
DigitalSystems: exam

R. Pacalet

2024-06-25

You can use any document but communicating devices are strictly forbidden.
Please number the different pages of your paper and indicate on each page your
first and last names. You can write your answers in French or in English, as you
wish. Precede your answers with the question’s number. If some information
or hypotheses are missing to answer a question, add them. If you consider a
question as absurd and thus decide to not answer, explain why. If you do not
have time to answer a question but know how to, briefly explain your ideas.
Note: copying verbatim the slides of the lectures or any other provided material
is not considered as a valid answer. Advice: quickly go through the document
and answer the easy parts first.

The 5 questions are worth 2 points each. The problem is worth 10 points

1 Questions
1.1 Resolved types
Why is it important not to use VHDL resolved types when unresolved types can
be used instead?

1.2 Logic synthesis results
After logic synthesis and when investigating the various synthesis reports, why
is it important to pay attention to the inferred latches, if any?

1.3 VHDL modeling of state machines
What are the advantages of modelling the states of a Finite-State Machine
(FSM) with an enumerated type instead of numbers or vector values? Are there
drawbacks?

1.4 VHDL simulation
In your opinion, what will happen when simulating the VHDL model shown on
the following listing?

1

entity foo is
end entity foo;
architecture arc of foo is

signal a, b, c, d, e: bit;
begin

process (a, b, c)
begin

if a = '0' then
d <= b xor c;

elsif b = '1' then
d <= not c;

else
d <= c;

end if;
end process ;
process (a, d, e)
begin

if a = '0' then
c <= not (d or e);

elsif d = '0' then
c <= not e;

else
c <= d;

end if;
end process ;

end architecture arc;

We first notice that signals a, b and e are never assigned. So they keep their
initial value, that is, the leftmost value of their type declaration, that is, '0' for
type bit. The model of the architecture can thus be simplified as (we replace
the sensitivity lists with the equivalent final wait statements because it helps
understanding the behavior):

architecture simplified of foo is
signal c, d: bit;

begin
process
begin

d <= c;
wait on c;

end process ;
process
begin

c <= not d;
wait on d;

end process ;
end architecture simplified ;

2

We denote the current simulation time as t+n where t is the physical time
in nanoseconds and n is the number of “delta-cycles”, that is, the number of
simulation steps.

At the beginning of the simulation, at time 0+0, we have c='0', d='0'. The
first simulation step assigns '0' to d and '1' to c.

At time 0+1 signals c and d take their assigned values, we have c='1', d='0'.
Only c changes and this triggers again the first process. The first process assigns
'1' to d.

At time 0+2 d changes from '0' to '1', we have c='1', d='1'. This triggers
again the second process. The second process assigns '0' to c.

At time 0+3 c changes from '1' to '0', we have c='0', d='1'. This triggers
again the first process. The first process assigns '0' to d.

At time 0+4 d changes from '1' to '0', we have c='0', d='0', the initial
situation. This triggers again the second process. The second process assigns
'1' to c.

. . .

This simulation never ends, the time increments only by delta-cycles, the physical
time remains constant and equal to 0 ns, and signals c and d cycle through the
4 possible combinations, delta-cycle after delta-cycle. What we modeled is a
combinatorial loop.

1.5 VHDL synthesis
The VHDL process shown on the listing below is intended to be:

• synthesizable,
• synchronous on the rising edge of clk,
• with a synchronous, active low, reset rstn.

process (clk , di , dsi , rstn)
begin

do <= '0';
if rstn /= '0' and clk = '0' and clk 'event then

if dsi = '1' then
do <= di;

else
do <= do;

end if;
end if;

end process ;

What do you think of it? Identify the errors (if any) and, for each of them,
explain why it is an error, what undesirable effect it has and finally, write down
a new VHDL code with all the errors fixed.

