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Section 1

Introduction
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Hardware leaks information

Eventually security always implemented in hardware

Electronic devices:
• Consume energy
• Take time to compute
• Emit electromagnetic radiations
• Plus temperature, noise. . .

These side-channels usually correlated with processing
In security applications side-channels can be used to retrieve embedded secrets
Few hundreds power traces can be sufficient to retrieve secret key
• Even from theoretically unbreakable system

Unlike in quantum cryptography information leakage usually undetectable
• True for time
• Almost true for power

4 / 73 Telecom Paris / EURECOM Hardware Security — Side-channel attacks



A bit of history (1/2)

An old idea

1956: MI5/GCHQ against Egyptian Embassy in London
Communications embassy ↔ Cairo encrypted (Hagelin crypto machine)
Suez crisis, MI5/GCHQ want to read the Egyptian cipher
They play the old faulted phone system trick to plant microphones
They record the clicks during the machine reset every morning. . .

“Spy Catcher: The Candid Autobiography of a Senior Intelligence Officer”, Peter M. Wright, July 1, 1988, Dell Publishing
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A bit of history (2/2)

An old idea

1996: P. Kocher timing attacks on RSA, DH, DSS
• Applied with success in 2003 against OpenSSL 0.9.6

1999: P. Kocher power-attacks DES, AES, etc. (SPA, DPA)
• Successful against smart cards, FPGAs. . .

2000-: New attacks (SEMA, DEMA, TPA).
Importance of hardware security increases (CHES)
• Huge scientific literature on side-channel attacks

Software and hardware implementations consider them
• Not always
• Not always seriously enough

Certification authorities take them into account
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History repeats itself (1/5)

Ultrasounds

2013, 18th of December
Daniel Genkin (Technion and Tel Aviv University), Adi Shamir (Weizmann Institute
of Science), Eran Tromer (Tel Aviv University)
RSA Key Extraction via Low-Bandwidth Acoustic Cryptanalysis.
Target: regular computer computing RSA
• GnuPG’s current implementation

Vibrations of electronic components (capacitors and coils)
• Parts of voltage regulation circuit
• Regulate voltage across large fluctuations in power consumption

http://www.cs.tau.ac.il/~tromer/acoustic/
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History repeats itself (2/5)

The attack can extract full 4096-bit RSA decryption keys from laptop computers (of
various models), within an hour, using the sound generated by the computer during the
decryption of some chosen ciphertexts. We experimentally demonstrate that such
attacks can be carried out, using either a plain mobile phone placed next to the
computer, or a more sensitive microphone placed 4 meters away.
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http://www.cs.tau.ac.il/~tromer/acoustic/


History repeats itself (3/5)

http://www.cs.tau.ac.il/~tromer/acoustic/img/gnupg-manykeys-downshifted.mp3
https://perso.telecom-paris.fr/pacalet/HWSec/misc/gnupg-manykeys-
downshifted.mp3 (the RSA Paso Doble)
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History repeats itself (4/5)
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History repeats itself (5/5)

Even if a memory location is only accessed

during out-of-order execution, it remains

cached. Iterating over the 256 pages of

probe array shows one cache hit, exactly

on the page that was accessed during the

out-of-order execution.

https://meltdownattack.com/
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Section 2

Timing attacks
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History and notations

History

First published by Paul Kocher (CRYPTO’96)
Possibly known before that
Implemented by Dhem, Quisquater, et al. (CARDIS’98)
Used by Canvel, Hiltgen, Vaudenay, and Vuagnoux to attack OpenSSL
• CRYPTO’03

Notations

Unless otherwise stated all numbers are natural integers
v [i ]: i th component of vector v
w [i , j]: element of row i , column j of matrix w
bn−1bn−2 . . . b1b0: binary representation of number b on n bits
• b0: Least Significant Bit (LSB)
• bi : i th bit
• bn−1: Most Significant Bit (MSB)
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Example 1 (1/4)

Exponentiation: m, d 7→ md

d = dw−1dw−2 . . . d2d1d0, w -bits exponent

xa+b = xa × xb; xa×b = (xa)b =
(
xb
)a

d = d0 + d1 × 2 + d2 × 4 + d3 × 8 + · · ·+ dw−2 × 2w−2 + dw−1 × 2w−1

md = md0+d1×2+d2×4+d3×8+···+dw−2×2w−2+dw−1×2w−1

md = md0 ×md1×2 ×md2×4 ×md3×8 × · · · ×mdw−2×2w−2
×mdw−1×2w−1

md = md0 ×
(
md1

)2
×
(
md2

)4
×
(
md3

)8
× · · · ×

(
mdw−2

)2w−2

×
(
mdw−1

)2w−1

md = md0 ×

(
md1 ×

(
md2

)2
)2

×
(
md3

)8
× · · · ×

(
mdw−2

)2w−2

×
(
mdw−1

)2w−1

md = md0 ×

(
md1 ×

(
md2 ×

(
md3

)2
)2
)2

× · · · ×
(
mdw−2

)2w−2

×
(
mdw−1

)2w−1
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Example 1 (2/4)

Exponentiation: m, d 7→ md

md = md0 ×


md1 ×


md2 ×


md3 ×

(
· · · ×

(
mdw−2 ×

(
mdw−1

)2
)2

. . .

