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A real task
Regard two measurements during a test in a production process:
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Given training data, polluted or not with anomalies:
I detect anomalies in the given data.
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Given training data, polluted or not with anomalies:
I detect anomalies in the given data.

For new data, determine:
I Whether new observations are normal data or anomalies?
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Given training data, polluted or not with anomalies:
I detect anomalies in the given data.

For new data, determine:
I Whether new observations are normal data or anomalies?



Multivariate framework

I A training data set:

X = {x1, ..., xn} ⊂ Rd

of observations in the d-dimensional Euclidean space.

I Typical example: a table from a data base, with lines being
observations (=individuals, items,...).

I Construct a decision function:

Rd → {−1,+1} : x 7→ g(x) ,

which attributes to any (possible) x ∈ Rd a label whether it is
an anomaly (e.g., +1) or a normal observation (e.g., −1).

I It is more useful to provide an ordering on Rd :

Rd → R : x 7→ g(x) ,

such that abnormal observations obtain higher anomaly score.
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Practical session
Notebooks:

I anomdet simulation1.Rmd,
I anomdet hurricanes.Rmd,
I anomdet brainimaging.Rmd,
I anomdet cars.ipynb,
I anomdet airbus.ipynb.

Data sets:
I carsanom.csv: Data set on anomaly detection for cars.
I airbus data.csv: Data set from Airbus.
I hurdat2-1851-2019-052520.txt: Historical hurricane data.
I 101 1 dwi fa.nii: Anatomical brain volume data.
I 101 1 dwi.voxelcoordsL.txt: Left brain fiber’s bundle.
I 101 1 dwi.voxelcoordsR.txt: Right brain fiber’s bundle.

Supplementary scripts:
I depth routines.py: Routines for data depth calculation.
I FIF.py: Implementation of the functional isolation forest.
I depth routines.R: Routines for curves’ parametrization.
I DTI.R: Routines for input of brain imaging data.

https://perso.telecom-paristech.fr/mozharovskyi/tutanom/anomdet_simulation1.Rmd
https://perso.telecom-paristech.fr/mozharovskyi/tutanom/anomdet_hurricanes.Rmd
https://perso.telecom-paristech.fr/mozharovskyi/tutanom/anomdet_brainimaging.Rmd
https://perso.telecom-paristech.fr/mozharovskyi/tutanom/anomdet_cars.ipynb
https://perso.telecom-paristech.fr/mozharovskyi/tutanom/anomdet_airbus.ipynb
https://perso.telecom-paristech.fr/mozharovskyi/tutanom/carsanom.csv
https://partage.imt.fr/index.php/s/dgrXfX95KcECCAW
https://perso.telecom-paristech.fr/mozharovskyi/tutanom/hurdat2-1851-2019-052520.txt
https://perso.telecom-paristech.fr/mozharovskyi/tutanom/101_1_dwi_fa.nii
https://perso.telecom-paristech.fr/mozharovskyi/tutanom/101_1_dwi.voxelcoordsL.txt
https://perso.telecom-paristech.fr/mozharovskyi/tutanom/101_1_dwi.voxelcoordsL.txt
https://perso.telecom-paristech.fr/mozharovskyi/tutanom/depth_routines.py
https://perso.telecom-paristech.fr/mozharovskyi/tutanom/FIF.py
https://perso.telecom-paristech.fr/mozharovskyi/tutanom/depth_routines.R
https://perso.telecom-paristech.fr/mozharovskyi/tutanom/DTI.R
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One-class support vector machines
(Schölkopf, Platt, Shawe-Taylor, Smola, Williamson; 1999)

Generalized portrait:

I The method of the generalized portrait was introduced by
Vapnik & Lerner (1963) and Vapnik & Chervonenkis (1974).

I Generalized portrait is the vector:

ψ =
ϕ

minx∈X 〈x ,ϕ〉
with ϕ from max

‖ϕ‖=1
min
x∈X
〈x ,ϕ〉 .
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One-class support vector machines
(Schölkopf, Platt, Shawe-Taylor, Smola, Williamson; 1999)

Kernel trick (Boser, Guyon, Vapnik; 1992):

I Let Φ be a feature map: Rd 7→ H.

I Due to the kernel trick, the dot product in the image of ϕ can
be computed by evaluation of a kernel K :

K (x i , x j) = 〈Φ(x i ),Φ(x j)〉 .

I Example: Gaussian kernel

K (x i , x j) = eγ‖x i ,x j‖

Soft margin (Cortes, Vapnik; 1995):

I Allow for a portion of points from X to be beyond the margin,
label points far from the origin by “1”, those close by “-1”.

I Controlled by a parameter ν ∈ (0, 1)
(Schölkopf, Platt, Shawe-Taylor, Smola, Williamson; 1999).
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One-class support vector machines
(Schölkopf, Platt, Shawe-Taylor, Smola, Williamson; 1999)

Idea 1: Separate points from the origin.

This can be formulated as a quadratic programming problem

min
ψ∈H,ξ∈Rn,ρ∈R

1

2
‖ψ‖2 +

1

νn

n∑
i=1

ξi − ρ

subject to 〈ξ,Φ(x i )〉 ≥ ρ− ξi , ξi ≥ 0 for i = 1, ..., n ,

with ξ = (ξ1, ..., ξn)>.

The solution (ψ∗, ξ∗, ρ∗) yields the following decision function:

gOCSVM(x) = sgn(〈ξ∗,Φ(x)〉 − ρ∗) .

One can reformulate the optimization problem to employ the
kernel trick.
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One-class support vector machines (Schölkopf et al., 1999)
In dual formulation, using the Lagrangian, one can restate the
optimization problem as follows:

min
α

1

2

n∑
i=1

n∑
j=1

αiαjK (x i , x j)

subject to 0 ≤ αi ≤
1

νn
for i = 1, ..., n,

n∑
i=1

αi = 1 ,

with α = (α1, ..., αn)>.

The decision function is then:

gOCSVM(x) = sgn
( n∑
i=1

αiK (x i , x)− ρ
)
,

where ρ can be recovered from any x j such that 0 < αj <
1
νn :

ρ = 〈ψ,Φ(x i )〉 =
n∑

i=1

αiK (x i , x j) .
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One-class support vector machines (Schölkopf et al., 1999)
Idea 2: Put points into a small ball.

min
R∈R,ξ∈Rn,c∈H,

R2 +
1

νn

n∑
i=1

ξi

subject to ‖Φ(x i )− c‖ ≤ R2 + ξi , ξi ≥ 0 for i = 1, ..., n .

