Anomaly detection Part II: Functional data

Pavlo Mozharovskyi

LTCI, Telecom Paris, Institut Polytechnique de Paris

Tutorial for the chair DSAIDIS

Palaiseau, April 13, 2022

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Anomaly detection in functional framework

Functional isolation forest

The method FIF parameters Real data benchmarking Extension of FIF: Connection to data depth

Data depth: the integrated approach

Depth for curve data Motivation Methodology Computation and properties Illustrations

Anomaly detection in functional framework

Functional isolation forest

The method FIF parameters Real data benchmarking Extension of FIF: Connection to data depth

Data depth: the integrated approach

Depth for curve data Motivation Methodology Computation and propertie Illustrations

Functional data framework

Let F = {F(t) ∈ ℝ^d, t ∈ [0,1]} be a random variable that takes its values in a (multivariate) functional space.

Functional data framework

- Let F = {F(t) ∈ ℝ^d, t ∈ [0,1]} be a random variable that takes its values in a (multivariate) functional space.
- In practice, we only have access to the realization of *F* at a finite number of arguments/times, *f* = {*f*(*t*₁), ..., *f*(*t_p*)} such that 0 ≤ *t*₁ < ··· < *t_p* ≤ 1.

Functional data framework

- Let F = {F(t) ∈ ℝ^d, t ∈ [0,1]} be a random variable that takes its values in a (multivariate) functional space.
- In practice, we only have access to the realization of *F* at a finite number of arguments/times, *f* = {*f*(*t*₁), ..., *f*(*t*_p)} such that 0 ≤ *t*₁ < ··· < *t*_p ≤ 1.
- The first step: reconstruct functional object from partial observations (time-series) with interpolation or basis decomposition.

Taxonomy of functional anomalies (Hubert et al., 2015)

A non-complete taxomony of functional abnormalities:

Shape anomalies

Shift anomalies

Isolated anomalies

Taxonomy of functional anomalies (Airbus data)

A non-complete taxomony of functional abnormalities:

20000

40000

0 10000 20000 30000 40000 50000

Magnitude (=location, shift) anomalies

ロト (個) (主) (主) (主) のへの

Anomaly detection in functional framework

Functional isolation forest

The method FIF parameters Real data benchmarking Extension of FIF: Connection to data depth

Data depth: the integrated approach

Depth for curve data Motivation Methodology Computation and propertie Illustrations

FIF in the context of FAD contributions

Anomaly detection in functional framework

Functional isolation forest

The method

FIF parameters Real data benchmarking Extension of FIF: Connection to data depth

Data depth: the integrated approach

Depth for curve data

Motivation Methodology Computation and properties Illustrations

- X_1, \ldots, X_n are random variables in Hilbert space \mathcal{H} and $\mathcal{D} \subset \mathcal{H}$.
- This ensemble learning algorithm builds a collection of binary tree based on a recursive and randomized tree-structured partitioning procedure.

- X_1, \ldots, X_n are random variables in Hilbert space \mathcal{H} and $\mathcal{D} \subset \mathcal{H}$.
- This ensemble learning algorithm builds a collection of binary tree based on a recursive and randomized tree-structured partitioning procedure.

 $\{\langle X_i, \mathbf{d} \rangle_{\mathcal{H}}, i \leq n\}$

- X_1, \ldots, X_n are random variables in Hilbert space \mathcal{H} and $\mathcal{D} \subset \mathcal{H}$.
- This ensemble learning algorithm builds a collection of binary tree based on a recursive and randomized tree-structured partitioning procedure.

The trick: an anomaly should be isolated faster than normal data.

Illustration: Isolation tree

Isolation tree, split 25

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

1. Choose a Split function **d** according to the probability distribution ν on \mathcal{D} .

- 1. Choose a Split function **d** according to the probability distribution ν on \mathcal{D} .
- 2. Choose randomly and uniformly a Split value γ in the interval

$$\left[\min_{\mathbf{x}\in\mathcal{S}_{j,k}}\langle\mathbf{x},\mathbf{d}\rangle_{\mathcal{H}},\max_{\mathbf{x}\in\mathcal{S}_{j,k}}\langle\mathbf{x},\mathbf{d}\rangle_{\mathcal{H}}\right],$$

- 1. Choose a Split function **d** according to the probability distribution ν on \mathcal{D} .
- 2. Choose randomly and uniformly a Split value γ in the interval

$$\left[\min_{\mathbf{x}\in\mathcal{S}_{j,k}}\langle\mathbf{x},\mathbf{d}\rangle_{\mathcal{H}},\max_{\mathbf{x}\in\mathcal{S}_{j,k}}\langle\mathbf{x},\mathbf{d}\rangle_{\mathcal{H}}\right],$$

3. Form the children subsets

$$\begin{aligned} \mathcal{C}_{j+1,2k} &= \mathcal{C}_{j,k} \cap \{ \mathbf{x} \in \mathcal{H} : \langle \mathbf{x}, \mathbf{d} \rangle_{\mathcal{H}} \leq \gamma \}, \\ \mathcal{C}_{j+1,2k+1} &= \mathcal{C}_{j,k} \cap \{ \mathbf{x} \in \mathcal{H} : \langle \mathbf{x}, \mathbf{d} \rangle_{\mathcal{H}} > \gamma \}. \end{aligned}$$

as well as the children training datasets

$$\mathcal{S}_{j+1,2k} = \mathcal{S}_{j,k} \cap \mathcal{C}_{j+1,2k} \text{ and } \mathcal{S}_{j+1,2k+1} = \mathcal{S}_{j,k} \cap \mathcal{C}_{j+1,2k+1}.$$

- 1. Choose a Split function **d** according to the probability distribution ν on \mathcal{D} .
- 2. Choose randomly and uniformly a Split value γ in the interval

$$\left[\min_{\mathbf{x}\in\mathcal{S}_{j,k}}\langle\mathbf{x},\mathbf{d}\rangle_{\mathcal{H}},\max_{\mathbf{x}\in\mathcal{S}_{j,k}}\langle\mathbf{x},\mathbf{d}\rangle_{\mathcal{H}}\right],$$

3. Form the children subsets

$$\begin{aligned} \mathcal{C}_{j+1,2k} &= \mathcal{C}_{j,k} \cap \{ \mathbf{x} \in \mathcal{H} : \langle \mathbf{x}, \mathbf{d} \rangle_{\mathcal{H}} \leq \gamma \}, \\ \mathcal{C}_{j+1,2k+1} &= \mathcal{C}_{j,k} \cap \{ \mathbf{x} \in \mathcal{H} : \langle \mathbf{x}, \mathbf{d} \rangle_{\mathcal{H}} > \gamma \}. \end{aligned}$$

as well as the children training datasets

$$\mathcal{S}_{j+1,2k} = \mathcal{S}_{j,k} \cap \mathcal{C}_{j+1,2k} \text{ and } \mathcal{S}_{j+1,2k+1} = \mathcal{S}_{j,k} \cap \mathcal{C}_{j+1,2k+1}.$$

Stop when only one observation is in each node: isolation. \square

Anomaly score prediction

One may then define the piecewise constant function h_τ : H → N by: ∀x ∈ H,

 $h_{\tau}(\mathbf{x}) = j$ if and only if $x \in \mathcal{C}_{j,k}$ and $\mathcal{C}_{j,k}$ is associated to a terminal

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Anomaly score prediction

Anomaly score calculation for observation x:

- 1. For each isolation tree $i \in \{1, ..., N\}$, locate x in a terminal node and calculate the depth of this node $h_i(x)$.
- 2. Attribute the anomaly score:

$$s_n(\mathbf{x}) = 2^{-\frac{1}{N \cdot c(n)} \sum_{i=1}^N h_i(\mathbf{x})},$$

with $c(n) = 2H(n-1) - \frac{2(n-1)}{n}$ where H(k) is the harmonic number and can be estimated by $\ln(k) + 0.5772156649$.

