
Digital Systems
Validation, verification

R. Pacalet

Telecom Paris
Institut Mines-Telecom

August 20, 2024

1 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Outline

1 Introduction

2 Formal verification
Simulation versus formal verification
Combinational equivalence checking
Sequential equivalence checking
Model checking

3 Simulation
Functional simulation
Gate level simulation
Electrical simulation

4 Hardware emulation

5 Conclusion

2 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Outline

1 Introduction

2 Formal verification
Simulation versus formal verification
Combinational equivalence checking
Sequential equivalence checking
Model checking

3 Simulation
Functional simulation
Gate level simulation
Electrical simulation

4 Hardware emulation

5 Conclusion

3 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Validating

Design steps

Synthesized
design

Manual
design

Logic
synthesis

Design verification: is what I
designed really what I wanted?

Implementation verification: is
the synthesis result what I designed?

Implementation verification: is the
optimized design functionally

equivalent to the original design?

Specifications

Optimization

Verification steps

Optimized

Source code

design

4 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

The simulator

waveforms

Understanding

of simulation

algorithms

Simulator
Input

Run time

results

checking

circuit

Specification of

operating

conditions

Model of

Output

stimulus

5 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Simulation

Extra design tasks
• Reference model
• Simulation environment

A simulation cannot be exhaustive
• Can discover a bug
• Cannot guarantee correctness

Simulation before and after synthesis sometimes behave differently
Usually CPU intensive

6 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Formal verification

Supported only for synthesizable models (up to now)
Three main classes of tools
• Structural equivalence checking

— Same memory elements
— Fast
— Multi-million gates designs

• Sequential equivalence checking
— Functionally equivalent circuits
— Different memory elements
— Slow and memory consuming
— Small designs (a few hundreds of DFFs)

• Model checking
— Check a design against temporal-logic properties
— Slow and memory consuming
— Small designs (a few hundreds of DFFs)

7 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Formal verification

These two circuits are structurally equivalent
16

16

16 16

16

16

adder CI

B

Carry

look ahead

adder CO

SA Carry

CI

B ripple

CO

S A

These two are not, but they are sequentially equivalent

I2

S0

S2

S0I0

I1

I2

RST

CLK

State machine,

5 states,

adjacent state

encoding
CLK

RST
one−hot state

5 states,

State machine,

encoding

S1 S1

S2

I0

I1

8 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Formal verification

Examples of temporal logic properties
• The two traffic lights are never simultaneously green (safety)

𝐴𝐺(¬((tl1== green)∧ (tl2== green)))

• If a client requests the bus it will be finally granted (liveness)

𝐴𝐺(request⇒ (𝐴𝐹(granted)))

• A client holds its request until it’s granted the bus

𝐴𝐺(request⇒ (𝐴𝑋(request∨granted)))

9 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Outline

1 Introduction

2 Formal verification
Simulation versus formal verification
Combinational equivalence checking
Sequential equivalence checking
Model checking

3 Simulation
Functional simulation
Gate level simulation
Electrical simulation

4 Hardware emulation

5 Conclusion

10 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Outline

1 Introduction

2 Formal verification
Simulation versus formal verification
Combinational equivalence checking
Sequential equivalence checking
Model checking

3 Simulation
Functional simulation
Gate level simulation
Electrical simulation

4 Hardware emulation

5 Conclusion

11 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Simulation

Simulation-based verification
• Generate input stimulus

— Random
— Driven by a given functionality
— Generated from constraints (Vera, Verisity)

• Generate expected results (reference model)
• Simulate with input stimulus
• Compare simulation output with expected results (offline or online)

12 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Drawbacks of simulation

Good coverage ⇒ billions of cycles ⇒ slow
Simulation is not exhaustive
• Simulation gives no guarantee on non-simulated sequences
• Limited number of use cases are covered

A reference model is needed to produce the expected results
Efficient input stimulus are difficult to generate
• Must have a high coverage ratio
• Corner cases
• Bugs usually located where designers were less careful

13 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

What is formal verification?

OK

verify
Formal

specification

Proof
engine

System to

Not OK Counter-
example

14 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Formal verification

Exhaustive (for a given property)
• Result is mathematically guaranteed

No need to generate expected results (property is a formal model of
the expected results)
Generates a counter-example if property fails
A very powerful bug-catcher

15 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Formal verification, history

The theory dates back to the 70’s
• In 1980 systems with about 106 states could already be verified

In 1990 Clarke et al. (CMU) dramatically improve model checking
algorithms with SMV
• 1020 states

Hard critical bugs discovered in real world designs
• Cache coherency protocol,...

Today
• Commercial tools exist
• Industry is interested
• Very large states space systems verified

16 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Simulation versus formal verification

Simulation
• Non exhaustive
• Reference model is needed
• Corner cases are difficult to cover

Formal verification
• Exhaustive (for the given property)
• No need for a reference model
• Corner cases automatically covered

17 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Simulation versus formal verification

Simulation
• Huge CPU runtime (billions of cycles)
• Applicable on large designs

Formal verification
• Huge memory usage
• Internal data structures (BDD)
• Memory needs depends on size (number of states) of the system to

verify

18 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Simulation versus formal verification

Simulation is a very efficient way to verify quickly, even in the early
phases of design
Formal verification increases confidence
Both techniques are complementary

19 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Outline

1 Introduction

2 Formal verification
Simulation versus formal verification
Combinational equivalence checking
Sequential equivalence checking
Model checking

3 Simulation
Functional simulation
Gate level simulation
Electrical simulation

4 Hardware emulation

5 Conclusion

20 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Combinational equivalence checking