This leads to the dual:

min
α

n∑
i=1

n∑
j=1

αiαjK (x i , x j)−
n∑

i=1

αiK (x i , x i )

subject to 0 ≤ αi ≤
1

νn
, for i = 1, ..., n,

n∑
i=1

αi = 1 .

which leads to the decision function:

gOCSVM(x) =
(
R2−

n∑
i=1

n∑
j=1

αiαjK (x i , x j)+2
n∑

i=1

αiK (x i , x)−K (x , x)
)
,

with R2 =
∑

i ,j αiαjK (x i , x j)− 2
∑

i αiK (x i , xk) + K (xk , xk) for
any xk such that 0 < αk < 1/(νn).
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One-class support vector machines
(Schölkopf, Platt, Shawe-Taylor, Smola, Williamson; 1999)

Illustration: Case 1
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Illustration: Case 1
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Illustration: Case 1
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Illustration: Case 1
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Illustration: Case 1
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Illustration: Case 2
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Illustration: Case 2
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Illustration: Case 2
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Illustration: Case 2
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Illustration: Case 2
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Illustration: Case 2
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)

k-distance of a point x :
For any integer k > 0, the k-distance of point x , denoted as
k-dist(x), is defined as the distance d(x , o) between x and a point
o ∈ X such that:

I for at least k points o ′ ∈ X \ {x} it holds that
d(x , o ′) ≤ d(x , o), and

I for at most k − 1 points o ′ ∈ X \ {x} it holds that
d(x , o ′) < d(x , o).

(=Distance from x to its kth neighbor.)

k-neighborhood of a point x :
Given the k-dist(x), the k-neighborhood of x , denoted Nk(x),
contains every point whose distance from x is not greater than the
k-dist(x), i.e.:

Nk(x) =
{
q ∈ X \ {x} | d(x ,q) ≤ k-dist(x)

}
.
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Reachability distance of order k of point x w.r.t. point o:
For k ∈ N, the reachability distance of order k of point x with
respect to point o is defined as:

reach-distk(x , o) = max{k-dist(o), d(x , o)} .
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local reachability density of a point x :
The local reachability density of x is defined as:

lrdk(x) =
|Nk(x)|∑

o∈Nk (x) reach-distk(x , o)
.
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local reachability density of a point x :
The local reachability density of x is defined as:

lrdk(x) =
|Nk(x)|∑

o∈Nk (x) reach-distk(x , o)
.
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local reachability density of a point x :
The local reachability density of x is defined as:

lrdk(x) =
|Nk(x)|∑

o∈Nk (x) reach-distk(x , o)
.
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local reachability density of a point x :
The local reachability density of x is defined as:

lrdk(x) =
|Nk(x)|∑

o∈Nk (x) reach-distk(x , o)
.
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local reachability density of a point x :
The local reachability density of x is defined as:

lrdk(x) =
|Nk(x)|∑

o∈Nk (x) reach-distk(x , o)
.
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local reachability density of a point x :
The local reachability density of x is defined as:

lrdk(x) =
|Nk(x)|∑

o∈Nk (x) reach-distk(x , o)
.
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local reachability density of a point x :
The local reachability density of x is defined as:

lrdk(x) =
|Nk(x)|∑

o∈Nk (x) reach-distk(x , o)
.
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local reachability density of a point x :
The local reachability density of x is defined as:

lrdk(x) =
|Nk(x)|∑

o∈Nk (x) reach-distk(x , o)
.
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local reachability density of a point x :
The local reachability density of x is defined as:

lrdk(x) =
|Nk(x)|∑

o∈Nk (x) reach-distk(x , o)
.
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local reachability density of a point x :
The local reachability density of x is defined as:

lrdk(x) =
|Nk(x)|∑

o∈Nk (x) reach-distk(x , o)
.
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local reachability density of a point x :
The local reachability density of x is defined as:

lrdk(x) =
|Nk(x)|∑

o∈Nk (x) reach-distk(x , o)
.
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local reachability density of a point x :
The local reachability density of x is defined as:

lrdk(x) =
|Nk(x)|∑

o∈Nk (x) reach-distk(x , o)
.
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local reachability density of a point x :
The local reachability density of x is defined as:

lrdk(x) =
|Nk(x)|∑

o∈Nk (x) reach-distk(x , o)
.
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local reachability density of a point x :
The local reachability density of x is defined as:

lrdk(x) =
|Nk(x)|∑

o∈Nk (x) reach-distk(x , o)
.

−1.5 −1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

Local reachability density, k = 27

X1

X
2

0.48

0.48

0.48

0.48

0.48

0.48

0.48

0.48

0.48

0.48

0.48

0.48

0.48

0.48

0.48

0.48

0.48

0.48

0.48 0.48

0.48

0.48

0.48

0.48
0.48

0.460.48

0.47

0.48

0.48



Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local outlier factor of a point x :
The local outlier factor of x is defined as:

LOFk(x) =

∑
o∈Nk (x)

lrdk (o)
lrdk (x)

|Nk(x)|
.
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local outlier factor of a point x :
The local outlier factor of x is defined as:

LOFk(x) =

∑
o∈Nk (x)

lrdk (o)
lrdk (x)

|Nk(x)|
.
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local outlier factor of a point x :
The local outlier factor of x is defined as:

LOFk(x) =

∑
o∈Nk (x)

lrdk (o)
lrdk (x)

|Nk(x)|
.
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local outlier factor of a point x :
The local outlier factor of x is defined as:

LOFk(x) =

∑
o∈Nk (x)

lrdk (o)
lrdk (x)

|Nk(x)|
.
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local outlier factor of a point x :
The local outlier factor of x is defined as:

LOFk(x) =

∑
o∈Nk (x)

lrdk (o)
lrdk (x)

|Nk(x)|
.
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local outlier factor of a point x :
The local outlier factor of x is defined as:

LOFk(x) =

∑
o∈Nk (x)

lrdk (o)
lrdk (x)

|Nk(x)|
.
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local outlier factor of a point x :
The local outlier factor of x is defined as:

LOFk(x) =

∑
o∈Nk (x)

lrdk (o)
lrdk (x)

|Nk(x)|
.
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local outlier factor of a point x :
The local outlier factor of x is defined as:

LOFk(x) =

∑
o∈Nk (x)

lrdk (o)
lrdk (x)

|Nk(x)|
.
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local outlier factor of a point x :
The local outlier factor of x is defined as:

LOFk(x) =

∑
o∈Nk (x)

lrdk (o)
lrdk (x)

|Nk(x)|
.
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local outlier factor of a point x :
The local outlier factor of x is defined as:

LOFk(x) =

∑
o∈Nk (x)

lrdk (o)
lrdk (x)

|Nk(x)|
.
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local outlier factor of a point x :
The local outlier factor of x is defined as:

LOFk(x) =

∑
o∈Nk (x)

lrdk (o)
lrdk (x)

|Nk(x)|
.
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local outlier factor of a point x :
The local outlier factor of x is defined as:

LOFk(x) =

∑
o∈Nk (x)

lrdk (o)
lrdk (x)

|Nk(x)|
.
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local outlier factor of a point x :
The local outlier factor of x is defined as:

LOFk(x) =

∑
o∈Nk (x)

lrdk (o)
lrdk (x)

|Nk(x)|
.
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local outlier factor of a point x :
The local outlier factor of x is defined as:

LOFk(x) =

∑
o∈Nk (x)

lrdk (o)
lrdk (x)

|Nk(x)|
.
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Isolation forest (Liu, Ting, Zhou; 2008)

I Isolation forest (Liu, Ting, Zhou; 2008) is an anomaly
detection method inherited from the famous random forest
algorithm (Breiman, 2001).

I Since no supervised feedback is given, isolation forest is based
on purely random (uniform) variable-based partitioning.

I Main idea: Outlying observations are isolated faster.

I Tree-kind partitioning is done until “full isolation”: outlying
observations will have smaller depth (on an average) in the
isolation tree.

I A monotone transform is usually applied to the aggregated
estimate.

I To reduce both masking effect and computation cost,
small-size sub-sampling is used instead of bootstrap.
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Isolation forest (Liu, Ting, Zhou; 2008)

I Each isolation tree is grown recursively using the described
below node-construction procedure

Non-terminal node (j , k), subspace Cj ,k , training subset Sj ,k :

1. Choose a split variable l uniformly from {1, ..., d}.
2. Choose randomly and uniformly a split value κ in the interval[

min
x∈Sj,k

〈x , e l〉, max
x∈Sj,k

〈x , e j〉
]
.

3. Form the children subsets

Cj+1,2k = Cj ,k ∩ {x ∈ Rd : 〈x , e l〉 ≤ κ},
Cj+1,2k+1 = Cj ,k ∩ {x ∈ Rd : 〈x , e l〉 > κ}.

as well as the children training datasets

Sj+1,2k = Sj ,k ∩ Cj+1,2k and Sj+1,2k+1 = Sj ,k ∩ Cj+1,2k+1.

Stop when only one observation is in each node: isolation.
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Isolation forest (Liu, Ting, Zhou; 2008)
Illustration: Isolation tree
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Illustration: Isolation tree
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Illustration: Isolation tree
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Isolation forest (Liu, Ting, Zhou; 2008)
Illustration: Isolation tree
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Illustration: Isolation tree
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Isolation forest (Liu, Ting, Zhou; 2008)
Illustration: Isolation tree
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Illustration: Isolation tree
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Illustration: Isolation tree
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Illustration: Isolation tree
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Illustration: Isolation tree
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Illustration: Isolation tree
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Illustration: Isolation tree
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Illustration: Isolation tree
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Isolation forest (Liu, Ting, Zhou; 2008)
Illustration: Isolation tree
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Illustration: Isolation tree
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Isolation forest (Liu, Ting, Zhou; 2008)
Illustration: Isolation tree
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Isolation forest (Liu, Ting, Zhou; 2008)
Illustration: Isolation tree
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Isolation forest (Liu, Ting, Zhou; 2008)
Illustration: Isolation tree
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Illustration: Isolation tree
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Isolation forest (Liu, Ting, Zhou; 2008)
Illustration: Isolation tree
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Isolation forest (Liu, Ting, Zhou; 2008)
Illustration: Isolation tree
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Isolation forest (Liu, Ting, Zhou; 2008)
Illustration: Isolation tree
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Isolation forest (Liu, Ting, Zhou; 2008)
Illustration: Isolation tree
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Isolation forest (Liu, Ting, Zhou; 2008)
Illustration: Isolation tree
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Isolation forest (Liu, Ting, Zhou; 2008)
Illustration: Isolation tree
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Illustration: Isolation tree
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Isolation forest (Liu, Ting, Zhou; 2008)

Anomaly score calculation for observation x :

1. For each isolation tree i ∈ {1, ...,T}, locate x in a terminal
node and calculate the depth of this node hi (x).

2. Attribute the anomaly score:

s(x) = 2
−

1
n
∑T

i=1 hi (x)

c(n) ,

with c(n) = 2H(n − 1)− 2(n−1)
n where H(k) is the harmonic

number and can be estimated by ln(k) + 0.5772156649.

Score behavior:

I when 1
n

∑T
i=1 hi (x)→ c(n), s(x)→ 0.5,

I when 1
n

∑T
i=1 hi (x)→ 0, s(x)→ 1,

I when 1
n

∑T
i=1 hi (x)→ n − 1, s(x)→ 0.



Isolation forest (Liu, Ting, Zhou; 2008)
Illustration: Anomaly score
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Data depth
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Data depth
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Statistical data depth
A data depth measures how close a given point is located to the
center of a distribution. For x ∈ Rp and a p-variate random vector
X distributed as P ∈ P, a data depth is a function

D : Rp × P → [0, 1], (x ,P) 7→ D(x |P)

that is:

D1 translation invariant: D(x + b|X + b) = D(x |X ) for any
b ∈ Rp;

D2 linear invariant: D(Ax |AX ) = D(x |X ) for any p × p
non-singular matrix A;

D3 vanishing at infinity: lim||x ||→∞D(x |X ) = 0;

D4 monotone on rays: for any x∗ ∈ argmaxx∈Rp D(x |X ), any
x ∈ Rp, and any 0 ≤ α ≤ 1 it holds:
D(x |X ) ≤ D(x∗ + α(x − x∗)|X );

D5 upper semicontinuous in x : the upper-level sets
Dα(X ) = {x ∈ Rp : D(x |X ) ≥ α} are closed for all α.
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Statistical data depth

Some remarks:

I D4 implies star-shaped upper-level sets of D.

