
Computer Architecture exam
Renaud Pacalet - 2025-01-31

You can use any document but communicating devices are strictly forbidden. Please number the different pages
of your paper and indicate on each page your first and last names. You can write your answers in French or in
English, as you wish. Precede your answers with the question’s number. If some information or hypotheses are
missing to answer a question, add them. If you consider a question as absurd and thus decide to not answer,
explain why. If you do not have time to answer a question but know how to, briefly explain your ideas. Note:
copying verbatim the slides of the lectures or any other provided material is not considered as a valid answer.
Advice: quickly go through the document and answer the easy parts first. The 2 first questions are worth 4
points each. The 2 last questions are worth 6 points each.

1. Hardware timers
1. Explain what a hardware timer is.
2. In order to run a full-featured Operating System (OS) like GNU/Linux, a hardware timer is mandatory.

Why? Provide examples of services that an OS cannot offer without a hardware timer.
3. Give at least two other examples of hardware supports without which a hardware timer alone cannot be

fully exploited by the OS. Explain.

2. Floating point numbers
Computer systems approximately represent real numbers with what is called floating point numbers. The IEEE
standard 754-2019 specifies the format of a 32 bits floating point number and the value of the real number it
represents:

31 30 23 22 0
𝑆 𝐸 𝑀

Figure 1: IEEE 754-2019 floating point numbers (32 bits)

• The leftmost bit (bit number 31) is the sign bit 𝑆 ∈ {0, 1}.
• Bits 30 down to 23 encode an 8 bits unsigned integer 𝐸 ∈ [0…255].
• Bits 22 down to 0 encode a 23 bits unsigned integer 𝑀 ∈ [0…223 − 1].

We denote 𝑣(𝑆,𝐸,𝑀) the value of the corresponding real number. The standard distinguishes several cases:

• 𝑣(𝑆, 0 < 𝐸 < 255,𝑀) = (−1)𝑆 × 2𝐸−127 × (1 +𝑀 × 2−23) (normal representation)
• 𝑣(𝑆, 0,𝑀 ≠ 0) = (−1)𝑆 × 2−126 × (𝑀 × 2−23) (subnormal representation)
• 𝑣(𝑆, 0, 0) = (−1)𝑆 × 0 (±0)
• 𝑣(𝑆, 255, 0) = (−1)𝑆 ×∞ (±∞)
• 𝑣(𝑆, 255,𝑀 ≠ 0) = NaN (Not-a-Number)

1. Let 0xB0400000 be the hexadecimal representation of a 32-bits floating point number. What real value does
it represent?

2. The addition of floating point numbers is not associative: in some cases (𝑋 + 𝑌) + 𝑍 ≠ 𝑋 + (𝑌 + 𝑍). Give
an example of two 32-bits normal (0 < 𝐸 < 255) floating point numbers 𝐴 and 𝐵, in binary form or in
hexadecimal form, as you wish, such that (𝐴 + 𝐵) − 𝐵 ≠ 𝐴. Explain.

3. Suppose you are a digital hardware designer and you are asked to design a hardware floating point unit
using the logic gates and D-flip-flops we saw during the lectures. In your opinion, what operation will be the
more complex to design: addition or multiplication? Why?

3. RISC-V assembly coding
Listing 1 shows the source code of function qux in RV32I assembly language.

1/3

1 qux:
2 addi sp,sp,-16
3 sw ra,0(sp)
4 sw s0,4(sp)
5 bne a1,zero,L1
6 addi a1,zero,1
7 beq zero,zero,L3
8 L1:
9 lw s0,0(a0)

10 addi a1,a1,-1
11 beq a1,zero,L2
12 addi a0,a0,4
13 jal ra,qux
14 blt a0,s0,L3
15 L2:
16 addi a0,s0,0
17 L3:
18 lw s0,4(sp)
19 lw ra,0(sp)
20 addi sp,sp,16
21 jalr zero,0(ra)

Listing 1: The qux function

1. Explain what function qux does.
2. What input parameters does it take and what is their role?
3. What output results does it return and what are they?
4. Is qux compliant with the ILP32 Application Binary Interface (ABI)? Explain. If not fix it and provide the

complete code of a compliant version.
5. We assume that each instruction takes exactly one clock cycle to execute (no pipeline, no hazards). For a

given combination of the input parameters what is the Worst Case Execution Time (WCET) of the ABI-
compliant qux? Provide your answer in the form of one or more equations with the input parameters as
variables.

6. Could qux be optimized to reduce the WCET?

If not explain why, else propose a complete optimized version and provide the new equation(s) of the WCET.