Comparison of 2 designs
• Synthesizable or synthesized
• (Almost) same memory elements (re-targeting)

Fast (several runs/day, multi-million gates designs)
Exhaustive
Affordable (tools, learning curve)
Reference ”golden” model needed

21 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Combinational equivalence checking

Purely functional (physical
characteristics ignored)
Two designs equivalent iff
• One-to-one mapping of

memory elements and IOs
• Equivalent boolean

functions

comb1

reg2
comb2

equivalence

mapping
one-to-one

boolean

reg1

Used to (quickly) validate
• Minor modifications of synthesizable models
• Netlist changes
edit

=? =? =? =? =?=?

syn. opt. test clock P&R

22 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Combinational equivalence checking

Boolean formula equivalence is co-NP-complete
• co-NP-complete: counterexample verifiable in polynomial-time
• co-NP-complete: Hardest problem in co-NP class
• Real complexity is unknown (P ?=NP ?= co-NP)
• A lot of heuristics are used

Representation of boolean functions critical
• Computation time
• Memory usage

23 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Combinational equivalence checking

BDDs (Binary Decision Diagrams) are used to represent boolean
functions (set of states, state transitions, etc.)

1

1 1

1

1

0

0
0

0

0 1

1
1 0

0

0

0

0 0

0 0 0 0

1

1

1111

1

Ordering: 𝑎,𝑏,𝑐
Reduced,

ordering: 𝑐,𝑎,𝑏ordering: 𝑎,𝑏,𝑐
Reduced,

𝑎

𝑏 𝑏

𝑐 𝑐

0 10 1 1

𝑐 𝑐

𝑏

𝑐

𝑎

𝑏

𝑐

𝑎 𝑏

0 1

𝑐

1100 0

Note: other techniques (SAT, SMT...) used in recent tools

24 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Combinational equivalence checking

The size of a BDD highly depends on the variable ordering

𝑎1 < 𝑎2 < 𝑎3 < 𝑏1 < 𝑏2 < 𝑏3𝑎1 < 𝑏1 < 𝑎2 < 𝑏2 < 𝑎3 < 𝑏3

Function: 𝑎1𝑏1+𝑎2𝑏2+𝑎3𝑏3

10 10

𝑏3

𝑏2 𝑏2

𝑏1𝑏1𝑏1𝑏1

𝑎2

𝑎3𝑎3𝑎3𝑎3

𝑎2

𝑎1

𝑏2

𝑏1

𝑎1

𝑎2

𝑎3

𝑏3

25 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Combinational equivalence checking

BDD reduction

nodes

Removal of
redundant

nodes

Removal of
equivalent

1 10 1 0 1 0 1 10 0 1

𝑥3

𝑥2

𝑥3

𝑥1

𝑥2 𝑥2

𝑥3 𝑥3

𝑥1

𝑥2𝑥2

𝑥3𝑥3𝑥3

𝑥1

26 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Combinational equivalence checking

Design steps

Synthesized
design

Manual
design

Logic
synthesis

Design verification: is what I
designed really what I wanted?

Implementation verification: is
the synthesis result what I designed?

Implementation verification: is the
optimized design functionally

equivalent to the original design?

Specifications

Optimization

Verification steps

Optimized

Source code

design

27 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Combinational equivalence checking

Commercial tools
• Synopsys (Formality)
• Cadence (Conformal)
• Mentor (FormalPro)

Warning
• Synthesizable models are first synthesized (symbolic synthesis)
• Using same engine for synthesis and equivalence checking unsafe
• Equivalence of synthesizable model and synthesis result?
• Check this with your CAD tools vendors

28 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Outline

1 Introduction

2 Formal verification
Simulation versus formal verification
Combinational equivalence checking
Sequential equivalence checking
Model checking

3 Simulation
Functional simulation
Gate level simulation
Electrical simulation

4 Hardware emulation

5 Conclusion

29 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Sequential equivalence checking

Comparison of 2 designs
• Synthesizable or synthesized
• Without constraints on memory elements

Slow and memory-hungry (limited to a few hundreds of DFF)
Exhaustive
Affordable (tools and learning curve)
Reference ”golden” model is needed

30 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Sequential equivalence checking

Purely functional (physical characteristics ignored)
Two designs equivalent iff
• Same black-box behaviour (cycle accurate - bit accurate equivalence

at interfaces)
Used to validate major modifications of synthesizable source code
No (few?) commercial tools
Example: these 2 designs are sequential-equivalent but not
combinational-equivalent

⊤

𝑆1
001

𝑆3
100

𝑆2
010

2-bits state
encoding

3-bits, one-hot,
state encoding

00
𝑆1

𝑆3
10

𝑆2
01

𝐴∨𝐵¬𝐵

¬(𝐴∨𝐵)

𝐵

𝐴∨𝐵¬𝐵

¬(𝐴∨𝐵)

𝐵

⊤

31 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Sequential equivalence checking

Design steps

Synthesized
design

Manual
design

Logic
synthesis

Design verification: is what I
designed really what I wanted?

Implementation verification: is
the synthesis result what I designed?

Implementation verification: is the
optimized design functionally

equivalent to the original design?

