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Foreword

Time series analysis is widespread in various applications ranging from engi-
neering sciences to social sciences such as econometrics, climatology, hydrol-
ogy, signal processing, Internet metrology, and so on. For this reason and
because many theoretical problems and practical issues remain unsolved,
it has become an important field of study in the domain of statistics and
probability.

The main goal of these lecture notes is to provide a solid introduction
to the basic principles of stochastic modeling, statistical inference and fore-
casting methods for time series. Essential references for students interested
in these topics are [3] and [9]. In these notes, we will mainly consider lin-
ear models. We will start by setting the general framework of stochastic
modelling in Chapter 1. We will focus on second order properties in Chap-
ter 2 and linear models in Chapter 3, with a detailed description of the
ARMA model. In Chapter 4, we will study the most widespread statistical
approaches for linear forecasting. Numerical algorithms for forecasting will
be derived in this context. Finally Chapter 6 contains the main results for
second order statistical inference of linear models. It includes a series of
results about the asymptotic behavior of standard estimators in time se-
ries. These results are more involved and can be omitted on a first reading,
especially if the standard results on the convergence of random variables
recalled in Appendix A are not well known to the reader. In the latter case,
we recommend to focus on Section 6.2.



Notation and conventions

Vectors of Cd are identified to d× 1 matrices.

The Hermitian norm of x ∈ Cd is denoted by |x|.

The transpose of matrix A is denoted by AT .

The conjugate transpose of matrix A is denoted by AH .

The set T is the quotient space R/(2πZ) (or any interval congruent to
[0, 2π)).

The variance of the random variable X is denoted by Var (X).

The variance-covariance matrix of the random vector X is denoted by
Cov(X).

The covariance matrix between the random vectors X and Y is denoted
by Cov (X,Y).

The Gaussian distribution with mean µ and covariance Q is denoted by
N (µ,Q).

X ∼ P means that the random variable X has distribution P

For a r.v. X on (Ω,F ,P), PX denotes the probability distribution of X,
PX = P ◦X−1.

(Xt)t∈Z ∼ WN(0, σ2) means that (Xt)t∈Z is a weak white noise with
variance σ2

(Xt)t∈Z ∼ IID(0, σ2) means that (Xt)t∈Z is a strong white noise with
(finite) variance σ2

(Xt)t∈T
iid∼ P means that (Xt)t∈T are independent variables with common

distribution P .

Given f : Rp → Rq differentiable, ∂f : Rp → Rp×q is the gradient of each
component of f stacked columnwise.

Pursuing with the former example, if f is twice differentiable, ∂∂T f :
Rp → ×Rp×Rp×q are the Hessian matrices conveniently stacked depend-
ing of the context.

Xn converges a.s., in probability or weakly to X is denoted by Xn
a.s.−→ X,

Xn
P−→ X or Xn =⇒ X, respectively.

The finite distributions of Xn converge weakly to that of X is denoted by

Xn
fidi
=⇒ X.



Chapter 1

Random processes

In this chapter, we introduce the basic foundations for stochastic modelling
of time series such as random processes, stationary processes, Gaussian pro-
cesses and finite distributions. We also provide some basic examples of real
life time series.

1.1 Introduction

A time series is a sequence of observations xt, each of them recorded at a time
t. The time index can be discrete, in which case we will take t ∈ N or Z or can
be continuous, t ∈ R, R+ or [0, 1]... Time series are encountered in various
domains of application such as medical measurements, telecommunications,
ecological data and econometrics. In some of these applications, spatial
indexing of the data may also be of interest. Although we shall not consider
this case in general, many aspects of the theory and tools introduced here
can be adapted to spatial data.

In this course, we consider the observations as the realized values of a
random process (Xt)t∈T as defined in Section 1.2. In other words, we will
use a stochastic modeling approach of the data. Here are some examples
which illustrate the various situations in which stochastic modelling of time
series are of primary interest.

Example 1.1.1 (Heartbeats). Figure 1.1 displays the heart rate of a resting
person over a period of 900 seconds. This rate is defined as the number of
heartbeats per unit of time. Here the unit is the minute and is evaluated
every 0.5 seconds.

Example 1.1.2 (Internet traffic). Figure 1.2 displays the inter-arrival times
of TCP packets, expressed in seconds, on the main link of Lawrence Liver-
more laboratory. This trace is obtained from a 2 hours record of the traffic
going through this link. Over this period around 1.3 millions of packets have
been recorded. Many traces are available on The Internet Traffic Archive,
http: // ita. ee. lbl. gov/ .

1

http://ita.ee.lbl.gov/
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Figure 1.1: Heartbeats: time evolution of the heart rate.
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Figure 1.2: Internet traffic trace : inter-arrival times of TCP packets.



1.2. RANDOM PROCESSES 3

Example 1.1.3 (Speech audio data). Figure 1.3 displays a speech audio
signal with a sampling frequency equal to 8000 Hz. This signal is a record
of the unvoiced fricative phoneme sh (as in sharp).

Figure 1.3: A record of the unvoiced fricative phoneme sh.

Example 1.1.4 (Meteorological data). Figure 1.4 displays the daily record
of the wind speed at the Kilkenny meteorological station.

Example 1.1.5 (Financial index). Figure 1.5 displays the daily open value
of the Standard and Poor 500 index. This index is computed as a weighted
average of the stock prices of 500 companies traded at the New York Stock
Exchange (NYSE) or NASDAQ. It is a widely used benchmark index which
provides a good summary of the U.S. economy.

1.2 Random processes

1.2.1 Definitions

In this section we consider a probability space (Ω,F ,P), an index set T and
a measurable space (X,X ), called the observation space.

Definition 1.2.1 (Random process). A random process defined on (Ω,F ,P),
indexed on T and valued in (X,X ) is a collection (Xt)t∈T of random variables
defined on (Ω,F ,P) and taking there values in (X,X ).

The index t can for instance correspond to a time index, in which case
(Xt)t∈T is a time series. When moreover T = Z or N, we say that it is a
discrete time process and when T = R or R+, it is a continuous time process.
In the following, we shall mainly focus on discrete time processes with T = Z.
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Figure 1.4: Daily record of the wind speed at Kilkenny (Ireland).
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1.2. RANDOM PROCESSES 5

Concerning the space (X,X ), we shall usually consider (R,B(R)) (where
B(R) denotes the Borel σ-field of R), in which case we have a real-valued
process, or (Rd,B(Rd)), in which case we have a vector-valued process, and
in particular (C,B(C)), in which case we have a complex-valued process.

It is important to note that a random process can be seen as an appli-
cation X : Ω × T → X, (ω, t) 7→ Xt(ω) such that, for each index t ∈ T , the
function ω 7→ Xt(ω) is measurable from (Ω,F) to (X,X ).

Definition 1.2.2 (Path). For each ω ∈ Ω, the T → X application t 7→ Xt(ω)
is called the path associated to the experiment ω.

1.2.2 Finite dimensional distributions

Given two measurable spaces (X1,X1) et (X2,X2), one defines the product
measurable space (X1×X2,X1⊗X2) where × denotes the Cartesian product
of sets and ⊗ the corresponding product for σ-field: X1⊗X2 is the smallest
σ-field containing the set class {A1 ×A2, A1 ∈ X1 : A2 ∈ X2}, which will be
written

X1 ⊗X2 = σ{A1 ×A2 : A1 ∈ X1, A2 ∈ X2} .

Since the set class {A1 × A2 : A1 ∈ X1, A2 ∈ X2} is stable under finite
intersections, a probability measure on X1 ⊗ X2 is uniquely defined by its
restriction to this class (see [6, Corollaire 6.1]).

Similarly one defines a finite product measurable space (X1×· · ·×Xn,X1⊗
· · · ⊗ Xn) from n measurable spaces (Xt,Xt), t ∈ T . We will also write
(
∏
t∈T Xt,

⊗
t∈T X ).

If T is infinite, this definition is extended by considering the σ-field
generated by the cylinders on the Cartesian product

∏
t∈T Xt defined as the

set of T -indexed sequences (xt)t∈T such that xt ∈ Xt for all t ∈ T . Let us
focus on the case where (Xt,Xt) = (X,X ) for all t ∈ T . Then XT =

∏
t∈T X

is the set of sequences (xt)t∈T such that xt ∈ X for all t ∈ T and

X⊗T = σ

{∏
t∈I

At × XT\I : I ∈ I,∀t ∈ I, At ∈ X

}
, (1.1)

where I denotes the set of finite subsets of T .
LetX = (Xt)t∈T be random process (Ω,F ,P) valued in (X,X ) and I ∈ I.

Let PI denotes the probability distribution of the random vector {Xt, t ∈ I},
that is, the image measure of P defined on (XI ,X⊗I) by

PI

(∏
t∈I

At

)
= P (Xt ∈ At, t ∈ I) , (1.2)

where At, t ∈ T are any sets of the σ-field X . The probability measure PI
is a finite dimensional distribution.
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Definition 1.2.3. We call finite dimensional distributions or fidi distribu-
tions of the process X the collection of probability measures (PI)I∈I .

The probability measure PI is sufficient to compute the probability of any
event of the form P(∩t∈I{Xt ∈ At}) where {At, t ∈ I} ⊂ X , or, equivalently,
to compute the expectation E

[∏
t∈I ft(Xt)

]
where for all t ∈ I, ft is a

non-negative measurable function.
Let ΠI denote the canonical projection of XT on XI ,

ΠI(x) = (xt)t∈I for all x = (xt)t∈T ∈ XT . (1.3)

If I = {s} with s ∈ T , we will denote

Πs(x) = Π{s}(x) = xs for all x = (xt)t∈T ∈ XT . (1.4)

The fidi distributions of a given process from a single probability measure
on (XT ,X⊗T ), called the law of the process in the sense of fidi distributions,
and defined as follows.

Definition 1.2.4 (Law of a random process on X⊗T ). Let X = (Xt)t∈T be
a random process defined on (Ω,F ,P) valued in (X,X ). The law in the sense
of fidi distributions is the image measure PX , that is, the unique probability
measure defined on (XT ,X⊗T ) that satisfies PX ◦ Π−1

I = PI for all I ∈ I,
i.e.

PX
(∏
t∈I

At × XT\I

)
= P (Xt ∈ At, t ∈ I)

for all (At)t∈I ∈ X I .

One can see PX as the law of a random variable valued in (XT ,X⊗T ).
We will always admit that the random process X = (Xt)t∈T can indeed

be constructed for a given “well chosen” distribution. One can in fact provide
a simple criterion on the collection (PI)I∈I to ensure that such a construction
is valid but it is not the object of this course to focus on this matter. We will
satisfy ourselves here with the following important example (whose existence
is admitted). All other examples will be constructed from them.

Example 1.2.1 (Independent processes). Let (νt)t∈T be a collection of prob-
ability measures on (X,X ). We say that X = (Xt)t∈T is an independent
process with marginals (νt)t∈T if (Xt)t∈T is a collection of independent ran-
dom variables and Xt ∼ νt for all t ∈ T . In that case, for all I ∈ I, we
have

νI =
⊗
t∈I

νt , (1.5)

where ⊗ denotes the tensor product of measures, that is,

νI

(∏
t∈T

At

)
=
∏
t∈T

νt(At) .
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We say that X = (Xt)t∈T is an i.i.d. (independent and identically dis-
tributed) process if moreover νt does not depend on t.

1.2.3 Gaussian processes

We now introduce an important class of random processes that can be seen
as an extension of Gaussian vectors to the infinite-dimensional case. Let us
recall first the definition of Gaussian random variables, univariate and then
multivariate. More details can be found in [6, Chapter 16].

Definition 1.2.5 (Gaussian variable). The real valued random variable X
is Gaussian if its characteristic function satisfies :

φX(u) = E
[
eiuX

]
= exp(iµu− σ2u2/2)

where µ ∈ R and σ ∈ R+.

One can show that E [X] = µ and Var (X) = σ2. If σ 6= 0, then X
admits a probability density function

p(x) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
. (1.6)

If σ = 0, then X = µ a.s. This definition can be extended to random
vectors as follows.

Definition 1.2.6 (Gaussian vector). A random vector [X1, . . . , Xn]T valued
in Rn is a Gaussian vector if any linear combination of X1, . . . , Xn is a
Gaussian variable.

Let µ denote the mean vector of [X1, . . . , Xn]T and Γ its covariance
matrix. Then, for all u ∈ Rn, the random variable Y =

∑n
k=1 ukXk = uTX

is Gaussian. It follows that its distribution is determined by its mean and
variance which can be expressed as

E [Y ] =

n∑
k=1

ukE [Xk] = uTµ and Var (Y ) =

n∑
j,k=1

ujuk Cov(Xj , Xk) = uTΓu

Thus, the characteristic function of [X1, . . . , Xn]T can be written using µ
and Γ as

φX(u) = E
[
exp(iuTX)

]
= E [exp(iY )] = exp

(
iuTµ− 1

2
uTΓu

)
(1.7)

Conversely, if a n-dimensional random vector X has a characteristic func-
tion of this form, we immediately obtain that X is a Gaussian vector from
the characteristic function of its scalar products. This property yields the
following proposition.
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Proposition 1.2.1. The probability distribution of an n-dimensional Gaus-
sian vector X is determined by its mean vector and covariance matrix Γ. We
will denote

X ∼ N (µ,Γ) .

Conversely, for all vector µ ∈ Rn and all non-negative symmetric matrix Γ,
the distribution X ∼ N (µ,Γ) is well defined.

Proof. The first part of the result follows directly from (1.7). It also yields
the following lemma.

Lemma 1.2.2. Let X ∼ N (µ,Γ) with µ ∈ Rn and Γ being a n × n non-
negative symmetric matrix. Then for all p × n matrix A and µ′ ∈ Rn, we
have µ′ +AX ∼ N (µ′ +Aµ,AΓAT ).

Let us now show the second (converse) part. First it holds for n = 1 as we
showed previously. The case where Γ is diagonal follows easily. Indeed, let
σ2
i , i = 1, . . . , n denote the diagonal entries of Γ and set µ = [µ1, . . . , µn]T .

Then takeX1, . . . ,Xn independent such thatXi ∼ N (µi, σ
2
i ) for i = 1, . . . , n.

We then get X ∼ N (µ,Γ) by writing its characteristic function. To conclude
the proof of Proposition 1.2.1, just observe that all non-negative symmetric
matrix Γ can be written as Γ = UΣUT with Σ diagonal with non-negative
entries and U orthogonal. Thus taking Y ∼ N (0,Σ) and setting X =
µ + UY , the above lemma implies that X ∼ N (µ,Γ), which concludes the
proof.

The following proposition is easy to get (see [6, Corollaire 16.1]).

Proposition 1.2.3. Let X ∼ N (µ,Γ) with µ ∈ Rn and Γ a n × n non-
negative symmetric matrix. Then X has independent components if and
only if Γ is diagonal.

Using the same path as in the proof of Proposition 1.2.1, i.e. by con-
sidering the cases where Γ is diagonal and using the diagionalization in an
orthogonal basis to get the general case, one gets the following result (see [6,
Corollaire 16.2]).

Proposition 1.2.4. Let X ∼ N (µ,Γ) with µ ∈ Rn and Γ a n × n non-
negative symmetric matrix. If Γ is full rank, the probability distribution of
X admits a density defined in Rn by

p(x) =
1

(2π)n/2
√

det(Γ)
exp

(
−1

2
(x− µ)TΓ−1(x− µ)

)
, x ∈ Rn .

If Γ’s rank r < n, that is, Γ has an n− r-dimensional null space, X be-
longs, with probability 1, to an r-dimensional affine subspace of Rn. Indeed,
there are r−n linearly independent vectors ai such that Cov(aTi X) = 0 and
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thus aTi X = aTi µ a.s. Obviously X does not admit a density function in this
case.

Having recalled the classical results on Gaussian vectors, we now intro-
duce the definition of Gaussian processes.

Definition 1.2.7 (Gaussian processes). A real-valued random process X =
(Xt)t∈T is called a Gaussian process if, for all finite set of indices I =
{t1, t2, · · · , tn}, [Xt1 , Xt2 , · · · , Xtn ]T is a Gaussian vector.

Thus a Gaussian vector [X1, . . . , Xn]T may itself be seen as a Gaussian
process (Xt)t∈{1,...,n}. This definition therefore has an interest in the case
where T has an infinite cardinality. According to (1.7), for all finite set
of indices I = {t1, t2, · · · , tn}, the finite distribution νI is the Gaussian
probability on Rn

νI
def
= N (µI ,ΓI) (1.8)

where µI = [µ(t1), . . . , µ(tn)]T , ΓI(m, k) = γ(tm, tk), and where we used
the mean function µ : t ∈ T 7→ µ(t) ∈ R and the covariance function
γ : (t, s) ∈ (T × T ) 7→ γ(t, s) ∈ R. Moreover, the matrix ΓI with entries,
with 1 ≤ m, k ≤ n, is a covariance matrix of a random vector of dimension
n. It is therefore nonnegative symmetric. Conversely, given a function
µ : t ∈ T 7→ m(t) ∈ R and a function γ : (t, s) ∈ (T × T ) 7→ γ(t, s) ∈ R such
that, we admit that there exists a Gaussian process having this functions as
mean and covariance functions as stated hereafter.

Theorem 1.2.5. Let T be any set of indices, µ a real valued function defined
on T and γ a real valued function defined on T ×T such that all restrictions
ΓI to the set I × I with I ⊆ T finite are nonnegative symmetric matrices.
Then one can define a probability space (Ω,F ,P) and a Gaussian process
(Xt)t∈T defined on this space with mean µ and covariance function γ, that
is such that, for all s, t ∈ T ,

µ(t) = E [Xt] and γ(s, t) = E [(Xs − µ(s))(Xt − µ(t))] .

As a consequence we can extend the usual notation N (µ, γ) as follows.

Definition 1.2.8 (Gaussian process fidi distributions). Let T be any index
set. Let µ be any real valued function on T and γ any real valued function
defined on T × T satisfying the condition of Theorem 1.2.5. We denote by
N (µ, γ) the law of the Gaussian process with mean µ and covariance γ in
the sense of fidi distributions.
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1.3 Strict stationarity of a random process in dis-
crete time

1.3.1 Definition

Stationarity plays a central role in stochastic modelling. We will distinguish
two versions of this property, strict stationarity which says that the distri-
bution of the random process is invariant by shifting the time origin and
a weak stationarity, which imposes that only the first and second moments
are invariant, with the additional assumption that these moments exist.

Definition 1.3.1 (Shift and backshift operators). Suppose that T = Z or
T = N. We denote by S and call the shift operator the mapping XT → XT

defined by
S(x) = (xt+1)t∈T for all x = (xt)t∈T ∈ XT .

For all τ ∈ T , we define Sτ by

Sτ (x) = (xt+τ )t∈T for all x = (xt)t∈T ∈ XT .

The operator B = S−1 is called the backshift operator.

Definition 1.3.2 (Strict stationarity). Set T = Z or T = N. A random
process (Xt)t∈T is strictly stationary if X and S ◦X have the same law, i.e.
PS ◦X = PX .

Since the law is characterized by fidi distributions, one has PS ◦X = PX
if and only if

PS ◦X ◦Π−1
I = PX ◦Π−1

I

for all finite subset I ∈ I. Now PS ◦X ◦Π−1
I = PX ◦ (ΠI ◦ S)−1 and ΠI ◦ S =

ΠI+1, where I + 1 = {t+ 1, t ∈ I}. We conclude that {Xt, t ∈ T} is strictly
stationary if and only if, for all finite set I ∈ I,

PI = PI+1 .

Also observe that the strict stationarity implies that X and Sτ ◦X has the
same law for all τ ∈ T and thus PI = PI+τ , where I + τ = {t+ τ, t ∈ I}.

Example 1.3.1 (I.i.d process). Let (Zt)t∈T be a sequence of independent
and identically distributed (i.i.d) with values in Rd. Then (Zt)t∈T is a
strictly stationary process , since, for all finite set I = {t1, < t2 < · · · < tn}
and all Borel set A1, . . . , An of Rd, we have

P(Zt1 ∈ A1, · · · , Ztn ∈ An) =

n∏
j=1

P(Z0 ∈ Aj) ,

which does not depend on t1, . . . , tn. Observe that, from Example 1.2.1, for
all probability ν on Rd, we can define a random process (Zt)t∈T which is
i.i.d. with marginal distribution ν, that is, such that Zt ∼ ν for all t ∈ T .
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1.3.2 Stationarity preserving transformations

In this section, we set T = Z, X = Cd et X = B(Cd) for some integer d ≥ 1.
Let us start with an illustrating example.

Example 1.3.2 (Moving transformation of an i.i.d. process). Let Z be an
i.i.d. process (see Example 1.3.1). Let k be an integer and g a measurable
function from Rk to R. One can check that the process (Xt)t∈Z defined by

Xt = g(Zt, Zt−1, · · · , Zt−k+1)

also is a stationary random process in the strict sense. On the other hand,
the obtained process is not i.i.d. in general since for k ≥ 1, Xt, Xt+1, . . . , Xt+k−1

are identically distributed but are in general dependent variables as they all
depend on the same random variables Zt. Nevertheless such a process is said
to be k-dependent because (Xs)s≤t and (Xs)s>t+k are independent for all t.

Observe that in this example, to derive the stationarity of X, it is not
necessary to use that Z is i.i.d., only that it is stationary. In fact, to check
stationarity, it is often convenient to reason directly on the laws of the
trajectories using the notion of filtering.

Definition 1.3.3. Let φ be a measurable function from (XT ,X⊗T ) to (YT ,Y⊗T )
and X = (Xt)t∈T be a process with values in (X,X ). A φ- filtering with in-
put X and output Y means that the random process Y = (Yt)t∈T is defined
as Y = φ ◦ X, or, equivalently, Yt = Πt(φ(X)) for all t ∈ T , where Πt is
defined in (1.4). Thus Y takes its values in (Y,Y). If φ is linear, we will
say that Y is obtained by linear filtering of X.

In Example 1.3.2, X is obtained by φ-filtering Z (non-linearly, unless g
is a linear form) with φ : RZ → RZ defined by

φ
(
(xt)t∈Z

)
=
(
g(xt, xt−1, . . . , xt−k+1)

)
t∈Z .

Example 1.3.3 (Shift). A very basic linear filtering is obtained with φ = S
where S is the shift operator of Definition 1.3.1. In this case Yt = Xt+1 for
all t ∈ Z.

Example 1.3.4 (Finite impulse response filter (FIR)). Let n ≥ 1 and t1 <
· · · < tn in Z and α1, . . . , αn ∈ C. Then φ =

∑
i αi S−ti defines a linear

filtering and for any input X = (Xt)t∈Z, the output is given by

Yt =
n∑
i=1

αiXt−ti , t ∈ Z .
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Example 1.3.5 (Differencing operator). A particular case is the differenc-
ing operator I − S−1 where I denotes the identity on XT . The output then
reads as

Yt = Xt −Xt−1, t ∈ Z .

