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Web ranking

A webmaster controls a given number of pages:

• May add links

• Must respect the content
(the goal of a site is to provide information or service)

• Wishes to maximize:

- Income (number of clicks on ads, number of sales)

- Visibility (Sum of PageRank values of the site,
PageRank of home page in Google)
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Toy example with 21 pages
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Definition of PageRank [Brin and Page, 1998]

• Random web surfer moves from page i to page j with
probability 1

Di
(Di = degree of page i)

• π = invariant measure of the Markov chain

πi =
∑
j :j→i

πj

Dj

• An important page is a page linked to by important pages

• Markov chain model may be reducible

→ with probability 1− α, surfer gets bored and resets:
new research from page i with probability zi

• Transition matrix: Pi ,j > 0,∀i , j (usually α = 0.85)

• PageRank is the unique invariant measure π of P
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The PageRank optimization problem

• Well studied subject: Avratchenkov and Litvak, 2006
Mathieu and Viennot 2006
De Kerchove, Ninove and Van Dooren 2008
Csáji, Jungers and Blondel 2010...

• Obligatory links O, facultative links F , prohibited links I
(Strategy set proposed by Ishii and Tempo, 2010)

• Utility ϕ(π,P) =
∑

i ri ,jπiPi ,j

• ri ,j is viewed as reward by click on i → j

• [Fercoq, Akian, Bouhtou, Gaubert, to appear in IEEE TAC]
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Reduction to ergodic control

Proposition
Pi = set of admissible transition probabilities from Page i

The PageRank Optimization problem is equivalent
to the ergodic control problem with process Xt :

max
(νt)t≥0

lim inf
T→+∞

1

T
E(
∑T−1

t=0
rXt ,Xt+1)

νt ∈ PXt ,∀t ≥ 0

P(Xt+1 = j |Xt = i , νt = p) = pj ,∀i , j ∈ [n],∀p ∈ Pi ,∀t ≥ 0
where νt is a function of the history (X0, ν0, . . . ,Xt−1, νt−1,Xt)
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Exponential size of the action sets

• At each page i , an action corresponds equivalently to

- select J ⊆ Fi

- select ν ∈ Pi , a uniform measure on J

• 2n hyperlink configurations by controlled page

• Classical Markov Decision Process techniques fail

• Csáji, Jungers and Blondel, 2010: graph rewriting to
optimize the rank of a single page

• Our solution: action sets have a concise description
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Admissible transition probabilities
Theorem
The convex hull of the set of admissible transition probabilities
is either a simplex or a polyhedron defined by:

∀j ∈ Ii , xj = (1− α)zj

∀j ∈ Oi \ {j0} , xj = xj0

∀j ∈ Fi , (1− α)zj ≤ xj ≤ xj0

and
∑

j∈[n] xj = 1

• Implicitly defined actions: vertices of the polytope

• Concise description ⇒ polynomial time separation oracle
⇒ well-described polyhedron
[Groetschel, Lovász, Schrijver, 1988]

9/48



Optimization of PageRank Optimization of other scores Convergence of HOTS algorithm Chronotherapeutics

Well-described Markov Decision Processes

Define
A well-described MDP is a finite MDP where the action sets
are defined implicitly as the vertices of well-described
polyhedra and the transitions and costs are linear

Theorem
The infinite horizon average cost problem on well-described
MDP is solvable in polynomial time, even if there are
exponentially many actions

Corollary
The PageRank optimization problem with local constraints is
solvable in polynomial time
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Resolution by Dynamic Programming

• The ergodic dynamic programming equation

wi + ψ = max
ν∈Pi

ν(ri ,· + w), ∀i ∈ [n] (1)

has a solution (w , ψ) ∈ Rn × R. The constant ψ is
unique and is the value of the ergodic control problem

• To get an optimal strategy, select ∀i a maximizing ν ∈ Pi

• The unique solution of the discounted equation

wi = max
ν : αν+(1−α)z∈Pi

αν(ri ,·+w)+(1−α)zri ,·,∀i ∈ [n] (2)

is solution of (1) with ψ = (1− α)zw
• The fixed point scheme for (2) has contracting factor α

independent of the dimension: complexity of optimization

O
( log(ε)

log(α)

