Patches and Attention for Image Editing

Imaging in Paris

<u>Nicolas Cherel</u>¹, Yann Gousseau¹, Alasdair Newson¹, Andrés Almansa² February 9th

¹Télécom Paris, Institut Polytechnique de Paris

²MAP5, CNRS & Université de Paris Cité

1. A Patch-based Algorithm for Single Image Generation

2. Patch-based Stochastic Attention

3. Current work

A Patch-based Algorithm for Single Image Generation

Single Image Generation

"Generate diverse image samples, visually similar to a reference image but nonetheless different."

SinGAN's results [1]

^[1] Shaham, Dekel, and Michaeli, "Singan: Learning a Generative Model from a Single Natural Image", 2019.

Challenges

Visual fidelity

- similar structure
- similar details

Challenges

Visual fidelity

- similar structure
- similar details

Diversity

• varied samples

Patch-based algorithm

generated u

reference \tilde{u}

Patch-based algorithm

Minimize energy of Kwatra et al. [2]:

$$E(u) = \sum_{p \in u} \min_{\tilde{p} \in \tilde{u}} ||p - \tilde{p}||_2^2$$

with patch
$$ho, ilde{
ho} \in \mathbb{R}^{11 imes 11 imes 3}$$

generated u

reference \tilde{u}

[2] Kwatra et al., "Texture Optimization for Example-Based Synthesis", 2005.

Energy minimization

Nearest Neighbor (NN) mapping $\phi: u \rightarrow \tilde{u}$

$$E(u,\phi) = \sum_{p \in u} \|p - \phi(p)\|_2^2$$

Alternate minimizations on u, ϕ

Energy minimization

Nearest Neighbor (NN) mapping $\phi: u \rightarrow \tilde{u}$

$$E(u,\phi) = \sum_{p \in u} \|p - \phi(p)\|_2^2$$

Alternate minimizations on u, ϕ

optimization over ϕ - NN Search

$$\min_{\phi} \sum_{p \in u} \|p - \phi(p)\|_2^2$$
 (1)

Fast approximation with PatchMatch [3]

^[3] Barnes et al., "PatchMatch", 2009.

Energy minimization

Nearest Neighbor (NN) mapping $\phi: u \rightarrow \tilde{u}$

$$E(u,\phi) = \sum_{p \in u} \|p - \phi(p)\|_2^2$$

Alternate minimizations on u, ϕ

optimization over ϕ - NN Search

$$\min_{\phi} \sum_{\boldsymbol{p} \in \boldsymbol{u}} \|\boldsymbol{p} - \boldsymbol{\phi}(\boldsymbol{p})\|_2^2 \tag{1}$$

Fast approximation with PatchMatch [3]

optimization over *u* - Reconstruction

$$\min_{u} \sum_{p \in u} \|p - \phi(p)\|_{2}^{2}$$
(2)

Least-squares problem

^[3] Barnes et al., "PatchMatch", 2009.

Multiscale

Energy minimized at multiple scales

- Gaussian pyramid of factor 2^L
- coarse-to-fine synthesis

 $u_L \rightarrow u_{L-1} \rightarrow ... \rightarrow u_0$

• Upsample ϕ_l rather than u_l

Initialization from noise

Reference

3 scales

4 scales

5 scales

generated u reference \tilde{u}

generated u reference \tilde{u}

[4] Houdard et al., "Wasserstein Generative Models for Patch-Based Texture Synthesis", 2021.

Minimize Wasserstein-2 distance between patch distributions of u and \tilde{u} [4]

$$OT(u) = \max_{\beta} \sum_{p \in u} \min_{\tilde{p} \in \tilde{u}} \left(\|p - \tilde{p}\|_{2}^{2} - \beta_{\tilde{p}} \right) + \sum_{\tilde{p} \in \tilde{u}} \beta_{\tilde{p}}$$

Optimal transport energy minimization:

- computationally expensive steps
- multiscale

Strategy

- 1. First ℓ levels with Optimal Transport
- 2. Next $L \ell$ levels with simple energy

Algorithms

PSin $u \leftarrow rand()$ for s = L, ..., 0 do $u \leftarrow \text{rescale}(u, \text{scale} = s)$ for i = 1, ..., 10 do $\phi \leftarrow \mathsf{NN-Mapping}(u, \tilde{u})$ $u \leftarrow \text{Reconstruction}(\phi, \tilde{u})$ end for end for