Anomaly score prediction

Anomaly score calculation for observation x:

- 1. For each isolation tree $i \in \{1, ..., N\}$, locate \mathbf{x} in a terminal node and calculate the depth of this node $h_i(\mathbf{x})$.
- 2. Attribute the anomaly score:

$$s_n(\mathbf{x}) = 2^{-\frac{1}{N \cdot c(n)} \sum_{i=1}^N h_i(\mathbf{x})},$$

with $c(n) = 2H(n-1) - \frac{2(n-1)}{n}$ where H(k) is the harmonic number and can be estimated by $\ln(k) + 0.5772156649$.

Score behavior:

Anomaly detection in functional framework

Functional isolation forest

The method FIF parameters Real data benchmarking Extension of FIF: Connection to data depth

Data depth: the integrated approach

Depth for curve data

Motivation Methodology Computation and properties Illustrations

Parameters of FIF

► Classical parameters of ISOLATION FOREST :

- number of trees,
- size of the subsample,
- height limit.

New parameters due to the functional setup :

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 1. The dictionary \mathcal{D} .
- 2. The probability measure ν .
- 3. The scalar product $\langle ., . \rangle_{\mathcal{H}}$.

The role of the scalar product

Compromise between both location and shape :

$$\langle \mathbf{f}, \mathbf{g} \rangle := \alpha \times \frac{\langle \mathbf{f}, \mathbf{g} \rangle_{L_2}}{||\mathbf{f}|| \, ||\mathbf{g}||} + (1 - \alpha) \times \frac{\langle \mathbf{f}', \mathbf{g}' \rangle_{L_2}}{||\mathbf{f}'|| \, ||\mathbf{g}'||}, \quad \alpha \in [0, 1],$$

Example on a toy dataset :

- ▶ 90 curves defined by $\mathbf{x}(t) = 30(1-t)^q t^q$ with q equispaced in [1, 1.4],
- ▶ 10 abnormal curves defined by $\mathbf{x}(t) = 30(1-t)^{1.2}t^{1.2}$ noised by $\varepsilon \sim \mathcal{N}(0, 0.3^2)$ on the interval [0.2, 0.8].

$$\alpha = 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Ability to detect a variety of anomalies

- Sobolev inner product: $\langle ., . \rangle_{W_{1,2}}$.
- ► Gaussian wavelets dictionary $\mathbf{d}_{\theta,\sigma}(t) = \frac{2}{\sqrt{3\sigma}\pi^{1/4}} \left(1 - \left(\frac{t-\theta}{\sigma}\right)^2\right) \exp\left(\frac{-(t-\theta)^2}{2\sigma^2}\right).$
- Uniform measure ν.

Anomaly detection in functional framework

Functional isolation forest

The method FIF parameters Real data benchmarking Extension of FIF: Connection to data depth

Data depth: the integrated approach

Depth for curve data

Motivation Methodology Computation and properties Illustrations

Performance on real datasets (1)

► FIF with 4 setups (Dictionary+scalar product):

- ▶ Dyadic indicator (DI)+L₂
- ► Cosine (Cos)+L₂
- Cosine (Cos)+Sobolev
- Dataset itself (Self)+L₂

Competitors:

- Isolation Forest, Local Outlier Factor, One-class SVM after dimension reduction by FPCA.
- *fHD_{RP}*: Random projection method with functional Halspace depth.

► fSDO : Functional Stahel-Donoho Outlyingness.

Performance on real datasets (2)

Methods :	DI_{L_2}	Cos _{Sob}	Cos _{L2}	$Self_{L_2}$	IF	LOF	OCSVM	fHD _{RP}	fSDO
Chinatown	0.93	0.82	0.74	0.77	0.69	0.68	0.70	0.76	0.98
Coffee	0.76	0.87	0.73	0.77	0.60	0.51	0.59	0.74	0.67
ECGFiveDays	0.78	0.75	0.81	0.56	0.81	0.89	0.90	0.60	0.81
ECG200	0.86	0.88	0.88	0.87	0.80	0.80	0.79	0.85	0.86
Handoutlines	0.73	0.76	0.73	0.72	0.68	0.61	0.71	0.73	0.76
SonyRobotAl1	0.89	0.80	0.85	0.83	0.79	0.69	0.74	0.83	0.94
SonyRobotAl2	0.77	0.75	0.79	0.92	0.86	0.78	0.80	0.86	0.81
StarLightCurves	0.82	0.81	0.76	0.86	0.76	0.72	0.77	0.77	0.85
TwoLeadECG	0.71	0.61	0.61	0.56	0.71	0.63	0.71	0.65	0.69
Yoga	0.62	0.54	0.60	0.58	0.57	0.52	0.59	0.55	0.55
EOGHorizontal	0.72	0.76	0.81	0.74	0.70	0.69	0.74	0.73	0.75
CinECGTorso	0.70	0.92	0.86	0.43	0.51	0.46	0.41	0.64	0.80
ECG5000	0.93	0.98	0.98	0.95	0.96	0.93	0.95	0.91	0.93

Table: AUC of different anomaly detection methods calculated on the test set. Bold numbers correspond to the best result.

Anomaly detection in functional framework

Functional isolation forest

The method FIF parameters Real data benchmarking Extension of FIF: Connection to data depth

Data depth: the integrated approach

Depth for curve data

Motivation Methodology Computation and properties Illustrations

Extension to multivariate functional data

FIF can be easily extended to the multivariate functional data, *i.e.* when the quantity of interest lies in \mathbb{R}^d for each moment of time:

$$egin{aligned} & x: [0,1] \longrightarrow \mathbb{R}^d \ & t \longmapsto \left((x^1(t), \ \ldots, \ x^d(t)
ight) \end{aligned}$$

Coordinate-wise sum of the d corresponding scalar products:

$$\langle \mathbf{f}, \mathbf{g}
angle_{L_2^{\otimes d}} := \sum_{i=1}^d \langle f^{(i)}, g^{(i)}
angle_{L_2}$$

 Dictionaries : Composed by univariate function on each axis, multivariate wavelets, multivariate Brownian motion ...

Example with MNIST dataset

We extract the digits' contours and obtain bivariate functional curves from MNIST dataset. Each digit is transformed into a curve in $(L_2([0,1]) \times L_2([0,1]))$ using length parametrization on [0,1].

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへで

Connection to data depth and supervised classification

Assume that we have a training classification dataset of q classes $S = S^1 \cup ... \cup S^q$.

Low dimensional representation based on depth-based map can be defined by

$$\mathbf{x} \mapsto \phi(\mathbf{x}) = \left(D_{\textit{FIF}}(\mathbf{x}; \mathcal{S}^1), ..., D_{\textit{FIF}}(\mathbf{x}; \mathcal{S}^q)
ight) \in [0, 1]^q$$
 .

One may define a DD-plot classifier by using a classifier on the low dimension representation of the functional dataset.

Example of depth map on MNIST dataset

 ${\cal S}$ is constructed by taking 100 digits from class 1, 100 from class 5 and 100 from class 7.