∑
i∈[n]

|Oi |+ |Fi | log(|Fi |)
)
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Existence of a master page

Theorem
Assume ∀i , j , ri ,j = r ′i and let v = (In − αS)−1r ′ be the mean
reward before teleportation
P = αS + (1− α)ez is an optimal link strategy if and only if{

vj >
vi−ri
α
⇒ facultative link (i , j) is activated

vj <
vi−ri
α
⇒ facultative link (i , j) is desactivated

v gives a total order of preference for page pointing

De Kerchove, Ninove and Van Dooren, 2008:
similar result when one only requires that there exists a path
from every page of the site to the rest of the web
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Web graph optimized for PageRank
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21 : controlled page
1 : non controlled page

added links

PageRank sum:
0.0997 → 0.1694

Clique is not optimal
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Conclusion for PageRank optimization

• Polynomial time solvability of the PageRank optimization
problem

• Introduction of well-described Markov Decision Processes

• Very fast optimization algorithm based on value iteration
For a problem with 413,639 pages and 2,319,174
facultative links, solution in 81s with Intel Xeon 2.98Ghz

• Qualitative results on the optimal strategies

• Application to spam detection by minimizing the
PageRank of known spam pages and propagating
“spamicity”
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Ranking algorithms

• Perron vector (Kendall and Babigton Smith 1939)

• HITS (Kleinberg 1998)

• SALSA (Lempel and Moran 2000)

• HOTS (Tomlin 2003)

• CenterRank (Blondel et al 2004)

• Matrix scaling (Smith 2005)

• . . .
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Definition of HITS [Kleinberg, 1998]

• Given a query, we build a subgraph of the web graph,
focused on the query

• Hub and authority scores

ρ hubj =
∑
i :j→i

auti ρ auti =
∑
j :j→i

hubj

• A: adjacency matrix of the subgraph: AT A aut = ρ2aut

• Uniqueness guaranteed with (AT A + ξeeT ) aut = ρ2aut

• PageRank, SALSA and CenterRank also rank web pages
according to a Perron vector
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Kleinberg’s HITS optimization

Obligatory links O, facultative links F , prohibited links I
J is the set of hyperlinks selected, N(x) =

∑
i∈[n] x2

i

The HITS optimization problem is:

max
J⊆F ,x∈Rn

+

{ϕ(x) ; (A(J)T A(J) + ξeeT )x = ρ2x , N(x) = 1}

Relaxed HITS optimization problem:
weighted adjacency matrices
→ differentiable optimization
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Perron vector Optimization Problem

We study the following Perron vector Optimization Problem:

max J(M) = ϕ(u(M))

M ∈ h(C )

• h : Rm → Rn×n
+ and ϕ : Rn

+ → R are differentiable

• u : Rn×n
+ → Rn

+ is the function that to an irreducible
matrix associates its normalized Perron vector

• C convex, h(C ) a set of nonnegative irreducible matrices
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Chosen approach

• Nonconvex optimization problem

• Special case with h and ϕ linear and C a polytope is
already NP-hard

• We abandon global optimality: first order method

• But efficient and scalable computation
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Derivative for Perron vector optimization

Proposition (Derivative has rank one)
Denote R = (M − ρIn)# the reduced resolvent at ρ
and N the normalization function of u

Let wT = (−∇ϕT + (∇ϕ · u)∇NT )R, then

gij =
∂J

∂Mij
= ∇ϕT ∂u

∂Mij
= wiuj

Proof
Consequence of [Deutch and Neumann, 1985]
∂u
∂Mij

(M) = −Reiuj + (∇NT Reiuj)u
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Iterative scheme for the derivative

Proposition
Let M be a primitive matrix with Perron vectors u and v.
We denote M̃ = 1