PSinOT

 $u \leftarrow \text{OTSolver}(u, [L, ..., L - \ell])$ for $s = L - \ell, ..., 0$ do $u \leftarrow \text{rescale}(u, \text{scale} = s)$ for i = 1, ..., 10 do $\phi \leftarrow \text{NN-Mapping}(u, \tilde{u})$ $u \leftarrow \text{Reconstruction}(\phi, \tilde{u})$ end for end for Results

Patch originality

Reference

PSinOT

Fidelity: Single Image Fréchet Inception Distance (SIFID), Optimal Transport cost Diversity: Average pixelwise standard deviation for N images generated

Algorithm	$SIFID\downarrow$	Optimal Transport \downarrow	Diversity \uparrow
SinGAN	0.12	1.34	0.34
PSin	0.45	0.94	0.62
PSinOT	0.06	0.36	0.53

Average metrics for 50 samples for images from Places50. best, second best.

- $+\,$ no learning / limited learning
- $+ \hspace{0.1 cm} \text{good quality in seconds}$
- $+\,$ choice between diversity and fidelity
- limited originality

Code: **O** github.com/ncherel/psin

Patch-based Stochastic Attention

Local convolution

Local convolution

Non-local operation

Local convolution

Non-local operation

$$f(x,y) = \sum_{x'} \sum_{y'} s(u_{x,y}, u_{x',y'}) \cdot u_{x',y'}$$

The Attention framework

Full Attention [5] Queries $Q \in \mathbb{R}^{n \times d}$, keys $K \in \mathbb{R}^{n \times d}$, values $V \in \mathbb{R}^{n \times d'}$:

$$\forall i \in [1, n], \mathsf{Attention}(q_i, K, V) = rac{1}{C_i} \sum_{j=1}^n e^{\langle q_i, k_j
angle} v_j$$

Attention
$$(Q, K, V) = \operatorname{softmax}(QK^T)V$$

^[5] Vaswani et al., "Attention Is All You Need", 2017.

The Attention framework

Full Attention [5] Queries $Q \in \mathbb{R}^{n \times d}$, keys $K \in \mathbb{R}^{n \times d}$, values $V \in \mathbb{R}^{n \times d'}$:

$$orall i \in [1, n], \mathsf{Attention}(q_i, \mathcal{K}, \mathcal{V}) = rac{1}{C_i} \sum_{j=1}^n e^{\langle q_i, k_j
angle} v_j$$

Attention
$$(Q, K, V) = \operatorname{softmax}(QK^T)V$$

Complexity for *n* elements (pixels, patches, ...)

- Computational complexity: $\mathcal{O}(n^2 d)$
- Memory complexity: $O(n^2)$; $n = 256^2$ requires 16GB of RAM

^[5] Vaswani et al., "Attention Is All You Need", 2017.

Efficient attention

Subsampling the key set K:

- strided pattern
- local neighborhood [6]

strided subsampling pattern

[6] Parmar et al., "Image Transformer", 2018.

[7] Katharopoulos et al., "Transformers Are RNNs: Fast Autoregressive Transformers with Linear Attention", 2020.

[8] Choromanski et al., "Rethinking Attention with Performers", 2020.

Linear approximation of softmax:

 $\operatorname{softmax}(QK^T)V \approx \phi(Q)\psi(K)^T V$

Linear Transformer [7], Performer [8]

The Attention framework

Going back to the attention equation:

$$orall i \in [1, n], ext{Attention}(q_i, K, V) = rac{1}{C_i} \sum_{j=1}^n e^{\langle q_i, k_j
angle} v_j \quad ext{where} \quad C_i = \sum_{j=1}^n e^{\langle q_i, k_j
angle}$$

Finite and small amount of non-negligible weight terms

Sparse attention

Sparse attention using the nearest neighbors

Attention
$$(Q, K, V) = \operatorname{softmax}(QK^T)V \approx AV$$

where A is a sparse matrix, with non-zeros entries for the top-k weights.

where
$$A_{i,j} = \begin{cases} \frac{1}{C_i} \langle q_i, k_j \rangle & \text{if } j \in \psi(i) \\ 0 & \text{otherwise} \end{cases}$$
 and $\psi(i) = \arg_k \max_{j \in \{1,...,n\}} \langle q_i, k_j \rangle$

Efficient algorithms for nearest neighbor search: KD-Trees, LSH [9], PatchMatch

^[9] Kitaev, Kaiser, and Levskaya, "Reformer", 2020.

