
Hardware Security exam (2 hours)
Renaud Pacalet - 2025-06-24

You can use any document but communicating devices are strictly forbidden. Please number the different pages
of your paper and indicate on each page your first and last names. You can write your answers in French or in
English, as you wish. Precede your answers with the question’s number. If some information or hypotheses are
missing to answer a question, add them. If you consider a question as absurd and thus decide to not answer,
explain why. If you do not have time to answer a question but know how to, briefly explain your ideas. Note:
copying verbatim the slides of the lectures or any other provided material is not considered as a valid answer.
Advice: quickly go through the document and answer the easy parts first.

To solve parts of this exam you will need a global understanding of the DES encryption/decryption standard.
The provided appendix should be sufficient.

The 5 questions are worth 2 points each. The problem is worth 10 points.

1. Questions
1.1. Timing attacks
The course enumerates 5 different hypotheses for a timing attack to be practical against the modular exponen1
tiation 𝑧 = 𝑦𝑥mod𝑛, where 𝑛 is the public modulus and 𝑥 is the secret exponent:

• The cryptosystem takes different amounts of time to process different inputs.
• Timing depends on secret exponent 𝑥 and input data 𝑦.
• The attacker knows the input data 𝑦.
• For several input data 𝑦 the victim computes 𝑦𝑥mod𝑛 and the attacker records the timing.
• The attacker knows the implementation and uses this knowledge to exploit the timing measurements.

For each of them propose a countermeasure based on canceling it and discuss the efficiency, pros and cons of
such a solution.

1.2. On-board probing attacks
To prevent on1board probing attacks one can encipher / decipher the bus between a microprocessor and its
external memories. In case the microprocessor has on1chip data and instruction caches, as shown on Figure 1,
where would you put the encryption / decryption engines? Between the CPU and the caches (position A) or
between the caches and the memory controller (position B)? Why? What are the consequences of this choice?
Is it different for data and for instructions?

Figure 1: A microprocessor and its external memory

1.3. Fault attacks
As we saw during the lectures, fault attacks against DES are possible and can significantly reduce the cost of
brute1forcing the secret key. Consider a DES hardware implementation similar to the one we attacked during the
second lab about power attacks, and represented on Figure 2. Assume you are asked to protect it against fault
attacks. Propose two different countermeasures, discuss their efficiency, their advantages and their drawbacks.
Which one would you chose? Why?

1/4

Figure 2: DES hardware implementation

1.4. Countermeasures against on-chip probing
AES1256 (Advanced Encryption Standard with 256 bits secret keys) is a symmetric block cipher, just like DES.
The main differences are the block length (128 bits for AES1256 instead of 64 for DES) and the key length
(256 bits for AES1256 instead of 56 for DES). A company decides to design and manufacture an Integrated
Circuit (IC) containing a hardware AES1256 engine. In order to protect it against on1chip probing attacks
an engineer decides to slightly modify the AES1256 algorithm by replacing the standard SBoxes by his own
SBoxes and to keep these custom SBoxes secret. This way, even if an attacker was probing the IC during
operations, understanding what he observes would be much more difficult. Discuss the efficiency and the cost
of this countermeasure. What are its main advantages and drawbacks?

1.5. Power attacks
Triple DES encryption (TDEA) is defined as:

TDEA𝑘1,𝑘2,𝑘3(𝑃) = DES𝑘3(DES
−1
𝑘2 (DES𝑘1(𝑃)))

where 𝑘1, 𝑘2, 𝑘3 are 3 DES secret keys, DES𝑘(𝑃) is the DES encryption of plaintext 𝑃 with key 𝑘 and DES−1𝑘 (𝐶)
is the DES decryption of ciphertext 𝐶 with key 𝑘. Is TDEA significantly more robust than simple DES against
power attacks? If no, why? If yes, why and how much more robust?

2. Problem: Timing attacks against DES
In the following we consider a software DES implementation running on a 8 bits micro1controller with 16 bits
address bus. The 216 = 65536 bytes address space is split in 𝑀fast, a small 200 bytes fast memory starting at
address 0 and accessed in only one clock clycle, and 𝑀slow, a 65536 − 200 = 65336 bytes slower memory starting
at address 200 and accessed in two clock cycles.

To speed1up the processing the eight DES S1boxes are implemented as a 256 bytes table in memory starting at
address 0, as shown on Figure 3

2/4

Figure 3: The memory layout of the S1boxes table

To compute the 4 bits output of S1box number 𝑠 (1 ≤ 𝑠 ≤ 8) corresponding to the 6 bits input 𝑥 (0 ≤ 𝑥 ≤ 63),
the program simply reads the byte in memory at address 8 × ⌊𝑥2⌋ + 𝑠 − 1 (where ⌊𝑣⌋ is the largest integer not
greater 𝑣), and keeps the 4 left bits is 𝑥 is even, else the 4 right bits.

Unfortunately 𝑀fast is only 200 bytes long and cannot hold the full table. The S1box computation time thus
depends on the input data (for instance, computing 𝑆8(17) is faster than computing 𝑆8(53)), which you should
know as a potential vulnerability to timing attacks. We assume that this access time difference between 𝑀fast
and 𝑀slow during S1boxes computation is the only part of the whole algorithm for which the timing depends
on the input data.

Assume you are in charge of attacking this implementation. You can observe the encryption of as many 64 bits
data blocks as you want with the same secret key 𝐾. For each encryption you can measure the total time it
takes, and see the output 64 bits block (you don’t have access to the input blocks). Your goal is to retrieve the
secret key 𝐾.

What would be your attack?

Represent your attack algorithm in the form of some pseudo1code with clearly defined hypotheses and notations.

What amount of information can you extract?

What is the cost of your attack (amount of computation, amount of storage)?

Is it practical?

If yes propose a countermeasure and discuss its efficiency and its drawbacks.

Appendix: the DES encryption/decryption standard
IP and FP are 64 to 64 bits permutations, inverse one of the other. ⊕ is the bitwise exclusive OR of two bit
strings. E is a 32 to 48 bits expansion1permutation. P is a 32 to 32 bits permutation. S1, S2,…, S8 are 8 different
6 to 4 bits non linear substitution functions (SBoxes). PC1 is a 64 to 56 bits selection1permutation. PC2 is a 56
to 48 bits selection1permutation. LS is a 28 to 28 bits rotation by one or two positions to the left, depending on
the round index; it is used in the encryption key schedule (as show in Figure 4). RS is a 28 to 28 bits rotation by
one or two positions to the right, depending on the round index; it is used in the decryption key schedule. All
these primitive functions are perfectly defined in the DES standard. DES decryption is the same as encryption
with the round keys used in reverse order: 𝐾16 in the first round, 𝐾15 in the second, and so on, with 𝐾1 used
in the 16th round. This reverse order is obtained by using RS instead of LS in the key schedule.

3/4

Figure 4: DES encryption

4/4

	Questions
	Timing attacks
	On-board probing attacks
	Fault attacks
	Countermeasures against on-chip probing
	Power attacks

	Problem: Timing attacks against DES
	Appendix: the DES encryption/decryption standard