ρ
M, P = uv, z = 1

ρ
(−∇ϕT + (∇ϕ · u)∇NT )

Then wk+1 = (z + wkM̃)(In − P)→ w

with a geometric rate of convergence |λ2|
ρ

• Direct application of Deutsch and Neumann formula:
O(mn3)

• Inversion of the linear system defining w : O(n3)

• Iterative algorithm: O(m + n) operations per iteration
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Coupled power and gradient iterations

• Approximation of value and gradient

M is a weighted adjacency matrix, uk+1 = Muk

N(Muk )

Jn(M) = ϕ(ukn) and gn(M) = wknuT
kn

where kn is the first
nonnegative integer k such that ‖uk+1 − uk‖ ≤ ∆(n)

• Gradient step rule
Bn(M) is an interrupted Armijo line search that may fail

• Polak’s Master algorithm model for precision control
Let ω ∈ (0, 1), σ′ ∈ (0, 1), n−1 ∈ N and M0 ∈ C,
For i ∈ N, compute Mi+1 and the smallest ni ≥ ni−1 s.t.

Mi+1 ∈ Bni
(Mi)

Jni
(Mi+1)− Jni

(Mi) ≤ −σ′(∆(ni))ω
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Convergence

Theorem
Let (Mi)i≥0 be a sequence constructed by the coupled power
and gradient iterations for the resolution of the perron vector
optimization problem

Then every accumulation point of (Mi)i≥0 is a stationary point
of the optimization problem.
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Web graph optimized for HITS
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HITS authority sum:
0.0555 → 0.3471
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Tomlin’s ideal HOTS algorithm

Network flow model of web traffic
A is the adjacency matrix of the web graph (first irreducible)
Web surfers minimize the entropy of the traffic

max
ρ≥0
−
∑

i ,j∈[n]

ρi ,j(log(
ρi ,j

Ai ,j
)− 1)

∑
j∈[n]

ρi ,j =
∑

j∈[n]
ρj ,i , ∀i ∈ [n] (pi)∑

i ,j∈[n]
ρi ,j = 1 (µ)

Optimal ρ while PageRank gives a specific ρ
(uniform probability is arbitrary)
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Dual problem: irreducible case

Minimize:
θ(p, µ) :=

∑
i ,j∈[n]

Aije
pi−pj+µ − µ

θ is convex and differentiable

∂θ

∂µ
(p, µ) = 0⇒ µ = − log(

∑
i ,j∈[n]

Aije
pi−pj )

∂θ

∂p
(p, µ) = 0⇒ d = ep is a fixed point of f :

di = fi(d) =

(
(AT d)i

(Ad−1)i

)1/2

pi is called the “temperature” of page i

26/48



Optimization of PageRank Optimization of other scores Convergence of HOTS algorithm Chronotherapeutics

Tomlin’s HOTS: handling reduciblity
Network flow model with constraints on the modified network

A′ =

[
A 1
1T 0

]
max
ρ≥0
−
∑

i ,j∈[n+1]

ρi ,j(log(
ρi ,j

A′i ,j
)− 1)

∑
j∈[n+1]

ρi ,j =
∑

j∈[n+1]
ρj ,i , ∀i ∈ [n + 1] (pi)∑

i ,j∈[n+1]
ρi ,j = 1 (µ)∑

j∈[n]
ρn+1,j = 1− α (a)

1− α =
∑

i∈[n]
ρi ,n+1 (b)
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Dual function: general case

θ(p, µ, a, b) =
∑

i ,j∈[n]

Aije
pi−pj+µ +

∑
i∈[n]

e−b−pn+1+pi+µ

+
∑
j∈[n]

ea+pn+1−pj+µ − (1− α)a − µ + (1− α)b

• Effective HOTS:

di = Fi(d) =

(
(AT d)i + ea(d)

(Ad−1)i + e−b(d)

)1/2

Proposition (HOTS optimization)
Assuming the HOTS algorithm dk+1 = F (dk) converges,
the coupled power and gradient iterations converges to a
stationary point of the HOTS optimization problem