One can iterate this operator so that Y = (I − S−1)kX is given by

Yt =

k∑
j=0

(
k

j

)
(−1)jXt−j , t ∈ Z .

Example 1.3.6 (Time reversion). Let X = {Xt, t ∈ Z} be a random process.
Time reversion then set the output as

Yt = X−t, t ∈ Z .

Note that in all previous examples the operators introduced preserve the
strict stationarity, that is to say, if the input X is strictly stationary then
so is the output Y . It is easy to construct a linear filtering which does not
preserve the strict stationarity, for example, y = φ(x) with yt = xt for t
even and Yt = xt + 1 for t odd. A property stronger than the conservation
of stationarity and very easy to verify is given by the following definition.

Definition 1.3.4. A φ-filter is shift invariant if φ commutes with S, φ◦S =
S ◦φ.1

It is easy to show that a shift-invariant filter preserves the strict station-
arity. However it is a stronger property. The time reversion is an example
of a filter that is not shift-invariant, although it does preserve the strict
stationarity. Indeed, in this case, we have φ ◦ S = S−1 ◦φ. All the other
examples above are shift-invariant.

Remark 1.3.1. A shift invariant φ-filter is entirely determined by its com-
position with the canonical projection Π0 defined in (1.4). Indeed, let φ0 =
Π0 ◦ φ. Then for all s ∈ Z, Πs ◦ φ = Π0 ◦ Ss ◦φ = Π0 ◦ φ ◦ Ss. Since for all
x ∈ XT , φ(x) is the sequence (πs ◦ φ)s∈T , we get the result.

1There is a slight hidden discrepancy in this definition: if φ is defined from (XT ,X⊗T )
to (YT ,Y⊗T ) with X 6= Y then the notation S refers to two different shifts: one on XT and
the other one on YT .



1.4. EXERCISES 13

1.4 Exercises

Exercise 1.1. Let X be a Gaussian vector, A1 and A2 two linear applications.
Let us set X1 = A1X and X2 = A2X. Give the distribution of (X1, X2) and
a necessary and sufficient condition for X1 and X2 to be independent.

Exercise 1.2. Let X be a Gaussian random variable, with zero mean and
unit variance, X ∼ N (0, 1). Let Y = X1{U=1} − X1{U=0} where U is a
Bernoulli random variable with parameter 1/2 independent of X. Show
that Y ∼ N (0, 1) and Cov (X,Y ) = 0 but also that X and Y are not
independent.

Exercise 1.3. Let n ≥ 1 and Γ be a n × n nonnegative definite hermitian
matrix.

1. Find a Gaussian vector X valued in Rn and a unitary matrix U such
that UX has covariance matrix Γ. [Hint : take a look at the proof of
Proposition 1.2.1].

2. Show that

Σ :=
1

2

[
Re(Γ) −Im(Γ)
Im(Γ) Re(Γ)

]
is a real valued (2n)× (2n) nonnegative definite symmetric matrix.

Let X and Y be two n-dimensional Gaussian vectors such that[
X Y

]T ∼ N (0,Σ) .

3. What is the covariance matrix of Z = X + iY ?

4. Compute E
[
ZZT

]
.

The random variable Z is called a centered circularly-symmetric normal
vector.

Let now T be an arbitrary index set, µ : I → C and γ : T 2 → C such
that for all finite subset I ⊂ T , the matrix ΓI = [γ(s, t)]s,t∈I is a nonnegative
definite hermitian matrix.

5. Use the previous questions to show that there exists a random process
(Xt)t∈T valued in C such that, for all s, t ∈ T ,

E [Xt] = µ(t) and Cov (Xs, Xt) = γ(s, t) .

Exercise 1.4. Let (εt)t∈Z be a sequence of i.i.d. real valued random variables.
Determine in each of the following cases, if the defined process is strongly
stationary.

1. Yt = a+ bεt + cεt−1 (a, b, c real numbers).
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2. Yt = a+ bεt + cεt+1.

3. Yt =
∑+∞

j=0 ρ
jεt−j for |ρ| < 1.

4. Yt = εtεt−1.

5. Yt = (−1)t εt, Zt = εt + Yt.



Chapter 2

Weakly stationary processes

In this chapter, we focus on second order properties of time series, that is,
on their means and covariance functions. It turns out that the stationarity
induces a particular structure of the covariances of a time series that can
be exploited to provide a spectral representation of the time series. Finally
we will conclude the chapter with the Wold decomposition, which basically
shows that any weakly stationary processes, up to an additive deterministic-
like component, can be expressed by linearly filtering a white noise (the
innovation process).

2.1 L2 processes

We will often denote the Hilbert space L2(Ω,F ,P) of Cd-valued random
variables with finite variance,

L2(Ω,F ,P) =
{
Xis a d-dimensional r.v. on (Ω,F ,P) s.t. E

[
|X|2

]
<∞

}
,

simply as L2. (Note that d does not appear in the notation, but we will
essentially consider the case d = 1).

Definition 2.1.1 (L2 Processes). The process X = (Xt)t∈T defined on
(Ω,F ,P) with values in Cd is an L2 process if Xt ∈ L2(Ω,F ,P) for all
t ∈ T .

The mean function defined on T by µ(t) = E [Xt] takes its values in Cd
and the covariance function is defined on T × T by

Γ(s, t) = Cov (Xs,Xt) = E
[
(Xs − µ(s))(Xt − µ(t))H

]
,

which takes its values in d×d matrices. We will sometimes use the notation
µX and ΓX, the subscript X indicating the process used in these definitions.
For all s ∈ T , Γ(s, s) is a covariance matrix and is thus nonnegative definite
hermitian. More generally, the following properties hold.

15
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Proposition 2.1.1. Let Γ be the covariance function of a L2 process X =
(Xt)t∈T with values in Cd. The following properties hold.

(i) Hermitian symmetry: for all s, t ∈ T ,

Γ(s, t) = Γ(t, s)H (2.1)

(ii) Nonnegativity: for all n ≥ 1, t1, . . . , tn ∈ T and a1, · · · , an ∈ Cd,∑
1≤k,m≤n

aHk Γ(tk, tm)am ≥ 0 (2.2)

Conversely, if Γ satisfy these two properties, there exists an L2 process X =
(Xt)t∈T with values in Cd with covariance function Γ.

Proof. Relation (2.1) is immediate. To show (2.2), define the linear combi-
nation Y =

∑n
k=1 a

H
k Xtk . Y is a complex valued random variable. Using

that the Cov operator is hermitian, we get

Var (Y ) =
∑

1≤k,m≤n
aHk Γ(tk, tm)am

which implies (2.2).
The converse assertion follows from Exercise 1.3.

In the scalar case (d = 1), we will also use the notation γ(s, t).

2.2 Weakly stationary processes

From now on, in this chapter, we take T = Z. If an L2 process is strictly
stationary, then its first and second order properties must satisfy certain
properties. Let X = (Xt)t∈Z be a strictly stationary L2 process with values
in Cd. Then its mean function is constant, since its marginal distribution is
invariant. Moreover its covariance function Γ satisfies Γ(s, t) = Γ(s − t, 0)
for all s, t ∈ Z since the bi-dimensional marginals are also invariant by a
translation of time. A weakly stationary process inherits these properties
but is not necessary strictly stationary, as in the following definition.

Definition 2.2.1 (Weakly stationary processes). Let µ ∈ Cd and Γ : Z →
Cd×d. A process (Xt)t∈Z with values in Cd is said weakly stationary with
mean µ and autocovariance function Γ if all the following assertions hold:

(i) X is an L2 process, i.e. E
[
|Xt|2

]
< +∞,

(ii) for all t ∈ Z, E [Xt] = µ,

(iii) for all (s, t) ∈ Z× Z, Cov (Xs,Xt) = Γ(s− t).
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By definition the autocovariance function of a weakly stationary process
is defined on T instead of T 2 for the covariance function in the general case.

As already mentioned a strictly stationary L2 process is weakly station-
ary. The converse implication is of course not true in general. It is true how-
ever for Gaussian processes defined in Section 1.2.3, see Proposition 1.2.1.

Observe that a process (Xt)t∈Z with values in Cd is weakly stationary
with mean µ and autocovariance function Γ if and only if for all λ ∈ Cd, the
process (λHXt)t∈Z with values in C is weakly stationary with mean λHµ and
autocovariance function λHΓλ. The study of weakly stationary processes
can thus be done in the case d = 1 without a great loss of generality.

2.2.1 Properties of the autocovariance function

The properties of Proposition 2.1.1 imply the following ones in the case of
a weakly stationary process.

Proposition 2.2.1. The autocovariance function γ : Z → C of a complex
valued weakly stationary process satisfies the following properties.

(i) Hermitian symmetry : for all s ∈ Z,

γ(−s) = γ(s)

(ii) Nonnegative definiteness : for all integer n ≥ 1 and a1, · · · , an ∈ C,

n∑
s=1

n∑
t=1

asγ(s− t)at ≥ 0

The autocovariance matrix Γn of n consecutive samplesX1, . . . , Xn of the
time series has a particular structure, namely it is constant on its diagonals,
(Γn)ij = γ(i− j),

Γn = Cov([X1 . . . Xn]T )

=


γ(0) γ(−1) · · · γ(1− n)
γ(1) γ(0) · · · γ(2− n)

...
γ(n− 1) γ(n− 2) · · · γ(0)

 (2.3)

On says that Γn is a Toeplitz matrix . Since γ(0) is generally non-zero (note
that otherwise Xt is zero a.s. for all t), it can be convenient to normalize
the autocovariance function in the following way.

Definition 2.2.2 (Autocorrelation function). Let X be a weakly stationary
process with autocovariance function γ such that γ(0) 6= 0. The autocorre-
lation function of X is defined as

ρ(τ) =
γ(τ)

γ(0)
, τ ∈ Z .
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It is normalized in the sense that ρ(0) = 1 and |ρ(s)| ≤ 1 for all s ∈ Z.

The last assertion follows from the Cauchy-Schwarz inequality,

|γ(s)| = |Cov (Xs, X0)| ≤
√

Var (Xs) Var (X0) = γ(0) ,

the last equality following from the weakly stationary assumption.
Let us give some simple examples of weakly stationary processes. We

first examine a very particular case.

Definition 2.2.3 (White noise). A weak white noise is a centered weakly
stationary process whose autocovariance function satisfies γ(0) = σ2 > 0
and γ(s) = 0 for all s 6= 0. We will denote (Xt) ∼WN(0, σ2). When a weak
white noise is an i.i.d. process, it is called a strong white noise. We will
denote (Xt) ∼ IID(0, σ2).

Of course a strong white noise is a weak white noise. However the con-
verse is in general not true. The two definitions only coincide for Gaussian
processes because in this case the independence is equivalent to being un-
correlated.

Example 2.2.1 (MA(1) process). Define, for all t ∈ Z,

Xt = Zt + θZt−1 , (2.4)

where (Zt) ∼WN(0, σ2) and θ ∈ R. Then E [Xt] = 0 and the autocovariance
function reads

γ(s) =


σ2(1 + θ2) if s = 0,

σ2θ if s = ±1,

0 otherwise.

(2.5)

Such a weakly stationary process is called a Moving Average of order 1
MA(1).

Example 2.2.2 (Harmonic process). Let (Ak)1≤k≤N be N real valued L2

random variables. Denote σ2
k = E

[
A2
k

]
. Let (Φk)1≤k≤N be N i.i.d. ran-

dom variables with a uniform distribution on [−π, π], and independent of
(Ak)1≤k≤N . Define

Xt =
N∑
k=1

Ak cos(λkt+ Φk) , (2.6)

where (λk)1≤k≤N ∈ [−π, π] are N frequencies. The process (Xt) is called an
harmonic process. It satisfies E [Xt] = 0 and, for all s, t ∈ Z,

E [XsXt] =
1

2

N∑
k=1

σ2
k cos(λk(s− t)) .

It is thus a weakly stationary process.
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Example 2.2.3 (Random walk). Let (St) be a random process defined on
t ∈ N by St = X0 +X1 + · · ·+Xt, where (Xt) is a strong white noise. Such
a process is called a random walk. We have E [St] = 0, E

[
S2
t

]
= tσ2 and

for all s ≤ t ∈ N,

E [SsSt] = E [(Ss +Xs+1 + · · ·+Xt)Ss] = s σ2

The process (St) is not weakly stationary.

Example 2.2.4 (Continued from Example 2.2.1). Consider the function χ
defined on Z by

χ(s) =


1 if s = 0,

ρ if s = ±1,

0 otherwise,

(2.7)

where ρ ∈ R. It is the autocovariance function of a real valued process
if and only if ρ ∈ [−1/2, 1/2]. We know from Example 2.2.1 that χ is
the autocovariance function of a real valued MA(1) process if and only if
σ2(1 + θ2) = 1 and σ2θ = ρ for some θ ∈ R. If |ρ| ≤ 1/2, the solutions to
this equation are

θ = (2ρ)−1(1±
√

1− 4ρ2) and σ2 = (1 + θ2)−1 .

If |ρ| > 1/2, there are no real solutions. In fact, in this case, it can even be
shown that there is no real valued weakly stationary process whose autoco-
variance is χ, see Exercise 2.4.

Some simple transformations of processes preserve the weak stationarity.
Linearity is crucial in this case since otherwise the second order properties
of the output cannot solely depend on the second order properties of the
input.

Example 2.2.5 (Invariance of the autocovariance function under time re-
version (continued from Example 1.3.6). Let X = (Xt)t∈Z be a weakly sta-
tionary process with mean µX and autocovariance function γX . Denote, for
all t ∈ Z, Yt = X−t as in Example 1.3.6. Then (Yt) is weakly stationary
with same mean as X and autocovariance function γY = γX .

E [Yt] = E [X−t] = µX ,

Cov (Yt+h, Yt) = Cov (X−t−h, X−t) = γX(−h) = γX(h) .

2.2.2 Empirical mean and autocovariance function

Suppose that we observe n consecutive samples of a real valued weakly
stationary time series X = (Xt). Can we have a rough idea of the second
order parameters of X µ and γ ? This is an estimation problem. The first
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step for answering this question is to provide estimators of µ and γ. Since
these quantities are defined using an expectation E, a quite natural approach
is to replace this expectation by an empirical sum over the observed data.
This yields the empirical mean

µ̂n =
1

n

n∑
k=1

Xk , (2.8)

and the empirical autocovariance and autocorrelation functions

γ̂n(h) =
1

n

n−|h|∑
k=1

(Xk− µ̂n)(Xk+|h|− µ̂n) and ρ̂n(h) = γ̂n(h)/γ̂n(0) . (2.9)

Let us examine how such estimators look like on some examples.

Example 2.2.6 (Heartbeats (Continued from Example 1.1.1)). Take the
data displayed in Figure 1.1, which roughly looks stationary. Its empirical
autocorrelation is displayed in Figure 2.1. We observe a positive correlation
in the sense that the obtained values are significantly above the x-axis, at
least if one compares with the empirical correlation obtained from a sample
of a Gaussian white noise with the same length.

A positive autocorrelation ρ(h) has a simple interpretation: it means that
Xt and Xt+h have a tendency of being on the same side of their means with a
higher probability. A more precise interpretation is to observe that, recalling
that L2 is endowed with a scalar product, we have the projection formula

proj (Xt+h − µ|Span (Xt − µ)) = ρ(h)(Xt − µ) ,

and the error has variance γ(0)(1− |ρ(h)|2) (see Exercise 2.6). In practice,
we do not have access to the exact computation of these quantities from a
single sample X1, . . . , Xn. We can however let t varies at fixed h, hoping
that the evolution in t more or less mimic the variation in ω. In Figure 2.2,
we plot Xt VS Xt+1 and indeed see this phenomenon: ρ̂(1) = 0.966 indicate
that Xt+1 is very well approximated by a linear function of Xt, as can be
observed in this figure.

2.3 Spectral measure

Recall that T denotes any interval congruent to [0, 2π). We denote by B(T)
the associated Borel σ-field. The Herglotz theorem shows that the autoco-
variance function of a weakly stationary process X is entirely determined
by a finite nonnegative measure on (T,B(T)). This measure is called the
spectral measure of X.
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Figure 2.1: Left : empirical autocorrelation ρ̂n(h) of heartbeat data for h =
0, . . . , 100. Right : the same from a simulated white noise sample with same
length.
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Figure 2.2: Each point is a couple (Xt−1, Xt), where X1, . . . , Xn is the heart-
beat data sample. The dashed line is the best approximation of Xt as a linear
function of Xt−1.
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Theorem 2.3.1 (Herglotz). A sequence (γ(h))h∈Z is a nonnegative definite
hermitian sequence in the sense of Proposition 2.2.1 if and only if there
exists a finite nonnegative measure ν on (T,B(T)) such that :

γ(h) =

∫
T

eihλν(dλ), ∀h ∈ Z . (2.10)

Moreover this relation defines ν uniquely.

Remark 2.3.1. By Proposition 2.2.1, Theorem 2.3.1 applies to all γ which
is an autocovariance function of a weakly stationary process X. In this case
ν (also denoted νX) is called the spectral measure of X. If ν admits a
density f , it is called the spectral density function.

Proof. Suppose first that γ(n) satisfies (2.10) with ν as in the theorem.
Then γ is an hermitian function. Let us show it is a nonnegative definite
hermitian function. Fix a positive integer n. For all ak ∈ C, 1 ≤ k ≤ n, we
have∑
k,m

akamγ(k−m) =

∫
T

∑
k,m

akameikλe−imλν(dλ) =

∫
T

∣∣∣∣∣∑
k

ake
ikλ

∣∣∣∣∣
2

ν(dλ) ≥ 0 .

Hence γ is nonnegative definite.
Conversely, suppose that γ is a nonnegative definite hermitian sequence.

For all n ≥ 1, define the function

fn(λ) =
1

2πn

n∑
k=1

n∑
m=1

γ(k −m)e−ikλeimλ

=
1

2π

n−1∑
k=−(n−1)

(
1− |k|

n

)
γ(k)e−ikλ .

Since γ is nonnegative definite, we get from the first equality that fn(λ) ≥ 0,
for all λ ∈ T. Define νn as the nonnegative measure with density fn on T.
We get that∫

T
eihλνn(dλ) =

∫
T

eihλfn(λ)dλ =
1

2π

n−1∑
k=−(n−1)

(
1− |k|

n

)
γ(k)

∫
T

ei(h−k)λdλ

=

{ (
1− |h|n

)
γ(h), if |h| < n ,

0, otherwise .
(2.11)

We can multiply the sequence (νn) by a constant to obtain a sequence of
probability measures. Thus Theorem A.2.3 implies that there exists a non-
negative measure ν and a subsequence (νnk) of (νn) such that

lim
k→∞

∫
T

eihλνnk(dλ) =

∫
T

eihλν(dλ), .
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Using (2.11) and taking the limit of the subsequence, we get that

γ(h) =

∫
T

eihλν(dλ), ∀h ∈ Z .

Let us conclude with the uniqueness of ν. Suppose that another nonnegative
measure ξ satisfies for all h ∈ Z :

∫
T eihλν(dλ) =

∫
T eihλµ(dλ). The uniform

convergence of Fourier series in the Cesaro sense (see [11]) tells us that any
continuous (2π)-periodic function g can be approximated uniformly by

1

n

n−1∑
k=0

gk with gk =

k∑
j=−k

(
1

2π

∫
T
g(λ)e−ijλdλ

)
eijλ .

We thus obtain that
∫
T g(λ)ν(dλ) =

∫
T g(λ)µ(dλ). Since this true for all

such g’s, this implies ν = µ.

Corollary 2.3.2 (The `1 case). Let (γ(h))h∈Z ∈ `1(Z). Then it is a non-
negative definite hermitian sequence in the sense of Proposition 2.2.1 if and
only if

f(λ) =
1

2π

∑
h∈Z

γ(h)e−ihλ ≥ 0 ,

for all λ ∈ T.

Proof. Left as an exercise.

Exercise 2.1. Prove Corollary 2.3.2 (apply Theorem 2.3.1 and the definition
of f).

The proof also shows that f is the spectral density function associated
to γ.

Example 2.3.1 (MA(1), Continued from Example 2.2.4). Consider Exam-
ple 2.2.4. Then (χ(h)) is in `1(Z) and

f(λ) =
1

2π

∑
h

χ(h)e−ihλ =
1

2π
(1 + 2ρ cos(λ)) .

Thus we obtain that χ is nonnegative definite if and only if |ρ| ≤ 1/2. An
exemple of such a spectral density function is displayed in Figure 2.3.

Example 2.3.2 (Spectral density function of a white noise). Recall the
definition of a white noise, Definition 2.2.3. We easily get that the white
noise IID(0, σ2) admits a spectral density function given by

f(λ) =
σ2

2π
,

that is, a constant spectral density function. Hence the name “white noise”,
referring to white color that corresponds to a constant frequency spectrum.
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Figure 2.3: Spectral density function (in logarithmic scale) of an MA(1) pro-
cess, as given by (2.4) with σ = 1 and θ = −0.9.

Example 2.3.3 (Spectral measure of an harmonic process, continued from Ex-
ample 2.2.2). The autocovariance function of X is given by (see Exam-
ple 2.2.2)

γ(h) =
1

2

N∑
k=1

σ2
k cos(λkh) , (2.12)

where σ2
k = E

[
A2
k

]
. Observing that

cos(λkh) =
1

2

∫ π

−π
eihλ(δλk(dλ) + δ−λk(dλ))

where δx0(dλ) denote the Dirac mass at point x0, the spectral measure of X
reads

ν(dλ) =
1

4

N∑
k=1

σ2
kδλk(dλ) +

1

4

N∑
k=1

σ2
kδ−λk(dλ) .

We get a sum of Dirac masses with weights σ2
k and located at the frequencies

of the harmonic functions.

Harmonic processes have singular properties. The autocovariance func-
tion in (2.12) implies that covariance matrices Γn are expressed as a sum of
2N matrices with rank 1. Thus Γn is not invertible as soon as n > 2N and
thus harmonic process fall in the following class of process.

Definition 2.3.1 (Linearly predictable processes). A weakly stationary pro-
cess X is called linearly predictable if there exists n ≥ 1 such that for all
t ≥ n, Xt ∈ Span (X1, . . . , Xn) (in the L2 sense).
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One can wonder whether the other given examples are linearly pre-
dictable. The answer is given by the following result, whose proof is left
to the reader (see Exercise 2.9).

Proposition 2.3.3. Let γ be the autocovariance function of a weakly sta-
tionary process X. If γ(0) 6= 0 and γ(t) → 0 as t → ∞ then X is not
linearly predictable.