One can strengthen to:
I D4con: D(·|X ) is a quasiconcave function, i.e. the

upper-level sets Dα(X ) are convex for all α.

I D1 and D2 define affine invariante depth.

One can also weaken to:
I D2iso: D(Ax |AX ) = D(x |X ) for every isometric linear A to

define orthogonal invariant depth;

I D2sca: D(λx |λX ) = D(x |X ) for any λ > 0 to define scale
invariant depth.

Depth notions: Mahalanobis (’36), projection (Stahel, ’81;
Donoho, ’82), simplicial volume (Oja, ’83), simplicial (Liu, ’90),
zonoid (Koshevoy, Mosler, ’97), spatial (Vardi, Zhang, ’00;
Serfling, ’02), lens (Liu, Modarres, ’11), ... depth.
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Applications of data depth:

I Multivariate data analysis (Liu, Parelius, Singh ’99);

I Statistical quality control (Liu, Singh ’93);

I Cluster analysis and classification (Mosler, Hoberg ’06; Li,
Cuesta-Albertos, Liu ’12; M., Mosler, Lange ’15);

I Tests for multivariate location, scale, symmetry (Liu ’92;
Dyckerhoff ’02; Dyckerhoff, Ley, Paindaveine ’15);

I Outlier detection (Hubert, Rousseeuw, Segaert ’15);

I Multivariate risk measurement (Cascos, Mochalov ’07);

I Robust linear programming (Bazovkin, Mosler ’15);

I Missing data imputation (M., Josse, Husson ’20);

I etc.

R-package ddalpha (Pokotylo, M., Dyckerhoff, Nagy):
calculates a number of depths; performs depth-based classification
of multivariate and functional data; contains 50 multivariate and 5
functional data sets.



Tukey (=halfspace, location) depth

Tukey (1975) — “Mathematics and the picturing of data”

Tukey depth of x ∈ Rp w.r.t. a d-variate random vector X
distributed as P is defined as the smallest probability mass of a
closed halfspace containing x:

DT (x |X ) = inf{P(H) : H is a closed halfspace, x ∈ H},

and w.r.t. a data set X = {x1, ..., xn} ⊂ Rp:

DT (n)(x |X ) =
1

n
min

u∈Sp−1
]{i : u ′x i ≥ u ′x}.

Tukey depth

I satisfies all the above postulates,

I is purely non-parametric and robust,

I has direct connection to quantiles and many applications.
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Tukey (=halfspace, location) data depth
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Tukey (=halfspace, location) data depth
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Tukey (=halfspace, location) data depth
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Tukey (=halfspace, location) data depth
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Tukey (=halfspace, location) data depth
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Tukey (=halfspace, location) data depth
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Tukey (=halfspace, location) data depth
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Tukey (=halfspace, location) data depth
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Tukey (=halfspace, location) data depth
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Tukey (=halfspace, location) data depth
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Tukey (=halfspace, location) data depth
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Tukey (=halfspace, location) data depth
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Tukey (=halfspace, location) data depth
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Tukey (=halfspace, location) data depth
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Central regions

I For given distribution P and α ∈ [0, 1], the level sets Dα(P)
form a family of depth-trimmed of central regions.

I The innermost region arises at some depth αmax ≤ 1, which
depends on the depth notion D and distribution P. Then
Dα(X ) is the set of deepest points.

I Central regions describe distribution w.r.t. location,
dispersion, and shape.

I Properties of central regions, for any α:
I Due to D1 and D2 Dα(X ) is affine equivariant:

Dα(AX + b) = ADα(X ) + b for any p × p non-singular matrix
A and any b ∈ Rp;

I Due to D3 Dα(X ) is bounded;
I Due to D4 Dα(X )-s are nested:

if α ≥ β, then Dα(X ) ⊆ Dβ(X ), and star-shaped;
due to D4con Dα(X ) is in addition convex;

I Due to D5 Dα(X ) is closed.



Central regions

I For given distribution P and α ∈ [0, 1], the level sets Dα(P)
form a family of depth-trimmed of central regions.

I The innermost region arises at some depth αmax ≤ 1, which
depends on the depth notion D and distribution P. Then
Dα(X ) is the set of deepest points.

I Central regions describe distribution w.r.t. location,
dispersion, and shape.

I Properties of central regions, for any α:
I Due to D1 and D2 Dα(X ) is affine equivariant:

Dα(AX + b) = ADα(X ) + b for any p × p non-singular matrix
A and any b ∈ Rp;

I Due to D3 Dα(X ) is bounded;
I Due to D4 Dα(X )-s are nested:

if α ≥ β, then Dα(X ) ⊆ Dβ(X ), and star-shaped;
due to D4con Dα(X ) is in addition convex;

I Due to D5 Dα(X ) is closed.



Central regions

I For given distribution P and α ∈ [0, 1], the level sets Dα(P)
form a family of depth-trimmed of central regions.

I The innermost region arises at some depth αmax ≤ 1, which
depends on the depth notion D and distribution P. Then
Dα(X ) is the set of deepest points.

I Central regions describe distribution w.r.t. location,
dispersion, and shape.

I Properties of central regions, for any α:
I Due to D1 and D2 Dα(X ) is affine equivariant:

Dα(AX + b) = ADα(X ) + b for any p × p non-singular matrix
A and any b ∈ Rp;

I Due to D3 Dα(X ) is bounded;
I Due to D4 Dα(X )-s are nested:

if α ≥ β, then Dα(X ) ⊆ Dβ(X ), and star-shaped;
due to D4con Dα(X ) is in addition convex;

I Due to D5 Dα(X ) is closed.



Central regions

I For given distribution P and α ∈ [0, 1], the level sets Dα(P)
form a family of depth-trimmed of central regions.