Figure: Depth space embedding of the three digits (1, 5 and 7) of the MNIST dataset.

(日) (同) (日) (日)

Some remarks on FIF

New anomaly detection algorithm for functional data:

 Great flexibility but dictionaries (and scalar product) are tricky to choose in an unsupervised setting.

- Low complexity and memory requierement.
- Lack of theoretical garanties!

STAERMAN, G., MOZHAROVSKYI, P., CLÉMENÇON, S., AND D'ALCHÉ-BUC, F. Functional Isolation Forest. ACML 2019.

All codes are available at: https://github.com/guillaumestaermanML/FIF.

Anomaly detection in functional framework

Functional isolation forest

The method FIF parameters Real data benchmarking Extension of FIF: Connection to data depth

Data depth: the integrated approach

Depth for curve data

Motivation Methodology Computation and properties Illustrations

• Functional depth of f w.r.t. $\mathcal{F} = \{f_i\}_{i=1}^n$:

$$D(\boldsymbol{f}|\mathcal{F}) = \int_{t_{\min}}^{t^{\max}} D^1(\boldsymbol{f}(t)|\mathcal{F}(t)) \, dt \, ,$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

$$D(\boldsymbol{f}|\mathcal{F}) = \int_{t_{\min}}^{t^{\max}} D^1(\boldsymbol{f}(t)|\{\boldsymbol{f}_1(t),...,\boldsymbol{f}_n(t)\}) dt$$

where $D^{d}(\cdot|\cdot)$ is a multivariate data depth, as defined above.

• Functional depth of f w.r.t. $\mathcal{F} = \{f_i\}_{i=1}^n$:

$$D(\boldsymbol{f}|\mathcal{F}) = \int_{t_{\min}}^{t^{\max}} D^1(\boldsymbol{f}(t)|\{\boldsymbol{f}_1(t),...,\boldsymbol{f}_n(t)\}) dt$$

where $D^{d}(\cdot|\cdot)$ is a multivariate data depth, as defined above.

• Functional depth of f w.r.t. $\mathcal{F} = \{f_i\}_{i=1}^n$:

$$D(\boldsymbol{f}|\mathcal{F}) = \int_{t_{\min}}^{t^{\max}} D^1(\boldsymbol{f}(t)|\{\boldsymbol{f}_1(t),...,\boldsymbol{f}_n(t)\}) dt$$

where $D^{d}(\cdot|\cdot)$ is a multivariate data depth, as defined above.

• Functional depth of f w.r.t. $\mathcal{F} = \{f_i\}_{i=1}^n$:

$$D(\boldsymbol{f}|\mathcal{F}) = \int_{t_{\min}}^{t^{\max}} D^1(\boldsymbol{f}(t)|\{\boldsymbol{f}_1(t),...,\boldsymbol{f}_n(t)\}) dt$$

where $D^{d}(\cdot|\cdot)$ is a multivariate data depth, as defined above.

► Label f as anomaly if $D(f|\mathcal{F}) < \min(D)$.

Integrated depth for functional data

Let F be a stochastic process with continuous paths defined on [0, 1], and f its realization.

(日) (同) (三)

Integrated depth for functional data

Let F be a stochastic process with continuous paths defined on [0, 1], and f its realization. Then:

$$D(\boldsymbol{f}|\boldsymbol{F}) = \int_0^1 D(\boldsymbol{f}(t)|\boldsymbol{F}(t)) dt.$$

see Fraiman, Muniz, 2001; also López-Pintado, Romo, 2011.

Integrated depth for functional data

Let F be a stochastic process with continuous paths defined on [0, 1], and f its realization. Then:

$$D(\boldsymbol{f}|\boldsymbol{F}) = \int_0^1 \min\{F_{\boldsymbol{F}(t)}(\boldsymbol{f}(t)), 1 - F_{\boldsymbol{F}(t)}(\boldsymbol{f}(t)^-)\}dt.$$

see Fraiman, Muniz, 2001; also López-Pintado, Romo, 2011.

Multivariate functional halfspace depth

Let F be a *d*-real-valued stochastic process with continuous paths defined on [0, 1], and f its realization. Then:

$$egin{aligned} & extsf{MFD}(oldsymbol{f}|oldsymbol{F}) = \int_0^1 Dig(oldsymbol{f}(t)|oldsymbol{F}(t)ig) \cdot w(t)dt, \ & w(t) = w_lphaig(t,oldsymbol{F}(t)ig) = rac{ extsf{vol}ig\{D_lphaig(oldsymbol{F}(t)ig)ig\}}{\int_0^1 extsf{vol}ig\{D_lphaig(oldsymbol{F}(u)ig)ig\}du}. \end{aligned}$$

see Claeskens, Hubert, Slaets, Vakili, 2014.

Contents

Anomaly detection in functional framework

Functional isolation forest

The method FIF parameters Real data benchmarking Extension of FIF: Connection to data depth

Data depth: the integrated approach

Depth for curve data

Motivation Methodology Computation and properties Illustrations

Practical session

Contents

Anomaly detection in functional framework

Functional isolation forest

The method FIF parameters Real data benchmarking Extension of FIF: Connection to data depth

Data depth: the integrated approach

Depth for curve data Motivation

Methodology Computation and properties Illustrations

Practical session

x1

ヨト ヨ

x1

ヨト ヨ

(日)、

x1

・ロト ・ 日 ト ・ モ ト ・ モ ト

æ

Regard the following different parametrizations of a curve: Parametrization A:

$$\begin{aligned} x_1(t) &= -\left(\cos(t) + 1\right) \mathbb{1}\left\{t < \frac{3\pi}{2}\right\} - \left(\cos(3t - 3\pi) + 1\right) \mathbb{1}\left\{t \ge \frac{3\pi}{2}\right\} + 1 \\ x_2(t) &= \left(\sin(t) + 1\right) \mathbb{1}\left\{t < \frac{3\pi}{2}\right\} - \left(\sin(3t - 3\pi) + 1\right) \mathbb{1}\left\{t \ge \frac{3\pi}{2}\right\} \\ \text{Parametrization B:} \end{aligned}$$

$$egin{aligned} &x_1(t) = -ig(\cos(3t)+1ig)\mathbbm{1}\{t < rac{\pi}{2}\} - ig(\cos(t+\pi)+1ig)\mathbbm{1}\{t \geq rac{\pi}{2}\} + 1\ &x_2(t) = ig(\sin(3t)+1ig)\mathbbm{1}\{t < rac{\pi}{2}\} - ig(\sin(t+\pi)+1ig)\mathbbm{1}\{t \geq rac{\pi}{2}\} \end{aligned}$$

Regard the following different parametrizations of a curve:

ロト 4 聞 ト 4 臣 ト 4 臣 ト 三臣 - - - のへで、

Parametrization A

Parametrization B

Parametrization:

▲ロト ▲聞 と ▲ 臣 と ▲ 臣 と のへの

Parametrization A

Parametrization B

Parametrization:

- ロト 《聞 と 《 臣 と 《 臣 と 三 臣 … の Q () ()

Parametrization A

x2

Parametrization B

x2

990

- 3

Parametrization A

Parametrization B

The depth-induced orders differ!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Functional halfspace depth for the FDA-data

Depth-induced ranking for parametrizations by time and by length:

Time	2	3	13	12	4	8	1	17	11	9	7	19	15	20	18	16	14	5	6	10
Length	6	3	16	14	5	7	13	11	1	17	2	19	8	20	12	18	15	4	9	10

くしゃ (中)・(中)・(中)・(日)

Simulated hurricane tracks: curve boxplot

MFH depth - par. time

mSB depth - par. time

MFH depth - par. length

mSB depth – par. length

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

Contents

Anomaly detection in functional framework

Functional isolation forest

The method FIF parameters Real data benchmarking Extension of FIF: Connection to data depth

Data depth: the integrated approach

Depth for curve data

Motivation Methodology Computation and propert Illustrations

Practical session

• Let $(\mathbb{R}^d, |\cdot|_2)$ be the Euclidean space.