Patch-based Stochastic Attention Layer

Approximate ψ using parallel PatchMatch [10]

[10] Barnes et al., "PatchMatch", 2009.

PatchMatch with a single match is not differentiable with respect to all variables as a pseudo-argmax.

$$\mathsf{Attention}(Q, K, V) = AV \quad \mathsf{where} \quad A_{i,j} = \begin{cases} 1 & \text{if} \quad \psi(i) = \{j\} \\ 0 & \text{otherwise} \end{cases}$$

A depends on Q, K but not its entries. 2 solutions:

- K Nearest Neighbors (KNN)
- Neighbors aggregation

Differentiability with KNN

We consider the set of nearest neighbors of element $\psi(i)$ to construct the matrix of similarities S:

$$S_{i,j} = egin{cases} \langle {\mathcal Q}_i, {\mathcal K}_j
angle & ext{if } j \in \psi(i) \ 0 & ext{otherwise.} \end{cases}$$

The matrix *A* is then obtained by normalization of the rows:

 $A = \operatorname{softmax}(S)$

3 Nearest Neighbors

We use the neighbors' neighbors. N_i is the set of spatial neighbors of *i*.

$$S_{i,j} = \begin{cases} \langle Q_{i'}, K_{j'}
angle & ext{if} \begin{cases} i' \in \mathcal{N}_i ext{ and } j' \in \psi(i') \\ ext{and } i' - i = j' - j \\ 0 & ext{otherwise}, \end{cases}$$

The matrix \boldsymbol{S} is then normalized along the rows.

Neighbors aggregation

Complexity

Complexities and memory (GB) required by the attention layer when the input size is increasing. *n* is the number of pixels. k = 3, p = 7

Attention Method	Mem. complexity	Mem. for 256^2	Mem. for 512^2
Full Attention	$\mathcal{O}(n^2)$	15.26	250.04
PSAL-k	$\mathcal{O}(kn)$	0.04	0.18
PSAL Aggreg.	$\mathcal{O}(p^2n)$	0.74	2.95

Attention Method	Computational complexity
Full Attention	$\mathcal{O}(n^2d)$
PSAL-k	$\mathcal{O}(nd \log n \log k)$
PSAL Aggreg.	$\mathcal{O}(nd \log n)$

Colorization task

Guided image colorization

Experiments confirm that PSAL with 1 neighbor is not differentiable end-to-end.

Attention Method	ℓ_2 loss
Full Attention*	0.0024
PSAL 1	0.0083
PSAL 3	0.0023
PSAL Aggreg.	0.0019

Performance vs computational constraints (memory and GFLOPs) on the colorization task

Inpainting task

Comparison with ContextualAttention [11], using PSAL:

- state-of-the-art at the time
- 2-step model using (Full) attention for refinement

Refinement architecture in ContextualAttention

[11] Yu et al., "Generative Image Inpainting with Contextual Attention", 2018.

Inpainting metrics

Quantitative results: no degradation with the approximation

Attention	$\ell_1 loss \downarrow$	$\ell_2 loss \downarrow$	SSIM ↑
ContextualAttention	11.8%	3.6%	53.7
PSAL (ours)	11.6%	3.6%	54.1

Average inpainting metrics on Places2 validation set.

top: ContextualAttention, bottom: PSAL

High-resolution inpainting

816×1000 with ContextualAttention

2700x3300 with PSAL

- + very low memory
- $\,+\,$ scales to high resolution images and videos
- cannot approximate high entropy attention

Code: **O** github.com/ncherel/psal

Full text: https://arxiv.org/abs/2202.03163

Current work

Diffusion

Diffusion is state-of-the-art for conditional and unconditional image generation:

- text-to-image
- super-resolution
- inpainting

[10] Ho, Jain, and Abbeel, "Denoising Diffusion Probabilistic Models", 2020.[11] Rombach et al., "High-Resolution Image Synthesis With Latent Diffusion Models", 2022.

