 Adon 4 tpy " [ZiwwT + LsJJwaw - pJ I paubisun piom peoq (LSJ)zZLwwt ‘pd AM1 254 - 1SJ - pJ M engns 754 “1Sd pu ans
[0:LL]WRS ‘py ‘pJ  IAQY S —— 0B G W [ZiwwT + |sJ]waw - pJ | 214q peo (LsJ)ziwwt ‘pd @1 ZSJ + LSJ > pJ Y PPV ZsJd ‘LsJd ‘pd aav
[zL:1g]uhs ‘py ddINV {e) ssaippe pec
WUT + LSJJWAW » PJ SJ)ZLWWT ‘pd
p— [epuwr + 1s4] P ! piomjjey peol (1sd)zuwre s H1 uondudsaq adAL uondnAsu| Suowaupy
0:liJwwt ‘py Py IQAV
T wut ‘py
[zL:€lut Py IM (o) drelpauiul peoy G [ZuT + LSJJuaw  pJ | piom peot (1s9)zLwT Py M1
ZlWWT ‘oJsz ‘pJ 10V (1eaU) D3RIPAWIWI PROT it ‘py 11 [Ziwwt + LsJ]wsw » pJ | piomajgnop peo (1sd)ziwwt ‘py @1 CO_“m\_OQO dhL_uwyIly
(s)uondnajsul aseg uondnJsu| JluowBu uondudssg adAL uondNsu| Sluowsupy <WwoxeWAWIRYBUSHLS> WiIBYBUI YT
ag-uononnsul A-OSIY
SuoldNJIsuU| opnasd mCO_umthO 9101S / peo “ w .




	CMOS logic (6 points)
	RISC-V assembly (8 points)
	Binary representation of numbers (6 points)

