
DigitalSystems: exam

R. Pacalet

2023-06-26

You can use any document but communicating devices are strictly forbidden.
Please number the different pages of your paper and indicate on each page your
first and last names. You can write your answers in French or in English, as you
wish. Precede your answers with the question’s number. If some information
or hypotheses are missing to answer a question, add them. If you consider a
question as absurd and thus decide to not answer, explain why. If you do not
have time to answer a question but know how to, briefly explain your ideas.
Note: copying verbatim the slides of the lectures or any other provided material
is not considered as a valid answer. Advice: quickly go through the document
and answer the easy parts first.

The 3 questions are worth 2 points each. The first problem is worth 6 points
The second problem is worth 8 points

1 Questions
1.1 A VHDL synchronous process
The VHDL process in the listing below is intended to be:

• synthesizable,
• synchronous on the rising edge of clk,
• with a synchronous, active low, reset rstn.

1. Try to imagine the intended behavior and briefly explain it.
2. What do you think of this code?
3. Are there errors or inefficiencies? If yes explain for each of them why it is

an error or an inefficiency and what undesirable effect it has.
4. Finally, write down a new VHDL code with all the errors and inefficiencies

fixed and with the behavior you imagined.

1

process (clk , di , dsi , rstn)
begin

do <= '0';
if rstn /= '0' and falling_edge (clk) then

if dsi = '1' then
do <= di;

else
do <= do;

end if;
end if;

end process ;

1.2 Unresolved and resolved types
In the DHT11 project we used a VHDL resolved type to model the data line
between the controller and the sensor.

1. What is a resolved type and why is it different from a non-resolved type?
2. Why did we need this for the DHT11 project?

1.3 VHDL processes
We want to design a synthesizable VHDL model of a circuit which all outputs
are outputs of registers and all registers are synchronized by the same edge of
the same clock.

1. What is the minimum number of VHDL processes we need?
2. Why?

2 Problem: re-synchronization
To design our DHT11 controller we had to handle a re-synchronization issue:
as the data line coming from the sensor was not synchronous with our clock, it
could change any time, including during the critical time windows around the
rising edges of our clock. So, using it without special care could have led to
metastability situations.

1. (2 points) Metastability

• Explain what metastability is and why it is undesirable in digital hardware
designs.

• Explain how we solved the metastability issue in our DHT11 controller.
• Was this solution a 100% guarantee that the DHT11 system will always

work properly?

Suppose you are in charge of designing a digital hardware component foo that
is synchronized on the rising edges of one single clock clk with a synchronous
active low reset rstn. One of the inputs of the component is a 2 bits data bus
from which we compute a 1-bit output do with a some_processing function
provided by package foo_pkg. The listing below shows your starting point, that
has already been designed by John before he had to stop working on this project.

2

As for the DHT11 controller, the data input of foo is not synchronized with
respect to clk: it can change any time, including during the critical time windows
around the rising edges of clk. But different from the DHT11 controller, data
is multi-bit.

If we were using the same solution as for the DHT11 controller we could end
up with invalid values of data injected in our design because we could sample
a mixture of old and new values. Example: suppose data transitions from 01
to 10 during the critical time windows around a rising edge of clk. We could
sample the new value of the left bit (1) and the old value of the right bit (1),
ending with 11 wich is none of the old or new real data values. And of course,
this could have severe consequences. . .

library ieee;
use ieee. std_logic_1164 .all;

use work. foo_pkg .all;

entity foo is
port(

clk: in std_ulogic ;
rstn: in std_ulogic ;
data: in std_ulogic_vector (1 downto 0);
do: out std_ulogic

);
end entity foo;

architecture rtl of foo is
signal internal_data : std_ulogic_vector (1 downto 0);

begin
process (clk)
begin

if rising_edge (clk) then
if rstn = '0' then

internal_data <= (others => '0');
else

internal_data <= data;
end if;

end if;
end process ;

do <= some_processing (internal_data);
end architecture rtl;

2. (2 points) Imagine and explain a solution to re-synchronize the data input
of foo before using it in computations. If it helps you can invent a custom
communication protocol of your own between the source of data and foo;
to do so you can add more inputs or outputs to our component, but you
cannot add inputs that would be synchronized with respect to clk (if we
could do so, we would simply decide that data is synchronous).

3

3. (2 points) Modify John’s VHDL code to implement your proposal.

3 Problem: design of a median filter
Median filters are used in image processing as a cleaning tool to remove defects
and noise from pictures. It is very simple in principle but its implementation in
a dedicated piece of hardware poses some interesting challenges.

The algorithm is very simple: every pixel of the picture to be filtered is replaced
by the median value of the neighboring pixels. The picture is thus transformed
by the median filter into another picture that has exactly the same size. For
every pixel P of the input picture we first create a list of the 9 (3 × 3) pixels
surrounding P1. The 9 pixels are then sorted. The median value is the value
located in the middle of the sorted list. The pixel P in the filtered picture takes
this median value. In our example the pictures are gray scale pictures, 8 bits
per pixel. The pixel values are between 0 (black) and 255 (white).

c
o
l.