2.4 Innovation process

In this section, we let X = (Xt)t∈Z denote a centered weakly stationary pro-
cesses. We shall define the Wold decomposition of X. This decomposition
mainly relies on the concept of innovations. Let

HXt = Span (Xs, s ≤ t)

denote the linear past of a given random process X = (Xt)t∈Z up to time t.
It is related to the already mentioned space HX∞ as follows

HX∞ =
⋃
t∈Z
HXt .

Let us introduce the innovations of a weakly stationary process.

Definition 2.4.1 (Innovation process). Let X = (Xt)t∈Z be a centered
weakly stationary process. We call innovation process the process ε = (εt)t∈Z
defined by

εt = Xt − proj
(
Xt|HXt−1

)
. (2.13)

By the orthogonal principle of projections in L2, each εt is characterized
by the fact that Xt − εt ∈ HXt−1 (which implies εt ∈ HXt ) and εt ⊥ HXt−1. As
a consequence (εt)t∈Z is a centered orthogonal sequence. We shall see below
that it is in fact a white noise, that is, the variance of the innovation

σ2 = ‖εt‖2 = E
[
|εt|2

]
(2.14)

does not depend on t.

Example 2.4.1 (Innovation process of a white noise). The innovation pro-
cess of a white noise X ∼WN(0, σ2) is ε = X.

Example 2.4.2 (Innovation process of a MA(1), continued from Exam-
ple 2.2.1). Consider the process X defined in Example 2.2.1. Observe that
Zt ⊥ HXt−1. Thus, if θZt−1 ∈ HXt−1, we immediately get that εt = Zt. The
questions are thus: is Zt−1 in HXt−1 ? and, if not, what can be done to
compute εt ?
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Because the projection in (2.13) is done on an infinite dimension space,
it is interesting to compute it as a limit of finite dimensional projections.
To this end, define, for p ≥ 0, the finite dimensional space

HXt,p = Span (Xs, t− p < s ≤ t) ,

and observe that (HXt,p)p is an increasing sequence of linear space whose

union has closure HXt . In this case we have, for any L2 variable Y ,

lim
p→∞

proj
(
Y |HXt,p

)
= proj

(
Y |HXt

)
, (2.15)

where the limit holds in the L2 sense.

Definition 2.4.2 (Prediction coefficients). Let X = (Xt)t∈Z be a centered
weakly stationary process. We call the predictor of order p the random
variable proj

(
Xt|HXt−1,p

)
and the partial innovation process of order p the

process ε+p =
(
ε+t,p
)
t∈Z defined by

ε+t,p = Xt − proj
(
Xt|HXt−1,p

)
.

The prediction coefficients are any coefficients φ+
p =

(
φ+
k,p

)
k=1,...,p

which

satisfy, for all t ∈ Z,

proj
(
Xt|HXt−1,p

)
=

p∑
k=1

φ+
k,pXt−k . (2.16)

Observe that, by the orthogonality principle, (2.16) is equivalent to

Γ+
p φ

+
p = γ+

p , (2.17)

where γ+
p = [γ(1), γ(2), · · · , γ(p)]T and

Γ+
p = Cov

(
[Xt−1 . . . Xt−p]

T
)T

=



γ(0) γ(−1) · · · γ(−p+ 1)

γ(1) γ(0) γ(−1)
...

...
. . .

. . .
. . .

... γ(−1)
γ(p− 1) γ(p− 2) · · · γ(1) γ(0)


,

Observing that Equation (2.17) does not depend on t and that the orthogo-

nal projection is always well defined, such coefficients
(
φ+
k,p

)
k=1,...,p

always

exist. However they are uniquely defined if and only if Γ+
p is invertible.
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Let us now compute the variance of the order-p prediction error ε+t,p,
denoted as

σ2
p = ‖Xt − proj (Xt|Ht−1,p) ‖2 = E

[
|Xt − proj (Xt|Ht−1,p) |2

]
. (2.18)

By (2.16) and the usual orthogonality condition of the projection, we have

σ2
p = 〈Xt, Xt − proj (Xt|Ht−1,p)〉

= γ(0)−
p∑

k=1

φ+
k,pγ(k)

= γ(0)− (φ+
p )Hγ+

p . (2.19)

Equations (2.17) and (2.19) are called Yule-Walker equations. An impor-
tant consequence of these equations is that σ2

p does not depend on t, and
since (2.15) implies

σ2 = lim
p→∞

σ2
p ,

we obtain that, as claimed above, the variance of the innovation defined
in (2.14) is also independent of t. So we can state the following result.

Corollary 2.4.1. The innovation process of a centered weakly stationary
process X is a (centered) weak white noise. Its variance is called the inno-
vation variance of the process X.

The innovation variance is not necessarily positive, that is, the innovation
process can be zero a.s., as shown by the following example.

Example 2.4.3 (Innovations of the harmonic process (continued from Ex-
ample 2.2.2)). Consider the harmonic process Xt = A cos(λ0t + Φ) where
A is a centered random variable with finite variance σ2

A and Φ is a random
variable, independent of A, with uniform distribution on (0, 2π). Then X
is a centered weakly stationary process with autocovariance function γ(τ) =
(σ2
A/2) cos(λ0τ). The prediction coefficients or order 2 are given by[

φ+
1,2

φ+
2,2

]
=

[
1 cos(λ0)

cos(λ0) 1

]−1 [
cos(λ0)
cos(2λ0)

]
=

[
2 cos(λ0)
−1

]
We then obtain that σ2

2 = ‖Xt − proj
(
Xt|HXt−1,2

)
‖2 = 0 and thus

Xt = proj
(
Xt|HXt−1,2

)
= 2 cos(λ0)Xt−1 −Xt−2 ∈ HXt−1

Hence in this case the innovation process is zero: one can exactly predict the
value of Xt from its past.

The latter example indicates that the harmonic process is deterministic,
according to the following definition.
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Definition 2.4.3 (Regular/deterministic process). Let X = (Xt)t∈Z be a
centered weakly stationary process. If the variance of its innovation process
is zero, we say that X is deterministic. Otherwise, we say that X is regular.

Let us define the intersection of the whole past of the process X as

HX−∞ =
⋂
t∈Z
HXt .

Note that this (closed) linear space may not be null. Take a deterministic
process X such as the harmonic process above. Then Xt ∈ HXt−1, which
implies that HXt = HXt−1. Thus, for a deterministic process, we have, for all
t, HX−∞ = HXt , and thus also, HX−∞ = HX∞, which is of course never null
unless X = 0 a.s.

Example 2.4.4 (Constant process). A very simple example of deterministic
process is obtained by taking λ0 = 0 in Example 2.4.3. In other words,
Xt = X0 for all t ∈ Z.

For a regular process, things are a little bit more involved. For the white
noise, it is clear that HX−∞ = {0}. In this case, we say that X is purely non-
deterministic. However not every regular process is purely nondeterministic.
Observe indeed that for two uncorrelated centered and weakly stationary
process X and Y , setting Z = X + Y , which is also centered and weakly
stationary, we have, for all t ∈ Z

HZt ⊆ HXt
⊥
⊕ HYt .

This implies that

HZ−∞ ⊆ HX−∞
⊥
⊕ HY−∞ . (2.20)

Also, by the orthogonality principle of the projection, the innovation vari-
ance of Z is larger than the sum of the innovations variances of X and Y .
From these facts, we have that the sum of two uncorrelated processes is
regular if at least one of them is regular and it is purely non-deterministic
if both are purely non-deterministic. A regular process which is not purely
nondeterministic can easily be obtained as follows.

Example 2.4.5 (Uncorrelated sum of a white noise with a constant pro-
cess). Define Z = X + Y with X ∼ WN(0, σ2) and Yt = Y0 for all t,
where Y0 is centered with positive variance and uncorrelated with (Xt)t∈Z.
Then by (2.20), HZ−∞ ⊆ Span (Y0). Moreover, it can be shown (see Exer-
cise 2.10) that Y0 ∈ HZ−∞ and thus Xt = Zt − Y0 ∈ HZt . Hence we obtain
HZ−∞ = Span (Y0), so that Z is not purely non-deterministic and Z has
innovation X, so that Z is regular.
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In fact, the Wold decomposition indicates that the configuration of Ex-
ample 2.4.5 is the only one: every regular process is the sum of two un-
correlated processes: one which is deterministic, the other which is purely
nondeterministic. Before stating this result we introduce the following coef-
ficients, defined for any regular process X,

ψs =
〈Xt, εt−s〉

σ2
, (2.21)

where ε is the innovation process and σ2 its variance. By weak stationarity
of X, this coefficient do no depend on t but only on k, since

〈Xt, εt−k〉 = γ(k)− Cov
(
Xt,proj

(
Xt−k|HXt−k−1

))
= γ(k)− lim

p→∞
Cov

(
Xt, proj

(
Xt−k|HXt−k−1,p

))
= γ(k)− lim

p→∞

p∑
j=1

φj,pγ(k + j) .

It is easy to show that ψ0 = 1. Moreover, since ε is a white noise, we have,
for all t ∈ Z,

proj (Xt|Hεt) =
∑
k≥0

ψkεt−k .

We can now state the Wold decomposition, whose proof is admitted here.

Theorem 2.4.2 (Wold decomposition). Let X be a regular process and
let ε be its innovation process and σ2 its innovation variance, so that ε ∼
WN(0, σ2). Define the L2 centered process U as

Ut =
∞∑
k=0

ψkεt−k ,

where ψk is defined by (2.21). Defined the L2 centered process V by the
following equation:

Xt = Ut + Vt, for all t ∈ Z. (2.22)

Then the following assertions hold.

(i) We have Ut = proj (Xt|Hεt) and Vt = proj
(
Xt|HX−∞

)
.

(ii) ε and V are uncorrelated: for all (t, s), 〈Vt, εs〉 = 0.

(iii) U is a purely non-deterministic process and has same innovation as
X. Moreover, Hεt = HUt for all t ∈ Z.

(iv) V is a deterministic process and HV−∞ = HX−∞.
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2.5 Exercises

Exercise 2.2. Let (Xt)t∈Z and (Yt)t∈Z be two second order stationary pro-
cesses that are uncorrelated in the sense that Xt and Ys are uncorrelated
for all t, s. Show that Zt = Xt + Yt is a second order stationary process.
Compute its autocovariance function, given the autocovariance functions of
X and Y . Do the same for the spectral measures.

Exercise 2.3. Consider the processes of Exercise 1.4, with the additional
assumption that (εt)t∈Z ∼WN(0, σ2). Determine in each case, if the defined
process is weakly stationary. In the case of Question 4, consider also Zt = Y 2

t

under the assumption E[ε4
0] <∞.

Exercise 2.4. Define χ as in (2.7).

1. For which values of ρ is χ an autocovariance function ? [Hint : use the
Hertglotz theorem].

2. Exhibit a Gaussian process with autocovariance function χ.

Exercise 2.5. For t ≥ 2, define

Σ2 =

[
1 ρ
ρ 1

]
, . . . ,Σt =


1 ρ · · · ρ

ρ 1
. . .

...
...

. . . 1 ρ
ρ · · · ρ 1


1. For which values of ρ, is Σt guaranteed to be a covariance matrix for all

values of t [Hint: write Σt as αI +A where A has a simple eigenvalue
decomposition]?

2. Define a stationary process whose finite-dimensional covariance matri-
ces coincide with Σt (for all t ≥ 1).

Exercise 2.6. Let X and Y two L2 centered random variables. Define

ρ =
Cov (X,Y )

Var (Y )
,

with the convention 0/0 = 0. Show that

proj (X|Span (Y )) = ρ Y and E
[
(X − proj (X| Span (Y )))2

]
= Var (X)−|ρ|2 Var (Y ) .

Exercise 2.7. Let (Yt) be a weakly stationary process with spectral density
f such that 0 ≤ m ≤ f(λ) ≤ M < ∞ for all λ ∈ R. For n ≥ 1, denote by
Γn the covariance matrix of [Y1, . . . , Yn]T . Show that the eigenvalues of Γn
belong to the interval [2πm, 2πM ].
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Exercise 2.8. Let X = (Xt)t∈Z be a centered weakly stationary process with

spectral density f and denote by X̂ its spectral representation field, so that,
for all t ∈ Z,

Xt =

∫
eitλ dX̂(λ) .

Assume that f is two times continuously differentiable and that f(0) = 0.
Define, for all t ≥ 0,

Yt = X−t +X−t+1 + · · ·+X0 .

1. Build an example of such a process X of the form Xt = εt+aεt−1 with
ε ∼WN(0, 1) and a ∈ R.

2. Determine gt such that Yt =
∫
gt dX̂.

3. Compute

lim
n→∞

∫
T

∣∣∣∣∣ 1n
n∑
k=1

e−ikλ

∣∣∣∣∣
2

dλ

4. Show that

Z =

∫
(1− e−iλ)−1 dX̂(λ) .

is well defined in HX∞.

5. Deduce from the previous questions that

lim
n→∞

1

n

n−1∑
t=0

Yt = Z in L2.

6. Show this result directly in the particular case exhibited in Question 1.

Exercise 2.9. Let (Xt)t∈Z be a centered weakly stationary process with co-
variance function γ. Denote

Γt = Cov
([
X1, . . . , Xt

]T
,=
) [
γ(i− j)

]
1≤i,j≤t for all t ≥ 1.

We temporarily assume that there exists k ≥ 1 such that Γk is invertible
but Γk+1 is not.

1. Show that we can write Xn as
∑k

t=1 α
(n)
t Xt, where α(n) ∈ Rk, for all

n ≥ k + 1.

2. Show that the vectors α(n) are bounded independently of n.

Suppose now that γ(0) > 0 and γ(t)→ 0 as t→∞.
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3. Show that, for all t ≥ 1, Γt is invertible.

4. Deduce that Proposition 2.3.3 holds.

Exercise 2.10. Define Z = X+Y with X ∼WN(0, σ2) and Yt = Y0 for all t,
where Y0 is centered with positive variance and uncorrelated with (Xt)t∈Z.

1. Show that HZ−∞ ⊆ Span (Y0). [Hint : see Example 2.4.5]

Define, for all t ∈ Z and n ≥ 1,

Tt,n =
1

n

n∑
k=1

Zt−k

2. What is the L2 limit of Tt,n as n→∞ ?

3. Deduce that HZ−∞ = Span (Y0).

Exercise 2.11. Define (Xt)t∈Z, (Ut)t∈Z and (Vt)t∈Z as in Theorem 2.4.2.

1. Show that

HX−∞
⊥
⊕ Hεt = HXt .

2. Deduce that Ut = proj (Xt|Hεt), Vt = proj
(
Xt|HX−∞

)
and that U and

V are uncorrelated.

3. Show that HX−∞ = HVt and Hεt = HUt for all t ∈ Z. [Hint : observe
that HXt ⊂ HUt ⊕HVt and use the previous questions]

4. Conclude the proof of Theorem 2.4.2.



Chapter 3

Linear models

In this chapter we focus on the linear filtering of time series. An important
class of models for stationary time series, the autoregressive moving average
(ARMA) models, are obtained by applying particular linear filters to a white
noise. More general filters can be defined using the spectral representations
but this is out of the scope of these lecture notes.

3.1 Linear filtering using absolutely summable co-
efficients

Let ψ = (ψt)t∈Z be an absolutely summable sequence of CZ, we will write
ψ ∈ `1(Z), or simply ψ ∈ `1.

In this section we consider the linear filter defined by

Fψ : x = (xt)t∈Z 7→ y = ψ ? x , (3.1)

where ? denotes the convolution product on sequences, that is, for all t ∈ Z,

yt =
∑
k∈Z

ψkxt−k . (3.2)

We introduce some usual terminology about such linear filters.

Definition 3.1.1. We have the following definitions.

(i) If ψ is finitely supported, Fψ is called a finite impulse response (FIR)
filter.

(ii) If ψt = 0 for all t < 0, Fψ is said to be causal.

(iii) If ψt = 0 for all t ≥ 0, Fψ is said to be anticausal.

33



34 CHAPTER 3. LINEAR MODELS

Of course (3.2) is not always well defined. In fact, Fψ is well defined only
on

`ψ =

{
(xt)t∈Z ∈ CZ : for all t ∈ Z,

∑
k∈Z
|ψk xt−k| <∞

}
.

A natural question is to ask what happens for a random path, or in other
words, given a random process X = (Xt)t∈Z, is Fψ(X) well defined ? Ob-
serving that `ψ = CZ if (and only if) ψ has a finite support, this question
is nontrivial only for an infinitely supported ψ. Moreover we observe that a
FIR filter can be written as

Fψ =
∑
k∈Z

ψk Bk , (3.3)

where B is the Backshift operator of Definition 1.3.1. This sum is well
defined for a finitely supported ψ since it is a finite sum of linear operators.

The following theorem provides an answer for ψ ∈ `1 which always ap-
plies for a weakly stationary process X.

Theorem 3.1.1. Let ψ ∈ `1. Then, for all random process X = (Xt)t∈Z
such that

sup
t∈Z

E|Xt| <∞ , (3.4)

we have X ∈ `ψ a.s. If moreover

sup
t∈Z

E
[
|Xt|2

]
<∞ , (3.5)

then the series

Yt =
∑
k∈Z

ψkXt−k , (3.6)

is absolutely convergent in L2, and we have (Yt)t∈Z = Fψ(X) a.s.

Remark 3.1.1. Recall that L2 is complete, so an absolutely convergent se-
ries converges and (Yt)t∈Z is well defined and is an L2 process.

Proof of Theorem 3.1.1. We have, by the Tonelli theorem,

E

[∑
k∈Z
|ψkXt−k|

]
=
∑
k∈Z
|ψk|E|Xt−k| ≤ sup

t∈Z
E|Xt|

∑
k∈Z
|ψk| ,

which is finite by (3.4) and ψ ∈ `1. Hence X ∈ `ψ a.s.

If (3.5) holds, the series in (3.6) is absolutely convergent in L2 since

∑
k∈Z

(
E
[
|ψkXt−k|2

])1/2 ≤ (sup
t∈Z

E
[
|Xt|2

])1/2∑
k∈Z
|ψk| <∞ ,
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under Condition (3.5).

Finally, let us show that (Yt)t∈Z coincides with Fψ(X) a.s. This follows

from Fatou’s Lemma. Denoting Ỹt = Πt ◦ Fψ(X) and

Yn,t =

n∑
k=−n

ψkXt−k ,

we get that

E
[
|Ỹt − Yt|2

]
= E

[
lim inf

n
|Yn,t − Yt|2

]
≤ lim inf

n
E
[
|Yn,t − Yt|2

]
= 0

which achieves the proof.

An immediate consequence of this result is that Fψ applies to any weakly
stationary process and its output is also weakly stationary.

Theorem 3.1.2. Let ψ ∈ `1 and X = (Xt)t∈Z be a weakly stationary pro-
cess with mean µ, autocovariance function γ and spectral measure ν. Then
Fψ(X) is well defined and is a weakly stationary process with mean

µ′ = µ
∑
t∈Z

ψt , (3.7)

autocovariance function given for all h ∈ Z by

γ′(h) =
∑
j∈Z

∑
k∈Z

ψjψk γX(h+ k − j) , (3.8)

and spectral measure ν ′ defined as the measure with density |ψ∗(λ)|2 with
respect to ν, where

ψ∗(λ) =
∑
t∈Z

ψte
−itλ . (3.9)

Proof. A weakly stationary processes satisfies the conditions of Theorem 3.1.1,
hence Y = Fψ(X) is well defined. Moreover Theorem 3.1.1 also says that
each Yt is obtained as the L2 limit (3.6). By continuity and linearity of
the mean in L2, we get (3.7). Similarly, because the covariance defines a
continuous inner product on L2, we get (3.8).

Finally the spectral measure of Y is obtained by replacing γ in (3.8) by
its spectral representation (see Theorem 2.3.1) and by the Fubini theorem
(observing that ψ∗ is bounded on T).

In the special case where X is a white noise, the above formulas simplify
as follows.
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Corollary 3.1.3. Let ψ ∈ `1 and X ∼ WN(0, σ2). Define Y = Fψ(X).
Then Y is a centered weakly stationary process with covariance function

γ(h) = σ2
∑
k∈Z

ψk+hψk ,

and spectral density function

f(λ) =
σ2

2π

∣∣∣∣∣∑
t∈Z

ψte
−itλ

∣∣∣∣∣
2

.

one says that Y = Fψ(X) is a centered linear process with short memory.
If moreover X is a strong white noise, then one says that Y = Fψ(X) is a
centered strong linear process.

Here “short memory” refer to the fact that ψ is restricted to `1.

3.2 FIR filters inversion

Consider the following definition.

Definition 3.2.1. Let ψ ∈ `1 and X be a centered weakly stationary process.
Let Y = Fψ(X). We will say that this linear representation of Y is invertible
if there exists φ ∈ `1 such that X = Fφ(Y ).

This question of invertibility is of course very much related to the com-
position of filters. We have the following lemma.

Lemma 3.2.1. Let (αt)t∈Z and (βt)t∈Z be two sequences in `1. If X satisfies
Condition (3.4), then

Fα ◦Fβ(X) = Fα?β(X) a.s.

Proof. Denote Y = Fβ(X). By Theorem 3.1.2, Y is well defined. Moreover,
for all t ∈ Z,

Yt =
∑
k∈Z

βkXt−k a.s. ,

so that

E|Yt| ≤ sup
s∈Z

E|Xs| ×
∑
k∈Z
|βk| <∞ .

Hence Fα ◦Fβ is well defined on X a.s. and Z = Fα ◦Fβ(X) satisfies, for all
t ∈ Z,

Zt =
∑
j∈Z

αjYt−j a.s. .
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Observe also that α ? β ∈ `1 and define W = Fα?β(X). By Theorem 3.1.2,
we have, for all t ∈ Z, and

Wt =
∑
k∈Z

∑
j∈Z

αjβk−j

Xt−k a.s. .

Now by Tonelli’s Theorem, we have

E

∑
k∈Z

∑
j∈Z
|αjβk−jXt−k|

 =
∑
k∈Z

∑
j∈Z
|αjβk−j |E |Xt−k|

≤ sup
s∈Z

E |Xs| ×
∑
s∈Z
|αs| ×

∑
s∈Z
|βs| .

Hence we obtain ∑
k∈Z

∑
j∈Z
|αjβk−jXt−k| <∞ a.s. .

We can thus apply Fubini’s Theorem and get that

Wt =
∑
j∈Z

αj

(∑
k∈Z

βk−jXt−k

)
a.s.

=
∑
j∈Z

αjYt−j a.s.

= Zt a.s.

Hence the result.

An immediate consequence of Lemma 3.2.1 is that Fα and Fβ commute,
since the convolution product ? commute in `1. Another important conse-
quence is that inverting a linear filter Fα by another linear filter Fβ, that
is, finding β ∈ `1 such that Fα ◦Fβ is the identity operator, is equivalent
to finding β ∈ `1 such that α ? β = e0, where e0 is the impulsion sequence
defined by

e0,t =

{
1 if t = 0

0 otherwise.