I The innermost region arises at some depth αmax ≤ 1, which
depends on the depth notion D and distribution P. Then
Dα(X ) is the set of deepest points.

I Central regions describe distribution w.r.t. location,
dispersion, and shape.

I Properties of central regions, for any α:
I Due to D1 and D2 Dα(X ) is affine equivariant:

Dα(AX + b) = ADα(X ) + b for any p × p non-singular matrix
A and any b ∈ Rp;

I Due to D3 Dα(X ) is bounded;
I Due to D4 Dα(X )-s are nested:

if α ≥ β, then Dα(X ) ⊆ Dβ(X ), and star-shaped;
due to D4con Dα(X ) is in addition convex;

I Due to D5 Dα(X ) is closed.



Central regions

I For given distribution P and α ∈ [0, 1], the level sets Dα(P)
form a family of depth-trimmed of central regions.

I The innermost region arises at some depth αmax ≤ 1, which
depends on the depth notion D and distribution P. Then
Dα(X ) is the set of deepest points.

I Central regions describe distribution w.r.t. location,
dispersion, and shape.

I Properties of central regions, for any α:
I Due to D1 and D2 Dα(X ) is affine equivariant:

Dα(AX + b) = ADα(X ) + b for any p × p non-singular matrix
A and any b ∈ Rp;

I Due to D3 Dα(X ) is bounded;

I Due to D4 Dα(X )-s are nested:
if α ≥ β, then Dα(X ) ⊆ Dβ(X ), and star-shaped;
due to D4con Dα(X ) is in addition convex;

I Due to D5 Dα(X ) is closed.



Central regions

I For given distribution P and α ∈ [0, 1], the level sets Dα(P)
form a family of depth-trimmed of central regions.

I The innermost region arises at some depth αmax ≤ 1, which
depends on the depth notion D and distribution P. Then
Dα(X ) is the set of deepest points.

I Central regions describe distribution w.r.t. location,
dispersion, and shape.

I Properties of central regions, for any α:
I Due to D1 and D2 Dα(X ) is affine equivariant:

Dα(AX + b) = ADα(X ) + b for any p × p non-singular matrix
A and any b ∈ Rp;

I Due to D3 Dα(X ) is bounded;
I Due to D4 Dα(X )-s are nested:

if α ≥ β, then Dα(X ) ⊆ Dβ(X ), and star-shaped;

due to D4con Dα(X ) is in addition convex;
I Due to D5 Dα(X ) is closed.



Central regions

I For given distribution P and α ∈ [0, 1], the level sets Dα(P)
form a family of depth-trimmed of central regions.

I The innermost region arises at some depth αmax ≤ 1, which
depends on the depth notion D and distribution P. Then
Dα(X ) is the set of deepest points.

I Central regions describe distribution w.r.t. location,
dispersion, and shape.

I Properties of central regions, for any α:
I Due to D1 and D2 Dα(X ) is affine equivariant:

Dα(AX + b) = ADα(X ) + b for any p × p non-singular matrix
A and any b ∈ Rp;

I Due to D3 Dα(X ) is bounded;
I Due to D4 Dα(X )-s are nested:

if α ≥ β, then Dα(X ) ⊆ Dβ(X ), and star-shaped;
due to D4con Dα(X ) is in addition convex;

I Due to D5 Dα(X ) is closed.



Central regions

I For given distribution P and α ∈ [0, 1], the level sets Dα(P)
form a family of depth-trimmed of central regions.

I The innermost region arises at some depth αmax ≤ 1, which
depends on the depth notion D and distribution P. Then
Dα(X ) is the set of deepest points.

I Central regions describe distribution w.r.t. location,
dispersion, and shape.

I Properties of central regions, for any α:
I Due to D1 and D2 Dα(X ) is affine equivariant:

Dα(AX + b) = ADα(X ) + b for any p × p non-singular matrix
A and any b ∈ Rp;

I Due to D3 Dα(X ) is bounded;
I Due to D4 Dα(X )-s are nested:

if α ≥ β, then Dα(X ) ⊆ Dβ(X ), and star-shaped;
due to D4con Dα(X ) is in addition convex;

I Due to D5 Dα(X ) is closed.



Tukey-trimmed regions

Tukey depth defines a family of (depth-)trimmed (central) regions
DT
τ (X ), the upper-level sets of the depth function:

DT
τ (X ) =

{
x ∈ Rp : DT (x |X ) ≥ τ

}
.

Properties:

Depth: Regions:

I Affine invariant; Affine equivariant;

I Vanishing at infinity; Bounded;

I Monotone w.r.t. deepest point; Nested;

I Upper-semicontinuous; Closed;

I Quasiconcave. Convex.
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Tukey (=halfspace, location) depth-trimmed regions
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Tukey (=halfspace, location) depth-trimmed regions
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Tukey (=halfspace, location) data depth



Tukey (=halfspace, location) depth region



Tukey (=halfspace, location) depth region: τ = 2/161



Tukey (=halfspace, location) depth region: τ = 5/161



Tukey (=halfspace, location) depth region: τ = 9/161



Tukey (=halfspace, location) depth region: τ =13/161



Tukey (=halfspace, location) depth region: τ =17/161



Tukey (=halfspace, location) depth region: τ =25/161



Tukey (=halfspace, location) depth region: τ =33/161



Tukey (=halfspace, location) depth region: τ =41/161



Tukey (=halfspace, location) depth region: τ =49/161



Tukey (=halfspace, location) depth region: τ =57/161



Tukey (=halfspace, location) depth region: τ =65/161



Tukey (=halfspace, location) depth region: τ =68/161
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Mahalanobis depth (Mahalanobis, 1936)
I Mahalanobis depth is defined as:

DMah(x |X ) =
1

1 + (δMah)2(x |X )
,

based on Mahalanobis distance:

(δMah)2(x |X ) = (x − µX )TΣ−1
X (x − µX ) .

