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Introduction

The Adaboost algorithm [2] is a widely used
classi�cation algorithm. Its goal is to combine
many weak hypotheses with high error rate to
generate a single strong hypothesis with very low
error.
We propose a new parallel version of Adaboost
based on recent work on parallel coordinate
descent [3]. Our results are:

• The logarithm of the exponential loss is
Nesterov separable which implies the
existence of an e�cient separable
overapproximations (Theorem 1).

• The parallel coordinate descent method on
the Adaboost problem converges as O(1/t)
(Theorem 2) and we give its theoretical
parallelisation speedup.

• We provide numerical examples and compare
our algorithm with other approaches on a
large scale learning problem.

The Adaboost problem

Let M ∈ Rm×n be a matrix of features, y ∈ Rm be
a vector of labels and Aj,i = yjMj,i.
The Adaboost problem is the minimisation of the
exponential loss:

inf
λ∈Rn

1

m

m∑
j=1

exp((Aλ)j) = inf
λ∈Rm

f(Aλ) = f̄A,

where f(x) = 1
m

∑m
j=1 exp(xj).

We will also consider the following equivalent
objective function with Lipschitz gradient

F (λ) = log(f(Aλ)),

and its associated C1,1 Adaboost problem

inf
λ∈Rn

F (λ).

Classically [2], this problem is solved by greedy
coordinate descent. At each iteration, one selects
the classi�er with the largest error and updates its
weight in order to decrease at most this error.
We propose here a randomised parallel coordinate
descent method to solve this optimisation problem.

Separable Overapproximation

Let ω be the maximum number of element in a row
of matrix A, that is

ω = max
1≤j≤m

|{i ∈ {1, . . . , n} : Ai,j 6= 0}| .

For τ ≤ n, let us denote

pl =

(
ω
l

)(
n−ω
τ−l
)(

n
τ

) , cl = max
( l
ω
,
τ − l
n− ω

)
β =

min(ω,τ )∑
k=1

min
(

1,
mn

τ

min(ω,τ )∑
l=k

clpl

)
.

De�nition ([4]). A τ -nice sampling Ŝ is a random
choice of coordinates such that ∀S ⊆ {1, . . . , n},

P(Ŝ = S) =

{
1

(n
τ)
, if |S| = τ

0, otherwise.

Theorem 1. The function F has a coordinate-wise

Lipschitz gradient with constants

Li = max
1≤j≤m

A2
j,i , 1 ≤ i ≤ n.

Moreover, if Ŝ is a τ -nice sampling, then

E[F (λ+ δ[Ŝ])] ≤ F (λ) +
τ

n

(
〈∇F (λ), δ〉+ β ‖δ‖2L

)
.

Parallel Adaboost algorithm

Compute β and (Li)1≤i≤n
for t ≥ 0 do

Randomly generate St following sampling Ŝ
for i ∈ St do in parallel

δi ← 1
βLi
∇iF (λt)

λt+1
i ← λti + δi

end for

if F (λt+1) > F (λt) then
λt+1 ← λt

end if

end for

Convergence

Theorem 2. For an initial point λ0 ∈ Rn, accuracy
0 < ε < 2f̄A and con�dence level ρ > 0, if

t ≥ 4βn

τ

(1 + 2w̃/c̃)2

γ̃

f(Aλ0)2

f̄A

1

ε
(1 + log

1

ρ
) + 2,

then P(f(Aλt)− f̄A ≤ ε) ≥ 1− ρ.

The parameters w̃, c̃ and γ̃ depend on the geometry
of the problem. The convergence speed is in O(1/ε).
The parallelisation speedup factor is β/τ .

Numerical results

Malicious URL dataset: m = 2, 396, 130 examples, n = 3, 231, 961 features, ω = 414.

Increasing the number of processors leads to
acceleration: the time needed to reach -1.85
decreases as β/τ

Comparison with alternative approaches
(τ = 16 processors are used in each case)
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Conclusion

• Iteration complexity of the order of O(1/ε)
even if the minimising sequences may diverge
to in�nity.

• Some parameters are di�cult to compute
and depend on the geometry of the problem
but we give closed form formulas for all the
parameters actually used in the algorithm.

• Random samplings are well suited to parallel
coordinate descent: small cost per iteration,
inter-core communication and β value.

• The numerical experiments demonstrate the
e�ciency of parallel coordinate descent with
independent sampling, especially for large
scale problems.

• The framework allows us to add bound
constraints or a l1 regulariser.
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