)2



2



2


2
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Example 1 (3/4)

Multiply and Square algorithm, 1 exponent bit per iteration (MS1)

MSB first, iterations k = w − 1 down to 0, temporary variables a, b

Algorithm MS1 exponentiation
1: a← 1
2: for k ← w − 1 down to 0 do ▷ From MSB to LSB of d

3: if dk = 1 then ▷ kth bit of d

4: b ← a ×m ▷ Multiplication
5: else

6: b ← a

7: end if

8: a← b2 ▷ Square
9: end for

10: return b ▷ b = md

Algorithm Variant: SM1
1: a← 1
2: for k ← w − 1 down to 0 do

3: a← a2

4: if dk = 1 then

5: a← a ×m

6: end if

7: end for

8: return a
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Example 1 (4/4)

Modular exponentiation, pseudo-code

TA prone? Why? What can we expect from TA?

Algorithm MS1 modular exponentiation
1: a← 1
2: for k ← w − 1 down to 0 do ▷ From MSB to LSB of d

3: if dk = 1 then ▷ k th bit of d

4: b ← a ×m mod n ▷ Modular multiplication
5: else

6: b ← a

7: end if

8: a← b2 mod n ▷ Modular square
9: end for

10: return b ▷ b = md mod n

17 / 73 Telecom Paris / EURECOM Hardware Security — Side-channel attacks

Example 2

What if computation time of modular product and square is data-dependent?

What can we expect from TA?

Algorithm MS1 modular exponentiation
1: a← 1
2: for k ← w − 1 down to 0 do ▷ From MSB to LSB of d

3: if dk = 1 then ▷ k th bit of d

4: b ← a ×m mod n ▷ Modular multiplication
5: else

6: b ← a

7: end if

8: a← b2 mod n ▷ Modular square
9: end for

10: return b ▷ b = md mod n
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Example 2: P. Kocher attack

1: a ← 1
2: for

k ← w − 1 down to r + 1 do

3: . . .
4: a ← b2 mod n

5: end for

6: if dr = 1 then

7: b ← a × m mod n

8: else

9: b ← a

10: end if

11: a ← b2 mod n

12: for k ← r − 1 down to 0 do

13: . . .
14: a ← b2 mod n

15: end for

16: return b ▷ b = md mod n

Principle of attack

Target computes x modexp

Known plaintexts m[i ]; 1 ≤ i ≤ x
∀1 ≤ i ≤ x attacker measures total modexp

computation time t[i ] = TIME
(
m[i ]d mod n

)

W.l.o.g. attacker already knows leading bits of d
• dw−1 . . . dr+1, for some 0 ≤ r ≤ w − 1

� None if r = w − 1

Attacker extracts next unknown bit dr :
• ∀m[i ] attacker computes input a of iteration r
• ∀m[i ] attacker measures or estimates computation

time of modular multiplication at iteration r :
t̂×[i , r ] = TIME (a ×m[i ] mod n)
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Example 2: P. Kocher attack

1: a ← 1
2: for

k ← w − 1 down to r + 1 do

3: . . .
4: a ← b2 mod n

5: end for

6: if dr = 1 then

7: b ← a × m mod n

8: else

9: b ← a

10: end if

11: a ← b2 mod n

12: for k ← r − 1 down to 0 do

13: . . .
14: a ← b2 mod n

15: end for

16: return b ▷ b = md mod n

Principle of attack

Assume for some m[i ], t̂×[i , r ] significantly
greater/smaller than average (attacker can
distinguish “slow” and “fast” cases from “average”)
In average, if t[i ] large (slow) when t̂×[i , r ] large
(slow) ⇒ dr = 1 (probably)
• Victim probably computed

b ← a ×m[i ] mod n⇒ t ↑

Else dr = 0 (probably)
• Victim probably skipped

b ← a ×m[i ] mod n⇒ t ⇝

The larger the difference, the higher the attacker’s
confidence
Do you understand difference with example 1?
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Example 2: P. Kocher attack

1: a ← 1
2: for

k ← w − 1 down to r + 1 do

3: . . .
4: a ← b2 mod n

5: end for

6: if dr = 1 then

7: b ← a × m mod n

8: else

9: b ← a

10: end if

11: a ← b2 mod n

12: for k ← r − 1 down to 0 do

13: . . .
14: a ← b2 mod n

15: end for

16: return b ▷ b = md mod n

Let’s formalize a bit

∀1 ≤ i ≤ x , m[i ]: i th plaintext

t[i ] = TIME
(
m[i ]d

)
(measured)

t[i ] = e[i ] +
k=w−1∑

k=0
t[i , k]

• e[i ]: measurement error
• t[i , k]: computation time of iteration k of m[i ]

d

• Attacker knows t[i ]
• Attacker ignores e[i ] and t[i , k]

Compute w − 1− r first iterations
• m[i ], n, dw−1 . . . dr+1 known

t̂×[i , r ]: attacker’s estimate for
TIME (a ×m[i ] mod n) at iteration r
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Example 2: P. Kocher attack

1: a ← 1
2: for

k ← w − 1 down to r + 1 do

3: . . .
4: a ← b2 mod n

5: end for

6: if dr = 1 then

7: b ← a × m mod n

8: else

9: b ← a

10: end if

11: a ← b2 mod n

12: for k ← r − 1 down to 0 do

13: . . .
14: a ← b2 mod n

15: end for

16: return b ▷ b = md mod n

Let’s formalize a bit

S: indexes of 10% slowest cases
• ∀i ∈ S,∀j /∈ S, t̂×[i , r ] > t̂×[j , r ]
• |S| = x/10

