
Diffusion models, a short tutorial

Nicolas Cherel

June 6th 2023

Table of contents

1. Introduction

2. Theory

3. Practical details

4. Application: Inpainting

1

Introduction

Motivations

Diffusion models belong to the family of generative models: GANs, VAEs, normalizing

flows, etc.

Goal: Learn to sample/generate new data points from an unknown data distribution.

2

Motivations

Unconditional sampling Conditional sampling

Condition = class, text

3

Motivations

Unconditional sampling Conditional sampling

Condition = observations (inverse problems)

3

Why diffusion?

Compared to other generative models, diffusion:

+ produces high-quality and diverse samples

+ has no problem of mode collapse

+ is easy to train

- is slow

- has no latent space

4

Why diffusion?

Super-Resolution (SR3)
Controlled synthesis (ControlNet)

Uncropping (Palette) 5

Theory

Disclaimer

Mainly about diffusion as described in Ho, Jain, and Abbeel, Denoising Diffusion

Probabilistic Models; based on a Markov model:

q(xt | xt−1) = N
(√

1− βtxt−1, βtI
)

é Not about score-based approaches using stochastic differential equations:

dx = −1

2
β(t)x dt +

√
β(t)dw

References
CVPR 2022 tutorial on diffusion models:

https://cvpr2022-tutorial-diffusion-models.github.io/

6

https://cvpr2022-tutorial-diffusion-models.github.io/
https://cvpr2022-tutorial-diffusion-models.github.io/

Disclaimer

Interrupt for questions if needed

7

High-level overview

The famous image-to-noise and noise-to-image diagram

• We don’t know how to sample from q(x0)

• We know how to sample from q(xT)

• We know how to go from x0 to xT

• We learn how to go from xT to x0

8

Forward process

Let’s introduce q(x0) the data distribution of images. We define the forward process

for t ranging from 1 to T , defining the random variables q(xt):

q(xt | xt−1) = N
(√

1− βtxt−1, βtI
)

βt are small (< 0.02) and increasing slowly, T is large (1000 usually).

9

Forward process

Objective: q (xT | x0) ≈ N (0, I)

At step t we have:

q (xt | x0) = N

√√√√ t∏

i=1

(1− βi)x0,

(
1−

t∏
i=1

(1− βi)

)
I

Setting β1 = 0.0001 and linearly increasing to βT = 0.02, we get:

µ = 0.0063 · x0 Σ = 0.99996 · I

We consider the β parameters to be fixed but they could be learned as well.

10

Forward process

Convergence to a normal distribution

Preprocessing: Normalize data to be in [−1, 1]

11

Backward process

We want to learn the reverse processing, knowing that pθ(xt | xt+1) is Gaussian, but of

unknown mean and variance:

pθ(xt | xt+1) = N (µθ(xt+1, t),Σθ(xt+1, t))

The parameters of the Gaussian are predicted by a neural network from xt+1.

Ho et al. only predict the mean with a fixed variance schedule.

pθ(xt | xt+1) = N (µθ(xt+1, t), σ
2
t I)

12

Loss function

Rewriting the log-likelihood lower bound[1], the loss is mostly the Kullback-Leibler

divergence between 2 Gaussians for each timestep t:

L =
T∑
t=1

DKL (q(xt−1 | xt , x0)||pθ(xt−1 | xt))

=
T∑
t=1

DKL

(
N (µt(xt , x0),Σt(xt , x0)) ||N (µθ(xt , t), σ

2
t I)
)

=
T∑
t=1

w(t)∥µt(xt , x0)− µθ(xt , t)∥2 + C

[1] quite long derivations

13

Parametrizations

We want our network to minimize ∥µt(xt , x0)− µθ(xt , t)∥2. We have different options

for the output of the neural network by rewriting the µt as a function of xt , x0, and ϵ

(noise added to x0 to get xt):

µt(xt , x0)︸ ︷︷ ︸
1

= atx0 + btxt︸ ︷︷ ︸
2

= ctxt + dtϵ︸ ︷︷ ︸
3

1. Predict µ

2. Predict x0, original clean image

3. Predict ϵ, residual noise

The parametrization changes the weighting term w(t) in the sum.

14

Inference: sampling from the distribution

We start from noise xT ∼ N (0, I) and go backward in the Markov Chain, using the

predicted mean by the network:

xt ∼ pθ(xt | xt+1) = N (µθ(xt+1, t), σ
2
t I)

At each inference step, we sample from a Gaussian. We need to go through the

networks T times, which is a lot.