Specifications

Optimization

Verification steps

Optimized

Source code

design

32 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Outline

1 Introduction

2 Formal verification
Simulation versus formal verification
Combinational equivalence checking
Sequential equivalence checking
Model checking

3 Simulation
Functional simulation
Gate level simulation
Electrical simulation

4 Hardware emulation

5 Conclusion

33 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Model checking

Comparison of one design and temporal-logic properties
• Synthesizable or synthesized models
• Without constraints on memory elements

Exhaustive
Expensive (especially learning curve)
Well adapted to verify control parts of a design (”small” state
machines) but not to computation parts (state space explosion)

34 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Model checking

Purely functional (physical characteristics ignored)
A design passes property iff
• No counter-example

Used to validate
• Functionality of synthesizable model
• Modifications

35 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Model checking

Design steps

Synthesized
design

Manual
design

Logic
synthesis

Design verification: is what I
designed really what I wanted?

Implementation verification: is
the synthesis result what I designed?

Implementation verification: is the
optimized design functionally

equivalent to the original design?

Specifications

Optimization

Verification steps

Optimized

Source code

design

36 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Model checking

Commercial tools
• IBM (RuleBase)
• Mentor Graphics (0in)
• Synopsys (Magellan)
• Cadence (Incisive)

Academic tools
• Cadence SMV
• COSPAN
• NuSMV
• UPPAAL
• Spin
• VIS (the one we will use in lab)

37 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Model checking

Our example: bus controller

pssA
controllerB

clientB

controllerC

clientC

ackC
reqC

controllerA

clientA
reqA

ackA

arbiter

reqB
ackB

active

sel (∈ 𝐴,𝐵,𝐶 ,𝑋)

pssB pssC

38 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

The controller

PASS
pss=1

pss=0
ack=0

READY

pss=0
BUSY

ack=1

¬𝑠𝑒𝑙

𝑠𝑒𝑙∧𝑟𝑒𝑞

𝑟𝑒𝑞

¬𝑟𝑒𝑞

𝑠𝑒𝑙∧ (¬𝑟𝑒𝑞)

¬𝑠𝑒𝑙
𝑠𝑒𝑙∧ (¬𝑟𝑒𝑞)

𝑠𝑒𝑙∧𝑟𝑒𝑞

IDLE
pss=0
ack=0

ack=0

39 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Model checking of controller

Needed
• HDL model of controller
• Specification of controller as collection of temporal-logic properties

— Never this...
— Always that...
— If this, then that...

• Description of environment of controller (arbiter and clients)
— Client never does this...
— Arbiter always does that...

• Model checker
• Memory, time and coffee

40 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

HDL model of controller

1 e n t i t y c o n t r o l l e r i s
2 port (c lk , r s tn , req , s e l : i n boolean ;
3 pss , ack : out boolean) ;
4 end c t r l ;
5
6 a r c h i t e c t u r e beh of c o n t r o l l e r i s
7
8 type state_type i s (i d l e , ready , busy , pass) ;
9 s i g n a l s t a t e : state_type ;

10
11 begin
12
13 process (c lk , r s tn)
14 begin
15 i f not r s tn then
16 s ta t e <= i d l e ;
17 e l s i f r i s ing_edge (c l k) then
18 case s t a t e i s
19 when i d l e =>
20 i f s e l and req then
21 s ta t e <= ready ;
22 e l s i f s e l and not req then
23 s ta t e <= pass ;
24 end i f ;

25 when ready =>
26 s t a t e <= busy ;
27 when busy =>
28 i f not req then
29 s t a t e <= pass ;
30 end i f ;
31 when pass =>
32 i f s e l and req then
33 s t a t e <= ready ;
34 e l s i f not s e l then
35 s t a t e <= i d l e ;
36 end i f ;
37 end case ;
38 end i f ;
39 end process ;
40
41 ack <= s ta t e = busy ;
42 pss <= st a t e = pass ;
43
44 end beh ;

41 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Specification of controller

Controller specified with temporal logic
• CTL (Computation Tree Logic)
• LTL (Linear Temporal Logic)
• CTL* (superset of CTL and LTL)

Choice of temporal logic determines expressiveness
• Temporal logics not equivalent

42 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Temporal logics

Classical boolean logic
• true, false,¬,∧,∨,⇒,⇔

Atomic formula
• 𝑝 = ((𝑎𝑐𝑘 = 1)∧ (𝑟𝑒𝑞 = 0))

Temporal operators characterize execution (path in state tree)
• 𝑋 (neXt): 𝑋𝑝 = ”next state satisfies 𝑝”

— (𝑆𝑇𝐴𝑇𝐸 = 𝑃𝐴𝑆𝑆)⇒𝑋(𝑆𝑇𝐴𝑇𝐸 = 𝐼𝐷𝐿𝐸)
• 𝐹 (Futur): 𝐹𝑝 = ”a future state satisfies 𝑝”

— (𝑟𝑒𝑞 = 1)⇒𝐹(𝑎𝑐𝑘 = 1)

43 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Temporal logics

Temporal operators
• 𝐺 (Global) : 𝐺𝑝 = ”all future states satisfy p”

— 𝐺¬((𝑎𝑐𝑘𝐴 = 1)∧ (𝑎𝑐𝑘𝐵 = 1))
• 𝐺 and 𝐹 dual: 𝐺𝑝⇔¬𝐹¬𝑝

— ¬𝐹((𝑎𝑐𝑘𝐴 = 1)∧ (𝑎𝑐𝑘𝐵 = 1))
• 𝑈 (Until): 𝑝𝑈𝑞

— 𝑞 will be satisfied in future
— Meanwhile, 𝑝 remains satisfied
— (𝑟𝑒𝑞 = 1)⇒𝑋((𝑟𝑒𝑞 = 1)𝑈(𝑎𝑐𝑘 = 1))

