
Computer Architecture: exam

R. Pacalet

2024-02-07

You can use any document but communicating devices are strictly forbidden.
Please number the different pages of your paper and indicate on each page your
first and last names. You can write your answers in French or in English, as you
wish. Precede your answers with the question’s number. If some information
or hypotheses are missing to answer a question, add them. If you consider a
question as absurd and thus decide to not answer, explain why. If you do not
have time to answer a question but know how to, briefly explain your ideas.
Note: copying verbatim the slides of the lectures or any other provided material
is not considered as a valid answer. Advice: quickly go through the document
and answer the easy parts first.

1 RISC-V assembly coding (6 points)
In this exercise we use the RV32I Instruction Set Architecture (ISA) without the
multiplication and division extension. We code according the ILP32 Application
Binary Interface (ABI) seen during the lectures and the labs, without any
exception: any function that we write can be called from any piece of software
about which we only know that it 100% respects the same ABI. If needed use
the provided RISC-V reference card on assembly language syntax.

In order to check if an unsigned number N is a multiple of 7, without divisions,
we can use the following algorithm:

1. If N equals 0 or 7 answer "yes" and stop ,
2. if N is less or equal 8 answer "no" and stop ,
3. if N is odd add 8 to N,
4. divide N by 2,
5. go to step 1.

Note: in step 4 the division is an integer division (16/2 = 8, 17/2 = 8); remem-
ber that you cannot use the multiplication and division instructions.

1. In RV32I assembly language code a function step that takes a 32-bits un-
signed number in register a0, implements steps 3 and 4 of the algorithm,
and returns the modified number in register a0. Examples: step(5) = 6,
step(28) = 14, step(127) = 67.

2. In RV32I assembly language code a function is_multiple_of_7 that
implements the complete algorithm and that uses function step for steps 3
and 4. is_multiple_of_7 takes a 32-bits unsigned number in register

1

a0 and returns 1 in register a0 if the number is a multiple of 7, else
0. Examples: is_multiple_of_7(0) = 1, is_multiple_of_7(5) = 0,
is_multiple_of_7(28) = 1, is_multiple_of_7(127) = 0.

3. Assuming each instruction takes exactly one clock cycle to execute what
is the Best Case Execution Time (BCET) of your is_multiple_of_7
function? For what input value?

4. Assuming each instruction takes exactly one clock cycle to execute what
is the Worst Case Execution Time (WCET) of your is_multiple_of_7
function? For what input value?

2 Branch prediction (6 points)
Definitions and notations

• Miss-Prediction per executed Branch Instruction (MPBI): the
number of times a given branch instruction has been wrongly predicted
divided by the total number of times this same branch instruction has been
executed. The lower the MPBI, the better the prediction.

• M∞: for a given branch instruction, the limit of the MPBI when the
number of times the branch instruction is executed tends to infinity, if this
limit exists. Undefined if it does not exist.

• Branch outcome: the actual decision (not the prediction) for a given
branch instruction; Taken or Not taken, denoted T and N, respectively.

• Periodic infinite sequence of outcomes: a sequence of outcomes that
starts with a finite sequence, the stem, which can be empty, and continues
with a finite cycle that repeats infinitely. We represent these sequences as
STEM(CYCLE)* where STEM is the shortest possible stem and CYCLE is the
shortest possible cycle. Example: TNTN NNNTTTT NNNTTTT NNNTTTT. . . is a
periodic infinite sequence of outcomes, its shortest possible stem is TNTN, its
shortest possible cycle is NNNTTTT and we represent it as TNTN(NNNTTTT)*.

Questions
A branch instruction is predicted using the 2-bits saturating counter (4-states)
branch predictor studied during the lecture on pipelines and represented on
Figure 1. We assume that the predictor is initialized in the Strong Taken (ST)
state and that there is no collision with other branch instructions: the predictor
is only used to predict the branch instruction of interest.

t

ST WT

WNSN

t

n

t

n

n

t

n

Figure 1: Saturating counter

2

1. Imagine an infinite sequence of outcomes of the branch instruction such
that the 2-bits saturating counter has a MPBI equal to 1 (that is, it always
predicts wrongly). Represent your sequence using the STEM(CYCLE)*
notation.