• tS =

∑
i∈S

t[i]

x/10

F : indexes of 10 % fastest cases
• ∀i ∈ F ,∀j /∈ F , t̂×[i , r ] < t̂×[j , r ]
• |F| = x/10

• tF =

∑
i∈F

t[i]

x/10

Difference of computation time averages:
∆ = tS − tF
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Example 2: P. Kocher attack

1: a ← 1
2: for

k ← w − 1 down to r + 1 do

3: . . .
4: a ← b2 mod n

5: end for

6: if dr = 1 then

7: b ← a × m mod n

8: else

9: b ← a

10: end if

11: a ← b2 mod n

12: for k ← r − 1 down to 0 do

13: . . .
14: a ← b2 mod n

15: end for

16: return b ▷ b = md mod n

Let’s formalize a bit

τ : threshold
∆ > τ ⇒ dr = 1
∆ < τ ⇒ dr = 0
Continue with next bit (dr−1) until all bits of d
“known”
Attack targets one bit at a time
Attack efficiency depends on:
• Number x of acquisitions
• Variability of t̂×[i , r ] (data dependency)
• Noise e[i ]
• |S| and |F| (10% in our example)
• Threshold τ
• . . .
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P. Kocher attack on RSAREF (1/2)

t× = TIME (a × b mod n)
E (t×) ≈ 1167.8× 10−6 sec.
σ (t×) ≈ 12.01× 10−6 sec.

texp = TIME
(
md mod n

)

E (texp) ≈ 419901× 10−6 sec.
σ (texp) ≈ 235× 10−6 sec.
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P. Kocher attack on RSAREF (2/2)

RSAREF (functional) reference software library
512 bits exponentiation, 256 bits exponent (speed up)
With 250 measurements probability of correct decision at any step. . .
Ë 0.885
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OpenSSL BN library

t× = TIME (a × b mod n)
E (t×) ≈ 19929 clock cycles
σ (t×) ≈ 130 clock cycles

texp = TIME
(
md mod n

)

E (texp) ≈ 482206 clock cycles
σ (texp) ≈ 11453 clock cycles
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Optimizations

1: a ← 1
2: for

k ← w − 1 down to r + 1 do

3: . . .
4: a ← b2 mod n

5: end for

6: if dr = 1 then

7: b ← a × m mod n

8: else

9: b ← a

10: end if

11: a ← b2 mod n

12: for k ← r − 1 down to 0 do

13: . . .
14: a ← b2 mod n

15: end for

16: return b ▷ b = md mod n

Cross-check on modular square computation time

t̂2[i , r ]: attacker’s estimate of TIME
(
b2 mod n

)
at

iteration r
Once dr “known”, verification on t̂2[i , r ]
In average, is total computation time t[i ] large
(small) when t̂2[i , r ] large (small)?
• Yes: better confidence in decision
• No: doubt about decision
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Optimizations

1: a ← 1
2: for

k ← w − 1 down to r + 1 do

3: . . .
4: a ← b2 mod n

5: end for

6: if dr = 1 then

7: b ← a × m mod n

8: else

9: b ← a

10: end if

11: a ← b2 mod n

12: for k ← r − 1 down to 0 do

13: . . .
14: a ← b2 mod n

15: end for

16: return b ▷ b = md mod n

Detect wrong decisions and fix them

dr hypothesis wrong ⇒ ∀k ≤ r , â ̸= a ∧ b̂ ̸= b
Correlation with measured computation time not
observable any more
Attack improvement
• Keep list of decisions
• Keep likelihood tS − tF

• Likelihood-driven back-tracking
• Hard decisions → soft decisions
• Resembles channel decoding
• More memory and CPU usage
• Reduce number of acquisitions
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Optimizations

1: a ← 1
2: for

k ← w − 1 down to r + 1 do

3: . . .
4: a ← b2 mod n

5: end for

6: if dr = 1 then

7: b ← a × m mod n

8: else

9: b ← a

10: end if

11: a ← b2 mod n

12: for k ← r − 1 down to 0 do

13: . . .
14: a ← b2 mod n

15: end for

16: return b ▷ b = md mod n

Observe variance of computation time residue

Following works iff absolute estimates
• Not with relative estimates. . .
• . . . But relative / absolute ratio can be estimated

t[i , k] = TIME
(
iteration k of m[i ]d mod n

)

t̂[i , k]: attacker’s estimate for iteration r :
• t̂×[i , r ] + t̂2[i , r ] (dr = 1) or t̂2[i , r ] (dr = 0)

∆[i ] = t[i ]−
k=w−1∑
k=r+1

t̂[i , k]

∆[i ] = e[i ] +
k=w−1∑

k=0
t[i , k]−

k=w−1∑
k=r+1

t̂[i , k]

∆[i ] = e[i ] +
k=r∑
k=0

t[i , k] +
k=w−1∑
k=r+1

(
t[i , k]− t̂[i , k]