I In the empirical version, µX and ΣX are substituted by
suitable estimates:

I moment estimates;
I robust estimates such as minimum volume ellipsoid or

minimum covariance determinant (MCD).
I Properties:

I satisfies D1 – D5 and D4con, is continuous;
I being defined by d(d + 1) parameters, can be seen as a

parametric depth;
I by a single elliptical contour characterizes a multivariate

normal distribution or one within an affine family of
non-degenerate elliptical distributions.
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ECG five days data
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f̂ ′i (t)dt

]
,

with f̂i (t) being the function obtained by connecting the points
(tij , fi (tij)), j = 1, . . . ,Ni with line segments, f̂ ′i (t) its derivative.
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Mahalanobis depth (Mahalanobis, 1936)
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Mahalanobis depth (Mahalanobis, 1936)
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Multivariate anomaly detection: an example
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Multivariate anomaly detection: an example
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Multivariate anomaly detection: an example
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I Checking for minimum and maximum in each test result.
I Label observation x as anomaly if:

x /∈ [min(Test1),max(Test1)]× [min(Test2),max(Test2)] .
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I Checking for minimum and maximum in each test result.
I Label observation x as anomaly if:

x /∈ [min(Test1),max(Test1)]× [min(Test2),max(Test2)] .

I Not all anomalies can be detected.
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I Mahalanobis distance of an observation x ∈ R2 (from the
mean) is defined as follows:

dMah(x |X ) = (x − µ)>Σ−1(x − µ) ,

where µ is the mean and Σ is the covariance matrix.



Multivariate anomaly detection: an example

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

● ●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●●
●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●
● ●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

min(Test1) max(Test1)

m
in

(T
es

t2
)

m
ax

(T
es

t2
)

I Mahalanobis distance of an observation x ∈ R2 (from the
mean) is defined as follows:

dMah(x |X ) = (x − µ)>Σ−1(x − µ) ,

where µ is the mean and Σ is the covariance matrix.

I Label x as anomaly dMah(x |X ) > max(dMah) .
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I Mahalanobis distance (moment estimators) not robust.
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MAD(Xu)

.



Multivariate anomaly detection: robustness

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

min(Test1) max(Test1)

m
in

(T
es

t2
)

m
ax

(T
es

t2
)

I Mahalanobis distance (moment estimators) not robust.
I Stahel-Donoho outlyingness of x w.r.t. X = {x i}ni=1:

OSD(x |X ) = max
u∈Sd−1

|x>u −med(Xu)|
MAD(Xu)

.

I Label x as anomaly if OSD(x |X ) > max(OSD) .
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I Stahel-Donoho outlyingness of x w.r.t. X = {x i}ni=1:
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|x>u −med(Xu)|
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.

I Label x as anomaly if OSD(x |X ) > max(OSD) .



Projection depth (Zuo & Serfling, 2000)

According to Zuo & Serfling (2000), projection depth is defined
as:

Dprj(x |X ) =
1

1 + OSD(x |X )
,

where

OSD(x |X ) = sup
r∈Sd−1

|XT r −med(XT r)|
MAD(XT r)

is the projected outlyingness (Stahel, 1981; Donoho, 1982),
med(Y ) and MAD(Y ) = med

(∣∣Y −med(Y )
∣∣) are the univariate

median and median absolute deviation from the median,
respectively.

Properties:

I Satisfies D1 – D5 and D4con, is continuous;

I its median has asymptotic breakdown point of 0.5.
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Spatial depth (Vardi & Zhang, 2000; Serfling 2002)
Exploiting the idea of spatial quantiles of Chaudhuri (1996) and
Koltchinskii (1997), Vardi & Zhang (2000) and Serflig (2002)
formulate the spatial depth (also L1-depth) as:

Dspt(x |X ) = 1−
∥∥∥E
[ x − X

‖x − X‖
]∥∥∥ with

x − X

‖x − X‖
= 0 if x−X = 0 .
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Koltchinskii (1997), Vardi & Zhang (2000) and Serflig (2002)
formulate the spatial depth (also L1-depth) as:

Dspt(x |X ) = 1−
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[
v
(
Σ−

1
2 (x − X )

)]∥∥∥ ,
with

v(y) =

{
y
‖y‖ if y 6= 0 ,

0 if y = 0 .

Properties:

I satisfies D1 – D5, but not D4con, is continuous;

I if Σ is orthogonal, satisfies D2iso only;

I with D2iso its maximum (say x∗) is referred to as spatial
median, a multivariate location estimator having asymptotic
breakdown point of 0.5.
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●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.006 −0.004 −0.002 0.000

−
0.

01
5

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

spatial



Contents

Introduction

Non-parametric approaches
One-class support vector machines
Local outlier factor
Isolation forest

Systematic orderings: data depth
The notion of depth and the Tukey depth
Central regions
Further depth notions

Functional anomaly detection
Integrated data depth
Functional isolation forest
Depth for curve data

Practical session



Functional data framework

I Let F = {F (t) ∈ Rd , t ∈ [0, 1]} be a random variable that
takes its values in a (multivariate) functional space.

I In practice, we only have access to the realization of F at a
finite number of arguments/times, f = {f (t1), ..., f (tp)} such
that 0 ≤ t1 < · · · < tp ≤ 1.

I The first step: reconstruct functional object from partial
observations (time-series) with interpolation or basis
decomposition.
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Taxonomy of functional anomalies

A non-complete taxomony of functional abnormalities:

Magnitude (=location, shift) anomalies

Shape anomalies Isolated anomalies
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Detection of (multivariate) functional anomalies

I Functional depth of f w.r.t. F = {f i}ni=1:

D(f |F) =

∫ tmax

tmin

D1
(
f (t)|{f 1(t), ..., f n(t)}

)
dt ,

where Dd(·|·) is a multivariate data depth, as defined above.

I Label f as anomaly if D(f |F) < min(D) .



Integrated depth for functional data
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Let F be a stochastic process with continuous paths defined on
[0, 1], and f its realization.

Then:

D(f |F ) =

∫ 1

0
D
(
f (t)|F (t)

)
dt.

see Fraiman, Muniz, 2001; also López-Pintado, Romo, 2011.
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Let F be a stochastic process with continuous paths defined on
[0, 1], and f its realization. Then:

D(f |F ) =

∫ 1

0
min{FF (t)

(
f (t)

)
, 1− FF (t)

(
f (t)−

)
}dt.

see Fraiman, Muniz, 2001; also López-Pintado, Romo, 2011.