2. Imagine a RV32IM assembly code snippet with a branch instruction that
would produce such a sequence. Label B1 the branch instruction of interest.

Instead of the 2-bits saturating counter we decide to use the variant predictor,
also studied during the lecture on pipelines and represented on Figure 2.

t

ST WT

WNSN

t

n

t

n

n

t

n

Figure 2: Variant

We assume that the predictor is initialized in the Weak Not taken (WN)
state and that there is no collision with other branch instructions: the predictor
is only used to predict the branch instruction of interest.

3. Imagine an infinite sequence of outcomes of a branch instruction such that
the variant predictor has a MPBI equal to 1. Represent your sequence
using the STEM(CYCLE)* notation.

4. Imagine a RV32IM assembly code snippet that would produce such a
sequence. Label B2 the branch instruction of interest.

In order to avoid these undesirable situations we decide to use a two-levels
prediction strategy with 2-bits local Branch History Shift Registers (BHSR).
We still assume that there are no collisions.

5. What would be the M∞ for branch instruction B1 in your first code snippet,
with 2-bits saturating counters?

6. What would be the M∞ for branch instruction B2 in your second code
snippet, with variant predictors?

3 Binary representation of data (4 points)
There are several ways to represent signed integers using bits. In computer
systems, the two most frequently encountered are sign and magnitude and
two’s complement. In the following we denote an−1an−2 . . . a1a0 the n-bits
representation of integer A. In sign and magnitude an−1 is the sign bit. In two’s
complement an−1 is the Most Significant Bit (MSB). In both representations a0
is the Least Significant Bit (LSB).

1. Consider decimal values 12, -59 and -66. We want to represent them all in
two’s complement on the same number of bits m. What is the minimum
value of m?

3

2. Consider decimal values 12, -59 and -66. Convert them in m-bits two’s
complement (where m is your answer to the preceding question).

3. A p-bits adder is a hardware device that takes two p-bits inputs, adds
them as if they were unsigned integers, and outputs the p + 1-bits result.
We denote A = ap−1 . . . a1a0, B = bp−1 . . . b1b0 the two p-bits inputs and
S = sp . . . s2s1s0 the p + 1-bits output of a p-bits adder. Example: with
a 3-bits adder, if inputs are A = 101(5) and B = 011(3), the output
is S = 1000(8). If, instead of considering the inputs and the output as
unsigned integers, we consider them as signed numbers represented in sign
and magnitude, the result is sometimes correct, sometimes not.

• Give an example of two 3-bits sign and magnitude inputs for which
the output of a 3-bits adder is the correct 4-bits sign and magnitude
representation of their sum.

• Give an example of two 3-bits sign and magnitude inputs for which the
output of a 3-bits adder is not the correct 4-bits sign and magnitude
representation of their sum.

• Express the necessary and sufficient condition on inputs
A = ap−1 . . . a1a0 and B = bp−1 . . . b1b0 such that a p-bits ad-
der outputs the correct sign and magnitude representation of their
sum.

4. What is the tetradecimal (base 14, symbols 0, 1, 2 . . . 9, A, B, C, D) repres-
entation of decimal value 604?

4 Instruction Set Architecture (4 points)
The RV32IM Instruction Set Architecture (ISA) is the one we studied dur-
ing the lectures and the labs. RV32IM means RISC-V 32 bits Integer with
Multiplication and division extension.

1. In the RV32IM ISA there are 32 General Purpose Registers (GPRs). Could
we rework this ISA to add more GPRs? What would be the limitations?

2. What is an addressing mode?
3. What addressing modes are supported by the RV32IM ISA?
4. Give an example of an addressing mode that is not supported by the

RV32IM ISA.

5 RISC-V 5-stages pipeline (4 points)
In a 5-stages RISC-V pipeline we run the following assembly program:

4

1 sw t0 , 0 (t1) # mem[0+ t 1] <− t 0
2 add t0 , t0 , t2 # t 0 <− t 0+t 2
3 lw t3 , 0 (t0) # t 3 <− mem[0+ t 0]
4 beq s0 , t0 , l a b e l # i f s0==t 0 g o t o l a b e l
5 lw s1 , 0 (s1) # s1 <− mem[0+ s1]
6 andi t0 , t0 , 0 x f f # t 0 <− t 0 AND 0 x f f
7 l a b e l :
8 . . .