Now define the Fourier series α∗ and β∗ as in (3.9). It is easy to show that,
for all α, β ∈ `1,

(α ? β)∗ = α∗ × β∗ .

Consequently, we have

α ? β = e0 ⇔ α∗ × β∗ = 1 . (3.10)

Let us sum up these findings in the following proposition.
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Proposition 3.2.2. Let α, β ∈ `1. Define the Fourier series α∗ and β∗

as in (3.9) and suppose that α∗ × β∗ = 1. Then, for all random process
X = (Xt)t∈Z satisfying (3.4), we have

Fα ◦Fβ(X) = Fβ ◦Fα(X) = X a.s.

Of course, not all α ∈ `1 defines a filter Fα which is “invertible” in the
sense of Proposition 3.2.2, that is admits a β ∈ `1 such that α ? β = e0.
Nevertheless, the case where Fα is a FIR filter can be completely described
by the following lemma.

Lemma 3.2.3. Let P and Q be two polynomials with complex coefficients
with no common roots. Assume that Q(0) = 1 and that Q does not vanish
on the unit circle

Γ1 = {z ∈ C : |z| = 1} .
The rational function P/Q admits the following uniformly convergent series
expansion

P

Q
(z) =

∑
t∈Z

ψtz
t , (3.11)

on the ring
Rδ1,δ2 = {z ∈ C , δ1 < |z| < δ2} ,

where ψ ∈ `1 and

δ1 = max{|z| : z ∈ C, |z| < 1, Q(z) = 0}
δ2 = min{|z| : z ∈ C, |z| > 1, Q(z) = 0} .

with the convention max(∅) = 0 and min(∅) =∞.
If P and Q have real valued coefficient, so has ψ.
Moreover, the two following assertions hold and provides the asymptotic

behavior of ψt as t→ ±∞.

(i) We have ψt = 0 for all t < 0 if and only if δ1 = 0, that is, if and only
if Q does not vanish on the unit disk ∆1 = {z ∈ C : |z| ≤ 1}. If it is
not the case, then, for any η ∈ (0, δ1), ψt = O(η−t) as t→ −∞.

(ii) We have ψt = 0 for all t > deg(P ) − deg(Q) if and only if δ2 = ∞,
that is, if and only if Q does not vanish out of the unit disk ∆1. If it
is not the case, then, for any η ∈ (0, 1/δ2), ψt = O(ηt) as t→∞.

Proof. By the partial fraction decomposition of the P/Q, one can first solve
the case where Q has degree 1. The details of the proof is left to the reader
(see Exercise 3.6).

The series expansion (3.11) extends the classical expansion of power
series to a two-sided sum. It is called a Laurent series expansion.

Applying Lemma 3.2.3 to solve Proposition 3.2.2 in the special case (3.3),
we get the following result.
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Corollary 3.2.4. Under the assumptions of Lemma 3.2.3, we have, for all
random process X = (Xt)t∈Z satisfying (3.4),

Fψ ◦[Q(B)](X) = [P (B)](X) ,

where ψ is the unique sequence in `1 that satisfies (3.11) for all z ∈ Γ1 (the
unit circle).

Proof. The only fact to show is that (3.11) on z ∈ Γ1 uniquely defines ψ.
(We already know that ψ exists and belongs to `1 from Lemma 3.2.3). This
fact follows from the inverse Fourier transform. Namely, for all ψ ∈ `1,
defining ψ∗ as in (3.9), it is easy to show that, for all t ∈ Z,

ψt =
1

2π

∫
T
ψ∗(λ) eitλ dλ .

Hence the result.

Applying Corollary 3.2.4 with P = 1 allows us to derive the inverse filter
of any FIR filter of the form Q(B).

Another interesting application of Corollary 3.2.4 is to derive nontrivial
filters whose effects on the spectral density is a multiplication by a constant;
they are called all-pass filters.

Definition 3.2.2 (All-pass filters). Let ψ ∈ `1. The linear filter Fψ is called
an all-pass filter if there exists c > 0 such that, for all z on the unit circle
Γ1, ∣∣∣∣∣∑

k∈Z
ψkz

k

∣∣∣∣∣ = c .

An interesting obvious property of these filters is the following.

Lemma 3.2.5. Let ψ ∈ `1such that Fψ is an all-pass filter. Then if Z is a
weak white noise, so is Fψ(Z).

Other type of filters satisfy this property, such as the time reversion
operator, see Example 1.3.6.

Example 3.2.1 (All-pass filter, a trivial case). Any filter of the form aBk

with a ∈ C and k ∈ Z is an all-pass filter, since it corresponds to Fψ with
ψl = 0 for all l 6= k and ψk = a.

A more interesting example is obtained starting from a given polynomial
Q.

Example 3.2.2 (All-pass filter inverting the roots moduli). Let Q be a
polynomial such that Q(0) = 1, so that

Q(z) =

p∏
k=1

(1− νkz) ,
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where p is the degree of Q and ν1, . . . , νp are the reciprocals of its roots.
Define the polynomial

Q̃(z) =

p∏
k=1

(1− ν−1
k z) .

Assume that Q does not vanish on the unit circle Γ1, so that the same holds
for Q̃. Then we have, for all z on Γ1,∣∣∣∣Q(z)

Q̃(z)

∣∣∣∣2 =

p∏
k=1

|νk|2 . (3.12)

By Corollary 3.2.4, there exists a unique ψ̃ ∈ `1 such that

1

Q̃
(z) =

∑
t∈Z

ψ̃tz
t , (3.13)

and we have Fψ̃ ◦[Q̃(B)](X) = X for all X = (Xt)t∈Z satisfying (3.4). De-

fine φ ∈ `1 such that
Fφ = Fψ̃ ◦[Q(B)] .

As a consequence of (3.12) and (3.13), the filter Fφ is an all-pass filter and
satisfies

Fφ ◦[Q̃(B)] = [Q(B)] . (3.14)

Proceeding similarly with Q̃ replacing Q (and Q replacing Q̃), we obtain
φ̃ ∈ `1 such that Fφ̃ is an all-pass filter and satisfies

Fφ̃ ◦[Q(B)] = [Q̃(B)] . (3.15)

Moreover, we have φ ? φ̃ = e0, so that

Fφ ◦Fφ̃ = I . (3.16)

Here I denotes the identity operator and all operators above are defined on
the class of all processes that satisfy (3.4) (in particular on the class of
weakly stationary processes). Observe moreover that if Q is a polynomial
with real coefficients, then so is Q̃ and φ also takes its values in R.

3.3 Definition of ARMA processes

In the following we take the convention that ARMA processes are centered.
To define a noncentered ARMA process, just add a constant to a centered
ARMA process. We will work with complex valued ARMA processes for
convenience, although in practice, for modelling purposes, one usually works
with real valued ARMA processes. From a theoretical point of view, there
is not much difference between the two settings, except concerning existence
results: it can be a bit harder to prove the existence of a real-valued process
than a complex-valued process.
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3.3.1 MA(q) processes

Definition 3.3.1 (MA(q) processes). A random process X = (Xt)t∈Z is
called a moving average process of order q (MA(q)) with coefficients θ1, . . . , θq
if it satisfies the MA(q) equation

Xt = Zt + θ1Zt−1 + · · ·+ θqZt−q , (3.17)

where Z ∼WN(0, σ2).

In other word X = Fα(Z), where Fα is a FIR filter with coefficients

αt =


1 if t = 0,

θk if t = 1, . . . , q,

0 otherwise.

(3.18)

Equivalently, we can write

X = [Θ(B)](Z) ,

where B is the Backshift operator and Θ is the polynomial defined by Θ(z) =
1 +

∑p
k=1 θkz

k.
Hence it is a linear process with short memory, and by Corollary 3.1.3, it

is a centered weakly stationary process with autocovariance function given
by

γ(h) =


σ2
∑q−h

t=0 θkθk+h, if 0 ≤ h ≤ q ,
σ2
∑q+h

t=0 θkθk−h, if −q ≤ h ≤ 0 ,

0, otherwise ,

(3.19)

and with spectral density function given by

f(λ) =
σ2

2π

∣∣∣∣∣1 +

q∑
k=1

θke
−ikλ

∣∣∣∣∣
2

.

We already mentioned the MA(1) process in Example 2.2.1, and displayed
its spectral density in Figure 2.3.

3.3.2 AR(p) processes

Definition 3.3.2 (AR(p) processes). A random process X = (Xt)t∈Z is
called an autoregressive process of order p (AR(p)) with coefficients φ1, . . . , φp
if it satisfies the AR(p) equation

Xt = φ1Xt−1 + · · ·+ φpXt−p + Zt , (3.20)

where Z ∼WN(0, σ2).
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Observe that (3.20) looks like a regression model where the regressors are
given by the p past values of the process. Hence the term “autoregressive”.
This is also the reason why the AR processes are so popular for modelling
purposes.

In contrast with MA process, this sole definition does not guaranty that
X is weakly stationary. In fact, as soon as φk 6= 0 for some k (otherwise
X = Z), this equation has clearly an infinite set of solutions! It suffices
to choose an arbitrary set of initial conditions (X0, X−1, . . . , X1−p (possible
independently of the process Z) and to compute Xt by iterating (3.20) for
t ≥ 1 and by iterating the backward equation

Xt−p =
1

φp
Xt −

φ1

φp
Xt−1 − · · · −

φp−1

φp
Xt−p+1 + Zt , (3.21)

for t ≤ −1.
Nevertheless, for well chosen AR coefficients φ1, . . . , φp, there a unique

weakly stationary process that satisfies the AR(p) equation (3.20). Unless
otherwise stated, the AR(p) process defined by an AR(p) equation will al-
ways be taken as this weakly stationary solution.

To better understand this point of view, let us consider the case p = 1,

Xt = φXt−1 + Zt . (3.22)

By iterating this equation, we get

Xt = φkXt−k +

k−1∑
j=0

φjZt−j . (3.23)

Let us first assume that |φ| < 1. If we assume X to be weakly stationary
then, taking the limit (in the L2 sense) as k →∞ , we get

X = Fψ(Z) ,

where

ψt =

{
φt if t ≥ 0,

0 otherwise.

It is simple verification to check that this weakly stationary process is indeed
a solution to the AR(1) equation (3.22). So we have shown our claim when
|φ| < 1.

If |φ| > 1, it is easy to adapt the previous proof by using the backward
recursion (3.21) in the case p = 1. In this case, we obtain again that there
is unique weakly stationary solution to the AR(1) equation, and it is given
by X = Fψ(Z), this time with

ψt =

{
φt if t ≤ 1,

0 otherwise.
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Finally, if |φ| = 1, rewriting (3.23) as

Xt − φkXt−k =

k−1∑
j=0

φjZt−j ,

we observe that the right-hand side has variance kσ2, while the left-hand
side has variance at most 2(Var (Xt)+Var (Xt−k)) hence would be bounded
if X were weakly stationary. We conclude that in this case, there is no
weakly stationary solution to the AR(1) equation.

In conclusion we have shown the following result in the case p = 1.

Theorem 3.3.1 (Existence and uniqueness of a weakly stationary solution
of the AR(p) equation). Let Z ∼WN(0, σ2) with σ2 > 0 and φ1, . . . , φp ∈ C.
Define the polynomial

Φ(z) = 1−
p∑

k=1

φkz
k .

Then the AR(p) equation (3.20) has a unique weakly stationary solution X
if and only if Φ does not vanish on the unit circle Γ1. Moreover, in this
case, we have X = Fψ(Z), where ψ ∈ `1 is uniquely defined by∑

t∈Z
ψtz

t =
1

Φ(z)
on z ∈ Γ1 .

The proof in the general case is omitted since we will treat below the
more general ARMA recurrence equations, see Theorem 3.3.2.

Let us just mention that it easily follows from our result on the inversion
of FIR filters (see Corollary 3.2.4) by observing that, as for MA processes,
the AR(p) equation can be interpreted as a FIR filter equation, namely,
Z = Fβ(X), where Fβ is a FIR filter with coefficients

βt =


1 if t = 0,

−φt if t = 1, . . . , p,

0 otherwise.

(3.24)

Or, equivalently, Z = [Φ(B)](X).

3.3.3 ARMA(p, q) processes

ARMA(p, q) processes is an extension both of AR(p) and MA(q) processes.

Definition 3.3.3 (ARMA(p, q) processes). A random process X = (Xt)t∈Z
is called an autoregressive moving average process of order (p, q) (ARMA(p, q))
with AR coefficients φ1, . . . , φp and MA coefficients θ1, . . . , θq if it satisfies
the ARMA(p, q) equation

Xt = φ1Xt−1 + · · ·+ φpXt−p + Zt + θ1Zt−1 + · · ·+ θqZt−q , (3.25)

where Z ∼WN(0, σ2).
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As discussed for the AR(p) equation, again the ARMA(p, q) equation
has an infinite set of solutions, but at most one that is weakly stationary
and this happens for well chosen AR coefficients.

Before stating this result, let us recall how the ARMA equation can
be rewritten using linear filer operators. The ARMA(p, q) equation can be
written as

Φ(B)(X) = Θ(B)(Z) , (3.26)

where B is the Backshift operator and Φ and Θ are the polynomials defined
by

Φ(z) = 1−
p∑

k=1

φkz
k and Θ(z) = 1 +

p∑
k=1

θkz
k . (3.27)

To avoid treating useless particular cases, it is natural to assume that Φ and
Θ have no common roots. Otherwise, factorizing these polynomials, we see
that the same operators apply to both sides of (3.26).

Theorem 3.3.2 (Existence and uniqueness of a weakly stationary solu-
tion of the ARMA(p, q) equation). Let Z ∼ WN(0, σ2) with σ2 > 0 and
φ1, . . . , φp, θ1, . . . , θq ∈ C. Assume that the polynomials Φ and Θ defined
by (3.27) have no common roots. Then the ARMA(p, q) equation (3.20) has
a unique weakly stationary solution X if and only if Φ does not vanish on
the unit circle Γ1. Moreover, in this case, we have X = Fψ(Z), where ψ ∈ `1
is uniquely defined by ∑

t∈Z
ψtz

t =
Θ

Φ
(z) on z ∈ Γ1 . (3.28)

As a consequence, X admits a spectral density function given by

f(λ) =
σ2

2π

∣∣∣∣ΘΦ(e−iλ)

∣∣∣∣2 . (3.29)

Remark 3.3.1. In fact (3.28) holds in the ring {z ∈ C , δ1 < |z| < δ2},
where δ1 = max{z ∈ C, |z| < 1, φ(z) = 0} and δ2 = min{z ∈ C, |z| >
1, φ(z) = 0}.

Proof of Theorem 3.3.2. We first suppose that Φ does not vanish on the unit
circle. Since the ARMA(p, q) equation can be rewritten as

[Φ(B)](X) = [Θ(B)](Z) ,

existence and uniqueness of a weakly stationary solution directly follows
from Corollary 3.2.4: setting X = Fψ(Z) gives the existence; applying Fξ to
both sides of this equation gives the uniqueness, where ξ ∈ `1 satisfies∑

t∈Z
ξtz

t =
1

Φ(z)
on z ∈ Γ1 .
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(we apply Corollary 3.2.4 with P = 1). The spectral density function ex-
pression (3.29) then follows from Theorem 3.1.2.

It only remains to show that if Φ does vanish on the unit circle, then
the ARMA(p, q) equation does not admits a weakly stationary solution. Let
λ0 ∈ T such that e−iλ0 is a root of Φ and let X be a weakly stationary process
with spectral measure ν. Using Theorem 3.1.2, it follows that [Φ(B)](X) has
a spectral measure ν ′ such that, for all ε > 0,

ν ′([λ0 − ε, λ0 + ε]) =

∫
[λ0−ε,λ0+ε]

|Φ(e−iλ)|2 ν(dλ)

≤ C ε2 ν([λ0 − ε, λ0 + ε])

= O(ε2) .

On the other hand, [Θ(B)](Z) has a continuous spectral density which does
not vanish at λ0, since Θ has no common roots with Φ and thus does not
vanish at e−iλ0 , so its spectral measure applied to the same set [λ0−ε, λ0 +ε]
is lower bounded by cε with c > 0. Hence we cannot have [Φ(B)](X) =
[Θ(B)](Z), which concludes the proof.

3.4 Representations of an ARMA(p, q) process

In view of Definition 3.1.1 and Definition 3.2.1,

Definition 3.4.1 (Representations of ARMA(p, q) processes). If the ARMA
equation (3.25) has a weakly stationary solution X = Fψ(Z), it is said to
provide

(i) a causal representation of X if Fψ is a causal filter,

(ii) an invertible representation of X if Fψ(Z) is an invertible representa-
tion and its inverse filter is causal,

(iii) a canonical representation of X if Fψ(Z) is a causal and invertible
representation.

We have the following result.

Theorem 3.4.1. Under the assumptions and notation of Theorem 3.3.2,
the ARMA equation (3.25) provides

(i) a causal representation of X if and only if Φ does not vanish on the
unit closed disk ∆1,

(ii) an invertible representation of X if and only if Θ does not vanish on
the unit closed disk ∆1,
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(iii) a canonical representation of X if and only if neither Φ nor Θ does
vanish on the unit closed disk ∆1.

Proof. The characterization of the causality of Fψ directly follows from the
definition of ψ in Theorem 3.3.2 and from Lemma 3.2.3.

The second equivalence is obtained similarly by inverting the roles of Φ
and Θ.

The third equivalence follows from the first two.

We shall see in the following that a canonical representation is very useful
to derive the innovation process of an ARMA process X. Applying the all-
pass filters derived in Example 3.2.2, we easily get the following result.

Theorem 3.4.2. Let X be the weakly stationary solution of the ARMA
equation (3.25), where Φ and Θ defined by (3.27) have no common roots
and no roots on the unit circles. Then there exists AR coefficients φ̃1, . . . , φ̃p
and MA coefficients θ̃1, . . . , θ̃q and Z̃ ∼WN(0, σ2) such that X satisfies the
ARMA(p, q) equation

Xt = φ̃1Xt−1 + · · ·+ φ̃pXt−p + Z̃t + θ̃1Z̃t−1 + · · ·+ θ̃qZ̃t−q , (3.30)

and the corresponding polynomials Φ̃ and Θ̃ do not vanish on the unit closed
disk ∆1. In particular, (3.30) is a canonical representation of X. Moreover,
if the original AR and MA coefficients φk’s and θk’s are real, so are the
canonical ones φ̃k’s and θ̃k’s.

Proof. We may write Φ = P ×Q, where P has its roots out of ∆1 and Q in
the interior of ∆1 and P (0) = Q(0) = 1. Proceeding as in Example 3.2.2, we
obtain φ, φ̃ ∈ `1 such that (3.14) holds and Fφ is an all-pass filter. Applying
Fφ to both sides of (3.26) and using (3.14), we get

Φ̃(B)(X) = Θ(B) ◦ Fφ(Z) ,

where Φ̃ = P × Q̃ is a polynomial with same degree as Φ and all its roots
out of ∆1. We can proceed similarly with the polynomial Θ and obtain a
polynomial Θ̃ with same degree as Θ and roots out of ∆1 and φ̃ ∈ `1 such
that Fφ is an all-pass filter and

Θ(B) = Θ̃(B) ◦ Fφ̃ .

As a consequence we obtain that X is solution to the equation

Φ̃(B)(X) = Θ̃(B) ◦ Fφ̃ ◦Fφ(Z) .

Now, by Lemma 3.2.5, we know that Fφ̃ ◦Fφ(Z) is a white noise. Hence
the previous displayed equation is an ARMA equation that admits a unique
weakly stationary solution, which is X. Moreover, by construction, it pro-
vides a canonical representation of X.

Theorem 3.4.2 is a very important result as it provides a canonical rep-
resentation of any ARMA process X, provided that the polynomials of the
original ARMA equation do not vanish on the unit circle.
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3.5 Innovations of ARMA processes

Interestingly, a canonical representation of an ARMA process provides the
innovations of the process, as shown by the following result.

Theorem 3.5.1. Let X be the weakly stationary solution to a canonical
ARMA(p, q) equation of the form

Xt = φ1Xt−1 + · · ·+ φpXt−p + Zt + θ1Zt−1 + · · ·+ θqZt−q ,

where Z ∼WN(0, σ2). Then Z is the innovation process of X.

Proof. By definition of the canonical representation, there exists ψ, ψ̃ ∈ `1
such that ψk = ψ̃k = 0 for all k < 0, X = Fψ(Z) and Z = Fψ̃(X). We

deduce that, for all t ∈ Z, HZt = HXt . Consequently, for all t ∈ Z,

X̂t = φ1Xt−1 + · · ·+ φpXt−p + θ1Zt−1 + · · ·+ θqZt−q ∈ HXt−1 ,

and
Xt − X̂t = Zt ∈ HZt ⊥ HZt−1 = HXt−1 .

Hence, by the orthogonality principle of projection, we obtain that

proj
(
Xt|HXt−1

)
= X̂t .

Hence the result.

From (3.19), we see that an MA(q) process has an Autocovariance func-
tion γ(h) which vanishes for all |h| > q. A very important result is the
converse implication. Its proof relies on the construction of the innovation
process from the assumption on the autocovariance function γ.

Theorem 3.5.2. Let X be a centered weakly stationary process with auto-
covariance function γ. Then X is an MA(q) process if and only if γ(h) = 0
for all |h| > q.

Proof. The “only if” part is already known. We thus show the “if” part,
that is, we take a centered weakly stationary process X with autocovariance
function γ, assume that γ(h) = 0 for all |h| > q, and show that it is an
MA(q) process.

Let (εt)t∈Z be the innovation process of X, thus it is a white noise
WN(0, σ2), see Section 2.4. Since γ(h) = 0 for all |h| > q, we have
Xt ⊥ HXt−q−1 for all t. Observing that

HXt−1 = HXt−q−1

⊥
⊕ Span (εt−q, . . . , εt−1) ,

by the orthogonality principle of projection, we obtain that

proj
(
Xt|HXt−1

)
= proj (Xt|Span (εt−q, . . . , εt−1)) ,
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and thus, either σ2 = 0 and Xt = 0 a.s. (a very trivial MA process) or X is
regular and we have

proj
(
Xt|HXt−1

)
=

q∑
k=1

〈Xt, εt−k〉
σ2

εt−k .

where the coefficient in front of each εt−k does not depend on t, but only on k
(see (2.21). Let us presently denote it by θk. Since Xt = proj

(
Xt|HXt−1

)
+εt,

we finally get that X is solution of (3.17) with the white noise Z replaced
by the innovation process ε (which also is a white noise). Hence X is an
MA(q) process.

