Parallel coordinate descent for the Adaboost problem

The Adaboost algorithm |2] is a widely used
classification algorithm. Its goal is to combine
many weak hypotheses with high error rate to
generate a single strong hypothesis with very low
erTor.

We propose a new parallel version of Adaboost
based on recent work on parallel coordinate
descent |3|. Our results are:

e The logarithm of the exponential loss is
Nesterov separable which implies the
existence of an efficient separable
overapproximations (Theorem 1).

The parallel coordinate descent method on
the Adaboost problem converges as O(1/t)
(Theorem 2) and we give its theoretical
parallelisation speedup.

We provide numerical examples and compare
our algorithm with other approaches on a
large scale learning problem.

Let M € R™*™ be a matrix of features, y € R™ be
a vector of labels and A, ; = y; M ;.

The Adaboost problem is the minimisation of the
exponential loss:

AER™ M AER™

inf — S exp((AN);) = inf f(AN) = fa.
=1

where f(z) = = > i exp(m;).
We will also consider the following equivalent
objective function with Lipschitz gradient

F(A) = log(f(AAX)),

and its associated C'!'! Adaboost problem

inf F(\).

AER™
Classically 2], this problem is solved by greedy
coordinate descent. At each iteration, one selects
the classifier with the largest error and updates its
weight in order to decrease at most this error.
We propose here a randomised parallel coordinate
descent method to solve this optimisation problem.
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Let w be the maximum number of element in a row
of matrix A, that is

w= max [{i€{l,...,n} : A;; #0}.

1<j<m
For 7 < n, let us denote
—w
e 0Dt 7oy
Ghe S
min(w,7T) min(w,7T)

B = Z min(l,@ Z clpl) .
k=1

=k

Definition ([4]). A 7-nice sampling S is a random

choice of coordinates such that VS C {1,...,n},
%), if |S| =7

otherwise.

Theorem 1. The function F' has a coordinate-wise
Lipschitz gradient with constants

L; = max Azi, 1 <9 <n.
1<j<m 7

Moreover, if S is a T-nice sampling, then

E[F(\+ 5] < FO) + = ((VF(N),8) + B3]} ).

n

Compute 3 and (L;)1<i<n
for ¢t > 0 do
Randomly generate S* following sampling S
for : € S* do in parallel
(Si < ,3}47; VZF()\t)
AL AE 44
end for
if F(A'™1) > F(\') then
)\t—l—l . )\t
end if

end for

Theorem 2. For an initial point AV e R™, accuracy
0 <e<2fs and confidence level p > 0, if

~ 2 072 |
o A0 (L 200 AN L1
T Y fa € p

then P(f(AXY) — fa <e)>1—p.

The parameters w, ¢ and v depend on the geometry
of the problem. The convergence speed is in O(1/¢).
The parallelisation speedup factor is 3/7.

Malicious URL dataset: m = 2,396, 130 examples, n = 3,231, 961 features, w = 414.

Increasing the number of processors leads to
acceleration: the time needed to reach -1.85
decreases as 3 /1
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Comparison with alternative approaches
(T = 16 processors are used in each case)
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[teration complexity of the order of O(1/¢)
even if the minimising sequences may diverge
to infinity:.

Some parameters are difficult to compute
and depend on the geometry of the problem
but we give closed form formulas for all the
parameters actually used in the algorithm.

Random samplings are well suited to parallel
coordinate descent: small cost per iteration,
inter-core communication and (3 value.

The numerical experiments demonstrate the
efficiency of parallel coordinate descent with
independent sampling, especially for large
scale problems.

The framework allows us to add bound
constraints or a [ regulariser.
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