)
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Optimizations

1: a ← 1
2: for

k ← w − 1 down to r + 1 do

3: . . .
4: a ← b2 mod n

5: end for

6: if dr = 1 then

7: b ← a × m mod n

8: else

9: b ← a

10: end if

11: a ← b2 mod n

12: for k ← r − 1 down to 0 do

13: . . .
14: a ← b2 mod n

15: end for

16: return b ▷ b = md mod n

Observe variance of computation time residue

If dw−1 . . . dr+1 correct
• t̂[i , k > r ] ≈ t[i , k > r ]

• ∆[i ] = e[i ] +
k=r∑
k=0

t[i , k] +
k=w−1∑
k=r+1

(
t[i , k]− t̂[i , k]

)

• ∆[i ] ≈ e[i ] +
k=r∑
k=0

t[i , k]

• V (∆[.]) ≈ V (e[.]) + V

(
k=r∑
k=0

t[., k]

)

• V (∆[.]) ≈ V (e) + (r + 1)× V (t)

V (∆[.]) ↓ when r ↓
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Optimizations

1: a ← 1
2: for

k ← w − 1 down to r + 1 do

3: . . .
4: a ← b2 mod n

5: end for

6: if dr = 1 then

7: b ← a × m mod n

8: else

9: b ← a

10: end if

11: a ← b2 mod n

12: for k ← r − 1 down to 0 do

13: . . .
14: a ← b2 mod n

15: end for

16: return b ▷ b = md mod n

Observe variance of computation time residue

If dw−1 . . . ds+1 correct but. . .
. . . ds . . . dr+1 wrong for some s ≥ r + 1
• t̂[i , k > s] ≈ t[i , k > s]
• t̂[i , s ≥ k > r ] ̸= t[i , s ≥ k > r ]

• ∆[i ] = e[i ] +
k=r∑
k=0

t[i , k] +
k=w−1∑
k=r+1

(
t[i , k]− t̂[i , k]

)

• ∆[i ] ≈ e[i ] +
k=r∑
k=0

t[i , k] +
k=s∑

k=r+1

(
t[i , k]− t̂[i , k]

)

• ∆[i ] ≈ e[i ] +
k=s∑
k=0

t[i , k]−
k=s∑

k=r+1

t̂[i , k]

• V (∆[.]) ≈ V (e) + (s + 1)×V (t) + (s − r)×V (t)
• V (∆[.]) ≈ V (e) + (2× s − r + 1)× V (t)

V (∆[.]) ↑ when r ↓
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Wrap up on TA (1/3)

Where does it come from?

Time: processing data takes time

How does it work?

Acquisition phase
• Same secret
• Sufficient number of acquisitions with different input messages
• Build database of {input, computation time} pairs (may also work with outputs, how?)

Analysis phase (usually off-line)
• Attacker tries to retrieve part s of secret (e.g., 1 bit)
• Attacker builds “computation time models” TMg (i)

— Of one part of computation with input m[i ] (e.g., 1 modmul)
— Under assumption that s = g

• Attacker estimates correlations between TMg and measured total times
• TMg with best correlation ⇒ g best candidate for s
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Wrap up on TA (2/3)

Principle

Our example attacks one exponent bit at a time
For each attacked bit dk , 2 computation time models:
• TM0(i) = 0 (dk = 0 case)
• TM1(i) = TIME (a ×m[i ] mod n) at iteration r (dr = 1 case)

tS − tF : estimator of correlation between TM1 and t
Note: there are better correlation estimators
• Pearson correlation coefficient, Kolmogorov-Smirnov test. . .

Correlation(TM1, t) > τ ⇒ dr = 1 (τ : threshold)
Correlation(TM1, t) < τ ⇒ dr = 0
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Wrap up on TA (3/3)

Principle

Other examples with TM0(i) ̸= 0:
• TM0(i) = TIME

(
b ← a; a← b2 mod n

)
at iteration r

• TM1(i) = TIME
(
b ← a ×m mod n; a← b2 mod n

)
at iteration r

Then correlations can be compared (no need for threshold)
• Correlation(TM1, t) > Correlation(TM0, t)⇒ dr = 1
• Correlation(TM1, t) < Correlation(TM0, t)⇒ dr = 0

Whatever the statistical tool, principle remains the same:
• TMg with best correlation ⇒ g best candidate for s

Analysis usually off-line
• But interactive, adaptive attacks also exist
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Pearson correlation coefficient

A better statistical tool than partitioning

s: portion of the secret under attack
x : number of computation time measurements
t[i ], 1 ≤ i ≤ x : computation time measurements
m[i ], 1 ≤ i ≤ x : input messages
TMg(i): attacker’s computation time estimate
• Of part of m[i ]d (e.g. one iteration)
• With hypothesis g on s

PCC(TMg , t): estimator of correlation between the t[i ] and TMg(i) (1 ≤ i ≤ x)
g with highest PCC(TMg , t)⇒ best candidate for s
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Exercises on timing attacks (1/2)

Check your understanding

å Ex. 1: List the hypotheses for a timing attack to be practical
å Ex. 2: Do you think the modified implementation below is protected?

Algorithm Modified MS1 modular exponentiation, version 1
1: a← 1
2: for k ← w − 1 down to 0 do ▷ From MSB to LSB of d

3: f ← a ×m mod n ▷ Modular multiplication
4: if dk = 0 then ▷ k th bit of d

5: b ← a

6: else

7: b ← f

8: end if

9: a← b2 mod n ▷ Modular square
10: end for

11: return b ▷ b = md mod n
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Exercises on timing attacks (2/2)

Check your understanding

å Ex. 3: Do you think the modified implementation below is protected?