28/48



Optimization of PageRank Optimization of other scores Convergence of HOTS algorithm Chronotherapeutics

Web graph optimized for HOTS
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0.142 → 0.169

Page 21 has no outlink
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Convergence of the ideal HOTS algorithm

Ideal HOTS vector defined by

di = fi(d) =

(
(AT d)i

(Ad−1)i

)1/2

Proposition
If A is irreducible and A + AT is primitive, then the ideal
HOTS algorithm dk+1 = f (dk) converges to the ideal HOTS
vector (unique up to a multiplicative constant)
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Proof of convergence

Proof
fi(d) =

( (AT d)i
(Ad−1)i

)1/2
f is monotone: d1 ≥ d2 ⇒ f (d1) ≥ f (d2)
f is homogeneous: λ ∈ R+ ⇒ f (λd) = λf (d)

A irreducible ⇒ G (f ) is strongly connected ⇒ f has an
eigenvector (f (d∗) = µd∗) [Gaubert, Gunawardena 2004]

A irreducible ⇒ ∂f
∂d

(d∗) irreducible ⇒ eigenvector is unique
[Nussbaum, 1988]

A + AT primitive ⇒ ∂f
∂d

(d∗) primitive
⇒ power algorithm converges [Nussbaum, 1988]
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Convergence of the effective HOTS algorithm

Theorem
If there exists a feasible point with the same pattern as A,
then the HOTS algorithm converges to the HOTS vector d∗

s.t. d∗i = Fi(d∗) =
( (AT d∗)i+ea(d∗)

(A(d∗)−1)i+e−b(d∗)

)1/2
(unique up to a

multiplicative constant) with a linear rate of convergence equal
to |λ2(∇F (d∗))|.
Proof
F is homogeneous but not monotone: special proof required

The ideal HOTS operator verifies
θ(log(f (d)), 0) ≤ θ(log(d), 0): Lyapounov function

All the eigenvalues of ∇F (d∗) belong to (−1, 1] and
eigenvalue 1 is simple: local contraction in projective space
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Drawbacks of HOTS

• di = fi(d) =
(

(AT d)i
(Ad−1)i

)1/2

Relaxation of Perron ranking ρd = AT d
(a good page is a page pointed to by good pages)

and anti-Perron ranking ρ−1di = 1
(Ad−1)i

(a bad page is a page that points to bad pages)

But anti-Perron penalizes pointing even to good pages

• Convergence rate may deteriorate when the size of the
web graph grows:

CMAP 1,500 p NZ Uni 413 kp uk2002 18 Mp
|λ2(∇F )| 0.946 0.995 0.9994
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Normalized HOTS

• Normalization of the adjacency matrix Mi ,j =
Ai ,j∑
k Ai ,k

• Relative entropy function

• Dangling nodes dealt with an additional fictitious node

• No more penalty for pointing to good pages: a bad page
is a page that, in the mean, points to bad pages

• Better experimental convergence rate:

CMAP 1,500 p NZ Uni 413 kp uk2002 18 Mp
|λ2(∇F )| 0.906 0.988 0.960
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Web graph optimized for Normalized HOTS
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Normalized HOTS
score sum:
0.12 → 0.15
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Comparison of web ranking algorithms

Algorithm convergence external harder than PR
rate links to manipulate

Perron good ++ - - -

PageRank 0.85 - reference

HITS good +++ - - -

SALSA good + - -

HOTS bad - - + (?)

Normalized HOTS acceptable (?) = + (?)