4. Caches
A data cache contains copies of data from the external memory, that we name net cache data in the following,
plus some management information (tags, flags, replacement policy information, cache coherence information, …)

We consider a computer system with byte addresses on 32 bits. The basic addressing unit is a 32 bits (4 bytes)
word. A data cache is used to improve performance: 2-ways set-associative, write-back, write-allocate, four 32-
bits words per line, Least Recently Used (LRU) replacement policy. The total size of its net cache data is 8 kB
(8192 bytes).

Starting from an empty cache (all lines invalid), the cache receives a sequence of word read accesses from its
processor at the following addresses (in hexadecimal):

3A06C1B4, CD7351BC, 556FE81C, 3A06C1B8,
556FE1BC, 3A06C814, CD735818, 556FE1BC,
3A06C818, CD735D7C, 556FE1BC, 3A06C1B4,
CD735D70, CD7351B0, 3A06C814, 556FE1B0

The first access is at 3A06C1B4, the second at CD7351BC the last at 556FE1B0.

Simulate the cache for this sequence of read accesses and write a 16 lines table representing the behavior of the
cache. The format must be as shown on Table 1:

Address Operation

01234567 E

… …

Table 1: Example of cache behavior table

where:

• Address is the hexadecimal address that was read.

2/3

• Operation is H (hit), M (miss without eviction) or E (miss with eviction).

Example: 12345678 E means that the read address was 12345678, it was a miss and some valid net cache data
has been evicted (replaced with some other data). If you wish, and if it helps, you can add other columns on
the right to represent other information. If you do so, add the corresponding header cells to name each extra
column and add some text to explain what these extra columns represent.

3/3

Arithm
etic O

peration

M
nem

onic
Instruction

Type
D

escription

ADD rd, rs1, rs2
Add

R
rd ← rs1 + rs2

SUB rd, rs1, rs2
Subtract

R
rd ← rs1 - rs2

ADDI rd, rs1, imm12
Add im

m
ediate

I
rd ← rs1 + imm12

SLT rd, rs1, rs2
Set less than

R
rd ← rs1 < rs2 ? 1 : 0

SLTI rd, rs1, imm12
Set less than
im

m
ediate

I
rd ← rs1 < imm12 ? 1 : 0

SLTU rd, rs1, rs2
Set less than unsigned

R
rd ← rs1 < rs2 ? 1 : 0

SLTIU rd, rs1, imm12
Set less than
im

m
ediate unsigned

I
rd ← rs1 < imm12 ? 1 : 0

LUI rd, imm20
Load upper im

m
ediate

U
rd ← imm20 << 12

AUIP rd, imm20
Add upper im

m
ediate

to PC
U

rd ← PC + imm20 << 12

Logical O
perations

M
nem

onic
Instruction

Type
D

escription

AND rd, rs1, rs2
AN

D
R

rd ← rs1 & rs2

OR rd, rs1, rs2
O

R
R

rd ← rs1 | rs2

XOR rd, rs1, rs2
XO

R
R

rd ← rs1 ^ rs2

ANDI rd, rs1, imm12
AN

D
 im

m
ediate

I
rd ← rs1 & imm12

ORI rd, rs1, imm12
O

R im
m

ediate
I

rd ← rs1 | imm12

XORI rd, rs1, imm12
XO

R im
m

ediate
I

rd ← rs1 ^ imm12

SLL rd, rs1, rs2
Shift left logical

R
rd ← rs1 << rs2

SRL rd, rs1, rs2
Shift right logical

R
rd ← rs1 >> rs2

SRA rd, rs1, rs2
Shift right arithm

etic
R

rd ← rs1 >> rs2

SLLI rd, rs1, shamt
Shift left logical
im

m
ediate

I
rd ← rs1 << shamt

SRLI rd, rs1, shamt
Shift right logical im

m
.

I
rd ← rs1 >> shamt

SRAI rd, rs1, shamt
Shift right arithm

etic
im

m
ediate

I
rd ← rs1 >> shamt

Load / Store O
perations

M
nem

onic
Instruction

Type
D

escription

LD rd, imm12(rs1)
Load doublew

ord
I

rd ← mem[rs1 + imm12]

LW rd, imm12(rs1)
Load w

ord
I

rd ← mem[rs1 + imm12]

LH rd, imm12(rs1)
Load halfw

ord
I

rd ← mem[rs1 + imm12]

LB rd, imm12(rs1)
Load byte

I
rd ← mem[rs1 + imm12]

LWU rd, imm12(rs1)
Load w

ord unsigned
I

rd ← mem[rs1 + imm12]

LHU rd, imm12(rs1)
Load halfw

ord
unsigned

I
rd ← mem[rs1 + imm12]

LBU rd, imm12(rs1)
Load byte unsigned

I
rd ← mem[rs1 + imm12]

SD rs2, imm12(rs1)
Store doublew

ord
S

rs2 → mem[rs1 + imm12]