Algorithm Modified MS1 modular exponentiation, version 2
1: a← 1
2: for k ← w − 1 down to 0 do ▷ From MSB to LSB of d

3: f ← a ×m mod n ▷ Modular multiplication
4: g ← a2 mod n ▷ Modular square
5: h← f 2 mod n ▷ Modular square
6: if dk = 0 then ▷ kth bit of d

7: b ← a

8: a← g

9: else

10: b ← f

11: a← h

12: end if

13: end for

14: return b ▷ b = md mod n
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Homework on timing attacks

For next time (please do it)

Imagine countermeasures, evaluate their cost and efficiency
Study and understand P. Kocher paper
• Especially the blinding countermeasure he proposes (section 10)

Prepare questions
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Section 3

Power attacks
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Power in CMOS logic (1/2)

Energy and cell output transitions are correlated

E falling edge ⇒ S rising edge

Current observed across Rp resistor: I(VDD)

E:

S:

I↑ = Ishort + IL
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Power in CMOS logic (2/2)

Energy and cell output transitions are correlated

E rising edge ⇒ S falling edge

Current observed across Rp resistor: I(VDD)

E:

S:

I↓ = Ishort
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Power analysis setup (1/2)

under

attack

Power supply
Offline analysis

Device Recorded traces
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Power analysis setup (2/2)
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Simple power analysis, example 1

The power trace of a “naive” DES hardware implementation leaks a lot of information

CMOS structures consume energy when switching
Hamming distance of register transitions
Hamming weights in some implementations
Clock spikes
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Simple power analysis, example 2

Multiply and square exponentiation

Iterate on exponent bits
From MSB to LSB
c ← md

01 1 1 10 0

Algorithm MS1 exponentiation
1: a← 1
2: for k ← w − 1 down to 0 do

3: if dk = 1 then

4: b ← a ×m ▷ Mult.
5: else

6: b ← a

7: end if

8: a← b2
▷ Square

9: end for

10: return b ▷ b = md
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Mount SPA of DES key schedule

6502: 8 bits CPU

8b accumulator A, 1b carry flag C
Left rotate 28-bits half-key
Channel: energy per instruction
• Transitions in C , A
• 0 ≤ nt ≤ 9

å Ex. 4: What’s your attack?

28 bits half-key

C

C

mem[a]mem[a+3] mem[a+2] mem[a+1]

A[7..0]

A[7..0]

0

Shift right (LSR)

Rotate left (ROL)

1 CLC # C <− 0
2 LDA a # A <− mem[ a ]
3 ROL # C |A <− A| C
4 STA a # mem[ a ] <− A
5 LDA a+1 # A <− mem[ a+1]
6 ROL # C |A <− A| C
7 STA a+1 # mem[ a+1] <− A
8 LDA a+2 # A <− mem[ a+2]
9 ROL # C |A <− A| C

10 STA a+2 # mem[ a+2] <− A
11 LDA a+3 # A <− mem[ a+3]
12 ROL # C |A <− A| C
13 STA a+3 # mem[ a+3] <− A
14 AND 0 x 1 f # A <− 000 |A[ 4 . . 0 ]
15 LSR # C |A <− A [ 0 ] | 0 | A[ 7 . . 1 ]
16 LSR # C |A <− A [ 0 ] | 0 | A[ 7 . . 1 ]
17 LSR # C |A <− A [ 0 ] | 0 | A[ 7 . . 1 ]
18 LSR # C |A <− A [ 0 ] | 0 | A[ 7 . . 1 ]
19 ORA a # A <− A or mem[ a ]
20 STA a # mem[ a ] <− A
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P. Kocher attack on DES (1/2)

Last round of DES, 1 SBox at a time

n {power trace, ciphertext} pairs
• {T [i ], c[i ]}

∀1 ≤ i ≤ n, R15 = L16 ∈ c[i ] known
Add hypothesis g on 6 bits of K16

� “Compute” 4 bits of L15

• As a function of g and c[i ]

Focus on 1 bit only: b[i ](g)
Split traces in 2 sets
• S0(g) = {T [i ] | b[i ](g) = 0}
• S1(g) = {T [i ] | b[i ](g) = 1}

If guess g correct sets should exhibit
different energy consumptions
• score(g) = E (S0(g))− E (S1(g))

c (ciphertext)

4

4 P

L15

4 F

SBox4 6

R15

6

K166

6
10
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P. Kocher attack on DES (2/2)

Differential Power Analysis (DPA)

The larger the score (difference), the
more likely the hypothesis
Hence the name “Differential Power
Analysis” (DPA)
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Wrap up on DPA (1/4)

Foundations

å Where does it come from?
Power: computing consumes energy

Power attack principles

Target small portion s of secret
• 6 bits of last round key of DES
• 1 bit of secret exponent of RSA. . .