Performances of web ranking algorithms

+ good characteristic
= average
- bad characteristic

(?) experimental likelihood only
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From web ranking to chronotherapeutics

• For the web, scalability issues are very important

• So we developped a scalable optimization algorithm
for Perron vector optimization

• Other situation where scalability is important:

nonnegative matrices arise from monotone discretizations
of age-structured Partial Differential Equations

• Optimization of chemotherapy infusion schedules
[Basdevant, Clairambault, Lévi, 2006]

Minimize the number of cancer cells while keeping
the number of healthy cells above a toxicity threshold
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Cancer chronotherapeutics

• Circadian clocks control cell proliferation

• Different behaviours (healthy or cancer cells)

• Chronotherapy [Lévi, 2002]

Drug infusion schedules that depend on time

• [Billy, Clairambault, Fercoq, Gaubert, Lepoutre, Ouillon,
Saito, Mathematics and Computers in Simulation 2011]
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The cell cycle

Cell proliferation: 4 main phases

5-FluoroUracil (5-FU):
DNA damage in phase S

Proliferation stopped
at the G2/M checkpoint

Figure: The cell cycle
G1: 1st growth phase, S: DNA synthesis
G2: 2nd growth phase, M: mitosis
Green and red correspond to the color
of the nucleus with FUCCI reporters
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McKendrick age-structured population model

∂ni(t, x)

∂t
+
∂ni(t, x)

∂x
+
(
di(t, x) + Ki→i+1(t, x)

)
ni(t, x) = 0

ni+1(t, 0) =

∫ ∞
0

Ki→i+1(t, x)ni(t, x)dx

n1(t, 0) = 2

∫ ∞
0

KI→1(t, x)nI (t, x)dx

If d and K are T -periodic: Floquet eigenvalue λ

ni(t, x) ∼ C 0Ni(t, x)eλt

Ni is bounded and T -periodic
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Block Leslie model
After a monotone discretization, we get an age-structured
population with ages 1, . . . n

Mk =

nk+1 = Mknk , M = MNT−1 . . .M1M0 , nT = ρn1 = Mn1

1
T

log(ρ) : approximate growth rate of the population
ρ ≥ R : viability constraint
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Modelling cancer cells

Two independent populations with the same model
K2→3(x , t) = κ2→3(x).ψ2(t)

Less synchronized proliferation gives an increased growth rate
[Altinok, Lévi, Goldbeter, 2007]

Circadian control for healthy cells Circadian control for cancer cells
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Floquet eigenvalue optimization problem

Control: K2→3(x , t) = κ2→3(x).ψ2(t).(1− g(t))
g(t) = 0: no drug
g(t) = 1: transition blocking infusion
5-FU acts on phase S , thus on the G2/M checkpoint only

min
g(·)

λC (g)

λH(g) ≥ Λ

g 24h-periodic

Optimal long term viable chemotherapy infusions
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Discretized optimization problem
Discretized systems for cancer and healthy cells:
nonnegative matrices MC (x) and MH(x)

min
x∈[0,1]NT

1

T
log
(
ρ(MC (x))

)
1

T
log
(
ρ(MH(x))

)
≥ Λ

Proposition
The coupled power and gradient algorithm can be adapted to
this case

Proof
∂ρ
∂Mi,j

= uivj and constraint dealt with a multiplier’s method
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Locally optimal strategy

24h-periodic drug infusions g(t)
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Locally optimal strategy

Action of drug infusion on transition rate
for healthy cells

Action of drug infusion on transition rate
for cancer cells

G2/M transition rate without drug ψ2(t)
Drug induced transition rate ψ2(t)(1− g(t))

Under the locally optimal strategy found, transitions G2/M are restricted to lie
between 1 a.m. and 4 a.m.

46/48



Optimization of PageRank Optimization of other scores Convergence of HOTS algorithm Chronotherapeutics

Conclusion chronotherapeutics

• We modelled a chemotherapy optimization problem
with an age-structured proliferation model

• Optimization problem with periodic controls

• Optimization of chemotherapy shows the interest of
chronotherapy

• Work in progress: Combination with a more realistic drug
pharmacokinetics and pharmacodynamics model
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Conclusion

• PageRank optimization: ergodic control
very fast scalable algorithm for global optimum

• Other web rankings: small rank property of derivatives
scalable optimization algorithm (but only local optimality)

• Convergence of HOTS

• Application of Perron vector optimization to
chronotherapeutics

• Main open problem: determination of bounds
for the Perron value optimization problem
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