• 𝑊 (Weak until): 𝑝𝑊𝑞⇔ (𝑝𝑈𝑞)∨𝐺𝑝
— 𝑝 remains satisfied until 𝑞 satisfied
— Or 𝑝 satisfied forever (and 𝑞 may be never satisfied)
— (𝑟𝑒𝑞 = 1)⇒𝑋((𝑟𝑒𝑞 = 1)𝑊(𝑎𝑐𝑘 = 1))

44 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Temporal logics

Temporal operators may be combined
• 𝐺𝐹 = 𝐹∞ ∶ 𝐺𝐹𝑝 = ”during execution, 𝑝 satisfied an infinite number

of times”
• 𝐹𝐺 =𝐺∞ ∶ 𝐹𝐺𝑝 = ”during execution, 𝑝 satisfied forever starting from

given point (or 𝑝 false finite number of times)”
Path operators
• Specify branching behaviour (several potential futures from given

situation)
• 𝐴𝑝: every execution from current state satisfies 𝑝 (universal path

quantifier)

45 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Temporal logics

Path operators
• 𝐸𝑝: starting from current state at least one execution exists that

satisfies 𝑝 (existential path quantifier)
• Warning, 𝐴 ≠𝐺 and 𝐸 ≠ 𝐹

— 𝐴 means ”every execution”
— 𝐺 means ”every state” along considered execution
— 𝐸 means ”there is at least one execution”
— 𝐹 means ”a future state” along considered execution
— 𝐴 and 𝐸 operate on paths
— 𝐺 and 𝐹 operate on states along given path

Path and temporal operators usually go by pairs
• 𝐸𝐹𝑝: there exist one execution satisfying 𝑝 (in future)
• 𝐴𝐹𝑝: for every execution 𝑝 satisfied (in future)

46 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Temporal logics

Path - time pairs
𝐴𝐺𝑝: 𝑝 always satisfied, for every execution, for every state (safety)
• 𝐴𝐺¬((𝑎𝑐𝑘𝐴 = 1)∧ (𝑎𝑐𝑘𝐵 = 1))

𝐸𝐺𝑝: there exist one execution for which 𝑝 always satisfied
• 𝐸𝐺¬(𝑟𝑒𝑞𝐴 = 1)

𝐴𝑋𝑝: starting from current state all next states satisfy 𝑝
𝐸𝑋𝑝: starting from current state there exist one next state
satisfying 𝑝

47 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Temporal logics

𝐴,𝐸,𝐹 and 𝐺

𝑝𝑝

𝑝 𝑝

𝑝

𝑝

𝑝

𝑝

𝐸𝐺𝑝⇔¬𝐴𝐹¬𝑝

𝑝

𝑝

𝑝

𝑝 𝑝 𝑝

𝐴𝐺𝑝⇔¬𝐸𝐹¬𝑝𝐴𝐹𝑝⇔¬𝐸𝐺¬𝑝

𝐸𝐹𝑝⇔¬𝐴𝐺¬𝑝

48 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Temporal logics

Path operators difficult to understand
• 𝐴𝐺𝐹𝑝: along every execution (𝐴), from every state (𝐺), a future (𝐹)

state satisfying 𝑝 is reached. In other words, 𝑝 will be satisfied an
infinite number of times along every execution: 𝐴𝐺𝐹𝑝⇔𝐴𝐹∞𝑝

• 𝐴𝐺𝐸𝐹𝑝: along every execution (𝐴), from every state (𝐺), it is
possible (𝐸) to reach a future (𝐹) state satisfying 𝑝. In other words,
𝑝 is always satisfiable along every execution. 𝐴𝐺𝐸𝐹𝑝 may be true
even if, in one given execution, 𝑝 is never satisfied

• Can you write down a formula describing this last property (there
exists one execution along which 𝑝 is never satisfied)?

49 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Temporal logics

CTL*: no constraint about the way path and temporal operators are
mixed
LTL: CTL* without path operators
• LTL concerns executions, not the way they are organized along state

tree
• LTL formulas are path formulas (linear time logic)
• LTL cannot express potentialities: 𝐴𝐺𝐸𝐹𝑝 (”𝑝 always potentially

satisfiable”) cannot be written in LTL
• LTL is what designers usually need
• LTL formulas implicitly preceded by universal path quantifier (𝐴):

they characterize all possible executions from initial state

50 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Temporal logics

CTL: CTL* with the constraint that every temporal operator
(𝑋,𝐹,𝐺 ,𝑈) is preceded by a path operator (𝐴,𝐸)
• CTL formulas are state formulas
• CTL formulas depend only on the current state, not on the current

execution (path)
• CTL cannot write 𝐹∞

FCTL: extension of CTL (F for Fair) allowing to express 𝐹∞

The model checking on CTL or FCTL is more efficient than on LTL...
... But designers prefer LTL

51 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Exercise #1: temporal logics

LTL cannot
distinguish these two
situations
CTL can

? Try to write a CTL
formula stating that
the choice between
¬𝑞∧¬𝑝 and 𝑞∧¬𝑝
remains open a bit
longer in one case
than in the other

𝑝

𝑝∧𝑞

𝑞

𝑝 𝑝

𝑝∧𝑞

𝑞

52 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Exercise #1: temporal logics

LTL cannot
distinguish these two
situations
CTL can

? Try to write a CTL
formula stating that
the choice between
¬𝑞∧¬𝑝 and 𝑞∧¬𝑝
remains open a bit
longer in one case
than in the other

𝑝

𝑝∧𝑞

𝑞

𝑝 𝑝

𝑝∧𝑞

𝑞

52 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Exercise #1: temporal logics