Use intermediate value v as oracle
• One bit of L15

• Modular product or square. . .
• Computed (stored) by same hardware element

Based on hypothesis of data-dependent power consumption
• Compute (store) different v values ⇒ consume different energy
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Wrap up on DPA (2/4)

Acquisition phase

Same secret, different input messages
Sufficient number of acquisitions ⇒ database of acquisitions
• {T [i ], m[i ]}
• Pairs of {power trace, input (output) message}

Analysis phase (usually off-line)

Attacker build “power models” PMg of target implementation
• g hypothesis (guess) on portion of secret

PMg(i) = estimate of energy of specific operation (computation, storage. . . )
• For input (output) m[i ]
• If g correct

As many PMg models as hypotheses g
PMg that best correlates with actual power traces ⇒ most likely hypothesis g
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Wrap up on DPA (3/4)

Ones do not consume more than zeros

CMOS logic has (almost) no static power consumption
It is only transitions v0 → v1 that consume energy (dynamic power)

From states to transitions

What if only v1 can be “computed”?
Assume rising and falling transitions consume differently: I↑ − I↓ = ϵ ̸= 0
Assume v0 uncorrelated
• v1 = 0⇒ falling transition with probability 1/2, no transition with probability 1/2
• v1 = 1⇒ rising transition with probability 1/2, no transition with probability 1/2
• On large number of traces average difference ≈ ϵ/2
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Wrap up on DPA (4/4)

Two types of attacks

“Compute” only v1 ⇒ Hamming weight of v1

“Compute” v0 and v1 ⇒ Hamming distance v0 → v1
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Exercises on DPA

Check your understanding

Two power models
• Hamming weight (based on current state only)
• Hamming distance (based on previous and current states)
å Ex. 5: Most efficient power model?

å Ex. 6: Differences with timing attacks?
å Ex. 7: DPA easier or more difficult than TA? Why?
å Ex. 8: List the hypotheses for a DPA to be practical
å Ex. 9: Design countermeasures
å Ex. 10: What if energy depends only on key?
å Ex. 11: What if energy depends only on input messages?
å Ex. 12: What if energy depends neither on key nor on input messages?
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Homework on power attacks

For next time (please do it)

Read and understand every detail of original paper by P. Kocher
Imagine attack against hardware DES implementation
• Ciphertexts are known
• L0R0, . . . , L15R15, R16L16 values stored successively in same 64 bits register
• Attacker monitors current on power supply side
• Describe in deep details your algorithm

Search ways to blind DES

Prepare first lab (please do it)

Read directions
Look at provided software libraries
Imagine what you will do, why and how
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Section 4

Conclusion
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Further Reading

In EURECOM library

The Hardware Hacking Handbook, Breaking Embedded Security with Hardware
Attacks, Jasper van Woudenberg and Colin O’Flynn, No Starch Press, 2022, 515 p.
Security of Ubiquitous Computing Systems, Selected Topics, Avoine, Gildas ;
Hernandez-Castro, Julio, Springer, 2021, 268 p.
Power Analysis Attacks: Revealing the Secrets of Smart Cards, Stefan Mangard and
Elisabeth Oswald and Thomas Popp, Springer, 2007, 337 p. (PDF available)
Smart Card Handbook, Wolfgang Rankl and Wolfgang Effing, John Wiley and Sons,
2004, 1088 p.
Embedded Cryptographic Hardware: Design & Security, Nadia Nedjah and Luiza de
Macedo Mourelle, Nova Publishers, 2005, 255 p.
And a lot more. . .
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Questions?
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Section 5

Solutions of exercises
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List the hypotheses for a timing attack to be practical (1/3)

Ex. 1: H1: Cryptosystem takes different time to process different input data

Performance optimizations (bypass useless operations)
Branching, conditional statements
Cache misses

o Note: intuition suggests leak of small amount of information
• Like Hamming weight of key
o Intuition usually wrong (same in probabilities and security)
o Never trust your intuition
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List the hypotheses for a timing attack to be practical (2/3)

H2: Attacker can build models of timing based on

Knowledge of inputs (or outputs)
Guesses on secret key
Knowledge of implementation
Attacker can redo computations and measure time
• With similar timing characteristics

Or use another estimate
• Hamming weight of operand. . .

� Relative estimate sufficient

H3: “Sufficient” number of different inputs, same secret key

Victim runs algorithm
Attacker records timing
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List the hypotheses for a timing attack to be practical (3/3)

H4: Total number of guesses on secret key “manageable”

Such that attacker can check them all for correctness
� 1 bit ⇒ 2 different guesses
� 128 bits secret key ⇒ 2128 ≈ 3.4× 1038 different guesses

o One billion per second ⇒ 720 billion times age of universe (brute force attack)

� If 128 bits can be split in 16 bytes ⇒ 16× 28 = 4096 guesses to check. . .

H5: SNR good enough

Ë Timing model of right guess match actual measurements “significantly” better
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Do you think the modified implementation below is protected?

1: a ← 1
2: for k ← w − 1 down to 0 do

3: f ← a × m mod n

4: if dk = 0 then

5: b ← a

6: else

7: b ← f

8: end if

9: a ← b2 mod n

10: end for

11: return b

Ex. 2: No, it is not better protected

� Can even be worse
� Modular multiplication always computed ⇒ higher signal

� branches of if perfectly balanced but. . .
� . . . Timing of modular square still depends on b

o That is, on taken branch, that is, on dr

Attacker can build 2 timing models
• TM0 = TIME

(
a2 mod n

)

• TM1 = TIME
(
f 2 mod n

)

Ë Timing model that better correlates with measured total
times ⇒ most likely dr value
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Do you think the modified implementation below is protected?