- Let $(\mathbb{R}^d, |\cdot|_2)$ be the Euclidean space.
- A parametrized curve β : [0,1] → ℝ^d is a continuous map.
 A reparametrization γ : [0,1] → [0,1] is increasing continuous function: γ(0) = 0 and γ(1) = 1.

- Let $(\mathbb{R}^d, |\cdot|_2)$ be the Euclidean space.
- A parametrized curve β : [0,1] → ℝ^d is a continuous map. A reparametrization γ : [0,1] → [0,1] is increasing continuous function: γ(0) = 0 and γ(1) = 1.
- ► Two parametrized curves β₁, β₂ are equivalent if and only if there exist two reparametrizations γ₁, γ₂ : β₁ ∘ γ₁ = β₂ ∘ γ₂.

- Let $(\mathbb{R}^d, |\cdot|_2)$ be the Euclidean space.
- A parametrized curve β : [0,1] → ℝ^d is a continuous map. A reparametrization γ : [0,1] → [0,1] is increasing continuous function: γ(0) = 0 and γ(1) = 1.
- ► Two parametrized curves β₁, β₂ are equivalent if and only if there exist two reparametrizations γ₁, γ₂ : β₁ ∘ γ₁ = β₂ ∘ γ₂.
- An unparametrized curve, noted C := C_β, is defined as the equivalence class of β up to the above equivalence relation.
 The space of unparametrized curves is then defined as

$$\mathfrak{B} = \{ \mathcal{C}_{\beta} : \beta \in \mathcal{C}([0,1],\mathbb{R}^d) \}.$$

- Let $(\mathbb{R}^d, |\cdot|_2)$ be the Euclidean space.
- A parametrized curve β : [0,1] → ℝ^d is a continuous map.
 A reparametrization γ : [0,1] → [0,1] is increasing continuous function: γ(0) = 0 and γ(1) = 1.
- ► Two parametrized curves β₁, β₂ are equivalent if and only if there exist two reparametrizations γ₁, γ₂ : β₁ ∘ γ₁ = β₂ ∘ γ₂.
- An unparametrized curve, noted C := C_β, is defined as the equivalence class of β up to the above equivalence relation.
 The space of unparametrized curves is then defined as

$$\mathfrak{B} = \{ \mathcal{C}_{\beta} : \beta \in \mathcal{C}([0,1],\mathbb{R}^d) \}.$$

We endow B with the Fréchet metric:

 $d_{\mathfrak{B}}\left(\mathcal{C}_{1},\mathcal{C}_{2}\right)=\inf\left\{\|\beta_{1}-\beta_{2}\|_{\infty},\beta_{1}\in\mathcal{C}_{1},\ \beta_{2}\in\mathcal{C}_{2}\right\},\quad\mathcal{C}_{1},\mathcal{C}_{2}\in\mathfrak{B}\,.$

▶ Let C be an unparameterized curve. The *length of* C:

$$\mathcal{L}(\mathcal{C}) = \sup_{\tau} \left\{ \sum_{i=1}^{N} |\beta(\tau_i) - \beta(\tau_{i-1})|_2 : \tau \text{ is a partition of } [0,1]
ight\},$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

for all $\beta \in \mathcal{C}$.

▶ Let C be an unparameterized curve. The *length of* C:

$$\mathcal{L}(\mathcal{C}) = \sup_{\tau} \left\{ \sum_{i=1}^{N} |\beta(\tau_i) - \beta(\tau_{i-1})|_2 : \tau \text{ is a partition of } [0,1]
ight\},$$

for all $\beta \in \mathcal{C}$.

An unparametrized curve C is called *rectifiable* if L(C) is finite. The length L : 𝔅 → ℝ + ∪{∞} is measurable:

$$\mathcal{P} = \Big\{ P \text{ prob. measure on } (\mathfrak{B}, d_{\mathfrak{B}}) \ : \ P(\{\mathcal{C} \in \mathfrak{B}; 0 < L(\mathcal{C}) < \infty\}) = 1 \Big\}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

▶ Let C be an unparameterized curve. The *length of* C:

$$\mathcal{L}(\mathcal{C}) = \sup_{\tau} \left\{ \sum_{i=1}^{N} |\beta(\tau_i) - \beta(\tau_{i-1})|_2 : \tau \text{ is a partition of } [0,1]
ight\},$$

for all $\beta \in \mathcal{C}$.

An unparametrized curve C is called *rectifiable* if L(C) is finite. The length L : 𝔅 → ℝ + ∪{∞} is measurable:

$$\mathcal{P} = \Big\{ P \text{ prob. measure on } (\mathfrak{B}, d_{\mathfrak{B}}) \ : \ P(\{\mathcal{C} \in \mathfrak{B}; 0 < L(\mathcal{C}) < \infty\}) = 1 \Big\}.$$

• Let \mathcal{X} be a random element of \mathfrak{B} stemming from distribution $P \in \mathcal{P}$.

▶ Let C be an unparameterized curve. The *length of* C:

$$L(\mathcal{C}) = \sup_{\tau} \left\{ \sum_{i=1}^{N} |\beta(\tau_i) - \beta(\tau_{i-1})|_2 : \tau \text{ is a partition of } [0,1] \right\},$$

for all $\beta \in \mathcal{C}$.

An unparametrized curve C is called *rectifiable* if L(C) is finite. The length L : 𝔅 → ℝ + ∪{∞} is measurable:

$$\mathcal{P} = \Big\{ P \text{ prob. measure on } (\mathfrak{B}, d_{\mathfrak{B}}) \ : \ P(\{\mathcal{C} \in \mathfrak{B}; 0 < L(\mathcal{C}) < \infty\}) = 1 \Big\}.$$

- Let \mathcal{X} be a random element of \mathfrak{B} stemming from distribution $P \in \mathcal{P}$.
- We derive the probability distribution Q_P on ℝ^d as follows: if X ~ Q_P, then distribution of X | X = C is the (uniform on C) probability distribution μ_C:

$$\mu_{\mathcal{C}}(A) = \int_{\mathcal{C}} \mathbb{1}_{A}(x) dx.$$

The statistical model:

$$\mathcal{X}_1, \ldots, \mathcal{X}_n$$
 i.i.d. from *P*.