LTL cannot
distinguish these two
situations
CTL can

? Try to write a CTL
formula stating that
the choice between
¬𝑞∧¬𝑝 and 𝑞∧¬𝑝
remains open a bit
longer in one case
than in the other

𝑝

𝑝∧𝑞

𝑞

𝑝 𝑝

𝑝∧𝑞

𝑞

52 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

CTL logic

Most famous example in the world: traffic light (unless you prefer
coffee machine?)
Farm road crossing highway with traffic lights and presence detector
on farm road
Example properties
• Traffic lights can never be green both on highway and farm road

(safety)
• If car waiting for green light on farm road, it will eventually have

green light (liveness)

53 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Tree representation of time

𝐸𝐺(𝑟) = true

𝐸(𝑟𝑈𝑔) = true

𝐴𝐹(𝑔) = false

𝐴𝐺𝐸𝐹(𝑔) = true

𝐴(𝑟𝑈𝑔) = false

𝐸(𝑝𝑈𝑞):

𝐸𝐹𝑝:

𝐸𝐺𝑝:

𝑝:

𝐸𝑋𝑝:

Unroll

𝑝 𝑝 𝑝 𝑞

𝑝

𝑝

𝑝

𝑟 𝑦

𝑦 𝑔

𝑔

𝑔 𝑟

𝑟

𝑟

𝑝 𝑝 𝑝 𝑝

𝑟

𝑦 𝑔

54 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Counter-examples

Counter-example may be finite...
• Safety
• 𝐴𝐺 (𝑟) ∶ 𝑟,𝑔

... Or infinite
• Liveness
• 𝐴𝐹(𝑔) ∶ 𝑟,𝑟,𝑟,𝑟, ...
• Infinite counter-example made of stem and cycle

Stem

Cycle

55 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

CTL specification of controller

? Exercise #2: ”If client releases bus, controller passes token on next
cycle”

? Exercise #3: ”If controller receives token but client does not request
bus, controller passes token on next cycle”

? Exercise #4: ”If client requests bus, when token sent to controller,
controller asserts ack on next cycle”

? Exercise #5: ”Controller does not pass token until client releases
bus”

56 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

CTL specification of controller

? Exercise #2: ”If client releases bus, controller passes token on next
cycle”

? Exercise #3: ”If controller receives token but client does not request
bus, controller passes token on next cycle”

? Exercise #4: ”If client requests bus, when token sent to controller,
controller asserts ack on next cycle”

? Exercise #5: ”Controller does not pass token until client releases
bus”

56 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

CTL specification of controller

? Exercise #2: ”If client releases bus, controller passes token on next
cycle”

? Exercise #3: ”If controller receives token but client does not request
bus, controller passes token on next cycle”

? Exercise #4: ”If client requests bus, when token sent to controller,
controller asserts ack on next cycle”

? Exercise #5: ”Controller does not pass token until client releases
bus”

56 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

CTL specification of controller

? Exercise #2: ”If client releases bus, controller passes token on next
cycle”

? Exercise #3: ”If controller receives token but client does not request
bus, controller passes token on next cycle”

? Exercise #4: ”If client requests bus, when token sent to controller,
controller asserts ack on next cycle”

? Exercise #5: ”Controller does not pass token until client releases
bus”

56 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Model of controller environment

Used to reduce complexity by limiting to realistic behaviors only
Prevent false alarms (useless counter-examples)
May use temporal logic...
• (𝑟𝑒𝑞 = 1)⇒𝐴𝑋((𝑟𝑒𝑞 = 1)∨ (𝑎𝑐𝑘 = 1))

... Or specific language (EDL)...

... Or HDL enhanced to handle non-determinism

57 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Non-determinism

Deterministic systems
• For every {input, state}, one and only one {next state, output}
• Implemented digital systems always deterministic

Non-deterministic systems
• There exist {input, state} for which {next state, output} not unique
• Model set of behaviors

Deterministic

true𝑖𝑛𝑝𝑢𝑡 = 1 true

𝑖𝑛𝑝𝑢𝑡 = 0

true

true

Non-deterministic

𝐵𝐴 𝐵 𝐴

58 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Why using non-determinism?

To model environments
Example
• System to verify = arbiter + controller
• Environment of system = clients

— Requests asserted in non-deterministic way
— Non-determinism allows modeling of any behavior of clients

In the following $ND will be our non-deterministic statement

1 wire rand ;
2 as s i gn rand = $ND(0 ,1) ;
3 i f (rand) . . .

1 s i g n a l rand : boolean ;
2 rand <= $ND(f a l s e , t rue) ;
3 i f (rand) then
4 . . .

59 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Non-determinism

1 e n t i t y c l i e n t i s
2 port (c lk , r s tn , ack : i n boolean ;
3 req : out boolean) ;
4 end c t r l ;
5
6 a r c h i t e c t u r e beh of c l i e n t i s
7
8 type state_type i s (i d l e , request , busy) ;
9 s i g n a l s t a t e : state_type ;

10 s i g n a l rand : boolean ;
11
12 begin
13
14 rand <= $ND(f a l s e , t rue) ;
15
16 process (c lk , r s tn)
17 begin
18 i f (not r s tn) then
19 s ta t e <= i d l e ;
20 e l s i f r i s ing_edge (c l k) then
21 case s t a t e i s
22 when i d l e =>
23 i f (rand) then
24 s ta t e <= request ;
25 end i f ;