Diffusion : quick introduction

Modeling complex data distributions through:

- forward process: $q(x_t \mid x_{t-1})$
- learned backward process $p_{\theta}(x_{t-1} \mid x_t)$

Training by denoising:

$$\mathcal{L}(\theta) = \mathbb{E}_{x,\epsilon} \left[\|x - f_{\theta}(x + \epsilon)\|^2 \right]$$

Current inpainting experiments

- Training on a single texture
- Tiny model: 160k parameters
- 20-min training

First results

Questions

References i

- Barnes, Connelly et al. "PatchMatch: A Randomized Correspondence Algorithm for Structural Image Editing". In: SIGGRAPH 2009. 2009. DOI: 10.1145/1531326.1531330.
- Choromanski, Krzysztof et al. "Rethinking Attention with Performers". In: *ArXiv* (2020).
- Ho, Jonathan, Ajay Jain, and Pieter Abbeel. "Denoising Diffusion Probabilistic Models". In: Advances in Neural Information Processing Systems. Vol. 33. Curran Associates, Inc., 2020, pp. 6840–6851.
- Houdard, Antoine et al. "Wasserstein Generative Models for Patch-Based Texture Synthesis". In: Scale Space and Variational Methods in Computer Vision.
 Vol. LNCS 12679. Cabourg, France, 2021, pp. 269–280.

References ii

- Katharopoulos, A. et al. "Transformers Are RNNs: Fast Autoregressive Transformers with Linear Attention". In: *Proceedings of the International Conference on Machine Learning (ICML)*. 2020.
- Kitaev, Nikita, Lukasz Kaiser, and Anselm Levskaya. "Reformer: The Efficient Transformer". In: *ICLR* (2020).
- Kwatra, Vivek et al. "Texture Optimization for Example-Based Synthesis". In: *ACM SIGGRAPH 2005 Papers*. 2005, pp. 795–802.
- Mei, Yiqun et al. "Image Super-Resolution With Cross-Scale Non-Local Attention and Exhaustive Self-Exemplars Mining". In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA: IEEE, June 2020, pp. 5689–5698. ISBN: 978-1-72817-168-5. DOI: 10.1109/CVPR42600.2020.00573.

References iii

- Parmar, Niki et al. "Image Transformer". In: ICML (2018).
- Rombach, Robin et al. "High-Resolution Image Synthesis With Latent Diffusion Models". In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022, pp. 10684–10695.
- Shaham, Tamar Rott, Tali Dekel, and Tomer Michaeli. "Singan: Learning a Generative Model from a Single Natural Image". In: *Proceedings of the IEEE/CVF International Conference on Computer Vision*. 2019, pp. 4570–4580.
- Song, Yang and Stefano Ermon. "Generative Modeling by Estimating Gradients of the Data Distribution". In: *Advances in Neural Information Processing Systems*. Vol. 32. Curran Associates, Inc., 2019.

- Vaswani, Ashish et al. "Attention Is All You Need". In: Advances in Neural Information Processing Systems 30. Ed. by I. Guyon et al. Curran Associates, Inc., 2017, pp. 5998–6008.
- Yu, Jiahui et al. "Generative Image Inpainting with Contextual Attention". In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (2018).

PatchMatch on features - self-similarity hypothesis

Original image and 3 feature maps as used in ContextualAttention

For single-image super-resolution, Cross-Scale attention [12] can be efficiently approximated with PSAL as indicated by similar PSNR scores on the Urban 100 dataset.

Attention Method	Zoom x2	Zoom x3	Zoom x4
Cross-Scale Attention	33.383	29.123	27.288
PSAL	33.375	29.112	27.184

^[12] Mei et al., "Image Super-Resolution With Cross-Scale Non-Local Attention and Exhaustive Self-Exemplars Mining", June 2020.

Diffusion, denoising and score-matching

Score-matching [13] is about learning the score of the data distribution: $\nabla \log p$. For a data point x, and a gaussian noise $\epsilon \sim \mathcal{N}(0, \sigma I)$:

$$y = x + \epsilon$$

Tweedie's formula says that the MMSE denoiser D verifies:

$$abla_y \log p(y) = rac{1}{\sigma^2} (D(y) - y)$$

Through denoising, we have access to the (smoothed) log-likelihood / score.

^[13] Song and Ermon, "Generative Modeling by Estimating Gradients of the Data Distribution", 2019.[13] Rombach et al., "High-Resolution Image Synthesis With Latent Diffusion Models", 2022.

Diffusion - Additional Results