Remark 3.5.1. We have authorized ARMA processes to be complex valued.
The question arises whether the “if part” of Theorem 3.5.2 continues to hold
for real MA processes. Inspecting the proof of this result, the answer is yes.
If one start with a real valued process X, then the prediction coefficients and
the innovation process are real valued, and so are the coefficients θ1, . . . , θq
defined in this proof.

To conclude with the innovations of ARMA processes, we show the fol-
lowing result, which is a specialization of Theorem 3.5.1 to the case of AR
processes.

Theorem 3.5.3. Let X be a weakly stationary AR(p) process with causal
representation

Xt = φ1Xt−1 + · · ·+ φpXt−p + Zt ,

where Z ∼ WN(0, σ2). Then, for all m ≥ p, the prediction coefficients are
given by

φ+
p = [φ1, . . . , φp, 0, . . . , 0︸ ︷︷ ︸

m−p

]T ,

that is, for all t ∈ Z,

proj
(
Xt|HXt−1,m

)
=

p∑
k=1

φkXt−k .

In particular the prediction error of order m is Zt and has variance σ2 and
thus is constant for all m ≥ p.

Proof. The proof follows that of Theorem 3.5.1.

This property provides a characterization of AR(p) processes as simple
as that provided for MA(q) processes in Theorem 3.5.2. It relies on the
following definition.
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Definition 3.5.1 (Partial autocorrelation function). Let X be a weakly sta-
tionary process. The partial autocorrelation function of X is the function
defined by

κ(p) = φ+
p,p, p = 1, 2, . . .

where φ+
p =

(
φ+
k,p

)
k=1,...,p

denote the prediction coefficients of X, that is,

for all t ∈ Z,

proj
(
Xt|HXt−1,p

)
=

p∑
k=1

φ+
k,pXt−k ,

with the convention that κ(p) = 0 if this equation does not defines uniquely
φ+
p , that is, if Γ+

p is not invertible.

We see from Theorem 3.5.3 that if X is an AR process, then its partial
autocorrelation function vanishes for all m > p. It is in fact a characteriza-
tion of AR processes, as shown by the following result.

Theorem 3.5.4. Let X be a centered weakly stationary process with partial
autocorrelation function κ. Then X is an AR(p) process if and only if
κ(m) = 0 for all m > p.

Proof. The “only if” part is a consequence of Theorem 3.5.3.
Let us show the “if” part. Let X be a centered weakly stationary process

with partial autocorrelation function κ such that κ(m) = 0 for all m > p.
This implies that, for all such m and all t ∈ Z,

proj
(
Xt|HXt−1,m

)
∈ HXt−1,m−1 ,

which implies that

proj
(
Xt|HXt−1,m

)
= proj

(
Xt|HXt−1,m−1

)
,

and, iterating in m,

proj
(
Xt|HXt−1,m

)
= proj

(
Xt|HXt−1,p

)
.

Letting m→∞, by (2.15), we get that

proj
(
Xt|HXt−1

)
= proj

(
Xt|HXt−1,p

)
=

p∑
k=1

φpXt−k ,

where φ1, . . . , φp are the prediction coefficients of order p. Denote by Z the
innovation process of X, then Z is a white noise (see Corollary 2.4.1) and
X satisfies the AR(p) equation

Xt = φ1Xt−1 + · · ·+ φpXt−p + Zt .

Hence the result.
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3.6 Autocovariance function of ARMA processes

The spectral density of an ARMA process is easily obtained from the AR
and MA coefficients by (3.29).

We now explain in this section how to compute the autocovariance func-
tion of an ARMA process. For this purpose we assume in this section that
X is the weakly stationary solution of a causal ARMA(p, q) equation of the
form

Xt = φ1Xt−1 + · · ·+ φpXt−p + Zt + θ1Zt−1 + · · ·+ θqZt−q , (3.31)

where Z ∼ WN(0, σ2). Note that, whenever a stationary solution exists, a
causal representation of the ARMA equation can be found, see the first part
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of the proof of Theorem 3.4.2.

Algorithm 1: Computation of the filter coefficients and the autoco-
variance function from a causal ARMA representation.

Data: AR and MA coefficients φ1, . . . , φr, θ1, . . . , θr, and variance σ2

of the white noise.
Result: Causal filter coefficients (ψk)k≥0 and autocovariance

function γ.

Step 1 Initialization: set ψ0 = 1.
for k = 1, 2, . . . , r do

Compute

ψk = θk +
k∑
j=1

ψk−jφj . (3.32)

end

for k = r + 1, r + 2, . . . do
Compute

ψk =

r∑
j=1

ψk−jφj . (3.33)

end

Step 2 for τ = 0, 1, 2, . . . do
Compute

γ(τ) = σ2
∞∑
k=0

ψkψk+τ . (3.34)

end

and for τ = −1,−2, . . . do
Set

γ(τ) = γ(−τ) .

end

Theorem 3.6.1. Let X be the weakly stationary solution of the ARMA(p, q)
equation (3.31), which is assumed to be a causal representation, that is, for
all z ∈ C such that |z| ≤ 1,

1−
p∑

k=1

φkz
k 6= 0 .

Define r = max(p, q) and set θj = 0 for q < j ≤ r or φj = 0 for p < j ≤ r.
Then Algorithm 1 applies.
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Proof. Because the representation is causal, we know that the solution ψ ∈
`1 of the equation (3.28) satisfies ψk = 0 for all k < 0. Moreover, by
Lemma 3.2.3 and (3.10), this equation can be interpreted as the convolution
equation

ψ ? φ = θ ,

where φ and θ here denote the sequences associated to the polynomial Φ
and Θ by the relations

φ∗(λ) = Φ(e−iλ) ,

and

θ∗(λ) = Θ(e−iλ) ,

Because ψ is one-sided and φ has a finite support, and using the definition
of r, we easily get

ψ0 = 1

ψ1 = θ1 + ψ0φ1

ψ2 = θ2 + ψ0φ2 + ψ1φ1

...

ψr = θr +

r∑
j=1

ψk−jφj

ψr+1 =

r∑
j=1

ψr+1−jφj

...

that is, (3.32) and (3.33) hold, which achieves the proof of Step 1.

The computations of Step 2 directly follow from Corollary 3.1.3 in the
case where ψ vanishes on Z−, which concludes the proof.

Observe that Algorithm 1 has to be performed formally in the sense
that it involves infinite recursions and sums, even if only a finite number
of values of the autocovariance function is computed. In contrast the next
algorithm can be performed numerically : only a finite number of operations
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is necessary for computing a finite number of covariance coefficients.

Algorithm 2: Computation of the autocovariance function from a
causal ARMA representation.

Data: AR and MA coefficients φ1, . . . , φr, θ1, . . . , θr, and variance σ2

of the white noise, a lag m.
Result: Causal filter coefficients ψk for k = 0, . . . , r and

autocovariance function γ(τ) for τ = −m, . . . ,m.

Step 1 Initialization: set ψ0 = 1.
for k = 1, 2, . . . , r do

Compute ψk by applying (3.32).

end

Step 2 Using that γ(−j) = γ(j) for all j and setting θ0 = 1, solve the linear
system

γ(τ)− φ1γ(τ − 1)− · · · − φrγ(τ − r) = σ2
∑
τ≤j≤r

θjψj−τ , 0 ≤ τ ≤ r ,

(3.35)
in γ(τ), τ = 0, 1, 2, . . . , r.

Step 3 Then apply the following induction.

for τ = r + 1, r + 2, . . . ,m do
Compute

γ(τ) = φ1γ(τ − 1) + · · ·+ φrγ(τ − r) . (3.36)

end

for τ = −1,−2, . . . ,−m do
Set

γ(τ) = γ(−τ) .

end

Theorem 3.6.2. Under the same assumptions as Theorem 3.6.1, Algo-
rithm 1 applies.

Proof. The proof of Step 1 is already given in the proof of Theorem 3.6.1.
Observe that, by causality, we have Xt =

∑
`≥0 ψ`Zt−` and thus, for all

t, τ ∈ Z and j = 0, . . . , r,

Cov (Zt−j , Xt−τ ) =

{
σ2ψj−τ if j ≥ τ ,

0 otherwise.

Now by (3.31), taking the covariance both sides with Xt−τ , we get (3.35)
for 0 ≤ τ ≤ r and (3.36) for τ ≥ r + 1.
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3.7 Beyond absolutely summable coefficients

Let us conclude with an example where, given a weakly stationary process
X and a random variable in HX∞, one defines a linear filter without relying
on a sequence of absolutely summable coefficients.

Example 3.7.1 (Linear filtering in HX∞). Let X = (Xt)t∈Z be a centered
a weakly stationary process with autocovariance γ and let Y0 ∈ HX∞. Then
there exists an array of complex numbers (αn,s)s∈Z,n≥1 such that for all
n ∈ N, the set {s ∈ Z, αn,s 6= 0} is finite and, as n→∞,∑

s∈Z
αn,sX−s → Y0 in L2.

It follows that, by weak stationarity and using the Cauchy criterion, for all
t ∈ Z, ∑

s∈Z
αn,sXt−s → Yt in L2,

where Yt ∈ HX∞. By continuity of the expectation and the scalar product,
we easily obtain that the process Y = (Yt)t∈Z is a centered weakly stationary
process with autocovariance function

γ′(τ) = lim
n→∞

∑
s∈Z

∑
t∈Z

αn,sαn,tγ(τ − t+ s) .

A particular instance of the previous case is obtained when X is a white
noise.

Example 3.7.2 (The white noise case). We consider Example 3.7.1 with
X ∼WN(0, σ2). In this case (Xt)t∈Z is a Hilbert basis of HX∞ and thus

HX∞ =

{∑
t∈Z

αtXt : (αt) ∈ `2(Z)

}
,

where `2(Z) is the set of sequences (xt) ∈ CZ such that
∑

t |αt|2 < ∞ and
the convergence of

∑
t∈Z is understood in the L2 sense. As a result we may

take (αn,t)t∈Z,n≥1 as αn,t = αt1(−n ≤ t ≤ n) and obtain

Yt =
∑
s∈Z

αsXt−s in L2, (3.37)

and
γ′(τ) =

∑
s∈Z

∑
t∈Z

αsαtγ(τ − t+ s) .
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3.8 Exercises

Exercise 3.1. Suppose that

Yt = βt+ St +Xt, t ∈ Z ,

where β ∈ R, (St)t∈Z is a 4-periodic weakly stationary process and (Xt)t∈Z
is a weakly stationary process such that (Xt) and (St) are uncorrelated.

1. Is (Yt) weakly stationary ?

2. Which property is satisfied by the covariance function of (St) ? Define
(S̄t) as the process obtained by applying the operator 1 + B + B2 + B3

to (St), where B denotes the shift operator. What can be said about
(S̄t) ?

3. Consider now (Zt) obtained by applying 1 + B + B2 + B3 and 1 − B
successively to (Yt). Show that (Zt) is stationary and express its co-
variance function using the one of (Xt).

4. Characterize the spectral measure µ of (St).

5. Compute the spectral measure of (1−B4)(Yt) when (Xt) has a spectral
density f .

Exercise 3.2 (Canonical ARMA representation). Let (Xt)t∈Z denote a second-
order stationary process satisfying the following recurrence relation

Xt − 2Xt−1 = εt + 4εt−1

where (εt)t∈Z is a second-order white noise with variance σ2.

1. What is the spectral density of (Xt)?

2. What is the canonical representation of (Xt)?

3. What is the variance of the innovation process corresponding to (Xt)?

4. How is it possible to write Xt as a function of (εs) ?

Exercise 3.3 (Sum of MA processes). Let (Xt)t∈Z and (Yt)t∈Z denote two
uncorrelated MA processes such that

Xt = εt + θ1εt−1 + ...+ θqεt−q

Yt = ηt + ρ1ηt−1 + ...+ ρpηt−p

where (εt)t∈Z and (ηt)t∈Z are white noise processes with variance, respec-
tively, σ2

ε and σ2
η. Define

Zt = Xt + Yt .
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1. Show that (Zt) is an ARMA process.

2. Assuming that q = p = 1 and 0 < θ1, ρ1 < 1, compute the variance of
the innovation process corresponding to (Zt).

Exercise 3.4 (Sum of AR processes). Let (Xt)t∈Z and (Yt)t∈Z denote two
uncorrelated AR(1) processes :

Xt = aXt−1 + εt

Yt = bYt−1 + ηt

where (εt)t∈Z and (ηt)t∈Z have variances σ2
ε and σ2

η, respectively, and 0 <
a, b < 1. define

Zt = Xt + Yt .

1. Show that there exists a white noise (ξt)t∈Z with variance σ2 and θ
with |θ| < 1 such that

Zt − (a+ b)Zt−1 + abZt−2 = ξt − θξt−1 .

2. Check that

ξt = εt + (θ − b)
∞∑
k=0

θkεt−1−k + ηt + (θ − a)
∞∑
k=0

θkηt−1−k

3. Determine the best linear predictor of Zt+1 when (Xs) and (Ys) are
known up to time s = t.

4. Determine the best linear predictor of Zt+1 when (Zs) is known up to
time s = t.

5. Compare the variances of the prediction errors corresponding to the
two predictors defined above.

Exercise 3.5. The goal of this exercise is to show that any spectral density
f that is continuous on ]−π, π] can be approximated by the spectral density
of a moving average process ( MA(q)) that equals |Θ(e−iω)|2 where

Θ (B) = θ0 + θ1 B +θ2 B2 + · · ·+ θq Bq .

Let us define ek (ω) = eikω and, for all n ≥ 1,

Kn =
1

2πn

n−1∑
j=0

j∑
k=−j

ek .

1. Compute the integral of Kn over a period.
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2. Show thatKn is non-negative and satisfies, for all ε > 0, supε≤|t|≤πKn(t) =

O
(
n−1

)
.

3. Deduce that for any continuous (2π)-periodic function g, denoting by

gj (ω) =

j∑
k=−j

ckek (ω) ,

its Fourier approximation of order j, where ck = 1
2π

∫ π
−π g (ω) e−ikωdω,

then the Cesaro mean 1
n

∑n−1
j=0 gj converges to g uniformly on [−π, π].

4. Using this result, show that for all ε > 0, there exists Θ of finite order
q such that supω∈[−π,π]

∣∣|Θ(e−iω)|2 − f(ω)
∣∣ < ε. Suppose first that f

is bounded from below by m > 0 on [−π, π].

Exercise 3.6. Let P and Q be defined as in Lemma 3.2.3. Suppose first that
Q(z) = 1− αz for some α ∈ C.

1. Suppose that |α| < 1. Compute δ1 and δ2 in this case and exhibit
(ψt)t∈Z so that (3.11) holds. What is the value of ψt for t ≤ −1 ?

2. Do the same when |α| > 1. [Hint : use that Q(z) = −αz(1−α−1z−1)].

3. Using the partial fraction decomposition of P/Q, prove that Lemma 3.2.3
holds in the general case, leaving aside only the proof of two following
assertions:

(A-1) ψt = 0 for all t < 0 implies δ1 = 0.

(A-2) ψt = 0 for all t > deg(P )− deg(Q) implies δ2 =∞.

4. Suppose that ψt = 0 for all t < 0. Show that (3.11) implies

P (z) = Q(z)
∑
t∈Z

ψtz
t

for all z such that |z| < 1. Deduce that δ1 = 0. [Hint : use that, by
assumption, P and Q do not have common roots.]

5. Use a similar reasoning to prove Assertion (A-2).

Exercise 3.7. Consider the assumptions of Theorem 3.4.2. Express the vari-
ance of the white noise of the canonical representation using Φ,Θ and σ2

(the variance of Z).
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Chapter 4

Linear forecasting

In this chapter, we examine the problem of linear forecasting for time series.
We first consider the case where the time series is a weakly stationary pro-
cess. We then introduce a very general approach for modelling time series:
the state-space model. More precisely we will focus in this chapter on the
linear state space model or dynamic linear model (DLM).

4.1 Linear forecasting for weakly stationary pro-
cesses

4.1.1 Choleski decomposition

Let (Xt)t∈Z be a centered weakly stationary process with autocovariance
function γ. We already have considered the problem of p-th order lin-
ear prediction of Xt by a linear predictor defined as a linear combination
of Xt−1, . . . , Xt−p. The optimal coefficients are called the linear predic-
tor coefficients, see Definition 2.4.2. More precisely, they are defined as

φ+
p =

[
φ+

1,p . . . φ+
p,p

]T
with

proj
(
Xt|HXt−1,p

)
=

p∑
k=1

φ+
k,pXt−k ,

which is equivalent to

Γ+
p φ

+
p = γ+

p , (4.1)
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where γ+
p =

[
γ(1) γ(2) · · · γ(p)

]T
and

Γ+
p = Cov

([
Xt−1 . . . Xt−p

]T)T

=



γ(0) γ(−1) · · · γ(−p+ 1)

γ(1) γ(0) γ(−1)
...

...
. . .

. . .
. . .

... γ(−1)
γ(p− 1) γ(p− 2) · · · γ(1) γ(0)


,

We are now interested in the effective computation of the prediction coeffi-
cients φ+

p (given γ) and of the prediction error defined by (2.18) and given
by

σ2
p = γ(0)− (φ+

p )Hγ+
p , (4.2)

see (2.19). The equations (4.1) and (4.2) are generally referred to as the
Yule-Walker equations.

Obviously the Yule-Walker equations have a unique solution (φ+
p , σ

2
p) if

and only if Γ+
p is invertible. Proposition 2.3.3 provides a very simple (and

general) sufficient condition for the invertibility of Γ+
p , namely if γ(0) 6= 0

and γ(t)→ 0 as t→∞.
The following theorem induces a more precise condition. It also provides

a Choleski decomposition of Γ+
p .

Theorem 4.1.1. Let (Xt)t∈Z be a centered weakly stationary process with
autocovariance function γ. Let σ2

0 = γ(0) and for all p ≥ 1, (φ+
p , σ

2
p) be any

solution of the Yule-Walker equations (4.1) and (4.2). Then we have, for
all p = 0, 1, . . . ,

Γ+
p+1 = A−1

p+1Dp+1(AHp+1)−1 , (4.3)

where

Ap+1 =



1 0 · · · · · · 0

−φ+
1,1 1

. . .
...

...
. . .

. . .
...

...
. . . 0

−φ+
p,p −φ+

p−1,p · · · −φ+
1,p 1


,

and

Dp+1 =


σ2

0 0 · · · 0
0 σ2

1 · · · 0
...

...
0 · · · σ2

p

 .

In particular, Γ+
p+1 is invertible if and only if σ2

p > 0 and, if X is a regular
process, then Γ+

p is invertible for all p ≥ 1.
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Proof. Denote

Xp+1 =
[
X1 . . . Xp+1

]T
.

By Definition 2.4.2, we have

Ap+1Xp+1 =


1 0 · · · 0
−φ+

1,1 1 · · · 0
...

...
−φ+

p,p −φ+
p−1,p · · · 1



X1

X2
...

Xp+1



=


X1

X2 − proj
(
X2|HX1,1

)
...

Xp+1 − proj
(
Xp+1|HXp,p

)


=


X1

ε+2,1
...

ε+p+1,p

 .

Observe that, for all k ≥ 1, HXk,k = Span (X1, . . . , Xk) and thus increases

with k. Using that X1 ∈ HX1,1 and for all k = 2, . . . , p, ε+k,k−1 ∈ H
X
k,k

and ε+k+1,k ⊥ H
X
k,k, we get that

[
X1 ε+2,1 . . . ε+p+1,p

]T
have orthogonal

components with variances σ2
0, . . . , σ

2
p. Hence we obtain

Cov(Ap+1Xp+1) = Dp+1 ,

from which we get (4.3).

It is interesting to observe that the prediction coefficients can be defined
using the spectral measure ν of X. Indeed by definition of the orthogonal
projection we have

φ+
p = argmin

φ∈Cp
E
[
Xt −

[
Xt−1 . . . Xt−p

]
φ
]
.

and
σ2
p = inf

φ∈Cp
E
[
Xt −

[
Xt−1 . . . Xt−p

]
φ
]
.

Now for all φ ∈ Z, we have

E
[∣∣Xt −

[
Xt−1 . . . Xt−p

]
φ
∣∣2] =

∫
T
|Φ(e−iλ)|2 dν(λ) ,

where Φ is the polynomial defined by

Φ(z) = 1−
p∑

k=1

φkz
k .
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Using this approach, the following interesting result can be shown. The
detailed proof is left to the reader (see Exercise 4.2).

Theorem 4.1.2. Let (Xt)t∈Z be a centered weakly stationary process with
autocovariance function γ. Let σ2

0 = γ(0) and for all p ≥ 1, (φ+
p , σ

2
p) be

any solution of the Yule-Walker equations (4.1) and (4.2). Then, if Γ+
p is

invertible we have for all z in the closed unit disk {z ∈ C, |z| ≤ 1},

1−
p∑

k=1

φ+
k,pz

k 6= 0 .

4.1.2 Levinson-Durbin Algorithm

The usual way to compute the inverse of a symmetric positive definite matrix
is to rely on the Choleski decomposition, which requires O(p3) operations.
However this approach does not take advantage of the particular geometric
structure of the matrices Γ+

p . We now introduce a more efficient recursive
algorithm that allows to solve the Yule-Walker equations in O(p2) opera-
tions.

Algorithm 3: Levinson-Durbin algorithm.

Data: Covariance coefficients γ(k), k = 0, . . . ,K
Result: Prediction coefficients {φ+

m,p}1≤m≤p,1≤p≤K , partial
autocorrelation coefficients κ(1), . . . , κ(K)

Initialization: set κ(1) = γ(1)/γ(0), φ+
1,1 = γ(1)/γ(0),

σ2
1 = γ(0)(1− |κ(1)|2).

for p = 1, 2, . . . ,K − 1 do
Set

κ(p+ 1) = σ−2
p

(
γ(p+ 1)−

p∑
k=1

φ+
k,pγ(p+ 1− k)

)
(4.4)

σ2
p+1 = σ2

p(1− |κ(p+ 1)|2) (4.5)

φ+
p+1,p+1 = κ(p+ 1) (4.6)

for m ∈ {1, · · · , p} do
Set

φ+
m,p+1 = φ+

m,p − κ(p+ 1)φ+
p+1−m,p . (4.7)

end

end

Observe that all the computations of Algorithm 3 can be done in O(K2)
operations.

Theorem 4.1.3. Let (Xt)t∈Z be a centered weakly stationary process with
autocovariance function γ. Let σ2

0 = γ(0) and for all p ≥ 1, (φ+
p , σ

2
p) be any
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solution of the Yule-Walker equations (4.1) and (4.2). Then Algorithm 3
applies for any K such that Γ+

K is invertible, or, equivalently, σ2
K−1 > 0.

Before proving this theorem, let us state an important and useful lemma.