 L

122 247

78 45

207 103 18

9434

94

1,L

2,L

3,1

4,1

5,1

6,1

7,1

H,1

3,2

4,2

5,2

6,2

7,2

H,2

3,3

4,3

5,3

6,3

7,3

3,4

4,4

5,4

6,4

7,4

3,5

4,5

5,5

6,5

7,5

3,6

4,6

5,6

6,6

7,6

3,7

4,7

5,7

6,7

7,7

3,L

4,L

5,L

6,L

7,L

H,3 H,4 H,5 H,6 H,7 H,L

1,1 1,2 1,3 1,4 1,5 1,6 1,7

2,1 2,2 2,3 2,4 2,5 2,6 2,7
45

78

94

103

122

207

18

34

247

row 1

row 2

row 3

row 4

row 5

row 6

row 7

row H

c
o
l.

 1

c
o
l.

 2

c
o
l.

 3

c
o
l.

 4

c
o
l.

 5

c
o
l.

 6

c
o
l.

 7

Figure 1: The principle of the median filter

Consider the situation depicted in Figure 1. Let [X, Y] be the pixel located at
row X, column Y of a picture. The value of pixel [4, 5] in the filtered picture is
computed from the 3 × 3 neighborhood of the pixel [4, 5] of the source picture,
that is, the list of pixels [3, 4], [3, 5], [3, 6], [4, 4], [4, 5], [4, 6], [5, 4], [5, 5], [5, 6]. The
list of the pixel values in our example is 122, 94, 247, 78, 34, 45, 207, 103, 18. The
sorted list is 18, 34, 45, 78, 94, 103, 122, 207, 247. The median value is 94, so the
value of the pixel in the filtered picture is 94. Figure 2 shows the effect of a 3 × 3
median filter on a picture of Humphrey Bogart.

The goal of this problem is to design a digital hardware machine extracting
the median value of a list of 9 pixels. This machine could then be used as a
co-processor for a general purpose CPU to speed up a software implementation.
It could also be integrated in a larger design that would implement the filter
completely in hardware.

1Pixels on the edges of the picture have less than 9 neighbors. In most cases the missing
pixels are simply copies of the edge pixels or set to a fixed color (e.g., black or white).

4

Original Noisy Filtered

Figure 2: Example of effect of a 3 × 3 median filter

One of the sub-components of our design is CE, a simple Compare and Exchange
unit. Its interface is specified in Figure 3 and Table 1.

MINAB

8
A

8

8

8
B

CE

MAXAB

Figure 3: Interface specification of CE

Table 1: Interface specification of CE

Name Size Direction Description
A 8 Input Pixel value
B 8 Input Pixel value
MAXAB 8 Output The maximum of the two pixel values
MINAB 8 Output The minimum of the two pixel values

CE is purely combinatorial. It compares the two input pixels and puts the largest
of its two inputs on the MAXAB output and the other on its MINAB output.

1. (2 points) Design CE in plain synthesizable VHDL (entity and architecture).

To extract the median value of 9 pixels we will now design a MEDian sorter
unit, MED. It is sequential (synchronous) and it instantiates CE once and only
once. Its interface is specified in Figure 4 and Table 2. The communications
between MED and the enclosing system are summarized on Figure 5.

MED

8 8
DI

DSI

CLK

BYP

DO

Figure 4: Interface specification of MED

5

Table 2: Interface specification of MED

Name Size Direction Description
DI 8 Input Data Input bus
DSI 1 Input Data Strobe In; when high indicates that DI carries a

valid input pixel
BYP 1 Input Control input that changes the behavior of MED (see

below)
CLK 1 Input CLocK; MED is synchronous on the rising edge of CLK
DO 8 Output Data Output bus; when the processing is done this

output bus holds the resulting median value

DO

P0 P1 P2 P3 P4 P5 P6 P7 P8

M

CLK

DSI

DI

Figure 5: Waveforms of the MED input/output communications

The system inputs 9 pixels (P0, P1, . . . , P8), one per clock period. During the
9 periods DSI is active. There is no interruption during this input phase: the
9 periods are consecutive. After the last pixel is input MED starts extracting
the median value and, when done, puts it on the DO bus. This computation
takes several clock periods. After the processing is done and the result is output
a new set of 9 pixels may be presented. We assume in the following that the
surrounding system always uses this simple protocol. It never tries to input a
new set before the previous computation is done. The architecture of MED is
depicted on Figure 6. MUX8 objects are 2 to 1 multiplexers of 8 bits words. R0,
R1, . . . , R8 are 8 bits registers.

CE

DSI

CLK

0

1DI

BYP

M
U

X
8

0

1 M
U

X
8

B

A

R0 R1 R6 R7 R8

DO
MAXAB

MINAB

Figure 6: Internal architecture of MED

2. (4 points) As you did for CE, design MED in plain synthesizable VHDL
(entity and architecture).

3. (1 point) Study the internal architecture of MED and try to imagine how
the (missing) control part can extract the median value by driving the DI,
DSI and BYP inputs. Describe the sequence of operations, from the input
of the 9 pixels to the output of the result.

6

4. (1 point) Assuming MED runs at a 500 MHz clock frequency, what is the
maximum throughput (in pixels per second)? Would it be sufficient to
filter in real time a video stream with 25 pictures per second, 720 × 576
pixels each?

7

	Questions
	A VHDL synchronous process
	Unresolved and resolved types
	VHDL processes

	Problem: re-synchronization
	Problem: design of a median filter