For Monte-Carlo estimation, we can consider the following **sampling scheme**:

$$\begin{cases} \mathcal{X}_1, \dots, \mathcal{X}_n \text{ i.i.d. from } P, \\ \text{for all } i = 1, \dots, n \\ X_{i,1}, \dots, X_{i,m} \text{ i.i.d. from } \mu_{\mathcal{X}_i}. \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Data depth for an unparametrized curve

Definition

The **Tukey curve depth** of $C \in \mathfrak{B}$ w.r.t. Q_P is defined as:

$$D(\mathcal{C}|Q_P) = \int_{\mathcal{C}} D(\mathbf{x}|Q_P, \mu_{\mathcal{C}}) d\mu_{\mathcal{C}}(\mathbf{x}),$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Data depth for an unparametrized curve

Definition

The **Tukey curve depth** of $C \in \mathfrak{B}$ w.r.t. Q_P is defined as:

$$D(\mathcal{C}|Q_P) = \int_{\mathcal{C}} D(\mathbf{x}|Q_P, \mu_{\mathcal{C}}) d\mu_{\mathcal{C}}(\mathbf{x}),$$

where the depth $D(\mathbf{x}|Q_P, \mu_C)$ of an arbitrary point $\mathbf{x} \in C$ w.r.t. the distribution Q_P is defined as:

$$D(\boldsymbol{x}|Q_P,\mu_{\mathcal{C}}) = \inf \{ \frac{Q_P(H)}{\mu_{\mathcal{C}}(H)} : H \text{ closed half-space} \subset \mathbb{R}^d, \boldsymbol{x} \in \partial H \},\$$

where convention $\frac{0}{0} = 0$ is adopted.
Data depth for an unparametrized curve

Definition

The **Tukey curve depth** of $C \in \mathfrak{B}$ w.r.t. Q_P is defined as:

$$D(\mathcal{C}|Q_P) = \int_{\mathcal{C}} D(\boldsymbol{x}|Q_P, \mu_{\mathcal{C}}) d\mu_{\mathcal{C}}(\boldsymbol{x}),$$

where the depth $D(\mathbf{x}|Q_P, \mu_C)$ of an arbitrary point $\mathbf{x} \in C$ w.r.t. the distribution Q_P is defined as:

$$D(\boldsymbol{x}|Q_{P},\mu_{\mathcal{C}}) = \inf \{ \frac{Q_{P}(H)}{\mu_{\mathcal{C}}(H)} : H \text{ closed half-space} \subset \mathbb{R}^{d}, \boldsymbol{x} \in \partial H \},\$$

where convention $\frac{0}{0} = 0$ is adopted.

Definition

The sample Tukey curve depth of $C \in \mathfrak{B}$ w.r.t. $\mathcal{X}_1, ..., \mathcal{X}_n$ is:

$$D(\mathcal{C}|\mathcal{X}_1,\ldots,\mathcal{X}_n) = \int_{\mathcal{C}} D(\mathbf{x}|Q_n,\mu_{\mathcal{C}})d\mu_{\mathcal{C}}(\mathbf{x}),$$

Data depth for an unparametrized curve

Definition

The **Tukey curve depth** of $C \in \mathfrak{B}$ w.r.t. Q_P is defined as:

$$D(\mathcal{C}|Q_P) = \int_{\mathcal{C}} D(\boldsymbol{x}|Q_P, \mu_{\mathcal{C}}) d\mu_{\mathcal{C}}(\boldsymbol{x}),$$

where the depth $D(\mathbf{x}|Q_P, \mu_C)$ of an arbitrary point $\mathbf{x} \in C$ w.r.t. the distribution Q_P is defined as:

$$D(\boldsymbol{x}|Q_{P},\mu_{\mathcal{C}}) = \inf \{ \frac{Q_{P}(H)}{\mu_{\mathcal{C}}(H)} : H \text{ closed half-space} \subset \mathbb{R}^{d}, \boldsymbol{x} \in \partial H \},\$$

where convention $\frac{0}{0} = 0$ is adopted.

Definition

The sample Tukey curve depth of $C \in \mathfrak{B}$ w.r.t. $\mathcal{X}_1, ..., \mathcal{X}_n$ is:

$$D(\mathcal{C}|\mathcal{X}_1,\ldots,\mathcal{X}_n) = \int_{\mathcal{C}} D(\mathbf{x}|Q_n,\mu_{\mathcal{C}})d\mu_{\mathcal{C}}(\mathbf{x}),$$

くしゃ (雪) (雪) (雪) (雪) (雪) (雪) (

where $Q_n = (\mu_{\chi_1} + \cdots + \mu_{\chi_n})/n$.

Data depth for an unparametrized curve: intuition

・ロト ・聞ト ・ヨト ・ヨト

- 2

Data depth for an unparametrized curve: intuition

Traditional reasoning: $\widehat{Q}_{P}(H_{u_{1}}^{x_{1}}) = \frac{25}{40}, \ \widehat{\mu}_{\mathcal{C}}(H_{u_{1}}^{x_{1}}) = \frac{4}{8}$ $\widehat{Q}_{P}(H_{-u_{1}}^{x_{1}}) = \frac{15}{40}, \ \widehat{\mu}_{\mathcal{C}}(H_{-u_{1}}^{x_{1}}) = \frac{4}{8}$

Curve-based reasoning: $\widehat{Q}_{P}(H_{\nu_{2}}^{x_{2}}) = \frac{25}{40}, \ \widehat{\mu}_{C}(H_{\nu_{2}}^{x_{2}}) = \frac{6}{8}$ $\widehat{Q}_{P}(H_{-\nu_{2}}^{x_{2}}) = \frac{15}{40}, \ \widehat{\mu}_{C}(H_{-\nu_{2}}^{x_{2}}) = \frac{2}{8}$

Data depth for an unparametrized curve: intuition

Traditional reasoning: $\widehat{Q}_{P}(H_{u_{1}}^{x_{1}}) = \frac{25}{40}, \ \widehat{\mu}_{\mathcal{C}}(H_{u_{1}}^{x_{1}}) = \frac{4}{8}$ $\widehat{Q}_{P}(H_{-u_{1}}^{x_{1}}) = \frac{15}{40}, \ \widehat{\mu}_{\mathcal{C}}(H_{-u_{1}}^{x_{1}}) = \frac{4}{8}$ Curve-based reasoning: $\widehat{Q}_{P}(H_{u_{2}}^{x_{2}}) = \frac{25}{40}, \ \widehat{\mu}_{C}(H_{u_{2}}^{x_{2}}) = \frac{6}{8}$ $\widehat{Q}_{P}(H_{-u_{2}}^{x_{2}}) = \frac{15}{40}, \ \widehat{\mu}_{C}(H_{-u_{2}}^{x_{2}}) = \frac{2}{8}$

▶ Let a chosen curve consist of two (independently drawn on C) parts 𝒱_{1,m} = (Y_{1,1},...,Y_{1,m}) and 𝒱_{2,m} = (Y_{2,1},...,Y_{2,m}) with empirical distribution

$$\widehat{\mu}_m = \frac{1}{m} \sum_{i=1}^m \delta_{\mathbf{Y}_{1,i}} \,,$$

where $\delta_{\mathbf{x}}$ is the Dirac measure in $\mathbf{x} \in \mathbb{R}^d$.

Let a chosen curve consist of two (independently drawn on C) parts 𝒱_{1,m} = (Y_{1,1},...,Y_{1,m}) and 𝒱_{2,m} = (Y_{2,1},...,Y_{2,m}) with empirical distribution

$$\widehat{\mu}_m = \frac{1}{m} \sum_{i=1}^m \delta_{\mathbf{Y}_{1,i}} \,,$$

where $\delta_{\mathbf{x}}$ is the Dirac measure in $\mathbf{x} \in \mathbb{R}^d$.