Lemma 4.1.4. Let (Xt)t∈Z be a centered weakly stationary process with
autocovariance function γ. Let ε+t,0 = ε−t,0 = Xt and, for p ≥ 1, ε+t,p and
κ(p) are as in Definition 2.4.2 and Definition 3.5.1. Define moreover the
backward partial innovation process of order p ≥ 1 by

ε−t,p = Xt − proj
(
Xt|HXt+p,p

)
.

Then, for all p ≥ 0, we have ‖ε+t,p‖ = ‖ε−t−p−1,p‖ and

κ(p+ 1) =

〈
ε+t,p, ε

−
t−p−1,p

〉
‖ε+t,p‖ ‖ε

−
t−p−1,p‖

, (4.8)

with the convention 0/0 = 0.

Proof. Let us denote by c the right-hand side of (4.8) in this proof, that is,

c =

〈
ε+t,p, ε

−
t−p−1,p

〉
‖ε+t,p‖ ‖ε

−
t−p−1,p‖

.

The result is straightforward for p = 0 since in this case ε+t,p = Xt and

ε−t−p−1,p = Xt−1.
We now take p ≥ 1. Observe that

‖ε+t,p‖2 = inf
Y ∈HXt−1,p

‖Xt − Y ‖2

= inf
φ∈Cp

[
1 −φT

]
Γ+
p+1

[
1 −φT

]H
,

where we used that Γ+
p+1 = Cov

([
Xt Xt−1 . . . Xt−p

]T)
. Similarly, we

have

‖ε−t,p‖2 = inf
Y ∈HXt+p,p

‖Xt − Y ‖2

= inf
φ∈Cp

[
1 −φT

]
Γ−p+1

[
1 −φT

]H
,

where we used that Γ−p+1 = Cov
([
Xt Xt+1 . . . Xt+p

]T)
. Using that γ

is hermitian we get

Γ−p+1 = Γ+
p+1 .

Hence we have
σ2
p = ‖ε+t,p‖2 = ‖ε−t,p‖2 .
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Observe that ε−t−p−1,p = Xt−p−1 − proj
(
Xt−p−1|HXt−1,p

)
. Hence,

c =

〈
ε+t,p, ε

−
t−p−1,p

〉
σ2
p

=

〈
ε+t,p, Xt−p−1

〉
‖ε+t−p−1,p‖2

=

〈
Xt, ε

−
t−p−1,p

〉
‖ε−t−p−1,p‖2

. (4.9)

Moreover, we have

HXt−1,p+1 = Span (Xt−1, Xt−1, . . . , Xt−1−p)

= HXt−1,p + Span (Xt−p−1)

= HXt−1,p

⊥
⊕ Span

(
ε−t−p−1,p

)
.

We thus get

proj
(
Xt|HXt−1,p+1

)
= proj

(
Xt|HXt−1,p

)
+ proj

(
Xt| Span

(
ε−t−p−1,p

))
,

and

‖Xt − proj
(
Xt|HXt−1,p+1

)
‖2

= ‖Xt − proj
(
Xt|HXt−1,p

)
‖2 −

∥∥∥proj
(
Xt|Span

(
ε−t−p−1,p

))∥∥∥2
. (4.10)

Now we consider two cases.
First assume that σ2

p 6= 0. Then ε−t−p−1,p is non-zero, and we have

proj
(
Xt|Span

(
ε−t−p−1,p

))
=

〈
Xt, ε

−
t−p−1,p

〉
‖ε−t−p−1,p‖2

ε−t−p−1,p = c ε−t−p−1,p ,

where we used (4.9). Moreover, by Theorem 4.1.1, σ2
p 6= 0 implies that Γ+

p

and Γ+
p+1 are invertible, so φ+

p and φ+
p+1 are uniquely defined by (4.1) and

the last two displays give

p+1∑
k=1

φ+
k,p+1Xt−k =

p∑
k=1

φ+
k,pXt−k+c

(
Xt−p−1 −

p∑
k=1

φ−k,pXt−p−1+k

)
, (4.11)

where φ−p =
(
φ−k,p

)
k=1,...,p

is uniquely defined by

proj
(
Xt−p−1|HXt−1,p

)
=

p∑
k=1

φ−k,pXt−p−1+k . (4.12)

Since the prediction coefficients are uniquely defined in (4.11), we get by
identifying those of the left-hand side with those of the right-hand side that

φ+
k,p+1 = φ+

k,p − cφ
−
p+1−k,p for k = 1, . . . , p (4.13)

φ+
p+1,p+1 = c (4.14)
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Equation (4.14) gives (4.8), which concludes the proof in the case where
σ2
p 6= 0.

In the case where σ2
p = 0, then, by convention c = 0. By Theorem 4.1.1,

we also have that Γ+
p+1 is not invertible so that κ(p+1) = 0 by the convention

in Definition 3.5.1.

The proof of Theorem 4.1.3 can now be completed.

Proof of Theorem 4.1.3. The initialization step is the usual projection for-
mula in dimension 1.

We now prove the iteration formula, that is (4.4), (4.6), (4.5) and (4.7).
Relation (4.6) is proved in Lemma 4.1.4. Under the assumptions of Theo-
rem 4.1.3, we can use the facts shown in the proof of Lemma 4.1.4 in the
case where σ2

p 6= 0. Relation (4.9) gives that

κ(p+ 1) =

〈
Xt − φ+T

p

[
Xt−1 . . . Xt−p

]
, Xt−p−1

〉
σ2
p

,

which yields (4.4).

Relation (4.10) implies that

σ2
p+1 = σ2

p − |c|2σ2
p ,

that is, by definition of c, we get (4.5).

To prove (4.7) with (4.13), we need to relate φ−p (uniquely defined by (4.12)
with φ+

p , solution of (4.1). Similarly, φ−p is the unique solution of

Γ−p φ
−
p = γ−p

where γ−p = [γ(−1), γ(−2), · · · , γ(−p)]T and

Γ−p = Cov
(
[Xt−p . . . Xt−1]T

)T
(4.15)

=



γ(0) γ(1) · · · γ(p− 1)

γ(−1) γ(0) γ(1)
...

...
. . .

. . .
. . .

... γ(1)
γ(1− p) γ(2− p) · · · γ(−1) γ(0)


. (4.16)

Hence γ−p = γ+
p and Γ−p = Γ+

p and so φ−p = φ+
p . This, with (4.13),

yields (4.7), which concludes the proof.
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4.1.3 The innovations algorithm

The Levinson-Durbin algorithm provides the prediction coefficients and pre-
diction error variances, and thus also the Choleski decomposition of Γ+

p , see
Theorem 4.1.1. In contrast, the innovation algorithm allows us to iteratively
compute the predictors of finite order and the prediction errors variances by
expressing the predictors in an orthogonal basis, rather than the original
time series. It is in fact the Gram-Schmidt procedure applied in our partic-
ular context. A significant advantage of the innovation algorithm is that it
also applies if X is non-stationary.

To deal with non-stationary time series, we adapt the definitions of in-
novations. We consider in this section a centered L2 process (Xt)n∈N t ≥ 1
with covariance function

γ(j, k) = Cov (Xj , Xk) , j, k ≥ 1 . (4.17)

Further define HXq = Span (X1, . . . , Xq) and the innovation process

ε1 = X1 and εt = Xt − proj
(
Xt|HXt−1

)
, t = 2, 3, . . . (4.18)

As in the usual the Gram-Schmidt procedure, we immediately obtain that
(εt)n∈N t ≥ 1 is an orthogonal sequence, moreover we have, for all p ≥ 1,

HXp = Span (ε1, . . . , εp) .

We denote by θp = (θk,p)k=1,...,p the coefficients of the linear predictor

proj
(
Xp+1|HXp

)
in this basis,

proj
(
Xp+1|HXp

)
=

p∑
k=1

θk,pεk .

and by σ2
p the prediction error variance

σ2
p =

∥∥Xp+1 − proj
(
Xp+1|HXp

)∥∥2
= ‖εp+1‖2 .

In this context the following algorithm applies.
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Algorithm 4: Innovation algorithm.

Data: Covariance coefficients γ(k, j), 1 ≤ j ≤ k ≤ K + 1, observed
variables X1, . . . , XK+1

Result: Innovation variables ε1, . . . , εK+1, prediction coefficients
θp = (θk,p)k=1,...,p in the innovation basis and prediction

error variances σ2
p for p = 1, . . . ,K.

Initialization: set σ2
0 = γ(1, 1) and ε1 = X1.

for p = 1, . . . ,K do
for m = 1, . . . , p do

Set

θm,p = σ−2
m−1

γ(p+ 1,m)−
m−1∑
j=1

θj,m−1 θj,p σ
2
j


end
Set

σ2
p = γ(p+ 1, p+ 1)−

p∑
m=1

|θm,p|2 σ2
m−1

εp+1 = Xp+1 −
p∑

m=1

θm,pεm .

end

Of course Algorithm 4 applies also in the case where X is weakly sta-
tionary. Observe that all the computations of Section 4.1.3 can be done in
O(K3) operations. Hence in the weakly stationary case, one should prefer
Algorithm 3 to Algorithm 4. On the other hand, there is one case where
Algorithm 4 can be achieved in O(K) operations, namely, if X is an MA(q)
process, since in this case,

t > s+ q ⇒ Xt ⊥ HXs ,

and thus we have

θk,p = 0 for all k < p+ 1− q

A particular application is examined in the following example.

Example 4.1.1 (Prediction of an MA(1) process). Let Xt = Zt + θZt−1

where (Zt) ∼ WN(0, σ2) and θ ∈ C. It follows that γ(i, j) = 0 for all
|i− j| > 1, γ(i, i) = σ2(1 + |θ|2) et γ(i+ 1, i) = θσ2. Moreover Algorithm 4
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boils down to

σ2
0 = (1 + |θ|2)σ2 ,

σ2
p = σ2 (1 + |θ|2 − σ−2

p−1|θ|
2σ2) , p ≥ 1 ,

θk,p = 0 , 1 ≤ k ≤ p− 1 ,

θp,p = σ−2
p−1θσ

2 , p ≥ 1 .

Setting rp = σ2
p/σ

2, we get

ε1 = X1 ,

εp+1 = Xp+1 − θεp/rn−1 , p ≥ 1 ,

with r0 = 1 + θ2, and for p ≥ 1, rp+1 = 1 + θ2 − θ2/rp.
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4.2 Exercises

Exercise 4.1 (Linear prediction of an AR(1) observed with additive noise).
Consider an AR(1) process Zt satisfying the following canonical equation :

Zt+1 = φZt + ηt for t ∈ Z (4.19)

where (ηt)t≥0 is a centered white noise with known variance σ2 and φ is a
known constant. The process (Zt)t≥0 is not directly observed. Instead, for
all t ≥ 1, one gets the following sequence of observations :

Yt = Zt + εt (4.20)

where (εt)t≥1 is a centered white noise with known variance ρ2, that is
uncorrelated with (ηt) and Z0. We wish to solve the filtering problem,
that is, to compute the orthogonal projection of Zt on the space Ht =
span{Y1, · · · , Yt}, iteratively in t.

We denote Ẑt|t = proj (Zt|Ht) this projection and Pt|t = E
[
(Zt − Ẑt|t)2

]
the corresponding projection error variance. Similarly, let Ẑt+1|t = proj (Zt+1|Ht)

be the best linear predictor and Pt+1|t = E(Zt+1 − Ẑt+1|t)
2 the linear pre-

diction error variance.

1. Show that Z0 is a centered random variable and computes its variance
σ2

0 and that Z0 and (ηt)t≥0 are uncorrelated.

2. Using the evolution equation (4.19), show that

Ẑt+1|t = φẐt|t et Pt+1|t = φ2Pt|t + σ2

3. Let us define the innovation by It+1 = Yt+1 − proj (Yt+1|Ht). Using
the observation equation (4.20), show that It+1 = Yt+1 − Ẑt+1|t.

4. Prove that E[I2
t+1] = Pt+1|t + ρ2.

5. Give the argument that shows that

Ẑt+1|t+1 = Ẑt+1|t + kt+1It+1

where kt+1 = E[Zt+1It+1]/E[I2
t+1].

6. Using the above expression of It+1, show that E[Zt+1It+1] = Pt+1|t.

7. Why is the following equation correct ?

Pt+1|t+1 = Pt+1|t − E
[
(kt+1It+1)2

]
Deduce that Pt+1|t+1 = (1− kt+1)Pt+1|t.
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8. Provide the complete set of equations for computing Ẑt|t and Pt|t iter-
atively for all t ≥ 1. (Include the initial conditions.)

9. Study the asymptotic behavior of Pt|t as t→∞.

Exercise 4.2. Let (Xt)t∈Z and, (φ+
p , σ

2
p), p ≥ 1 be as in Theorem 4.1.2.

1. Compute (φ+
1 , σ

2
1) in the case where γ(0) > 0. Does 1 − φ+

1,1z vanish
on the closed unit disk ?

Let p ≥ 2 and suppose that Γ+
p is invertible. Let ν−1 be a root of Φ(z) =

1−
∑p

k=1 φ
+
k,pz

k, so that

Φ(z) = (1− νz)Ψ(z) ,

where Ψ is a polynomial of degree p− 1. Define Y = [Ψ(B)](X).

2. Show that
E
[
(Y1 − νY0)2

]
= inf

α∈C
E
[
(Y1 − αY0)2

]
Is ν uniquely defined by this equation ?

3. Conclude the proof of Theorem 4.1.2.

Exercise 4.3. Show that the process (Yt)t∈Z of Exercise 4.1 is an ARMA(1,1)
process if |φ| < 1 and σ2

0 is set to a well chosen value.



Chapter 5

Kalman filter

In this chapter, we introduce a very general and widespread approach for
modeling time series: the state-space model. More precisely we will focus
in this chapter on the linear state space model or dynamic linear model
(DLM). A quite interesting feature of this class of models is the existence
of efficient algorithms for forecasting or filtering. The latter consist in the
estimation of a hidden variable involved in the model description.

5.1 Conditional mean for Gaussian vectors

Let H = L2(Ω,F ,P), which is an Hilbert space. Let G be σ-field included
in F and E = L2(Ω,G,P). For any X ∈ H, one can define the conditional
expectation of X given E by:

E [X| G] = proj (X| E) .

If G is generated by a collection of random variables, say G = σ(Y), we
denote

E [X|Y] = E [X| G] .

And, as for standard expectation, if X is a random vector, E [X| G] is the
vector made of the conditional expectations of its entries.

In the Gaussian context, the following result moreover holds, whose proof
is left as an exercise (see Exercise 5.1).

Proposition 5.1.1. Let p, q ≥ 1. Let X and Y be two jointly Gaussian
vectors, respectively valued in Rp and Rq. Let

X̂ = proj (X| Span (1,Y)) ,

where here Span (. . . ) is understood as the space of Rp-valued L2 random
variables obtained by linear transformations of . . . and proj ( ·| . . . ) is un-
derstood as the projection onto this space seen as a (closed) subspace of
the Hilbert space of all Rp-valued L2 random variables. Then the following
assertions hold.

71
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(i) We have

Cov(X− X̂) = E
[
X(X− X̂)T

]
= E

[
(X− X̂)XT

]
.

(ii) We have
E [X|Y] = proj (X| Span (1,Y)) ,

(iii) If moreover Cov(Y) is invertible, then

X̂ = E [X] + Cov (X,Y) Cov(Y)−1 (Y − E [Y]) ,

and

Cov(X− X̂) = Cov(X)− Cov (X,Y) Cov(Y)−1Cov (Y,X) .

5.2 Dynamic linear models (DLM)

Let us introduce a very general approach for modelling time series: the state-
space models. Such an approach was first used in [7, 8] for space tracking,
where the state equation models the motion of the position of a spacecraft
with location Xt and the data Yt represents the information that can be
observed from a tracking device such as velocity and azimuth. Here we focus
on the linear state space model.

Definition 5.2.1 (DLM). A multivariate process (Yt)t≥1 is said to be the
observation variables of a linear state-space model or DLM if there exists
a process (Xt)t≥1 of state variables such that that Assumption 5.2.1 below
holds. The space of the state variables Xt (here Rp or Cp) is called the state
space and the space of the observation variables Yt (here Rq or Cq) is called
the observation space.

Assumption 5.2.1. (Xt)t≥1 and (Yt)t≥1 are p-dimensional and q-dimensional
time series satisfying the following equations for all t ≥ 1,

Xt = ΦtXt−1 + Atut + Wt , (5.1)

Yt = ΨtXt + Btut + Vt , (5.2)

where

(i) (Wt)t∈N
iid∼ N (0, Q) where Q is a p× p covariance matrix.

(ii) (ut)t∈N is an r-dimensional exogenous input series and At a p × r
matrix of parameters, which is possibly the zero matrix.

(iii) The initial state X0 ∼ N (µ,Σ0).

(iv) Ψt is a q × p measurement or observation matrix for all t ≥ 1,
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(v) The matrix Bt is a q × r regression matrix which may be the zero
matrix.

(vi) (Vt)t∈N
iid∼ N (0, R) where R is a q × q covariance matrix.

(vii) The initial state X0, the state noise (Wt)t≥1 and the observation noise
(Vt)t≥1 are independent.

The Gaussian Assumption will be heavily used in particular through the
computation of conditional expectations. By Proposition 5.1.1, if X and Y
are jointly Gaussian the conditional distribution of X given Y is determined
by the L2 projection of X on the space of linear combinations of Y and by
the covariance matrix of the error. Conversely, an important consequence of
this proposition is that many computations done in this chapter continue to
hold when the Gaussian assumption is dropped, provided that conditional
expectations of the form E [X|Y] are replaced by proj (X|Span (1,Y)), see
Corollary 5.3.3.

Remark 5.2.1. A slight extension of this model is to let the covariance
matrices R and Q depend on t. All the results of Section Section 5.3 are
carried out in the same way in this situation. Nevertheless, we do not detail
this case here for sake of simplicity.

The state equation (5.1) determines how the p × 1 state vector Xt is
generated from the past p × 1 state Xt−1. The observation equation (5.2)
describes how the observed data is generated from the state data.

As previously mentioned, the model is quite general and can be used in
a number of problems from a broad class of disciplines. We will see a few
examples in this chapter.

Example 5.2.1 (Noisy observations of a random trend). Let us first use
the state space model to simulate an artificial time series. Let β ∈ R, Z1 be
a Gaussian random variable and (Wt) be a Gaussian white noise IID(0, σ2)
uncorrelated with Z1 and define, for all t ≥ 1,

Zt+1 = Zt + β +Wt = Z1 + βt+W1 + · · ·+Wt , t ≥ 0 .

When σ is low, Zt is approximatively linear with respect to t. The noise (Wt)
introduce a random fluctuation around this linear trend. A noisy observation
of (Zt) is defined as

Yt = Zt + Vt ,

where (Vt) is a Gaussian white noise uncorrelated with (Wt) and Z1.
A state-space representation of (Zt) can be defined by setting Xt =

[Zt, β]T , so that the state equation reads

Xt+1 =

(
1 1
0 1

)
Xt + Vt

(
1
0

)
.
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The observation equation is then Yt = [1 0]Xt + Vt The process (Zt) is
obtained from (Xt) by Zt = [1 0]Xt. We display a simulated (Zt) and (Yt)
in Figure Figure 5.1.
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Figure 5.1: Simulated random trend (plain red line) and its observation with
additive noise (dotted black line).

Example 5.2.2 (Climatology data). Figure 5.2 shows two different esti-
mates of the global temperature deviations from 1880 to 2009. They can be
found on the site

http: // data. giss. nasa. gov/ gistemp/ graphs/ .

The solid red line represents the global mean land-ocean temperature index
data. The dotted black line represents the surface-air temperature index
data using only land based meteorological station data. Thus, both series
are measuring the same underlying climate signal but with different mea-
surement conditions. From a modelling point of view, we may suggest the
following observation equations

Y1,t = Xt + V1,t and Y2,t = Xt + V2,t,

http://data.giss.nasa.gov/gistemp/graphs/
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or more compactly, [
Y1,t

Y2,t

]
=

[
1
1

]
Xt +

[
V1,t

V2,t

]
,

where

R = Cov

[
V1,t

V2,t

]
=

[
r11 r12

r21 r22

]
.

The unknown common signal Xt also needs some evolution equation. A
natural one is the random walk with drift which states

Xt = δ +Xt−1 +Wt,

where (Wt)t∈N
iid∼ N (0, Q). In this example, p = 1, q = 2, Φt = 1, At = δ

with ut = 1, and Bt = 0.
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Figure 5.2: Annual global temperature deviation series, measured in degrees
centigrade, 1880–2009.

Dynamic linear models allow us to provide a quite general framework
for denoising and forecasting a Gaussian process, or/and estimating its pa-
rameters. In (5.1) and (5.2), unknown parameters are possibly contained
in Φt,At, Q,Bt,Ψt, and R that define the particular model. It is also of
interest to estimate (or denoise) and to forecast values of the underlying
unobserved process (Xt)t∈N. It is important to mention that a large family
of stationary Gaussian processes enter this general framework, as shown in
the last following simple example.

Example 5.2.3 (Noisy AR(1) process). Consider a stationary process sat-
isfying the AR(1) equation

Xt = φXt−1 +Wt, t ∈ Z ,
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where |φ| < 1 and (Wt)t∈Z
iid∼ N (0, σ2

w). Then using the results of Sec-
tion 3.3, we easily get that the autocovariance function of (Xt)t∈N is

γx(h) =
σ2
w

1− φ2
φ|h|, h = 0,±1,±2, . . . ,

and X0 ∼ N
(
0, σ2

w/(1− φ2)
)

is independent of (Wt)t∈N. Suppose now that
we observe a noisy version of (Xt)t∈N, namely

Yt = Xt + Vt,

where (Vt)t∈N
iid∼ N (0, σ2

v) and (Vt)t∈N and (Wt)t∈Z are independent. Then
the observations are stationary because (Yt)t∈N is the sum of two independent
stationary components (Xt)t∈N and (Vt)t∈N. Simulated series Xt and Yt with
φ = 0.8 and σw = σv = 1.0 are displayed in Figure 5.3. We easily compute

γy(0) = Var (Yt) = Var (Xt + Vt) =
σ2
w

1− φ2
+ σ2

v , (5.3)

and, when h 6= 0,

γy(h) = Cov (Yt, Yt−h) = Cov (Xt + Vt, Xt−h + Vt−h) = γx(h).

Consequently, for h 6= 0, the ACF of the observations is

ρy(h) =
γy(h)

γy(0)
=

(
1 +

σ2
v

σ2
w

(1− φ2)

)−1

φ|h|.

It can be shown that (Yt)t∈Z is an ARMA(1,1) process (see Exercise 5.3). We
will provide a general view on the relationships between DLMs and stationary
ARMA processes in Section 5.6.