SW rs2, imm12(rs1)
Store w

ord
S

rs2(31:0) → mem[rs1 + imm12]

SH rs2, imm12(rs1)
Store halfw

ord
S

rs2(15:0) → mem[rs1 + imm12]

SB rs2, imm12(rs1)
Store byte

S
rs2(7:0) → mem[rs1 + imm12]

R
IS

C
-V

 In
stru

c
tio

n
-S

e
t

Branching

M
nem

onic
Instruction

Type
D

escription

BEQ rs1, rs2, imm12
Branch equal

SB
if rs1 = rs2
 pc ← pc + imm12

BNE rs1, rs2, imm12
Branch not equal

SB
if rs1 ≠ rs2
 pc ← pc + imm12

BGE rs1, rs2, imm12
Branch greater than or
equal

SB
if rs1 ≥ rs2
 pc ← pc + imm12

BGEU rs1, rs2, imm12
Branch greater than or
equal unsigned

SB
if rs1 >= rs2
 pc ← pc + imm12

BLT rs1, rs2, imm12
Branch less than

SB
if rs1 < rs2
 pc ← pc + imm12

BLTU rs1, rs2, imm12
Branch less than
unsigned

SB
if rs1 < rs2
 pc ← pc + imm12 << 1

JAL rd, imm20
Jum

p and link
U

J
rd ← pc + 4
pc ← pc + imm20

JALR rd, imm12(rs1)
Jum

p and link register
I

rd ← pc + 4
pc ← rs1 + imm12

Pseudo Instructions

M
nem

onic
Instruction

Base instruction(s)

LI rd, imm12
Load im

m
ediate (near)

ADDI rd, zero, imm12

LI rd, imm
Load im

m
ediate (far)

LUI rd, imm[31:12]
ADDI rd, rd, imm[11:0]

LA rd, sym
Load address (far)

AUIPC rd, sym[31:12]
ADDI rd, rd, sym[11:0]

MV rd, rs
Copy register

ADDI rd, rs, 0

NOT rd, rs
O

ne's com
plem

ent
XORI rd, rs, -1

NEG rd, rs
Tw

o's com
plem

ent
SUB rd, zero, rs

BGT rs1, rs2, offset
Branch if rs1 > rs2

BLT rs2, rs1, offset

BLE rs1, rs2, offset
Branch if rs1 ≤ rs2

BGE rs2, rs1, offset

BGTU rs1, rs2, offset
Branch if rs1 > rs2
(unsigned)

BLTU rs2, rs1, offset

BLEU rs1, rs2, offset
Branch if rs1 ≤ rs2
(unsigned)

BGEU rs2, rs1, offset

BEQZ rs1, offset
Branch if rs1 = 0

BEQ rs1, zero, offset

BNEZ rs1, offset
Branch if rs1 ≠ 0

BNE rs1, zero, offset

BGEZ rs1, offset
Branch if rs1 ≥ 0

BGE rs1, zero, offset

BLEZ rs1, offset
Branch if rs1 ≤ 0

BGE zero, rs1, offset

BGTZ rs1, offset
Branch if rs1 > 0

BLT zero, rs1, offset

J offset
U

nconditional jum
p

JAL zero, offset

CALL offset12
Call subroutine (near)

JALR ra, ra, offset12

CALL offset
Call subroutine (far)

AUIPC ra, offset[31:12]
JALR ra, ra, offset[11:0]

RET
Return from

 subroutine
JALR zero, 0(ra)

NOP
N

o operation
ADDI zero, zero, 0

func
rs2

rs1
func

rd
opcode

im
m

ediate
rs1

func
rd

opcode

im
m

ediate
rs2

rs1
func

im
m

ediate
opcode

im
m

ediate
rd

opcode

31
30

29
28

27
26

25
24

23
22

21
20

19
18

17
16

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

RISBU
J

32-bit instruction form
at

r0
r1

r2
r3

r4
r5

r6
r7

r8
r9

r10
r11

r12
r13

r14
r15

r16
r17

r18
r19

r20
r21

r22
r23

r24
r25

r26
r27

r28
r29

r30
r31

zero
ra

sp
gp

tp
t0

t1
t2

s0/fp
s1

a0
a1

a2
a3

a4
a5

a6
a7

s2
s3

s4
s5

s6
s7

s8
s9

s10
s11

t3
t4

t5
t6

Register File
Register Aliases

Erik Engheim
 <erik.engheim

@
m

a.com
>

t0 - t6 - Tem
porary registers

s0 - s11 - Saved by callee
a0 - 17 - Function argum

ents
a0 - a1 - Return value(s)

ra - return address
sp - stack pointer
gp - global pointer
tp - thread pointer

	Hardware timers
	Floating point numbers
	RISC-V assembly coding
	Caches