26 when request =>
27 i f (ack and rand) then
28 i f (rand) then
29 s t a t e <= busy ;
30 e l s e
31 s t a t e <= i d l e ;
32 end i f ;
33 end i f ;
34 when busy =>
35 i f (rand) then
36 s t a t e <= i d l e ;
37 end i f ;
38 end case ;
39 end i f ;
40 end process ;
41
42 req <= s ta t e = request or s t a t e = busy ;
43
44 end beh ;

60 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Fairness constraints

Extend CTL to FCTL
Express that state or set of states must be reached infinite number
of times
• Example for client: 𝐹∞𝐼𝐷𝐿𝐸 (𝐼𝐷𝐿𝐸 state must be reached infinite

number of times; client cannot keep bus indefinitely)
Very convenient to limit impact of non-determinism

61 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Algorithms of CTL model checking

Invented by Queille, Sifakis, Clarke, Emerson and Sistla (1982, 1986)
Since improved in many ways
Linear in automata and formula size
Based on state marking
• Let 𝐴 be an automata and 𝜙 a CTL formula, for every sub-formula 𝜓

of 𝜙 and for each state 𝑞 of 𝐴, 𝑞 marked if 𝜓 true in state 𝑞
• Eventually, for every state and every sub-formula

— 𝑞.𝜓 = true if 𝑞 satisfies 𝜓,
— else 𝑞.𝜓 = false

Memory usage critical because marking of 𝑞.𝜙 uses markings of 𝑞′.𝜓
where 𝜓 sub-formula of 𝜙 and 𝑞′ state reachable from 𝑞
After marking of 𝜙 done, 𝑞0.𝜙 (where 𝑞0 initial state of 𝐴) true iff 𝐴
satisfies 𝜙

62 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Algorithms of CTL model checking

Notations
• Let 𝑄 be the set of states of 𝐴
• Let 𝐿(𝑞) be the set of atomic properties 𝑝 satisfied in state 𝑞
• Let 𝑇 be the set of transitions (𝑞,𝑞′) from state 𝑞 of 𝐴 to another

state 𝑞′ of 𝐴
• Let 𝑑𝑒𝑔𝑟𝑒𝑒(𝑞) be the number of successors of 𝑞 in state diagram of
𝐴

Complexity of model checking of CTL formula 𝜙 is 𝒪(|𝐴|× |𝜙|)

63 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Algorithms of CTL model checking

Case #1: 𝜙 =𝑝
procedure marking(𝜙) ▷ 𝒪(|𝑄|)

for every 𝑞 ∈𝑄 do
if 𝑝 ∈ 𝐿(𝑞) then

𝑞.𝜙 ← true;
else

𝑞.𝜙 ← false;
end if

end for
end procedure

64 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Algorithms of CTL model checking

Case #2: 𝜙 =¬𝜓
procedure marking(𝜙) ▷ 𝒪(|𝑄|)

marking(𝜓);
for every 𝑞 ∈𝑄 do

𝑞.𝜙 ←¬𝑞.𝜓;
end for

end procedure

65 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Algorithms of CTL model checking

Case #3: 𝜙 =𝜓1∧𝜓2

procedure marking(𝜙) ▷ 𝒪(|𝑄|)
marking(𝜓1);
marking(𝜓2);
for every 𝑞 ∈𝑄 do

𝑞.𝜙 ←𝑞.𝜓1∧𝑞.𝜓2;
end for

end procedure

66 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Algorithms of CTL model checking

Case #4: 𝜙 =𝐸𝑋𝜓
procedure marking(𝜙) ▷ 𝒪(|𝑄|+ |𝑇 |)

marking(𝜓);
for every 𝑞 ∈𝑄 do

𝑞.𝜙 ← false; ▷ Initialization
for every (𝑞,𝑞′) ∈ 𝑇 do

if 𝑞′.𝜓 then
𝑞.𝜙 ← true;

end if
end for

end for
end procedure

67 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Algorithms of CTL model checking

Case #5: 𝜙 =𝐸𝜓1𝑈𝜓2

procedure init(𝜙)
marking(𝜓1);
marking(𝜓2);
for every 𝑞 ∈𝑄 do

𝑞.𝜙 ← false;
𝑞.𝑠𝑒𝑒𝑛← false;

end for
for every 𝑞 ∈𝑄 do

if 𝑞.𝜓2 then
𝐿 ←𝐿∪𝑞;

end if
end for

end procedure

procedure marking(𝜙) ▷ 𝒪(|𝑄|+ |𝑇 |)
init(𝜙);
while 𝐿 ≠∅ do

take 𝑞 ∈ 𝐿; ▷ 𝑞 must be marked
𝑞.𝜙 ← true;
𝐿 ←𝐿−𝑞;
for every (𝑞′,𝑞) ∈ 𝑇 do ▷ 𝑞′ predecessor of 𝑞

if ¬𝑞′.𝑠𝑒𝑒𝑛 then
𝑞′.𝑠𝑒𝑒𝑛← true;
if 𝑞′.𝜓1 then

𝐿 ←𝐿∪𝑞′;
end if

end if
end for

end while
end procedure

68 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Algorithms of CTL model checking

Case #6: 𝜙 = 𝐴𝜓1𝑈𝜓2

procedure init(𝜙)
marking(𝜓1);
marking(𝜓2);
for every 𝑞 ∈𝑄 do

𝑞.𝜙 ← false;