Multivariate functional halfspace depth

Let F be a d-real-valued stochastic process with continuous paths
defined on [0, 1], and f its realization. Then:

MFD(f |F ) =

∫ 1

0
D
(
f (t)|F (t)

)
· w(t)dt,

w(t) = wα
(
t,F (t)

)
=

vol
{
Dα
(
F (t)

)}∫ 1
0 vol

{
Dα
(
F (u)

)}
du
.

see Claeskens, Hubert, Slaets, Vakili, 2014.
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Functional isolation forest
(Staerman, M., Clémençon, d’Alché-Buc; 2019)

I Functional isolation forest is an adaptation of the
multivariate isolation forest algorithm
(see also Hariri, Carrasco Kind, Brunner, 2018).

I No predefined basis to project on.
I Drawing a direction on a unit sphere as in (Hariri et al., 2018)

is no longer possible due to the excessive richness of H.
I Project the observations f on (random) elements d of a

dictionary D ∈ H chosen to be rich enough to explore
different properties of data and well appropriate to be sampled
in a representative manner.

I To account for both location and shape anomalies, we suggest
the following scalar product that provides a compromise
between the both (for λ = 0.5, Sobolev W1,2 scalar product):

〈f,d〉 := λ× 〈f,d〉L2

||f|| ||d||
+ (1− λ)× 〈f

′,d′〉L2

||f ′|| ||d′||
, λ ∈ [0, 1] .
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I Functional isolation forest is an adaptation of the
multivariate isolation forest algorithm
(see also Hariri, Carrasco Kind, Brunner, 2018).

I No predefined basis to project on.
I Drawing a direction on a unit sphere as in (Hariri et al., 2018)

is no longer possible due to the excessive richness of H.

I Project the observations f on (random) elements d of a
dictionary D ∈ H chosen to be rich enough to explore
different properties of data and well appropriate to be sampled
in a representative manner.

I To account for both location and shape anomalies, we suggest
the following scalar product that provides a compromise
between the both (for λ = 0.5, Sobolev W1,2 scalar product):

〈f,d〉 := λ× 〈f,d〉L2

||f|| ||d||
+ (1− λ)× 〈f

′,d′〉L2

||f ′|| ||d′||
, λ ∈ [0, 1] .



Functional isolation forest
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Functional isolation forest: an example

Functional data set with anomalies
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Functional depth: Motivation 2
Functional halfspace depth for the FDA-data

Parametrization by time Parametrization by length
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Functional depth: Motivation 3
Simulated hurricane tracks: curve boxplot
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The space of curves

I Let (Rd , | · |2) be the Euclidean space.

I A parametrized curve β : [0, 1]→ Rd is a continuous map.
A reparametrization γ : [0, 1]→ [0, 1] is increasing continuous
function: γ(0) = 0 and γ(1) = 1.

I Two parametrized curves β1, β2 are equivalent if and only if
there exist two reparametrizations γ1, γ2 : β1 ◦ γ1 = β2 ◦ γ2.

I An unparametrized curve, noted C := Cβ , is defined as the
equivalence class of β up to the above equivalence relation.
The space of unparametrized curves is then defined as

B = {Cβ : β ∈ C([0, 1],Rd)}.

I We endow B with the Fréchet metric :

dB (C1, C2) = inf {‖β1 − β2‖∞, β1 ∈ C1, β2 ∈ C2} , C1, C2 ∈ B .
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Associated distribution and the sampling scheme
I Let C be an unparameterized curve. The length of C:

L(C) = sup
τ

{
N∑
i=1

|β(τi )− β(τi−1)|2 : τ is a partition of [0, 1]

}
,

for all β ∈ C.

I An unparametrized curve C is called rectifiable if L(C) is
finite. The length L : B→ R + ∪{∞} is measurable:

P =
{
P prob. measure on (B, dB) : P({C ∈ B; 0 < L(C) <∞}) = 1

}
.

I Let X be a random element of B stemming from distribution
P ∈ P.

I We derive the probability distribution QP on Rd as follows:
if X ∼ QP , then distribution of X | X = C is the (uniform on
C) probability distribution µC :

µC(A) =

∫
C
1A(x)dx .
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Associated distribution and the sampling scheme

The statistical model:

X1, . . . ,Xn i.i.d. from P.

For Monte-Carlo estimation, we can consider the following
sampling scheme:

X1, . . . ,Xn i.i.d. from P,
for all i = 1, . . . , n

Xi ,1, . . . ,Xi ,m i.i.d. from µXi
.



Data depth for an unparametrized curve

Definition
The Tukey curve depth of C ∈ B w.r.t. QP is defined as:

D(C|QP) =

∫
C
D(x |QP , µC)dµC(x) ,

where the depth D(x |QP , µC) of an arbitrary point x ∈ C w.r.t. the
distribution QP is defined as:

D(x |QP , µC)=inf
{QP(H)

µC(H)
: H closed half-space ⊂ Rd , x ∈ ∂H

}
,

where convention 0
0 = 0 is adopted.

Definition
The sample Tukey curve depth of C ∈ B w.r.t. X1, ...,Xn is:

D(C|X1, . . . ,Xn) =

∫
C
D(x |Qn, µC)dµC(x) ,

where Qn = (µX1
+ · · ·+ µXn

)/n.
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Data depth for an unparametrized curve: intuition
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Data depth for an unparametrized curve: empirical version

I Let a chosen curve consist of two (independently drawn on C)
parts Y1,m = (Y1,1, . . . ,Y1,m) and Y2,m = (Y2,1, . . . ,Y2,m)
with empirical distribution

µ̂m =
1

m

m∑
i=1

δY1,i
,

where δx is the Dirac measure in x ∈ Rd .

I Let Q̂n,m be the empirical distribution (observed sample)
Xn,m = {Xi ,j , i = 1, ..., n, j = 1, ...,m}

Q̂n,m =
1

nm

n∑
i=1

m∑
j=1

δXi,j
.

I To compute the sample Tukey curve depth, a Monte Carlo
approximation is used.
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Data depth for an unparametrized curve: empirical version
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Data depth for an unparametrized curve: empirical version

I Let H be a closed halfspace in Rd and Hn,m
∆ denote a

collection of such halfspaces such that for all H ∈ Hn,m
∆ either

Q̂n,m(H) = 0 or µ̂m(H) > ∆, almost surely, for ∆ ∈ (0, 1
2 ).