For synthesizable VHDL, a synchronous process on rising edge of clk, with
synchronous active low reset rstn shall have only clk in the sensitivity list and

3

its body shall have the following structure (using the event attribute, as in the
given code, instead of the rising_edge function):

process (clk)
begin

if clk = '1' and clk 'event then
if rstn = '0' then

-- reset behavior
else

-- other behavior
end if;

end if;
end process ;

So the errors and their consequences are:

• One statement (do <= '0';) out of the topmost if ... end if block:
this is not allowed in a fully synchronous process. During simulations
this will assign '0' to do on any value change of clk, di, dsi or rstn
while, according the specifications, do shall change only on rising edges
of clk. Assuming it accepts this code, the logic synthesizer will probably
implement something with a different behavior from that of the given
VHDL code and from the expected one.

• Other signals than clk in sensitivity list: any value change of di, dsi
or rstn resumes the process while it should resume only on clk value
changes.

• The process assigns do on falling edges of clk for which rstn is not equal to
'0', while, according the specifications, do shall change only on rising edges
of clk. Assuming it accepts this code, the logic synthesizer will probably
infer a falling-edge-triggered D-flip-flop instead of a rising-edge-triggered
one.

Note: if a signal is not assigned during an execution of a process, it keeps its
current value. So, assigning a signal value to itself (do <= do) to keep its value
is useless, but it is not an error. In some cases it could even be considered as
good practice because it makes the intention explicit.

If the intention was to model a rising-edge-triggered (by clock clk) D-flip-flop
with active low synchronous reset rstn, input di, and enable dsi, a better code
would be:

4

process (clk)
begin

if clk = '1' and clk 'event then
if rstn = '0' then

do <= '0';
else

if dsi = '1' then
do <= di;

end if;
end if;

end if;
end process ;

An even better code would use the rising_edge function introduced with VHDL
2008, and the elsif clause instead of a second if block nested in the else
clause:

process (clk)
begin

if rising_edge (clk) then
if rstn = '0' then

do <= '0';
elsif dsi = '1' then

do <= di;
end if;

end if;
end process ;

Note: with a recent enough synthesizer a concurrent signal assignment could
also be used instead of a process:

do <= rstn and di when rising_edge (clk) and
(rstn = '0' or dsi = '1');

2 Problem: Design of an interrupts controller
An interrupts controller is simple in principle but its implementation in a
dedicated piece of hardware poses some interesting challenges.

In this small problem you will design a simple interrupts controller that could
be used in a computer system. An interrupts controller is a hardware device
that receives interrupts from various devices of the system (timer, cryptographic
engine. . .) in parallel and forwards them, one after the other to the CPU.
Figure 1 represents the interrupts controller in its environment, Listing 2 and
Table 1 specify its interface.

5

4
Device 15

CPU

8

8

2
Device 2
Device 1

IRQclk

srstn

add

rnw

di

do

int_out

int_in(1)

int_in(2)

int_in(15)

Figure 1: The interrupts controller in its environment

Listing 1: Entity of IRQ
library ieee;
use ieee. std_logic_1164 .all;
use ieee. numeric_std_unsigned .all;

entity irq is
port(clk: in std_ulogic ;

srstn: in std_ulogic ;
rnw: in std_ulogic ;
add: in std_ulogic_vector (1 downto 0);
di: in std_ulogic_vector (7 downto 0);
do: out std_ulogic_vector (7 downto 0);
int_in : in std_ulogic_vector (15 downto 1);
int_out : out std_ulogic_vector (3 downto 0));

end entity irq;

Table 1: Interface specification of the IRQ module

Name Size Direction Description

clk 1 Input CLocK. The interrupts controller is synchronous on the
rising edge of clk.

srstn 1 Input Synchronous ReSeT-Not. Synchronous, active low reset.
When low on a rising edge of clk, force the content of all
internal registers to a predefined value.

rnw 1 Input Read-Not-Write. When high on a rising edge of clk the
register at address add is read and its value is put on do.
When low on a rising edge of clk the register at address add
is written with the value carried by input bus di.

add 2 Input ADDress. Indicates which half of the 2 internal registers is
read or written.

di 8 Input Data Input. The 8-bits bus used for write operations.
do 8 Output Data Output. The 8-bits bus used for read operations.
int_in 15 Input INTerrupt INput. The 15 input interrupt lines from up to

15 interrupt sources.