1. Identify the various hazards.
2. For each hazard:

• In which class of hazards does it fall?
• What technique is the best to deal with it?

5

Arithm
etic O

peration

M
nem

onic
Instruction

Type
D

escription

ADD rd, rs1, rs2
Add

R
rd ← rs1 + rs2

SUB rd, rs1, rs2
Subtract

R
rd ← rs1 - rs2

ADDI rd, rs1, imm12
Add im

m
ediate

I
rd ← rs1 + imm12

SLT rd, rs1, rs2
Set less than

R
rd ← rs1 < rs2 ? 1 : 0

SLTI rd, rs1, imm12
Set less than
im

m
ediate

I
rd ← rs1 < imm12 ? 1 : 0

SLTU rd, rs1, rs2
Set less than unsigned

R
rd ← rs1 < rs2 ? 1 : 0

SLTIU rd, rs1, imm12
Set less than
im

m
ediate unsigned

I
rd ← rs1 < imm12 ? 1 : 0

LUI rd, imm20
Load upper im

m
ediate

U
rd ← imm20 << 12

AUIP rd, imm20
Add upper im

m
ediate

to PC
U

rd ← PC + imm20 << 12

Logical O
perations

M
nem

onic
Instruction

Type
D

escription

AND rd, rs1, rs2
AN

D
R

rd ← rs1 & rs2

OR rd, rs1, rs2
O

R
R

rd ← rs1 | rs2

XOR rd, rs1, rs2
XO

R
R

rd ← rs1 ^ rs2

ANDI rd, rs1, imm12
AN

D
 im

m
ediate

I
rd ← rs1 & imm12

ORI rd, rs1, imm12
O

R im
m

ediate
I

rd ← rs1 | imm12

XORI rd, rs1, imm12
XO

R im
m

ediate
I

rd ← rs1 ^ imm12

SLL rd, rs1, rs2
Shift left logical

R
rd ← rs1 << rs2

SRL rd, rs1, rs2
Shift right logical

R
rd ← rs1 >> rs2

SRA rd, rs1, rs2
Shift right arithm

etic
R

rd ← rs1 >> rs2

SLLI rd, rs1, shamt
Shift left logical
im

m
ediate

I
rd ← rs1 << shamt

SRLI rd, rs1, shamt
Shift right logical im

m
.

I
rd ← rs1 >> shamt

SRAI rd, rs1, shamt
Shift right arithm

etic
im

m
ediate

I
rd ← rs1 >> shamt

Load / Store O
perations

M
nem

onic
Instruction

Type
D

escription

LD rd, imm12(rs1)
Load doublew

ord
I

rd ← mem[rs1 + imm12]

LW rd, imm12(rs1)
Load w

ord
I

rd ← mem[rs1 + imm12]

LH rd, imm12(rs1)
Load halfw

ord
I

rd ← mem[rs1 + imm12]

LB rd, imm12(rs1)
Load byte

I
rd ← mem[rs1 + imm12]

LWU rd, imm12(rs1)
Load w

ord unsigned
I

rd ← mem[rs1 + imm12]

LHU rd, imm12(rs1)
Load halfw

ord
unsigned

I
rd ← mem[rs1 + imm12]

LBU rd, imm12(rs1)
Load byte unsigned

I
rd ← mem[rs1 + imm12]

SD rs2, imm12(rs1)
Store doublew

ord
S

rs2 → mem[rs1 + imm12]

SW rs2, imm12(rs1)
Store w

ord
S

rs2(31:0) → mem[rs1 + imm12]

SH rs2, imm12(rs1)
Store halfw

ord
S

rs2(15:0) → mem[rs1 + imm12]

SB rs2, imm12(rs1)
Store byte

S
rs2(7:0) → mem[rs1 + imm12]