Let Q̂_{n,m} be the empirical distribution (observed sample) 𝕂_{n,m} = {𝑋_{i,j}, i = 1, ..., n, j = 1, ..., m}

$$\widehat{Q}_{n,m} = \frac{1}{nm} \sum_{i=1}^{n} \sum_{j=1}^{m} \delta_{X_{i,j}}.$$

▶ Let a chosen curve consist of two (independently drawn on C) parts 𝒱_{1,m} = (Y_{1,1},...,Y_{1,m}) and 𝒱_{2,m} = (Y_{2,1},...,Y_{2,m}) with empirical distribution

$$\widehat{\mu}_m = \frac{1}{m} \sum_{i=1}^m \delta_{\mathsf{Y}_{1,i}} \,,$$

where $\delta_{\mathbf{x}}$ is the Dirac measure in $\mathbf{x} \in \mathbb{R}^d$.

▶ Let $\widehat{Q}_{n,m}$ be the empirical distribution (observed sample) $X_{n,m} = \{X_{i,j}, i = 1, ..., n, j = 1, ..., m\}$

$$\widehat{Q}_{n,m} = \frac{1}{nm} \sum_{i=1}^{n} \sum_{j=1}^{m} \delta_{X_{i,j}}.$$

 To compute the sample Tukey curve depth, a Monte Carlo approximation is used.

▶ Let *H* be a closed halfspace in \mathbb{R}^d and $\mathcal{H}^{n,m}_{\Delta}$ denote a collection of such halfspaces such that for all $H \in \mathcal{H}^{n,m}_{\Delta}$ either $\widehat{Q}_{n,m}(H) = 0$ or $\widehat{\mu}_m(H) > \Delta$, almost surely, for $\Delta \in (0, \frac{1}{2})$.

Let H be a closed halfspace in ℝ^d and H^{n,m}_Δ denote a collection of such halfspaces such that for all H ∈ H^{n,m}_Δ either Q̂_{n,m}(H) = 0 or µ̂_m(H) > Δ, almost surely, for Δ ∈ (0, ½).

Definition

The **Monte Carlo approximation** of the **Tukey curve depth** of C w.r.t. $\mathcal{X}_1, ..., \mathcal{X}_n$ is defined as:

$$\widehat{D}_{n,m,\Delta}(\mathcal{C}|\mathcal{X}_1,...,\mathcal{X}_n) = \frac{1}{m} \sum_{i=1}^m \widehat{D}(Y_{2,i}|\widehat{Q}_{n,m},\widehat{\mu}_m,\mathcal{H}^{n,m}_{\Delta}),$$

Let H be a closed halfspace in ℝ^d and H^{n,m}_Δ denote a collection of such halfspaces such that for all H ∈ H^{n,m}_Δ either Q̂_{n,m}(H) = 0 or µ̂_m(H) > Δ, almost surely, for Δ ∈ (0, ½).

Definition

The **Monte Carlo approximation** of the **Tukey curve depth** of C w.r.t. $\mathcal{X}_1, ..., \mathcal{X}_n$ is defined as:

$$\widehat{D}_{n,m,\Delta}(\mathcal{C}|\mathcal{X}_1,...,\mathcal{X}_n) = \frac{1}{m} \sum_{i=1}^m \widehat{D}(Y_{2,i}|\widehat{Q}_{n,m},\widehat{\mu}_m,\mathcal{H}_{\Delta}^{n,m}),$$

with the depth of an arbitrary point $\boldsymbol{x} \in \mathbb{R}^d$ w.r.t. $\widehat{Q}_{n,m}$ being:

$$\widehat{D}(\boldsymbol{x}|\widehat{Q}_{n,m},\widehat{\mu}_m,\mathcal{H}^{n,m}_{\Delta}) = \inf\{\frac{\widehat{Q}_{n,m}(H)}{\widehat{\mu}_m(H)} : H \in \mathcal{H}^{n,m}_{\Delta}, \, \boldsymbol{x} \in \partial H\}$$

and $\frac{0}{0} = 0$ as before.

Contents

Anomaly detection in functional framework

Functional isolation forest

The method FIF parameters Real data benchmarking Extension of FIF: Connection to data depth

Data depth: the integrated approach

Depth for curve data

Motivation Methodology Computation and properties Illustrations

Practical session

イロト イ理ト イヨト イヨト

æ

イロト イ団ト イヨト イヨト 二日

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Theorem

Let $C \in \mathfrak{B}$ be a rectifiable curve, and let P be a probability measure in the space of curves such that $P \in \mathcal{P}$. Let (Δ_m) be a decreasing sequence of positive numbers such that (Δ_m) and $(\sqrt{\frac{\log(m)}{m}}/\Delta_m^2)$ converges to zero when $m \to \infty$.

Theorem

Let $C \in \mathfrak{B}$ be a rectifiable curve, and let P be a probability measure in the space of curves such that $P \in \mathcal{P}$. Let (Δ_m) be a decreasing sequence of positive numbers such that (Δ_m) and $(\sqrt{\frac{\log(m)}{m}}/\Delta_m^2)$ converges to zero when $m \to \infty$.

Then:

the Monte Carlo approximation D
_{n,m,∆m}(C|X₁,...,X_n) converges in probability to D(C|X₁,...,X_n) as m→∞;

Theorem

Let $C \in \mathfrak{B}$ be a rectifiable curve, and let P be a probability measure in the space of curves such that $P \in \mathcal{P}$. Let (Δ_m) be a decreasing sequence of positive numbers such that (Δ_m) and $(\sqrt{\frac{\log(m)}{m}}/\Delta_m^2)$ converges to zero when $m \to \infty$.

Then:

- the Monte Carlo approximation D
 _{n,m,Δm}(C|X₁,...,X_n) converges in probability to D(C|X₁,...,X_n) as m→∞;
- the Monte Carlo approximation D
 _{n,m,Δm}(C|X₁,...,X_n) converges in probability to D(C|P) as m, n → ∞;

Theorem

Let $C \in \mathfrak{B}$ be a rectifiable curve, and let P be a probability measure in the space of curves such that $P \in \mathcal{P}$. Let (Δ_m) be a decreasing sequence of positive numbers such that (Δ_m) and $(\sqrt{\frac{\log(m)}{m}}/\Delta_m^2)$ converges to zero when $m \to \infty$.

Then:

- the Monte Carlo approximation D
 _{n,m,Δm}(C|X₁,...,X_n) converges in probability to D(C|X₁,...,X_n) as m→∞;
- the Monte Carlo approximation D
 _{n,m,Δm}(C|X₁,...,X_n) converges in probability to D(C|P) as m, n → ∞;
- the sample Tukey curve depth D(C|X₁,...,X_n) converges in probability to D(C|P) as n → ∞.

Data depth for an unparametrized curve: properties

Restrict to \mathfrak{B}_{ℓ} , the subset of unparametrized curves of positive length bounded by $\ell > 0$. Then the Tukey curve depth satisfies the following properties:

Nonnegativity and boundedness by one:

 $D(\mathcal{C}|Q_P) \in [0,1].$

Data depth for an unparametrized curve: properties

Restrict to \mathfrak{B}_{ℓ} , the subset of unparametrized curves of positive length bounded by $\ell > 0$. Then the Tukey curve depth satisfies the following properties:

Nonnegativity and boundedness by one:

 $D(\mathcal{C}|Q_P) \in [0,1].$

Similarity invariance: Let f : ℝ^d → ℝ^d f be a similarity, i.e. there exists an orthogonal matrix A, a factor r > 0 and a vector b ∈ ℝ^d such that for all x ∈ ℝ^d, f(x) = rAx + b. In particular for all x and y in ℝ^d, |f(x) - f(y)|₂ = r|x - y|₂. Denote by P_f the distribution of the image through f of a stochastic process having a distribution P. Then