1: a ← 1
2: for k ← w − 1 down to 0 do

3: f ← a × m mod n

4: g ← a2 mod n

5: h ← f 2 mod n

6: if dk = 0 then

7: b ← a

8: a ← g

9: else

10: b ← f

11: a ← h

12: end if

13: end for

14: return b

Ex. 3: No, it is not better protected

� Can even be worse
� 3 modular operations ⇒ twice higher signal

� branches of if perfectly balanced but. . .
� . . . Timing of modular operations at iteration r − 1

depend on a at end of iteration r
o That is on taken branch, that is on dr

Attacker can build 2 timing models
• TM0 = TIME (iteration r − 1 | dr = 0)
• TM1 = TIME (iteration r − 1 | dr = 1)

Ë Timing model that better correlates with measured total
times ⇒ most likely dr value
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Mount SPA of DES key schedule

Ex. 4: Consumption of last LSR (line 18)

At beginning, before call number 1
• Memory = k1 . . . k28

Before call 2 ≤ i ≤ 28
• Memory = ki . . . k28k1 . . . ki−1

Before last LSR operation of call i
• A = 000000kiki+1, C = ki+2

After last LSR operation of call i
• A = 0000000ki , C = ki+1

nt = ki + ki+1 ⊕ ki + ki+2 ⊕ ki+1
• nt = 0⇔ kiki+1ki+2 ∈ {000}
• nt = 1⇔ kiki+1ki+2 ∈ {001, 011, 111}
• nt = 2⇔ kiki+1ki+2 ∈ {010, 100, 110}
• nt = 3⇔ kiki+1ki+2 ∈ {101}

Ë 28 independent equations of 28 variables

1 CLC # C <− 0
2 LDA a # A <− mem[ a ]
3 ROL # C |A <− A| C
4 STA a # mem[ a ] <− A
5 LDA a+1 # A <− mem[ a+1]
6 ROL # C |A <− A| C
7 STA a+1 # mem[ a+1] <− A
8 LDA a+2 # A <− mem[ a+2]
9 ROL # C |A <− A| C

10 STA a+2 # mem[ a+2] <− A
11 LDA a+3 # A <− mem[ a+3]
12 ROL # C |A <− A| C
13 STA a+3 # mem[ a+3] <− A
14 AND 0 x 1 f # A <− 000 |A[ 4 . . 0 ]
15 LSR # C |A <− A [ 0 ] | 0 | A[ 7 . . 1 ]
16 LSR # C |A <− A [ 0 ] | 0 | A[ 7 . . 1 ]
17 LSR # C |A <− A [ 0 ] | 0 | A[ 7 . . 1 ]
18 LSR # C |A <− A [ 0 ] | 0 | A[ 7 . . 1 ]
19 ORA a # A <− A or mem[ a ]
20 STA a # mem[ a ] <− A
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Most efficient power model?

Ex. 5: Hamming distance more efficient

Ishort , IL: short circuit and charging currents
Assume attacker monitors current on power supply side only
With Hamming distance:
• If no transition (0→ 0 or 1→ 1), I→ = 0
• If rising transitions (0→ 1), I↑ = Ishort + IL
• If falling transitions (1→ 0), I↓ = Ishort

� Average difference between transition and no transition (can probably do better):
dhd = Ishort +IL+Ishort

2 − I→ = Ishort + IL
2

With Hamming weight:
• If ending state = 1 (?→ 1), in average, I↑? = I→+Ishort +IL

2 = Ishort +IL
2

• If ending state = 0 (?→ 0), in average, I↓? = I→+Ishort

2 = Ishort

2
Ë Difference between ending states 1 and 0 (average):

dhw = Ishort +IL
2 − Ishort

2 = IL
2 < dhd
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Differences with timing attacks?

Ex. 6: Pros and cons

Richer side channel (full vector instead of single scalar)
° Statistics within one single power trace?

Remote attacks not practical any more (almost)
More expensive acquisition phase
More processing in analysis phase
Attack could be detectable
More difficult to compute with constant power than with constant time
å How would you compute with constant power?
Ë More on this later
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DPA easier or more difficult than TA? Why?

Ex. 7: Pros and cons

More difficult to monitor energy than time
More data to process
More information in side channel
Extra difficulties like perfect synchronization, for instance
More difficult to compute with constant power than with constant time
Ë More on this later
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List the hypotheses for a DPA to be practical (1/2)

Ex. 8: H1: Power consumption depends on processed data

Activity of CMOS logic (number of node switches) data-dependent
Dynamic power of CMOS logic is driven by activity

H2: Attacker can build models of power, based on

Knowledge of inputs (or outputs)
Guesses on secret key
Knowledge of implementation
Attacker can “simulate” some internal states (or transitions) of victim
• With similar power consumptions

Or use another estimate
• Hamming weight or distance. . .