Definition
The Monte Carlo approximation of the Tukey curve depth of C
w.r.t. X1, ...,Xn is defined as:

D̂n,m,∆(C|X1, ...,Xn)=
1

m

m∑
i=1

D̂(Y2,i |Q̂n,m, µ̂m,Hn,m
∆ ) ,

with the depth of an arbitrary point x ∈ Rd w.r.t. Q̂n,m being:

D̂(x |Q̂n,m, µ̂m,Hn,m
∆ ) = inf

{Q̂n,m(H)

µ̂m(H)
: H ∈ Hn,m

∆ , x ∈ ∂H
}

and 0
0 = 0 as before.
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Calculation of the Tukey curve depth

D(Y2,c |Qm,Hm,b) =
1
5

(
5
7

+ 3
8

+ 6
8

+ 2
7

+ 3
6

)
2
8

= 2.1



Calculation of the Tukey curve depth

D(Y2,c |Qm,Hm,b) =
1
5

(
3
7

+ 5
8

+ 4
8

+ 3
7

+ 3
6

)
2
8

= 1.9857



Calculation of the Tukey curve depth

D(Y2,c |Qm,Hm,b) =
1
5

(
4
7

+ 3
8

+ 4
8

+ 4
7

+ 4
6

)
5
8

= 0.7159



Data depth for an unparametrized curve: properties
Restrict to B`, the subset of unparametrized curves of positive
length bounded by ` > 0. Then the Tukey curve depth satisfies the
following properties:

I Nonnegativity and boundedness by one:

D(C|QP) ∈ [0, 1] .

I Similarity invariance: Let f : Rd → Rd f be a similarity, i.e.
there exists an orthogonal matrix A, a factor r > 0 and a
vector b ∈ Rd such that for all x ∈ Rd , f (x) = rAx + b. In
particular for all x and y in Rd , |f (x)− f (y)|2 = r |x − y |2.
Denote by Pf the distribution of the image through f of a
stochastic process having a distribution P. Then

D(f ◦ C|QPf
) = D(C|QP) .

I Vanishing at infinity:

lim
dG(C,0)→∞,C∈B`

D(C,QP) = inf
C∈B`

D(C,QP) = 0 .
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Comparison with functional depth: Example 1

Simulated S letters: depth-induced ranking
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Comparison with functional depth: Example 2

Simulated hurricane tracks: curve boxplot
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Comparison with functional depth: Anomaly detection 1

Data set 1 with introduced anomalies:
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Comparison with functional depth: Anomaly detection 2

Data set 2 with introduced anomalies:

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

t

x(
t)

Ordered depth values:

mSBD saPRJ MFHD Curve depth

●●
●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●

●

●
●
●●

●
●

●
●

0 10 20 30 40 50

0.
10

0.
15

0.
20

0.
25

Simplicial band depth

Depth−based rank

D
ep

th
 v

al
ue

●
●●●

●●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●

●●●●

●
●

0 10 20 30 40 50

0.
4

0.
5

0.
6

0.
7

Projection depth

Depth−based rank

D
ep

th
 v

al
ue

●●●
●●●●●●

●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●

●●
●●

●●
●

●

●

0 10 20 30 40 50

0.
05

0.
15

0.
25

Halfspace depth

Depth−based rank

D
ep

th
 v

al
ue

●
●

●

●●●●●●●
●●

●
●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●
●
●

●

0 10 20 30 40 50
0.

2
0.

4
0.

6

Curve depth

Depth−based rank

D
ep

th
 v

al
ue



Contents

Introduction

Non-parametric approaches
One-class support vector machines
Local outlier factor
Isolation forest

Systematic orderings: data depth
The notion of depth and the Tukey depth
Central regions
Further depth notions

Functional anomaly detection
Integrated data depth
Functional isolation forest
Depth for curve data

Practical session



Thank you for attention! (and a short list of literature)
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Practical session
Notebooks:

I anomdet simulation1.Rmd,
I anomdet hurricanes.Rmd,
I anomdet brainimaging.Rmd,
I anomdet cars.ipynb,
I anomdet airbus.ipynb.

Data sets:
I carsanom.csv: Data set on anomaly detection for cars.
I airbus data.csv: Data set from Airbus.
I hurdat2-1851-2019-052520.txt: Historical hurricane data.
I 101 1 dwi fa.nii: Anatomical brain volume data.
I 101 1 dwi.voxelcoordsL.txt: Left brain fiber’s bundle.
I 101 1 dwi.voxelcoordsR.txt: Right brain fiber’s bundle.

Supplementary scripts:
I depth routines.py: Routines for data depth calculation.
I FIF.py: Implementation of the functional isolation forest.
I depth routines.R: Routines for curves’ parametrization.
I DTI.R: Routines for input of brain imaging data.

https://perso.telecom-paristech.fr/mozharovskyi/tutanom/anomdet_simulation1.Rmd
https://perso.telecom-paristech.fr/mozharovskyi/tutanom/anomdet_hurricanes.Rmd
https://perso.telecom-paristech.fr/mozharovskyi/tutanom/anomdet_brainimaging.Rmd
https://perso.telecom-paristech.fr/mozharovskyi/tutanom/anomdet_cars.ipynb
https://perso.telecom-paristech.fr/mozharovskyi/tutanom/anomdet_airbus.ipynb
https://perso.telecom-paristech.fr/mozharovskyi/tutanom/carsanom.csv
https://partage.imt.fr/index.php/s/dgrXfX95KcECCAW
https://perso.telecom-paristech.fr/mozharovskyi/tutanom/hurdat2-1851-2019-052520.txt
https://perso.telecom-paristech.fr/mozharovskyi/tutanom/101_1_dwi_fa.nii
https://perso.telecom-paristech.fr/mozharovskyi/tutanom/101_1_dwi.voxelcoordsL.txt
https://perso.telecom-paristech.fr/mozharovskyi/tutanom/101_1_dwi.voxelcoordsL.txt
https://perso.telecom-paristech.fr/mozharovskyi/tutanom/depth_routines.py
https://perso.telecom-paristech.fr/mozharovskyi/tutanom/FIF.py
https://perso.telecom-paristech.fr/mozharovskyi/tutanom/depth_routines.R
https://perso.telecom-paristech.fr/mozharovskyi/tutanom/DTI.R
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