 $D(f \circ \mathcal{C}|Q_{P_f}) = D(\mathcal{C}|Q_P).$

Data depth for an unparametrized curve: properties

Restrict to \mathfrak{B}_{ℓ} , the subset of unparametrized curves of positive length bounded by $\ell > 0$. Then the Tukey curve depth satisfies the following properties:

Nonnegativity and boundedness by one:

 $D(\mathcal{C}|Q_P) \in [0,1].$

Similarity invariance: Let f : ℝ^d → ℝ^d f be a similarity, i.e. there exists an orthogonal matrix A, a factor r > 0 and a vector b ∈ ℝ^d such that for all x ∈ ℝ^d, f(x) = rAx + b. In particular for all x and y in ℝ^d, |f(x) - f(y)|₂ = r|x - y|₂. Denote by P_f the distribution of the image through f of a stochastic process having a distribution P. Then

$$D(f \circ \mathcal{C}|Q_{P_f}) = D(\mathcal{C}|Q_P).$$

Vanishing at infinity:

$$\lim_{d_{\mathbb{G}}(\mathcal{C},\mathbf{0})\to\infty,\mathcal{C}\in\mathfrak{B}_{\ell}}D(\mathcal{C},Q_{P})=\inf_{\mathcal{C}\in\mathfrak{B}_{\ell}}D(\mathcal{C},Q_{P})=0.$$

Contents

Anomaly detection in functional framework

Functional isolation forest

The method FIF parameters Real data benchmarking Extension of FIF: Connection to data depth

Data depth: the integrated approach

Depth for curve data

Motivation Methodology Computation and properties Illustrations

Practical session

Binary supervised classification: MNIST ("0" vs "1")

Some examples:

Given: training sample $S_0 = \{C_1, ..., C_m\}$ stemming from P_0 and $S_1 = \{C_{m+1}, ..., C_{m+n}\}$ stemming from P_1 in \mathfrak{B} .

Find: classifier $g : \mathfrak{B} \to \{0,1\}$ best separating P_0 and P_1 .

 $\mathbf{Z} = \{\mathbf{z}_i : \mathbf{z}_i = (D(\mathcal{C}_i | Q_{P_0}), D(\mathcal{C}_i | Q_{P_1})), i = 1, ..., m + n\}.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\mathbf{Z} = \{\mathbf{z}_i : \mathbf{z}_i = (D(C_i | Q_{P_0}), D(C_i | Q_{P_1})), i = 1, ..., m + n\}.$$

ロ ト メ 母 ト メ 臣 ト メ 臣 ト ノ 臣 - つ へ ()

$$\mathbf{Z} = \{\mathbf{z}_i : \mathbf{z}_i = (D(C_i | Q_{P_0}), D(C_i | Q_{P_1})), i = 1, ..., m + n\}.$$

Depth w.r.t. '0'

▲ロ ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣 ─ のへの

$$\mathbf{Z} = \{\mathbf{z}_i : \mathbf{z}_i = (D(C_i | Q_{P_0}), D(C_i | Q_{P_1})), i = 1, ..., m + n\}.$$

Depth w.r.t. '0'

▲ロト ▲圖 ト ▲ 画 ト ▲ 画 ト の Q ()

Unsupervised classification: MNIST ("0", "1", and "7")

Some examples:

Task: Find reasonable grouping with data depth (Jörnsten '04).

Unsupervised classification: MNIST ("0", "1", and "7") Depth-based clustering (Jörnsten '04):

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Unsupervised classification: MNIST ("0", "1", and "7") Depth-based clustering (Jörnsten '04):

Let {C₁,..., C_{∑_j n_j}} be the observed sample and let I_j, j = 1, ..., J denote the corresponding partitioning into J clusters (indices of observations belonging to each cluster j) with ∪_jI_j = {1,..., ∑_j n_j} and I_{j1} ∩ I_{j2} = Ø for all j₁ ≠ j₂.
Unsupervised classification: MNIST ("0", "1", and "7") Depth-based clustering (Jörnsten '04):

- Let {C₁,...,C_{∑_jn_j} be the observed sample and let I_j, j = 1,..., J denote the corresponding partitioning into J clusters (indices of observations belonging to each cluster j) with ∪_jI_j = {1,...,∑_jn_j} and I_{j1} ∩ I_{j2} = Ø for all j₁ ≠ j₂.}
- Define the silhouette width of an observation *i* belonging to cluster *j* as

$$Sil_{i}^{j} = rac{ar{d}_{i}^{-j} - ar{d}_{i}^{j}}{\max\{ar{d}_{i}^{-j} \,,\,ar{d}_{i}^{j}\}}\,,$$

where $\bar{d}_i^j = \frac{1}{\# l_j - 1} \sum_{i' \in l_j, i' \neq i} d_{\mathfrak{B}}(\mathcal{C}_i, \mathcal{C}_{i'})$ and $\bar{d}_i^{-j} \in \operatorname{argmin}_{j' \neq j} \frac{1}{\# l_{j'}} \sum_{i' \in l_{j'}} d_{\mathfrak{B}}(\mathcal{C}_i, \mathcal{C}_{i'})$ are average distances to the observations in its own cluster and in the closest among foreign clusters respectively.

くしゃ (雪) (雪) (雪) (雪) (雪) (雪) (

Unsupervised classification: MNIST ("0", "1", and "7") Depth-based clustering (Jörnsten '04):

- Let {C₁,...,C_{∑_jn_j} be the observed sample and let I_j, j = 1,..., J denote the corresponding partitioning into J clusters (indices of observations belonging to each cluster j) with ∪_jI_j = {1,...,∑_jn_j} and I_{j1} ∩ I_{j2} = Ø for all j₁ ≠ j₂.}
- Define the silhouette width of an observation *i* belonging to cluster *j* as

$$Sil_{i}^{j} = rac{ar{d}_{i}^{-j} - ar{d}_{i}^{j}}{\max\{ar{d}_{i}^{-j} \,,\,ar{d}_{i}^{j}\}}\,,$$

where $\bar{d}_i^j = \frac{1}{\# l_j - 1} \sum_{i' \in l_j, i' \neq i} d_{\mathfrak{B}}(\mathcal{C}_i, \mathcal{C}_{i'})$ and $\bar{d}_i^{-j} \in \operatorname{argmin}_{j' \neq j} \frac{1}{\# l_{j'}} \sum_{i' \in l_{j'}} d_{\mathfrak{B}}(\mathcal{C}_i, \mathcal{C}_{i'})$ are average distances to the observations in its own cluster and in the closest among foreign clusters respectively.