𝑞.𝑛𝑏 ←𝑑𝑒𝑔𝑟𝑒𝑒(𝑞);
end for
for every 𝑞 ∈𝑄 do

if 𝑞.𝜓2 then
𝐿 ←𝐿∪𝑞;

end if
end for

end procedure

procedure marking(𝜙) ▷ 𝒪(|𝑄|+ |𝑇 |)
init(𝜙);
while 𝐿 ≠∅ do

take 𝑞 ∈ 𝐿; ▷ 𝑞 must be marked
𝑞.𝜙 ← true;
𝐿 ←𝐿−𝑞;
for every (𝑞′,𝑞) ∈ 𝑇 do ▷ 𝑞′ predecessor of 𝑞

𝑞′.𝑛𝑏 ←𝑞′.𝑛𝑏 −1
if ¬𝑞′.𝑛𝑏 = 0∧𝑞′.𝜓1∧¬𝑞′.𝜙 then

𝐿 ←𝐿∪𝑞′;
end if

end for
end while

end procedure

69 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Complexity of model checking

𝒪(|𝐴|× |𝜙|): state space explosion critical issue of model checking
(adding one DFF to system doubles number of states)
Complexity reduction is active research field (abstraction)
Preliminary reduction of problem (design size) mandatory
• Exploit environment constraints
• Remove every irrelevant aspect (for considered property)
• Model checking not that exhaustive, after all

— Every situation covered but not on whole design
— Simulation operate on whole design but not on every situation
— Simulation often find bugs that were not looked at

70 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Specification of whole system

? Exercise #6: ”If client requests the bus, it will not release its request
until it is granted the bus”

? Exercise #7: ”If client 𝐴 holds the bus and client 𝐵 requests it, it is
impossible that 𝐴 releases the bus, then requests and is granted the
bus again before client 𝐵 is granted the bus”

71 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Specification of whole system

? Exercise #6: ”If client requests the bus, it will not release its request
until it is granted the bus”

? Exercise #7: ”If client 𝐴 holds the bus and client 𝐵 requests it, it is
impossible that 𝐴 releases the bus, then requests and is granted the
bus again before client 𝐵 is granted the bus”

71 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Outline

1 Introduction

2 Formal verification
Simulation versus formal verification
Combinational equivalence checking
Sequential equivalence checking
Model checking

3 Simulation
Functional simulation
Gate level simulation
Electrical simulation

4 Hardware emulation

5 Conclusion

72 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Outline

1 Introduction

2 Formal verification
Simulation versus formal verification
Combinational equivalence checking
Sequential equivalence checking
Model checking

3 Simulation
Functional simulation
Gate level simulation
Electrical simulation

4 Hardware emulation

5 Conclusion

73 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Functional simulation

Validate function
• Of whole model (exhaustive)
• On given set of stimulus (non exhaustive)

Need simulation environment
• Input stimulus
• Expected results (reference model)

74 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Functional simulation

Very efficient at finding quickly lot of ”simple” bugs
Not adapted to ”complex” errors (corner cases)
May be cycle accurate (CA) and/or bit accurate (BA)...
• Physical characteristics ignored

... Or not
• Algorithmic model

Only one that can simulate whole design. Models must be optimized
for simulation speed

75 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Functional simulation

A fast model must
• Use right language
• Save events, that is, signals
• Save memory, that is, signals
• Often be very far from actual implementation, even if CA/BA
• Use right compilation / simulation options (4x with Modelsim for

Verilog simulation with and without ”-fast -nocoverage”)
• Performance measured in number of simulated cycles per second on

given CPU with given simulator
Example of CA/BA IDCT model

Language Clock cycles / s

SystemC 1,000,000
Verilog 1,200,000
VHDL 640,000

76 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Functional simulation

Warning: simulation speed and debugging capabilities frequently
antinomic
• Dynamic verifications (VHDL)

Warning: simulation speed and expressiveness frequently antinomic
• Parallelism
• Sequential scheduling
• Variables versus signals

77 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Generation of simulation vectors

Some tools/languages target generation of simulation environments
• Cadence (Specman 𝑒)
• Synopsys (OpenVera)

Theoretically reach higher coverage (code and functional) with much
less effort
Based on dedicated environment description languages
Use constraint solvers

78 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Types of CA/BA functional models

Emulator (don’t mix up with hardware emulators)
• Empty shell reading/writing data files
• Simulation speed = 32x

Language-optimized non-synthesizable model
• SystemC or VHDL or Verilog linked with C/C++ (through

language/simulator API)
• Simulation speed = 16x

Non-synthesizable pure VHDL or Verilog model
• Simulation speed = 8x

Synthesizable model (RTL)
• Simulation speed = 4x

Synthesized model (netlist)
• Simulation speed = 1x

79 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Cycle-based simulation

One single signal: clock
Specific design effort (replace every signal by a variable: manual
scheduling)
May be automated (relates to synthesis)
Every process is executed at most once per clock cycle
• In RTL designs the same combinational process can be resumed

several times per clock cycle
Increase simulation speed (10x to 100x)

80 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Outline

1 Introduction

2 Formal verification
Simulation versus formal verification
Combinational equivalence checking
Sequential equivalence checking
Model checking

3 Simulation
Functional simulation
Gate level simulation
Electrical simulation

4 Hardware emulation

5 Conclusion

81 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Gate level simulation

Netlist (network of interconnected gates) can also be simulated
Gate level simulation with or without timing information
(back-annotation, VITAL/SDF)
Different temporal models, with different accuracy vs. performance
ratios
• ”Prop Ramp Delay”
• ”Input Slope Model”
• ”Wave tabular”
• ...