5.3 Kalman approach for filtering, forecasting and
smoothing

The state-space models are primarily used for estimating the underlying
unobserved signal Xt, given the data Y1:s = {Y1, . . . ,Ys}. More precisely,
it consists in computing the conditional mean

Xt|s
def
= E [Xt|Y1:s] (5.4)

and to measure the L2 norm of the error Xt −Xt|s,

Σt|s
def
= E

[
(Xt −Xt|s)(Xt −Xt|s)

T
]

= Cov(Xt −Xt|s) , (5.5)

since Xt −Xt|s is centered.
Three different situations are generally distinguished.
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Figure 5.3: Simulated AR(1) process (solid red) and a noisy observation of
it (dotted black).

a- It is called a forecasting or prediction problem if s < t.

b- It is called a filtering problem if s = t.

c- It is called a smoothing problem if s > t.

Interestingly, these tasks are very much related to the computation of the
likelihood for estimating the unknown parameters of the models, see Sec-
tion 5.7.

The Kalman filter is a recursive algorithm that provides an efficient way
to compute the filtering and first order forecasting equations Xt|t−1 and Xt|t.
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It is defined as follows.

Algorithm 5: Kalman filter algorithm.

Data: Parameters Q, R and At, Bt, Ψt for t = 1, . . . , n, initial
conditions µ and Σ0, observations Yt and exogenous input
series ut, for t = 1, . . . , n.

Result: Forecasting and filtering outputs Xt|t−1, Xt|t, and their
autocovariance matrices Σt|t−1 and Σt|t for t = 1, . . . , n.

Initialization: set X0|0 = µ and Σ0|0 = Σ0.

for t = 1, 2, . . . , n do
Compute in this order

Xt|t−1 = ΦtXt−1|t−1 + Atut, (5.6)

Σt|t−1 = ΦtΣt−1|t−1ΦT
t +Q, (5.7)

Kt = Σt|t−1ΨT
t [ΨtΣt|t−1ΨT

t +R]−1. (5.8)

Xt|t = Xt|t−1 +Kt(Yt −ΨtXt|t−1 − Btut), (5.9)

Σt|t = [I −KtΨt]Σt|t−1. (5.10)

end

Proposition 5.3.1 (Kalman Filter). Algorithm 5 holds for the state-space
model satisfying Assumption 5.2.1, provided that ΨtΣt|t−1ΨT

t + R are in-
vertible matrices for t = 1, . . . , n.

The matrix Kt defined in (5.8) is called the Kalman gain matrix.
For proving Proposition 5.3.1, we will introduce the following definition

Yt|s
def
= E [Yt|Y1:s]

εt
def
= Yt −Yt|t−1

Γt
def
= E

[
εtε

T
t

]
= Cov(εt) ,

and show the folowing useful formula

εt = Yt −ΨtXt|t−1 − Btut, (5.11)

Γt = Cov(Ψt(Xt −Xt|t−1) + Vt) = ΨtΣt|t−1ΨT
t +R (5.12)

for t = 1, . . . , n. The process (εt) is called the innovation process of (Yt).

Proof of Proposition 5.3.1. By Assumption 5.2.1, we have that (Wt)t>s is
independent of Y1:s and X1:s and (Vt)t>s is independent of Y1:s and (Xt)t≥0.

Using (5.1), this implies that, for all t > s

Xt|s = E [Xt|Y1:s]

= E [ΦtXt−1 + Atut + Wt|Y1:s]

= ΦtXt−1|s + Atut , (5.13)
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and, moreover,

Σt|s = Cov
(
Xt −Xt|s

)
= Cov

(
Φt(Xt−1 −Xt−1|s) + Wt

)
= ΦtΣt−1|sΦ

T
t +Q . (5.14)

which gives (5.6) and (5.7).
Next, we show (5.9). By definition of the innovation process, the σ-field

generated by Y1:t is the same as that generated by Y1:t−1 and εt, thus we
have

Xt|t = E [Xt|Y1:t−1, εt] .

By Assumption 5.2.1, the variables Xt, Y1:t−1 and εt are jointly Gaussian.
It then follows from Proposition Proposition 5.1.1 that

Xt|t = proj (Xt| Span (1,Y1:t−1, εt)) ,

where here Span (. . . ) is understood as the space of Rp-valued L2 random
variables obtained by linear transformations of . . . and proj ( ·| . . . ) is un-
derstood as the projection onto this space seen as a (closed) subspace of the
Hilbert space of all Rp-valued L2 random variables. Observing that εt is
centered and uncorrelated with Y1:t−1, we further have

proj (Xt| Span (1,Y1:t−1, εt)) = proj (Xt|Span (1,Y1:t−1))+proj (Xt|Span (εt))

and thus, setting

Kt = Cov (Xt, εt) Cov(εt)
−1 = Cov

(
Xt,Yt −Yt|t−1

)
Γ−1
t ,

we have
Xt|t = Xt|t−1 +Ktεt ,

and

Σt|t = Σt|t−1 − Cov(Ktεt)

= Σt|t−1 −KtΓtK
T
t

= Σt|t−1 −KtCov
(
Xt,Yt −Yt|t−1

)T
.

Now, by (5.2), we have

Yt|t−1 = E [ΨtXt + Btut + Vt|Y1:t−1] = ΨtXt|t−1 + Btut ,

and thus

Cov
(
Xt,Yt −Yt|t−1

)
= Cov

(
Xt,Ψt(Xt −Xt|t−1) + Vt

)
= Σt|t−1ΨT

t ,
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and

Γt = Cov(Yt −Yt|t−1)

= Cov
(
Ψt(Xt −Xt|t−1) + Vt

)
= ΨtΣt|t−1ΨT

t +R .

Hence, we finally get that

Xt|t = Xt|t−1 +Kt(Yt −ΨtXt|t−1 − Btut) ,

and

Σt|t = Σt|t−1 −KtΨtΣt|t−1 ,

with

Kt = Σt|t−1ΨT
t [ΨtΣt|t−1ΨT

t +R]−1 .

That is, we have shown (5.8), (5.9) and (5.10) and the proof is concluded.

Let us consider the forecasting and smoothing problems, that is the
computation of Xt|n for t > n and t = 1, . . . , n − 1, successively. These
algorithms complete Algorithm 5 in the sense that in practice one can use
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them after having first applied Algorithm 5.

Algorithm 6: Kalman forecasting algorithm.

Data: A forecasting lag h, parameters Q and At for
t = n+ 1, . . . , n+ h, and exogenous input series ut, for
t = n+ 1, . . . , n+ h, Kalman filter output Xn|n and its error
matrix Σn|n.

Result: Forecasting output Xt|n and their error matrices Σt|n for
t = n+ 1, . . . , n+ h

Initialization: set k = 1.
for k = 1, 2, . . . , h do

Compute in this order

Xn+k|n = Φn+kXn+k−1|n + Ak+nun+k ,

Σt|s = Φn+kΣt−1|sΦ
T
n+k +Q .

end

Algorithm 7: Rauch-Tung-Striebel smoother algorithm.

Data: Parameters Φt for t = 1, . . . , n, and exogenous input series ut,
for t = n+ 1, . . . , n+ h, Kalman filter output Xt|t, Xt|t−1, and
their error matrices Σt|t and Σt|t−1 for t = 1, . . . , n.

Result: Smoothing outputs Xt|n, and their autocovariance matrices
Σt|n for t = n− 1, n− 2 . . . , 1.

for t = n, n− 1, . . . , 2 do
Compute in this order

Jt−1 = Σt−1|t−1ΦT
t Σ−1

t|t−1 , (5.15)

Xt−1|n = Xt−1|t−1 + Jt−1

(
Xt|n −Xt|t−1

)
, (5.16)

Σt−1|n = Σt−1|t−1 + Jt−1

(
Σt|n −Σt|t−1

)
JTt−1 . (5.17)

end

Proposition 5.3.2. Algorithm 6 and Algorithm 7 hold for the state-space
model satisfying Assumption 5.2.1, provided that (only for Algorithm 7)
Σt|t−1 is an invertible matrix for t = 2, . . . , n.

Proof. Algorithm 6 directly follows from (5.13) and (5.14).

We now show that Algorithm 7 holds. Observe that Y1:n can be gener-
ated with Y1:t−1, Xt, Vt:n, and Wt+1:n. Thus we have

E [Xt−1|Y1:n] = E
[
X̃t−1

∣∣∣Y1:n

]
, (5.18)
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where

X̃t−1 = E
[
Xt−1|Y1:t−1, Xt −Xt|t−1, Vt:n,Wt+1:n

]
= E

[
Xt−1|Y1:t−1, Xt −Xt|t−1

]
,

since Vt:n,Wt+1:n are independent of all other variables appearing in this
formula. Using the Gaussian assumption and the fact that Y1:t−1 and Xt−
Xt|t−1 are uncorrelated, we get

X̃t−1 = Xt−1|t−1 + Jt−1(Xt −Xt|t−1), (5.19)

and
Cov

(
Xt−1 − X̃t−1

)
= Σt−1|t−1 − Jt−1Σt|t−1J

T
t−1, (5.20)

where

Jt−1 = Cov(Xt−1,Xt −Xt|t−1)Σ−1
t|t−1 = Σt−1|t−1ΦT

t Σ−1
t|t−1 ,

which corresponds to (5.15). By (5.18) and (5.19), we obtain, by projecting
X̃t−1 on Span (1,Y1:n),

Xt−1|n = Xt−1|t−1 + Jt−1(Xt|n −Xt|t−1) ,

that is (5.16) and

Cov
(
X̃t−1 −Xt−1|n

)
= Jt−1Σt|nJ

T
t−1 .

This, with (5.20), and using that X̃t−1 −Xt−1|n and Xt−1 − X̃t−1 are un-
correlated, we obtain

Cov
(
Xt−1 −Xt−1|n

)
= Cov

(
Xt−1 − X̃t−1 + X̃t−1 −Xt−1|n

)
= Σt−1|t−1 − Jt−1Σt|t−1J

T
t−1 + Jt−1Σt|nJ

T
t−1 ,

that is (5.17).

Inspecting the proofs of Proposition 5.3.1 and Proposition 5.3.2, we have
the following result which says that if the Gaussian assumption is dropped,
then the above algorithms continues to hold in the framework of linear pre-
diction.

Corollary 5.3.3. Suppose that Assumption 5.2.1 holds but with X0 ∼
N (µ,Σ0), (Vt)t∈N

iid∼ N (0, R) and (Wt)t∈N
iid∼ N (0, Q) replaced by the

weaker conditions E [X0] = µ, Cov(X0) = Σ0, (Vt)t∈N ∼WN(0, R), (Wt)t∈N ∼
WN(0, Q). Then Algorithm 5, Algorithm 6 and Algorithm 7 continue to hold
if the definitions of Xs|t in (5.6) is replaced by

Xs|t
def
= proj (Xt|Span (1,Y1:t−1)) ,
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where here Span (. . . ) is understood as the space of Rp-valued L2 random
variables obtained by linear transformations of . . . and proj ( ·| . . . ) is un-
derstood as the projection onto this space seen as a (closed) subspace of the
Hilbert space of all Rp-valued L2 random variables.

For estimation purposes, we will need to compute the one-lag covariance
matrix of the smoother outputs that is

Σt1,t2|s
def
= E

[
(Xt1 −Xt1|s)(Xt2 −Xt2|s)

T
]

(5.21)

with t1 = t, t2 = t − 1 and s = n. Note that this notation extends the
previous one in the sense that Σt|s = Σt,t|s.

One simple way to compute Σt−1,t−2|n is to define new state and obser-
vation variables by stacking two consecutive times together, namely

X(t)
def
= [XT

t XT
t−1]T ,

Y(t)
def
= [YT

t YT
t−1]T .

Here the parentheses around the time variable t indicate that we are deal-
ing with the stacked variables. One can deduce the state and observation
equations for these variables and apply the Kalman filter and smoother to
compute

Σ(t)|(n) =

[
Σt|n Σt|t−1n

ΣT
t,t−1|n Σt−1|n

]
,

where subscripts (t) and (n) again refer to operations on the stacked values.

However there is a more direct and more convenient way to compute
these covariances. The proof of validity of the following algorithm is left to
the reader (see Exercise 5.2).

Algorithm 8: One-lag covariance algorithm.

Data: Parameters Ψn and Φt for t = 1, . . . , n, Gain matrix Kn

Kalman filter covariance matrices Σt|t and Σt|t−1 for
t = 1, . . . , n, matrices Jt for t = 1, . . . , n− 1.

Result: One-lag covariance matrices for smoother outputs Σt,t−1|n
for t = 1, . . . , n.

Initialization: Set

Σn,n−1|n = (I −KnΨn)ΦnΣn−1|n−1, (5.22)

for t = n, n− 1, . . . , 2 do

Σt−1,t−2|n = Σt−1|t−1J
T
t−2 + Jt−1

(
Σt,t−1|n − ΦtΣt−1|t−1

)
JTt−2.

(5.23)
end
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Remark 5.3.1. All the above algorithms (Algorithms 5, 6, 7 and 8) are
recursive in the sense that their outputs are computed using a simple recur-
sive set of equations. Algorithm 5 can moreover be implemented online in
the sense that each iteration of the recursion at time t only uses one new
observation Yt, without having to reprocess the entire data set
Y1, . . . ,Yt. Since the number of computations at each iteration is constant
(O(1) operations at each step), it means that in practice, it can be run at
the same time as the acquisition of the observed data.

Remark 5.3.2. It is interesting to note that in the above algorithms, the
covariance matrices do not depend on the observations Y1, . . . ,Yn, only on
the parameters of the dynamic linear model. Hence, if these parameters
are known (as assumed in this section), they can be computed off-line, in
particular before having acquired the observations Y1, . . . ,Yn.

Example 5.3.1 (Noisy AR(1) (continued from Example 5.2.3)). Let (Xt)t∈Z
and (Yt)t∈Z be as in Example 5.2.3. We apply the algorithms using the true
parameters used for generating the data, namely, At = 0, Φ = φ, Q = σ2

w,

Ψ = 1, B = 0, R = σ2
v µ0 = 0 and Σ0 = γy(0) = σ2

w
1−φ2 + σ2

v (see (5.3)).
To produce Figure 5.4, the Kalman smoother was computed with these true
parameters from Y1, . . . , Yn with n = 28 only the last 16 points of Yt, Xt and
Xt|n (t = n − 15, n − 14, . . . , n) are drawn, using respectively red circles, a
dotted black line and a solid green line. The dashed blue lines represent 95%
confidence intervals for Xt obtained using that, given Y1:n, the conditional
distribution of each Xt is N (Xt|n,Σt|n).

5.4 Steady State approximations

Let us consider Assumption 5.2.1 in the particular case where there are no
input series (At = Bt = 0) and the observation and state equation does not
vary along the time (Φt = Φ and Ψt = Ψ). If moreover the state equations
yields a time series (Xt) which “looks” stationary, then one can expect that
the distribution of (X1:n,Y1:n) yields steady equations for filtering, that is,
in Algorithm 5, the Kalman gain Kt and the error covariance matrices Σt|t
and Σt|t−1 should not depend on t. Of course, this cannot be exactly true
: these quantities correspond to state and observation variables (X1:t,Y1:t)
whose distribution cannot be exactly the same as ((X1:t−1,Y1:t−1). But it
can be approximately true if the past data has a very small influence on the
current ones, in other words, if the conditional distribution of Xt given Y1:t

is approximately the same as the conditional distribution of Xt given the
whole past Y−∞:t.

In practice this steady approximation of the Kalman filter is observed
when Kt → K and Σt|t−1 → Σ as t → ∞. Using the relationship between
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Figure 5.4: Simulated AR(1) process (red circles), a noisy observation of
it (dotted black line), the smoother outputs (solid green line) and the 95%
confidence intervals (between blued dashed lines).

Σt|t−1 and Σt−1|t−2 (following (5.10) and (5.10)), we obtain that Σ is a
necessary solution to the Ricatti equation

Σ = Φ[Σ− ΣΨT (ΨΣΨT +R)−1ΨΣ]ΦT +Q , (5.24)

and following (5.8), the steady-state gain matrix reads

K = ΣΨT [ΨΣΨT +R]−1 .

The convergence of the MLE and its asymptotic normality, stated in (6.37),
can be established when Φ has eigenvalues within the open unit disk {z ∈
C , |z| < 1}. We just refer to [4, 5] for details. Let us just briefly give a hint
of why this assumption is meaningful. Iterating the state equation (5.1) in
the case Φt = Φ and At = 0 yields

Xt = ΦtX0 +
t−1∑
k=0

Φkεt−k .

Thus, if the spectral radius of Φ is strictly less than 1, then Xt can be
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approximated by the series

X̃t =

∞∑
k=0

Φkεt−k ,

which defines a stationary process. With this stationary approximation, and
using the machinery introduced in Section 6.2, one can derive the asymptotic
behavior of the MLE, under appropriate assumptions of the parameteriza-
tion.

5.5 Correlated Errors

Sometimes it is advantageous to use assumptions for the linear state-space
model which are slightly different from Assumption 5.2.1. In the following
set of assumptions, the model on the error terms Wt and Vt is modified: a
matrix Θ is introduced in the state space equation and some correlation S
may appear between Vt and Wt. We say that the linear state-space model
has correlated errors. Note also that the indices in the state-space equation
are changed so that the correlation is introduced between errors applied to
the same Xt.

Assumption 5.5.1. Suppose that the state variables (Xt)t≥1 and the ob-
served variables (Yt)t≥1 are p-dimensional and q-dimensional time series
satisfying the following equations for all t ≥ 1,

Xt+1 = ΦtXt + At+1ut+1 + ΘtWt , (5.25)

Yt = ΨtXt + Btut + Vt , (5.26)

where

(i)
([

Wt Vt

]T
t

)
t∈N

iid∼ N
(

0,

[
Q S
ST R

])
where Q is a p × p covariance

matrix.

(ii) (ut)t∈N is an r-dimensional exogenous input series and At a p × r
matrix of parameters, which is possibly the zero matrix.

(iii) The initial state X0 ∼ N (µ,Σ0).

(iv) Ψt is a q × p measurement or observation matrix for all t ≥ 1,

(v) The matrix Bt is a q × r regression matrix which may be the zero
matrix.

(vi) The initial state X0 and the noise sequence ((Wt,Vt)t)t∈N are inde-
pendent.
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Following these changes in the model assumptions, Algorithm 5 has to
be adapted as follows.

Algorithm 9: Kalman filter algorithm for correlated errors.

Data: Parameters Q, Θt, S, R and At, Bt, Ψt for t = 1, . . . , n, initial
conditions µ and Σ0, observations Yt and exogenous input
series ut, for t = 1, . . . , n.

Result: Forecasting and filtering outputs Xt|t−1, Xt|t, and their
autocovariance matrices Σt|t−1 and Σt|t for t = 1, . . . , n.

Initialization: set X1|0 = Φ0µΦT
0 + A1u1 and

Σ1|0 = Φ0Σ0ΦT
0 + Θ0QΘT

0 .

for t = 1, 2, . . . , n do
Compute in this order

εt = Yt −ΨtXt|t−1 − Btut (5.27)

Γt = ΨtΣt|t−1ΨT
t +R, (5.28)

Kt = [ΦtΣt|t−1ΨT
t + ΘtS]Γ−1

t , (5.29)

Xt+1|t = ΦtXt|t−1 + At+1ut+1 +Ktεt, (5.30)

Σt+1|t = ΦtΣt|t−1ΦT
t + ΘtQΘT

t −KtΓ
−1
t KT

t , (5.31)

Xt|t = Xt|t−1 + Σt|t−1ΨT
t Γ−1

t εt, (5.32)

Σt|t = Σt|t−1 −Σt|t−1ΨT
t+1Γ−1

t ΨtΣt|t−1. (5.33)

end

In this algorithm, εt and Γt still correspond to the innovation process
and its covariance matrix,

εt
def
= Yt −Yt|t−1

Γt
def
= E

[
εtε

T
t

]
= Cov(εt) .

The adaptation of the proof of Proposition 5.3.1 to the correlated errors
case is left to the reader (Exercise 5.4). The following result follows.

Proposition 5.5.1 (Kalman Filter for correlated errors). Algorithm 9 ap-
plies for the state-space model satisfying Assumption 5.5.1, provided that
ΨtΣt|t−1ΨT

t +R are invertible matrices for t = 1, . . . , n.

5.6 Vector ARMAX models

Vector ARMAX models are a generalization of ARMA models to the case
where the process is vector-valued and an eXternal input series is added to
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the model equation. Namely (Yt)t∈Z satisfies the following equation

Yt = But +

p∑
j=1

ΦjYt−j +

q∑
k=1

ΘkVt−k + Vt . (5.34)

The observations Yt are a k-dimensional vector process, the Φs and Θs
are k × k matrices, A is k × r, ut is the r × 1 input, and Vt is a k × 1
white noise process. The following result shows that such a model satisfies
Assumption 5.5.1, under the additional Gaussian assumption. The proof is
left to the reader (Exercise 5.5).

Proposition 5.6.1 (A State-Space Form of ARMAX). For p ≥ q, let

Φ =



Φ1 1 0 · · · 0

Φ2 0 1 · · · 0

...
...

...
. . .

...

Φp−1 0 0 · · · 1

Φp 0 0 · · · 0


Θ =



Θ1 + Φ1
...

Θq + Φq

Φq+1
...

Φp


A =


B
0
...
0



where Φ is kp × kp, Θ is kp × k, B is kp × r and 1 is the identity matrix
(with adapted dimension depending on the context). Then, the state-space
model given by

Xt+1 = ΦXt + Aut+1 + ΘVt, (5.35)

Yt = ΨXt + Vt, (5.36)

where Ψ =
[
1, 0, · · · , 0

]
is k × pk, implies the ARMAX model (5.34). If

p < q, set Φp+1 = · · · = Φq = 0, and replace the value of p by that of q
and (5.35)–(5.36) still apply. Note that the state process is kp-dimensional,
whereas the observations are k-dimensional.

Example 5.6.1 (ARMA(1, 1) with linear trend). Consider the univariate
ARMA(1, 1) model with an additive linear trend

Yt = β0 + β1t+ φYt−1 + θVt−1 + Vt .

Using Proposition 5.6.1, we can write the model as

Xt+1 = φXt + β0 + β1t+ (θ + φ)Vt, (5.37)

and
Yt = Xt + Vt. (5.38)

Remark 5.6.1. Since ARMA models are a particular case of DLM, the
maximum likelihood estimation for Gaussian ARMA models can be per-
formed using this general framework.
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Example 5.6.2 (Regression with autocorrelated errors). The (multivariate)
regression with autocorrelated errors, is the regression model

Yt = But + εt , (5.39)

where we observe the k × 1 vector-valued time series (Yt)t∈Z and r × 1
regression-vectors ut, and where (εt)t∈Z is a vector ARMA(p, q) process and
B is an unknown k × r matrix of regression parameters.