15

Practical details

Practical details

Practical considerations when working on diffusion, partially based on my experiments,

partially from papers, githubs, etc.

 Some of these ”truths” may only hold in my special case (inpainting)

16

Network

For diffusion, it is common to use a single network for all timesteps. Something

UNet-like, which is very common in denoising and image-to-image problems

• with enough parameters

• with time information

17

Training

Using the x0-parametrization, the training loop is the following:

for images in train_dataloader:

t = torch.random.randint(1, 1000, shape=(batch_size ,1))

noise = torch.randn_like(images)

x_t = torch.sqrt(alpha[t]) * images + torch.sqrt(1 - alpha[t])

* noise

x_0 = model(x_t , t)

loss = torch.mean(weight(t) * mse_loss(x_0 , images))

18

Weighting term

Theoretical loss function has a weighting term, which depends on the parametrization:

L =
T∑
t=1

w(t)∥µt − µθ(xt , t)∥2

Idea: for small timesteps, weight more the error (task is easier). For large timesteps,

loss is less important. 19

Weighting term

Ho et al. present their simple loss wϵ(t) = 1

In my experiments, wx0(t) = 1 works well (stable) but underweights the early steps,

which makes the outputs too smooth.

Advice

In any case, gradient is going to be very noisy. Avoid small batches and use different

timesteps t

20

Training curve

Only one thing to monitor: L2 loss. Usually decreases monotically (up to statistical

noise). Often, lower loss → better results visually.

Training curve for inpainting (easier than synthesis)

21

Time

Training time
Incremental improvements. Decent results early on, can keep going forever

Inference time
Depends on your network depth.

Small networks: < 2 seconds

Large networks: ∼ 1.5 min

22

Application: Inpainting

Experiments

Inpainting with training on a single large image of texture.

Test set in blue

23

Setting

Goal: test the diffusion framework, and compare the approach to a direct inpainting

problem

• Small UNet with 160k parameters

• Fast training in under 1 hour

24

Traditional inpainting

Inpainting with a simple reconstruction

loss, aka Regression:

L = ∥x − fθ(x ◦ (1−M))∥2

”Best” solution for this problem is very

smooth (average of all possible solutions).

Recover sharp edges with additional loss

terms: perceptual loss, GAN loss, etc.

25

Diffusion inpainting

26

Results

Regression (left) vs Diffusion (right) Regression (left) vs Diffusion (right)

27

Conclusion

Questions

28

References

DDPM
Ho, Jain, and Abbeel, Denoising Diffusion Probabilistic Models, 2020. Advances in

Neural Information Processing Systems

CVPR 2022 tutorial on diffusion models:

https://cvpr2022-tutorial-diffusion-models.github.io/

Course on generative models by Valentin de Bortoli:

https://vdeborto.github.io/project/generative_modeling/

https://cvpr2022-tutorial-diffusion-models.github.io/
https://cvpr2022-tutorial-diffusion-models.github.io/
https://vdeborto.github.io/project/generative_modeling/
https://vdeborto.github.io/project/generative_modeling/

Denoising objective

When predicting x0 or ϵ, we observe that the loss function is similar to a denoising

problem using a classical objective or a residual objective:

Lx0 =
T∑
t=1

wx0(t)∥x0 − fθ(xt , t)∥2 Lϵ =
T∑
t=1

wϵ(t)∥ϵ− fθ(xt , t)∥2

Where xt is the noisy and rescaled version of x0 at step t sampled from q (xt | x0)

Link with score-based methods

In the case of denoising diffusion models, we minimize the following loss:

L =
T∑
t=1

1

σ2
t

∥x − f (
√
αtx +

√
1− αtϵ, t)∥2

Which looks like the denoising loss for different variances σ2
t and a denoising network g :

Ldenoising =
T∑
t=1

1

2σ2
t

∥x − g(x + σtϵ, σ
2
t)∥2

Link with score-based methods

The optimal denoiser for this denoising loss satisfies Tweedie’s formula:

gθ∗ = argmin
θ

Ldenoising =⇒ ∇ log pσt =
x − gθ∗(x + σtϵ)

σ2
t

We have access to the score, which is the gradient of the log-likelihood: ∇ log pσt

This gradient can be used during a Langevin process to sample from a distribution

using only the gradients, starting from a point x0 ∼ N (0, I):

xi+1 = xi + γi∇ log pσi (xi) +
√

2γizi

”gradient ascent with noise”

	Introduction
	Theory
	Practical details
	Application: Inpainting
	Appendix