� Relative estimate sufficient
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List the hypotheses for a DPA to be practical (2/2)

H3: “Sufficient” number of different inputs, same secret key

Victim runs algorithm
Attacker records power

H4: Total number of guesses on secret key “manageable”

Same reasons as for timing attacks

H5: SNR good enough

Ë Power models of right guess match actual power traces “significantly” better
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Design countermeasures (1/4)

Ex. 9: H1: Power consumption depends on processed data

° Compute with constant power consumption
� Much more difficult than constant timing

• But the data dependency can be reduced

� Rather expensive (slower, energy hungry, larger silicon area)
� More on this next slide

H2: Attacker can build models of power, based on knowledge of inputs (outputs)

° Prevent attacker from accessing inputs or outputs
� Not Always Practical (NAP)
� More on this later
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Constant power computation

13 hardware implementations of AES SBox

1 Std cells, decomposed in GF (16)
2 Std cells, lookup table
3 Std cells, decode-permute-encode
4 ROM
5 WDDL basic
6 + Symmetric placement
7 + Symmetric routing + dummies
8 + Shielding
9 + Symmetric gates
10 SecLib, symmetric placement
11 + Symmetric routing + dummies
12 + Shielding
13 + EMA coating plane
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Prevent attacker from accessing inputs or outputs (1/4)

H2: Attacker can build models of power, based on knowledge of inputs (outputs)

° Blinding

Mix input with random seed before processing

° Compute complementary transform after processing
� Simple with math-based algorithms (RSA)
� Difficult with symmetric block ciphers (DES)
� Has a cost, may be sensitive to higher order DPA

G(r , Crypto(k , F (r , m)))

F

G

m

r

k Crypto

Crypto(k , m) =
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Prevent attacker from accessing inputs or outputs (2/4)

Example of blinding on a public key algorithm

RSA, c = md mod n = (m × r)d × s mod n where rd × s mod n = 1

Algorithm Without blinding
1: procedure RSA-pure(m, n, d)
2: a← 1
3: for k ← w − 1 down to 0 do

4: a← a2 mod n

5: if dk = 1 then

6: a← a ×m mod n

7: end if

8: end for

9: return a

10: end procedure

Algorithm With blinding
1: procedure RSA-blind(m, n, d)
2: let rd × s mod n = 1 in

3: a← 1
4: m′ ← m × r mod n

5: for k ← w − 1 down to 0 do

6: a← a2 mod n

7: if dk = 1 then

8: a← a ×m′ mod n

9: end if

10: end for

11: return a × s mod n

12: end procedure
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Prevent attacker from accessing inputs or outputs (3/4)

Example of blinding on a public key algorithm

RSA, c = md mod n = (m × r mod n)d × s mod n where rd × s mod n = 1
o m × r mod n is prone to timing attacks
⇒ r could be revealed
° Change (r , s) after each modular exponentiation

� Computing rd mod n and s =
(
rd mod n

)−1
mod n time consuming

° (r , s)← (r2 mod n, s2 mod n)
. . . or any other update preserving rd × s mod n = 1
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Prevent attacker from accessing inputs or outputs (4/4)

Masking

Notations: ¬ (NOT), ∨ (OR), ∧ (AND), ⊕ (XOR), . (product in GF (2n))
° Randomly split data in two (or more) parts, process sub-parts, merge results
° Applied at level of elementary boolean operations

Example of first order boolean masking
� x → (x0, x1) with x0 = x ⊕m, x1 = m (x = x0 ⊕ x1)
� z = x ⊕ y → (z0, z1) = (x0 ⊕ y0, x1 ⊕ y1)
� z = x ∧ y → (z0, z1) = ((x0 ∧ y0)⊕ (x0 ∨ ¬y1), (x1 ∧ y0)⊕ (x1 ∨ ¬y1)). . .

� Kind of blinding with similar advantages and drawbacks
� Works also with symmetric block ciphers
� Has a cost, may be sensitive to higher order DPA

° Higher order masking
� x → (m1.x)⊕m0 (second order affine masking)
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Design countermeasures (2/4)

H2: Attacker can build models of power, based on guesses on secret key

å How to prevent somebody from guessing?

H2: Attacker can build models of power, based on knowledge of implementation

o Auguste who, did you say?

H3: “Sufficient” number of different inputs, same secret key

° Prevent access to the device (NAP)
° Authentication and limited number of tries; same as PIN codes (NAP)
° Variant: if authentication fails add exponential delay before next try (NAP)
° Limited lifetime of secret keys
⇒ Secret keys used only for small number of processing
� Not enough traces with same secret key
� Key management much more complex than with long lifetime secret (NAP)
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Design countermeasures (3/4)

H4: Total number of guesses on secret key “manageable”

° Increase number of required hypothesis
� DPA “easy” against DES or AES

� Because small width of last (first) logic cones

o But combinational functions with large number of inputs. . .
� . . . Expensive
� . . . Slow

� And attacks could also be mounted against internal nodes of logic cone
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Design countermeasures (4/4)

H5: SNR good enough

° Desynchronize traces
° Random clock drift

� Clock spikes still there

° Random dummy clock cycles
o Dummy clock cycles could be found out

° Add some power noise
Ë Increases number of required traces
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What if energy depends only on key?

Ex. 10: No statistical analysis any more

� Equivalent to Simple Power Analysis
� One trace only
� But several traces can be averaged to improve SNR

� As with SPA, in most cases, best attacker can expect. . .
• . . .≈ Hamming weight of secret key. . .
Ë . . . but not always (see SPA examples and exercise)
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What if energy depends only on input messages?

Ex. 11: Energy does not depend on secret

⇒ Energy contains no information on secret
⇒ There is nothing to expect about secret from energy
Ë Power attacks (simple and differential) do not work any more
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What if energy depends neither on key nor on input messages?

Ex. 12: Energy is constant

⇒ Energy contains no information
⇒ There is nothing to expect about anything from energy
Ë Power attacks (simple and differential) do not work any more
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