82 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Gate level simulation

VITAL (IEEE 1076.4-2000) standard defines a way to back-annotate
design after synthesis

model
(before P&R)

Extracted
parasitic

(after P&R)

predictive

VHDL netlist SDF (VITAL)
file

Simulation
environment

VITAL
compliant
simulator

Parasitic

83 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Prop ramp delay model

Used only for rough approximations...
... Or old processes (> 500 nm)

𝑡𝑝𝑙ℎ(𝐴 →𝑍) = 𝑡𝑝𝑙ℎ0 (𝐴 →𝑍)+Δ𝑡𝑝𝑙ℎ0 (𝐴 →𝑍)+Δ𝑡𝑝𝑙ℎ(𝐴 →𝑍)×𝐶𝑙𝑑

𝑡𝑝𝑙ℎ(𝐴 →𝑍) ∶Propagation delay from input 𝐴 to output 𝑍 for rising transition of output 𝑍
𝑡𝑝𝑙ℎ0 (𝐴 →𝑍) ∶ Intrinsic propagation delay (without output capacitance)

Δ𝑡𝑝𝑙ℎ0 (𝐴 →𝑍) ∶Propagation delay due to output capacitance (=Δ𝑡𝑝𝑙ℎ(𝐴 →𝑍)×𝐶𝑠)

Δ𝑡𝑝𝑙ℎ(𝐴 →𝑍) ∶Propagation delay (per capacitance unit) due to load capacitance
𝐶𝑙𝑑 ∶ Load capacitance

84 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Other models

”Input Slope Model”
• Input ramp taken into account
• Close to ”Prop Ramp Delay” for fast ramps
• More complex -> slower to simulate
• Not implemented in HDL
• Reserved to switch-based simulation or static timing analysis

”Wave tabular”
• Input waveform taken into account
• Segmented linear approximation
• More complex
• Not implemented in HDL
• Reserved to switch-based simulation or static timing analysis

85 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Outline

1 Introduction

2 Formal verification
Simulation versus formal verification
Combinational equivalence checking
Sequential equivalence checking
Model checking

3 Simulation
Functional simulation
Gate level simulation
Electrical simulation

4 Hardware emulation

5 Conclusion

86 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Electrical simulation

Transistor-based electrical simulation (SPICE, ELDO) provides more
accurate results
Used for standard cells characterization or simulation of ”full
custom” designs
Very slow, very accurate
Unavoidable in some specific cases
Limited to few hundreds of transistors

87 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Outline

1 Introduction

2 Formal verification
Simulation versus formal verification
Combinational equivalence checking
Sequential equivalence checking
Model checking

3 Simulation
Functional simulation
Gate level simulation
Electrical simulation

4 Hardware emulation

5 Conclusion

88 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

What does it look like?

Figure: Palladium (Cadence) and Veloce (Mentor Graphics) series

Figure: ZeBu series by Synopsys

89 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

From single board to huge servers

Based on
• FPGAs
• Dedicated ICs (interconnection)
• Memories
• Commercial off-the-shelf components (CPUs, fast I/Os, ...)

Can emulate thousands to multi-millon gates ICs
From thousands to multi-millon $ equipments
At clock frequencies in the MHz range
• RTL ×1000
• Gate-level ×1,000,000

Can be used to emulate the not-yet-available IC in full system (GPU)

90 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Important features

Operating frequency
Synthesis / configuration time
Limitations of design style
• Synchronous
• Multiple clock domains
• Gated clocks

Size of ”emulatable” systems
Emulation in host system
Interactive debugging
Co-simulation
...

91 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

What is it used for?

Speed up simulation of synthesizable code
• Warning: not always best choice
• Warning: what you simulate not always what you think

Speed up fault simulation
Emulate chip in system environment
Ease hardware-software co-design
Increase designer’s confidence
Heat building

92 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

What is it NOT used for?

Validate non synthesizable models
Simulate chip ”as it will actually be”
• In order to fit in emulator design must be adapted

— 3 states → multiplexers
— Memories → available memories
— ...

Validate physical characteristics
Validate netlist modifications (why?)

93 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Need to emulate synthesizable code?

System level verification?
• It is always better to have a more abstract model
• Compare performance

Validation of refinement for synthesis?
• Compare with other methods

— Model checking
— Equivalence checking
— Multi-level simulation

94 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Outline

1 Introduction

2 Formal verification
Simulation versus formal verification
Combinational equivalence checking
Sequential equivalence checking
Model checking

3 Simulation
Functional simulation
Gate level simulation
Electrical simulation

4 Hardware emulation

5 Conclusion

95 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Pentium IV bugs

42 millions of
transistors
More than one million
lines of RTL code
100 high level logic
bugs found by formal
verification
Source: EE times
2001

Bug types %

Goof (typos, cut-and-paste) 12.70
Miscommunication 11.40
Micro-architecture definition 9.30
Logic/microcode changes without care about
side effects

9.30

Corner cases (implementation failures) 8.00
Powerdown (clock gating) 5.70
Documentation 4.40
Micro-architecture complexity 3.90
Initialization (reset) 3.40
Late definition 2.80
Incorrect RTL assertions (wrong or broken by
design changes)

2.80

Design mistakes 2.60

Total 76.30

96 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Verification effort

Figure: Breakdown of verification effort (ITRS 1999)

97 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

Summary

Formal verification. Questions?
Simulation. Questions?
Other. Questions?

98 / 98 August 20, 2024 Telecom Paris Institut Mines-Telecom Digital Systems — Validation, verification

	Introduction
	Formal verification
	Simulation versus formal verification
	Combinational equivalence checking
	Sequential equivalence checking
	Model checking

	Simulation
	Functional simulation
	Gate level simulation
	Electrical simulation

	Hardware emulation
	Conclusion