6

Name Size Direction Description

int_out 4 Output INTerrupt OUTput. The index of the currently pending
interrupt with highest priority, if any, else 0.

The IRQ device is controlled by the CPU through regular read/write
operations in one of its two 16-bits registers: msk and pen, declared as
std_ulogic_vector(15 downto 0). The 2 registers are accessed by the CPU
at addresses 0, 1, 2 and 3 according the memory map shown in Table 2.

Table 2: Memory map of the IRQ module

Address Register

0 msk(7 downto 0)
1 msk(15 downto 8)
2 pen(7 downto 0)
3 pen(15 downto 8)

pen(0) is always '0'. The other bits of pen indicate which interrupts are pending.
Warning, read carefully, its behavior is unusual: when int_in(i) = '1' on
a rising edge of clk, pen(i) is set to '1'. It remains set to '1' even if
int_in(i) = '0' on subsequent clock edges. When the CPU writes in pen,
each bit for which the written value is '0' is unchanged (not written) and each
bit for which the written value is '1' is forced to '0' (clear-on-set). The software
can, for instance, read pen to get all the pending interrupts and write back the
same value to force them all to '0'. It can also write 0001000000000100 to
force pen(12) and pen(2) to '0' and leave the other bits unchanged.

msk(0) is always '0'. The other bits of msk form a mask that decides which
pending interrupts are forwarded to the CPU and which are not. When
msk(i) = '1' the interrupts signaled by int_in(i) are forwarded. When
msk(i) = '0', they are masked and thus not forwarded.

When interrupts are pending in the pen register, IRQ selects the one with the
lowest index that is not masked and encodes the index on int_out. This signals
the interrupt to the CPU. If no interrupts are pending or if all pending interrupts
are masked, int_out carries the all zero value, which indicates to the CPU that
there are no interrupts.

Important note: there is no interrupt number 0. Bits 0 of the pen and msk
registers are unused. Writing in these bits has no effect and reading them always
returns '0'. For an explanation about how the software running on the CPU
can use IRQ to control up to 15 peripherals, please have a look at the end of this
document. You do not need it to solve the problem.

2.1 Architecture design (5 points)
Carefully study the specification and draw a block diagram of the architecture
of your IRQ module. Clearly identify and name the internal registers. Clearly

7

identify and name the computing elements. If possible, put a kind of pseudo-
code in the symbols representing your computing elements. Name all internal
signals and specify their bit-widths. Finally, decide how many VHDL processes
you will use to code your IRQ module, which are synchronous and which are
combinatorial and allocate the registers and the computing elements to one of
your processes. Make all this specification work clear and easy to understand.
Do not leave aspects ambiguous or confusing, the completeness and accuracy of
your description is taken into account for the grading.

Our design comprises two 15 bits registers, msk and pen, and one 8 bits register,
do; they are the rectangular blocks on Figure 2. There is an ambiguity in the
specifications: what happens when a bit of pen must be set to '1' because an
interrupt arrives and, at the same time, set to '0' because the CPU writes a
'1' at this bit position (clear-on-set)? We decide that the set to '1' shall have
the highest priority.

The other option would also be fine but would be a little less logical: it would
sometimes miss an interrupt.

There is another ambiguity about the CPU read accesses: shall the do output be
updated after the rising edge of clk or shall it combinatorially depend on rnw
and add? We decide that do is the output of an 8 bits register which content
changes only on rising edges of clk for which rnw = '1'.

next do

encode

next msk

next pen

m
sk

pe
n

do

int_outint_in

di
8

15

8

8

4

srstn
rnw
add

2
do15

15

15

15

Figure 2: The block diagram

The various combinatorial parts are represented as rounded blocks on Figure 2
and have the following behaviors:

next msk: output bit number 1 ≤ i ≤ 15 takes value:

• '0' if srstn = '0' else
• di(i mod 8) if rnw = '0' and add = i/8 (integer division) else
• msk(i).

next pen: output bit number 1 ≤ i ≤ 15 takes value:

• '0' if srstn = '0' else
• 1 if int_in(i) = '1' else

8

• '0' if di(i mod 8) = '1' and rnw = '0' and add = 2 + i/8 (integer
division) else

• pen(i).

next do: output bit number 0 ≤ i ≤ 7 takes value:

• '0' if srstn = '0' else
• do(i) if rnw = '0' else
• '0' if i = 0 and (add = 0 or add = 2) else
• msk(i) if add = 0 else
• msk(8 + i) if add = 1 else
• pen(i) if add = 2 else
• pen(8 + i).

encode: computes the bitwise AND of msk and pen, and outputs the index of
the rightmost '1', or 0 if there are none, encoded on 4 bits.

The internal signals are only the outputs of the msk and pen registers and they
have the same name as the register. We use one combinatorial process to model
the encode part. All other parts and the registers are modeled with the same
single synchronous process.

2.2 VHDL coding (5 points)
Code, in plain synthesizable VHDL 2008 the architecture of your IRQ module.

For the VHDL coding we split the two 15 bits registers msk and pen in two parts
using aliases: the 7 right bits (mskr, penr) and the 8 left bits (mskl, penl). We
also declare an alias, di7, for the 7 left bits of input di.

9

Listing 2: Architecture of IRQ
architecture rtl of irq is

signal msk , pen: std_ulogic_vector (15 downto 1);
alias mskr: std_ulogic_vector (7 downto 1) is msk (7 downto 1);
alias mskl: std_ulogic_vector (15 downto 8) is msk (15 downto 8);
alias penr: std_ulogic_vector (7 downto 1) is pen (7 downto 1);
alias penl: std_ulogic_vector (15 downto 8) is pen (15 downto 8);
alias di7: std_ulogic_vector (7 downto 1) is di(7 downto 1);

begin

process (clk)
variable a: natural range 0 to 3;

begin
if rising_edge (clk) then

if srstn = '0' then
msk <= (others => '0');
pen <= (others => '0');
do <= (others => '0');

else
a := to_integer (add);
if rnw = '1' then

case a is
when 0 => mskr <= di7;
when 1 => mskl <= di;
when 2 => penr <= penr and (not di7);
when 3 => penl <= penl and (not di);

end case;
else

do <= mskr & '0' when a = 0 else
mskl when a = 1 else
penr & '0' when a = 2 else
penl;

end if;
pen <= pen or int_in ;

end if;
end if;

end process ;

process (msk , pen)
begin

int_out <= (others => '0');
for i in 15 downto 1 loop

if (msk(i) and pen(i)) = '1' then
int_out <= to_stdulogicvector (i, 4);

end if;
end loop;

end process ;

end architecture rtl;

10

2.3 Extra discussion: IRQ usage (no points)
IRQ is used by the software running on the CPU to control up to 15 different peripherals.
At reset the msk and pen registers are cleared. During the boot sequence, the software
will write a mask in msk (in two write operations) to enable the interrupts of the
peripherals it wants to control. Each time one of these peripherals raises its interrupt
line int_in(i) (for instance to indicate an error or the end of something it was doing),
IRQ encodes the interrupt index and forwards it to the CPU. The CPU then:

• disables all interrupts, thanks to an internal flag in its own control registers,
• stores the address of the instruction it was executing,
• jumps to the corresponding software Interrupt Service Routine (ISR) that does

whatever is required for this kind of event.

Usually, ISRs are non-re-entrant, that is, they must not be interrupted by themselves.
The ISRs thus usually:

• store the current value of msk somewhere such that it can be later restored,
• mask all interrupts with less or equal priority,
• enable again the interrupts (still with the internal flag of the CPU),
• handle the peripheral that caused the interrupt,
• write in the pen register a value where all bits are '0' except bit number i to

clear only the pending interrupt,
• restore the masks and return to the interrupted instruction.

11

	Questions
	Resolved types
	Logic synthesis results
	VHDL modeling of state machines
	VHDL simulation
	VHDL synthesis

	Problem: Design of an interrupts controller
	Architecture design (5 points)
	VHDL coding (5 points)
	Extra discussion: IRQ usage (no points)