R
IS

C
-V

 In
stru

c
tio

n
-S

e
t

Branching

M
nem

onic
Instruction

Type
D

escription

BEQ rs1, rs2, imm12
Branch equal

SB
if rs1 = rs2
 pc ← pc + imm12

BNE rs1, rs2, imm12
Branch not equal

SB
if rs1 ≠ rs2
 pc ← pc + imm12

BGE rs1, rs2, imm12
Branch greater than or
equal

SB
if rs1 ≥ rs2
 pc ← pc + imm12

BGEU rs1, rs2, imm12
Branch greater than or
equal unsigned

SB
if rs1 >= rs2
 pc ← pc + imm12

BLT rs1, rs2, imm12
Branch less than

SB
if rs1 < rs2
 pc ← pc + imm12

BLTU rs1, rs2, imm12
Branch less than
unsigned

SB
if rs1 < rs2
 pc ← pc + imm12 << 1

JAL rd, imm20
Jum

p and link
U

J
rd ← pc + 4
pc ← pc + imm20

JALR rd, imm12(rs1)
Jum

p and link register
I

rd ← pc + 4
pc ← rs1 + imm12

Pseudo Instructions

M
nem

onic
Instruction

Base instruction(s)

LI rd, imm12
Load im

m
ediate (near)

ADDI rd, zero, imm12

LI rd, imm
Load im

m
ediate (far)

LUI rd, imm[31:12]
ADDI rd, rd, imm[11:0]

LA rd, sym
Load address (far)

AUIPC rd, sym[31:12]
ADDI rd, rd, sym[11:0]

MV rd, rs
Copy register

ADDI rd, rs, 0

NOT rd, rs
O

ne's com
plem

ent
XORI rd, rs, -1

NEG rd, rs
Tw

o's com
plem

ent
SUB rd, zero, rs

BGT rs1, rs2, offset
Branch if rs1 > rs2

BLT rs2, rs1, offset

BLE rs1, rs2, offset
Branch if rs1 ≤ rs2

BGE rs2, rs1, offset

BGTU rs1, rs2, offset
Branch if rs1 > rs2
(unsigned)

BLTU rs2, rs1, offset

BLEU rs1, rs2, offset
Branch if rs1 ≤ rs2
(unsigned)

BGEU rs2, rs1, offset

BEQZ rs1, offset
Branch if rs1 = 0

BEQ rs1, zero, offset

BNEZ rs1, offset
Branch if rs1 ≠ 0

BNE rs1, zero, offset

BGEZ rs1, offset
Branch if rs1 ≥ 0

BGE rs1, zero, offset

BLEZ rs1, offset
Branch if rs1 ≤ 0

BGE zero, rs1, offset

BGTZ rs1, offset
Branch if rs1 > 0

BLT zero, rs1, offset

J offset
U

nconditional jum
p

JAL zero, offset

CALL offset12
Call subroutine (near)

JALR ra, ra, offset12

CALL offset
Call subroutine (far)

AUIPC ra, offset[31:12]
JALR ra, ra, offset[11:0]

RET
Return from

 subroutine
JALR zero, 0(ra)

NOP
N

o operation
ADDI zero, zero, 0

func
rs2

rs1
func

rd
opcode

im
m

ediate
rs1

func
rd

opcode

im
m

ediate
rs2

rs1
func

im
m

ediate
opcode

im
m

ediate
rd

opcode

31
30

29
28

27
26

25
24

23
22

21
20

19
18

17
16

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

RISBU
J

32-bit instruction form
at

r0
r1

r2
r3

r4
r5

r6
r7

r8
r9

r10
r11

r12
r13

r14
r15

r16
r17

r18
r19

r20
r21

r22
r23

r24
r25

r26
r27

r28
r29

r30
r31

zero
ra

sp
gp

tp
t0

t1
t2

s0/fp
s1

a0
a1

a2
a3

a4
a5

a6
a7

s2
s3

s4
s5

s6
s7

s8
s9

s10
s11

t3
t4

t5
t6

Register File
Register Aliases

Erik Engheim
 <erik.engheim

@
m

a.com
>

t0 - t6 - Tem
porary registers

s0 - s11 - Saved by callee
a0 - 17 - Function argum

ents
a0 - a1 - Return value(s)

ra - return address
sp - stack pointer
gp - global pointer
tp - thread pointer

	RISC-V assembly coding (6 points)
	Branch prediction (6 points)
	Definitions and notations
	Questions

	Binary representation of data (4 points)
	Instruction Set Architecture (4 points)
	RISC-V 5-stages pipeline (4 points)