► The **relative depth** is defined as $ReD_i^j = D(C_i | \{C_{i'}\}_{i' \in I_j}) - \max_{j' \neq j} D(C_i | \{C_{i'}\}_{i' \in I_{j'}}).$ Unsupervised classification: MNIST ("0", "1", and "7")

Clustering criterion:

$$C(\{I_j\}_1^J) = \frac{1}{\sum_j n_j} \sum_{j=1}^J \sum_{i \in I_j} c_i(\{I_j\}_1^J),$$

with the observation-wise clustering criterion:

$$c_i(\{I_j\}_1^J) = (1-\lambda)SiI_i^j + \lambda ReD_i^j.$$

Index i

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Comparison with functional depth: Example 1

Simulated S letters: depth-induced ranking

MFHD – time

mSBD - time

MFHD - length

mSBD - length

Comparison with functional depth: Example 2

Simulated hurricane tracks: curve boxplot

MFHD – time

MFHD - length

Curve depth

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

mSBD - time

mSBD – length

Comparison with functional depth: Anomaly detection 1

Data set 1 with introduced anomalies:

Ordered depth values:

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Comparison with functional depth: Anomaly detection 2

Data set 2 with introduced anomalies:

Ordered depth values:

◆□ > ◆□ > ◆三 > ◆三 > 三 - シッペ

Contents

Anomaly detection in functional framework

Functional isolation forest

The method FIF parameters Real data benchmarking Extension of FIF: Connection to data depth

Data depth: the integrated approach

Depth for curve data Motivation Methodology Computation and proper

Illustrations

Practical session

Thank you for attention! (and a short list of literature)

- Chandola, V., Banerjee, A., and Kumar, V. (2009). Anomaly detection: A survey. ACM *Computing Surveys (CSUR)*, 41(3):15, 1–58.
- Breunig, M.M., Kriegel, H.-P., Ng, R.T., and Sander, J. (2000). LOF: Identifying density-based local outliers. In: *Proceedings of the* 2000 ACM SIGMOD International Conference on Management of Data, 29, 93–104.
- Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A., and Williamson, R. (2001). Estimating the support of a high-dimensional distribution. *Neural Computation*, 13(7), 1443–1471.
- Liu, F.T., Ting, K.M., and Zhou, Z. (2008). Isolation forest. In: Proceedings of the 2008 Eighth IEEE International Conference on Data Mining, 413–422.
- Mosler, K. (2013). Depth statistics. In: Robustness and Complex Data Structures: Festschrift in Honour of Ursula Gather, 17-34.
- Hubert, M., Rousseeuw, P.J., and Segaert, P. (2015). Multivariate functional outlier detection. *Statistical Methods & Applications*, 24(2), 177-202.

Practical session (part II)

Notebooks:

- anomdet_simulation1.Rmd,
- anomdet_hurricanes.Rmd,
- anomdet_brainimaging.Rmd,
- anomdet_cars.ipynb,
- anomdet_airbus.ipynb.

Data sets:

- ► carsanom.csv: Data set on anomaly detection for cars.
- airbus_data.csv: Data set from Airbus.
- hurdat2-1851-2019-052520.txt: Historical hurricane data.
- 101_1_dwi_fa.nii: Anatomical brain volume data.
- 101_1_dwi.voxelcoordsL.txt: Left brain fiber's bundle.
- ► 101_1_dwi.voxelcoordsR.txt: Right brain fiber's bundle. Supplementary scripts:
 - depth_routines.py: Routines for data depth calculation.
 - ▶ FIF.py: Implementation of the functional isolation forest.
 - depth_routines.R: Routines for curves' parametrization.

Literature (mentioned in the tutorial) (1)

- Boser, B.E., Guyon, I., and Vapnik, V.N. (1992). A training algorithm for optimal margin classifiers. In: *Proceedings of the Fifth Annual Workshop* of Computational Learning Theory, Pittsburgh, ACM, 5, 144–152.
- Breunig, M.M., Kriegel, H.-P., Ng, R.T., and Sander, J. (2000). LOF: Identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, 29, 93–104.
- Chandola, V., Banerjee, A., and Kumar, V. (2009). Anomaly detection: A survey. ACM Computing Surveys (CSUR), 41(3):15, 1–58.
- Chaudhuri P. (1996). On a geometric notion of quantiles for multivariate data. Journal of the American Statistical Association, 91, 862–872.
- Claeskens, G., Hubert, M., Slaets, L., and Vakili, K. (2014). Multivariate functional halfspace depth. *Journal of the American Statistical Association*, 109(505), 411-423.
- Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273–297.
- Donoho D. (1982). Breakdown Properties of Multivariate Location Estimators. Ph.D. thesis, Harvard University.
- Donoho D.L., Gasko M. (1992). Breakdown properties of location estimates based on halfspace depth and projected outlyingness. The Annals of Statistics, 20, 1803–1827.

Literature (mentioned in the tutorial) (2)

- Fraiman, R. and Muniz, G. (2001). Trimmed means for functional data. TEST, 10, 419-440.
- Hariri, S., Carrasco Kind, M., and Brunner, R.J. (2018). Extended isolation forest. arXiv:1811.02141.
- Hubert, M., Rousseeuw, P.J., and Segaert, P. (2015). Multivariate functional outlier detection. *Statistical Methods & Applications*, 24(2), 177-202.
- Koltchinskii V. (1997). M-estimation, convexity and quantiles. The Annals of Statistics, 25, 435–477.
- Koshevoy G., Mosler K. (1997). Zonoid trimming for multivariate distributions. The Annals of Statistics, 25, 1998–2017.
- Liu R.Y. (1990). On a notion of data depth based on random simplices. The Annals of Statistics, 18, 405–414.
- Liu, Z. and Modarres, R. (2011). Lens data depth and median. Journal of Nonparametric Statistics, 23, 1063–1074.
- Liu, F.T., Ting, K.M., and Zhou, Z. (2008). Isolation forest. In: Proceedings of the 2008 Eighth IEEE International Conference on Data Mining, 413–422.

Literature (mentioned in the tutorial) (3)

- López-Pintado, S. and Romo, J. (2009). On the concept of depth for functional data. *Journal of the American Statistical Association*, 104(486), 718–734.
- Mahalanobis P.C. (1936). On the generalized distance in statistics. Proceedings of the National Institute of Sciences of India, 12, 49–55.
- Markou, M. and Singh, S. (2003). Novelty detection: a review Part 1: Statistical approaches. Signal Processing, 83(12), 2481–2497.
- Markou, M. and Singh, S. (2003). Novelty detection: a review Part 2: Neural network based approaches. *Signal Processing*, 83(12), 2499–2521.
- Miljković, D. (2010). Review of novelty detection methods. The 33rd International Convention MIPRO, Opatija, 593–598.
- Mosler, K. (2013). Depth statistics. In: Robustness and Complex Data Structures: Festschrift in Honour of Ursula Gather, 17-34.
- Oja, H. (1983). Descriptive statistics for multivariate distributions. Statistics and Probability Letters, 1, 327–332.
- Pimentel, M.A.F., Clifton, D.A., Clifton, L., and Tarassenko, L. (2014). A review of novelty detection. Signal Processing, 99, 215–249.
- Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A., and Williamson, R. (2001). Estimating the support of a high-dimensional distribution. *Neural Computation*, 13(7), 1443–1471.

Literature (mentioned in the tutorial) (4)

- Serfling, R. (2002). A depth function and a scale curve based on spatial quantiles. In: Statistical Data Analysis Based on the L₁-Norm and Related Methodsm Birkhäser, Basel, 25-38.
- Stahel W. (1981). Robust Estimation: Infinitesimal Optimality and Covariance Matrix Estimators (In German). Ph.D. thesis, Swiss Federal Institute of Technology in Zurich.
- Tukey J.W. (1975). Mathematics and the picturing of data. In: Proceedings of the International Congress of Mathematicians, volume 2, Canadian Mathematical Congress, 523–531.
- Vapnik, V. and Chervonenkis, A. (1974). Theory of Pattern Recognition (in Russian). Nauka, Moscow.
- Vapnik, V. and Lerner, A. (1963). Pattern recognition using generalized portraits. Avtomatika i Telemekhanika, 24, 774–780.
- Vardi Y., Zhang C. (2000). The multivariate L₁-median and associated data depth. Proceedings of the National Academy of Sciences of the United States of America, 97, 1423–1426.
- Zuo Y., Serfling R. (2000). General notions of statistical depth function. The Annals of Statistics, 28, 461–482.