This model is not an ARMAX because the regression is separated from
the ARMA recursion. However, by proceeding as previously, it can also be
defined in a state-space form. Using εt = Yt − But is a k-dimensional
ARMA(p, q) process, we have

Xt+1 = ΦXt + ΘVt, (5.40)

Yt = ΨXt + But + Vt, (5.41)

where the model matrices Φ, Θ, and Ψ are defined in Proposition 5.6.1.

5.7 Likelihood of dynamic linear models

The dynamic linear model of Assumption 5.2.1 rely on a lot of parameters,
namely (Ψt)t≥1, (At)t≥1, Q, µ0, Σ0, (Φt)t≥1, (Bt)t≥1, and R, among which
some or all entries may be unknown. We now consider the problem of esti-
mating the unknown parameters of the dynamic linear model. Throughout
this section, we suppose that Assumption 5.2.1 holds and moreover that the
unknown parameters are not evolving with time. We denote by θ∗ a vec-
tor containing all the unknown entries, or more generally speaking a given
parameterization of the above original parameters. That is, to sum up, the
framework in this section is the following.

1- The “original parameters” will be written as (Ψt(θ))t≥1, (At(θ))t≥1,
Q(θ), µ0(θ), Σ0(θ), (Φt(θ))t≥1, (Bt(θ))t≥1, and R(θ) with θ running
through a given finite dimensional parameter set Θ and with θ∗ de-
noting the true parameter used to generate the data (assuming that
such a parmeter exists!).

2- As a result, each θ ∈ Θ defines a precise (Gaussian) distribution for
the observed data Y1:n.

3- It should be stressed that, although they could be quite helpful for
estimating θ∗, the variables X1:n are unobserved : one says that they
are hidden variables.

In the following, we adapt the notation introduced in 5.3 to the Item 2-
above. Namely, all quantities depending on the joint distribution of Xt,Yt,
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t = 1, . . . , n can now be defined as function of θ ∈ Θ. For instance, Equa-
tions (5.11) and (5.12) become

εt(θ) = Yt −Ψt(θ)Xt|t−1(θ)− Bt(θ)ut, (5.42)

Γt(θ) = Ψ(θ)Σt|t−1(θ)Ψt(θ)
T +R(θ) (5.43)

Here Xt|t−1(θ) and Σt|t−1(θ) also depend on θ since they are now functions
of the parameter θ which determines the joint distribution of the hidden and
observed data Xt,Yt, t = 1, . . . , n.

Based on the general equations (6.35), (6.38) and (6.39), in the frame-
work of a parameterized dynamic linear model, (6.40) thus gives that

−2 logLn(θ) = n log(2π)+

n∑
t=1

log detΓt(θ)+

n∑
t=1

εt(θ)
TΓt(θ)

−1εt(θ) , (5.44)

provided that Γt(θ) is invertible for all t = 1, . . . , n and θ ∈ Θ.

Observe that, for each θ, the negated log likelihood −2 logLn(θ) can thus
be efficiently computed by running the Kalman filter (see Algorithm 5) and
then applying (5.42), (5.43) and (5.44).

Similarly one can compute the gradient −∂ logLn(θ) and the Hessian
−∂∂T logLn(θ), provided that the original parameters are at least twice
differentiable with respect to θ. Formula (6.41) and (6.42) can directly be
applied replacing η by ε and Σ̃ by Γ.

However one needs to adapt Algorithm 5 to compute the gradient or the
Hessian. A rather simple case is obtained when the Ψts are known design
matrices (that is, they do not depend on θ). In this case differentiating
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within Algorithm 5 provides the following algorithm.

Algorithm 10: Kalman filter algorithm for the gradient of the likeli-
hood.

Data: A parameter θ ∈ Θ, observations Yt and exogenous input
series ut, for t = 1, . . . , n, an index i. The functions and their
first derivatives Q, R, At, Bt, Ψt for t = 1, . . . , n, µ and Σ0

can be evaluated at θ. Functions Kt, Xt|t−1, Xt|t, Σt|t−1, Σt|t,
Γt and εt are already computed at θ for t = 1, . . . , n.

Result: i-th component of the forecasting errors’ gradient ∂iεt(θ)
and error covariance gradient ∂iΓt(θ) at θ.

Initialization: set ∂iX0|0(θ) = ∂iµ0(θ) and ∂iΣ0|0(θ) = ∂iΣ0(θ).

for t = 1, 2, . . . , n do
Compute in this order (the following functions are evaluated at θ)

∂iXt|t−1 = [∂iΦt]Xt−1|t−1 + Φt[∂iXt−1|t−1] + [∂iAt]ut,

∂iΣt|t−1 = [∂iΦt]Σt−1|t−1ΦT
t + Φt[∂iΣt−1|t−1]ΦT

t

+ ΦtΣt−1|t−1[∂iΦt]
T + ∂iQ,

∂iεt = −Ψt[∂iXt|t−1]− [∂iBt]ut,

∂iΓt = Ψt[∂iΣt|t−1]ΨT
t + ∂iR(θ)

∂iKt =
{

[∂iΣt|t−1]ΨT
t −Kt[∂iΓt]

}
Γ−1
t .

∂iXt|t = [∂iXt|t−1] + [∂iKt]εt +Kt[∂iεt],

Σt|t = [∂iKt]ΨtΣt|t−1 + [I −KtΨt][∂iΣt|t−1].

end

Algorithm 5 and Algorithm 10 can be used with a gradient descent type
numerical algorithm that provides a numerical approximation of the mini-
mizer of θ 7→ − logLn(θ).

(i) Select initial values for the parameters, say, θ(0).

(ii) Run the Kalman filter, Proposition 5.3.1, using the initial parameter
values, θ(0), to obtain a set of innovations and error covariances, say,

{ε(0)
t ; t = 1, . . . , n} and {Γ(0)

t ; t = 1, . . . , n}.

(iii) Run one iteration of a Newton–Raphson procedure with − logLY (θ)
as the criterion function to obtain a new set of estimates, say θ(1).

(iv) At iteration j, (j = 1, 2, . . .), repeat step 2 using θ(j) in place of

θ(j−1) to obtain a new set of innovation values {ε(j)
t ; t = 1, . . . , n}

and {Γ(j)
t ; t = 1, . . . , n}. Then repeat step 3 to obtain a new estimate

θ(j+1). Stop when the estimates or the likelihood stabilize.
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Example 5.7.1 (Noisy AR(1) (continued from Example 5.2.3 and Exam-
ple 5.3.1). Let us apply a standard numerical procedure1 to compute esti-
mates of the parameter θ = (φ, σ2

w, σ
2
v) from a simulated samples of Ex-

ample 5.2.3 with length n = 128. We replicate this experiment for fixed
parameters φ = 0.8 and σv = 1.0 and σw = 1.0. The distribution of the
obtained estimates are displayed using boxplots in Figure 5.5.
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Figure 5.5: Estimation of the parameters of the noisy AR(1) model: box-
plots of the estimates of φ, σv and σw obtained from 100 Monte Carlo
replications of time series of length 128. The true values are φ = 0.8 and
σv = 1.0 and σw = 1.0.

1the quasi Newton procedure implemented in the optim() function of the R software,
[10]
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5.8 Exercises

Exercise 5.1. Let X, Y and X̂ be as in Proposition 5.1.1. Let ε = X− X̂.

1. Explain why there exists a ∈ Rq and A ∈ Rp×q such that X̂ = a +AY
and for all a′ ∈ Rq and A′ ∈ Rp×q we have

E
[
εT
(
a′ +A′Y

)]
= 0 .

2. Show that E [ε] = 0.

3. Show that Proposition 5.1.1(i) holds.

4. Show that ε and Y are jointly Gaussian and independent. Deduce
that Proposition 5.1.1(ii) holds.

5. Show that Proposition 5.1.1(iii) holds.

Exercise 5.2. Show that Algorithm 8 applies under the assumptions of
Proposition 5.3.1.

Exercise 5.3. Show that the process (Yt)t∈Z of Example 5.2.3 is an ARMA(1,1)
process.

Exercise 5.4. Show that Algorithm 9 applies for the state-space model sat-
isfying Assumption 5.5.1, provided that ΨtΣt|t−1ΨT

t +R are invertible ma-
trices for t = 1, . . . , n.

Exercise 5.5. Prove Proposition 5.6.1.

Exercise 5.6 (Kalman filtering of an AR(1) process observed in noise). Con-
sider the problem studied in Exercise 4.1.

1. Can this problem be embedded in the general approach of the Kalman
filter ? [Hint: start by comparing Equations (4.19)–(4.20) and the
general state-space representation, and then discuss the assumptions
and the steps carried out in Exercise 4.1.]

2. What about a noisy AR(p) model with p ≥ 2, can the problem of its
filtering be considered as a particular case of the Kalman approach ?
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Chapter 6

Statistical inference

6.1 Convergence of vector valued random variables

So far we have essentially worked with the L2 convergence of random vari-
ables. Here we recall some standard results for random variables valued
in a finite dimensional space Rp endowed with an arbitrary norm, say the
Euclidean norm (denoted by |x|). We will use the same definitions and the
same notation in this setting as in Appendix A where we have gathered the
main useful results about convergence of random variables in general metric
spaces. Most of these result should already be known to the reader, perhaps
slightly differently expressed. For instance Assertion ( v) in Theorem A.1.8
is usually referred to as Slutsky’s lemma and is sometimes stated in the
following simplest (and less general) form.

Lemma 6.1.1 (Slutsky’s Lemma). Let (Xn)n∈N and (Yn)n∈N be sequences
of random variables valued in Rp, (Rn)n∈N be sequences of random variables
valued in Rq×p, all defined on the same probability space (Ω,F ,P). Suppose

that Xn =⇒ X, Yn
P−→ y and Rn

P−→ r, where X is a r.v. valued in rsetp,
y ∈ Rp and r ∈ Rq×p. Then we have

(i) Xn + Yn =⇒ X + y;

(ii) Rn Xn =⇒ r X;

(iii) if r is invertible, R−1
n Xn =⇒ r−1X.

Another example of extensively used result for sequences of vector valued
random variables which holds in general metric spaces is the continuous
mapping theorem stated as in Theorem A.1.5 (for the weak convergence) or
as in Theorem A.1.7 (for the three convergences: strong, in probability and
weak).

In contrast, the two following results are specific to the vector valued
case, see [6]. The first one indicates how to relate the weak convergence in
Rp to the case p = 1.

95
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Theorem 6.1.2 (Cramér-Wold device). Let X, (Xn)n∈N be random vari-
ables valued in Rp and defined on the same probability space (Ω,F ,P). We
have Xn =⇒ X if and only if, for all t ∈ Rp, tTXn =⇒ tTX.

The second result is a characterization of weak convergence using the
characteristic functions.

Theorem 6.1.3 (Lévy’s theorem). Let (Xn)n∈N be a sequence of random
variables valued in Rp. Denote by φn the characteristic function of Xn, that
is,

φn(t) = E
[
eitTXn

]
, t ∈ Rp .

Suppose that φn(x) converges to φ(x) for all x ∈ Rp, where φ is continuous
at the origin. Then there exists a random variable X valued in Rp such that
X has characteristic function φ and Xn =⇒ X.

An elementary consequence of this result is the following application to
a sequence of Gaussian random variables.

Proposition 6.1.4. Let (Xn)n∈N be a sequence of Gaussian random p-
dimensional vectors. Then the two following assertions are equivalent.

(i) lim
k→∞

E [Xk] = µ and lim
k→∞

Cov(Xk) = Σ

(ii) Xk =⇒ N (µ,Σ).

Most of the statistics used for estimation can be written using the em-
pirical measure defined from a set of observations as follows.

Definition 6.1.1 (Empirical measure). Let X1:n = (X1, . . . ,Xn) be a sam-
ple of n observations in Rp. The empirical measure Pn of X1:n is the measure
on Rp defined, for all A ∈ B(Rp), by

Pn(A) =
1

n

n∑
k=1

1A(Xk) .

For a probability measure P , it is convenient to use the notation P (h)
for the expectation

∫
h dP . For instance, following Definition 6.1.1, we will

use the notation

Pn(h) =
1

n

n∑
k=1

h(Xk) .

The two following classical results apply to i.id. sequences and provide
the asymptotic behavior of the empirical measure, see [6].

Theorem 6.1.5 (Law of large numbers and central limit theorem). Let
(Xn)n∈N be a sequence of i.i.d. random variables valued in Rp with marginal
distribution P . Then the two following assertions hold.
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• Law of large numbers : for any measurable h : Rp → Rq such that
P |h| <∞, we have

Pn(h)
a.s.−→ P (h) .

• Central limit theorem : for any measurable h : Rp → Rq such that
P (|h|2) <∞, we have

√
n (Pn(h)− P (h)) =⇒ N (0, P (hhT )− P (h)P (hT )) .

An alternative way to prove an a.s. convergence is to rely on the Borel
Cantelli lemma, see Lemma A.1.1.

In the setting of vector valued random variables, simple asymptotic re-
sults are conveniently expressed using the stochastic order symbols.

Definition 6.1.2 (Stochastic order symbols). Let (Xn)n∈N be a sequence
of random variables valued in Rp and defined on the same probability space
(Ω,F ,P). We will say that Xn is stochastically negligible and denote Xn =

oP (1) if Xn
P−→ 0 that is, for all ε > 0,

lim
n→∞

P(|Xn| > ε) = 0 .

We will say that Xn is stochastically bounded and denote Xn = OP (1) if
(Xn)n∈N is tight, that is,

lim
M→∞

lim sup
n→∞

P(|Xn| > M) = 0 .

Moreover, for a sequence (Rn)n∈N of random variables valued in R+ and
defined on (Ω,F ,P), we will write Xn = oP (Rn) (resp. Xn = OP (Rn)) if
Xn/Rn = oP (1) (resp. Xn/Rn = OP (1)) with the convention 0/0 = 0.

The definition of tightness used above for defining the symbol OP (1)
corresponds to the one given in Appendix A for a general set of probability
measures defined on a metric space. Namely, (Xn)n∈N is tight means that
the set of image probability measures {P ◦X−1

n , n ∈ N} is tight in the sense
of Definition A.2.1 as a set of probability measures on (Rp,B(Rp)). We have
the following result which says how the symbol OP (1) is related to the weak
convergence.

Theorem 6.1.6. Let (Xn)n∈N be a sequence of random variables valued in
Rp. Then the two following assertions hold.

(i) If Xn converges weakly, then Xn = OP (1).

(ii) If Xn = OP (1), then there exists a subsequence (Xαn) such that Xαn

converges weakly.
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Proof. We first prove (i). Suppose that Xn =⇒ X for some r.v. X. Then
|Xn| =⇒ |X|, and for any continuity point M of the distribution function
of |X|, we have

lim
n→∞

P(|Xn| > M) = P(|X| > M) .

Since the set of discontinuity points of the distribution function of |X| is at
most countable, we can let M go to infinity and obtain that Xn = OP (1).

To conclude the proof we observe that Theorem A.2.3 implies (ii).

The Stochastic order symbols oP and OP can be used as the deterministic
ones, namely, we have the following result, the proof of which is left to the
reader (see Exercise 6.1).

Proposition 6.1.7. The following relations hold for sequences of vector
valued random variables with compatible dimensions.

oP (1) + oP (1) = oP (1),

OP (1) +OP (1) = OP (1),

OP (1)× oP (1) = oP (1) .

Finally we recall another standard result for sequences if vector valued
random variables, the so called δ-method, which allows us to obtain the
weak convergence of the sequence rn(g(Xn)−g(x)) given that of rn(Xn−x)
under practical conditions.

Proposition 6.1.8 (δ-method). Let g : Rk 7→ Rm be a measurable function
which is differentiable at x ∈ Rk. Let Y, (Xn)n∈N be a sequence of ran-
dom variables valued in Rp and (rn)n∈N be a sequence of positive numbers
such that limn rn = ∞. Suppose that rn(Xn − x) =⇒ Y. Then we have
rn(g(Xn)− g(x)) =⇒ ∂g(x)TY.

Proof. Since g is differentiable at x, we have

g(Xn)− g(x) = ∂g(x)T (Xn − x) +R(Xn − x) ,

where R(x) = o(x) as x→ 0. Multiplying by rn we get

rn(g(Xn)− g(x)) = ∂g(x)T (rn(Xn − x)) + rnR(Xn − x) .

Now the first term in the right-hand side converges weakly to ∂g(x)TY by
the continuous mapping theorem. Since rn →∞, and rn(Xn − x) = Op(1),
we have Xn − x = oP (1) and thus R(Xn − x) = oP (|Xn − x|). Hence the
second term is oP (1) and we conclude with Slutsky’s Lemma.
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6.2 Empirical estimation of the mean and autoco-
variance function

Let p ≥ 1 and X = (Xt)t∈Z be a Cp-valued weakly stationary process with
mean µ (valued in Cp) and autocovariance function Γ (valued in Cp×p). We
wish to estimate µ and Γ based on a finite sample X1:n = (X1, . . . ,Xn).

To this end, we introduce two classical estimators.

Definition 6.2.1. The empirical mean (or sample mean) and the empirical
autocovariance function of the sample X1:n are respectively defined as

µ̂n =
1

n

n∑
t=1

Xt (6.1)

Γ̂n(h) =


n−1

∑n−h
t=1 (Xt+h − µ̂n)(Xt − µ̂n)H if 0 ≤ h ≤ n− 1 ,

n−1
∑n

t=1−h(Xt+h − µ̂n)(Xt − µ̂n)H if 0 ≤ −h ≤ n− 1 ,

0 otherwise.

(6.2)

Remark 6.2.1. To avoid separating the different cases for h, the right-hand
side of (6.2) can be written as follows

Γ̂n(h) = n−1
∑

1≤t,t+h≤n
(Xt+h − µ̂n)(Xt − µ̂n)H , (6.3)

where, by convention, the sum is zero if there is no t ∈ Z such that 1 ≤
t, t+ h ≤ n.

Observe that the empirical mean (6.1) can be seen as the mean of the
empirical measure, that is, denoting Id(x) = x,

µ̂n = Pn(Id) .

This is no longer true for the empirical covariance function, except in the
case h = 0,

Γ̂n(0) = Pn(Id IdH)− Pn(Id)Pn(Id)H .

Indeed the covariance relies on the distribution of the bivariate random
variables (Xt,Xt+h), t ∈ Z. Thus the empirical autocovariance function
instead relies on the bivariate empirical measure, defined for all lag h ∈ Z
by

Ph,n(A×B) = n−1
∑

1≤t,t+h≤n
1A(Xt+h)1B(Xt) ,

so that

Γ̂n(h) = Ph,n((Id− Pn(Id))⊗ (Id− Pn(Id))H) ,
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where we used the tensor product defined by u ⊗ v(x,y) = u(x) × v(y).
However the use of the bivariate empirical measure Ph,n raises a difficulty
because it is not a probability measure except when h = 0,

Ph,n(Cp × Cp) =
(n− |h|)+

n
= 1⇔ h = 0 .

It is thus tempting to replace the normalizing term n−1 by (n − |h|)−1 in
(6.2), so that we deal with empirical probability measures. However we will
see that the empirical autocovariance function is a consistent estimator as
n → ∞ for a fixed h, in which case the two normalizations are equivalent.
Moreover the normalizing term n−1 yields a very interesting property for
Γ̂n, namely it is an autocovariance function. To see why, let us introduce a
new statistic of interest.

Definition 6.2.2 (Periodogram). The periodogram of the sample X1:n is
the function valued in Cp×p and defined on T by

In(λ) =
1

2πn

(
n∑
t=1

(Xt − µ̂n)e−itλ

)(
n∑
t=1

(Xt − µ̂n)e−itλ

)H
. (6.4)

Then we have the following result.

Theorem 6.2.1. Let X1:n be a sample of scalar observations. Let γ̂n and
In denote its empirical autocovariance function and its periodogram. Then
γ̂n satisfies the properties of Proposition 2.2.1, hence it is an admissible
autocovariance function. Moreover In is the corresponding spectral density
and, either γ̂n ≡ 0 or the matrix Γ̂+

n,p is invertible for all p ≥ 1, where

Γ̂+
n,p =


γ̂n(0) γ̂n(−1) · · · γ̂n(−p+ 1)
γ̂n(1) γ̂n(0) · · · γ̂n(−p+ 2)

...
γ̂n(p− 1) γ̂n(p− 2) · · · γ̂n(0)

 .

Remark 6.2.2. Observe that, for a sample X1:n of vector observations and
for any t ∈ Cp, the empirical autocovariance function of tHX1:n and its
periodogram are given by γ̂n = tH Γ̂nt and In(λ) = tHIn(λ)t, where Γ̂n
and In(λ) are the empirical autocovariance function and the periodogram of
X1:n. Hence Theorem 6.2.1 also implies that in the vector case, the empirical
autocovariance function is an admissible covariance function.

Proof of Theorem 6.2.1. Observe that In is a nonnegative function. More-
over, we have∫

T
eiλhIn(λ)dλ =

1

n

n∑
s=1

n∑
t=1

(Xs − µ̂n)(Xt − µ̂n)
1

2π

∫ π

−π
eiλ(h−s+t)

= γ̂n(h) ,
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since
1

2π

∫ π

−π
eiλ(h−s+t) =

{
1 if s = h+ t,

0 otherwise.

By Theorem 2.3.1, we get that γ̂n is a nonnegative hermitian function.
Consider now two cases. First, if γ̂n(0) = 0, then γ̂n ≡ 0 (since γ̂n is an

admissible covariance function). Second, if γ̂n(0) > 0, since γ̂n(h) → ∞ as
h→∞, Proposition 2.3.3 implies that Γ̂+

n,p is invertible for all p ≥ 1.

6.3 Consistency of the empirical mean and of the
empirical autocovariance function

We now investigate some simple conditions under which the empirical mean
µ̂n and the empirical autocovariance function Γ̂n are consistent estimators
of µ and Γ, that is, µ̂n converges to µ and Γ̂n(h) converges to Γ(h) for
all h ∈ Z as n → ∞. If the convergence holds a.s. we shall say that the
estimator is strongly consistent and if it holds in probability, we shall say
that the estimator is weakly consistent.

We recalled the law of large numbers in Theorem 6.1.5, which states
that in the i.i.d. case, the empirical mean is a strongly consistent estimator
of the mean, that is, µ̂n

a.s.−→ µ as n → ∞. The ergodic theory provides a
generalization of this results to a much general class of strongly stationary
processes, namely the class of ergodic processes. However in these lecture
notes, we shall consider a more elementary approach to the consistency.
More precisely, it is in general easier to find sufficient conditions for an L2

convergence by controlling the bias and the variance and it directly implies
the weak convergence by the Markov inequality. Some refinement of this
approach further allows to obtain the strong consistency, using the Borel
Cantelli lemma.

Theorem 6.3.1. Let (Xt) be a real-valued weakly stationary process with
mean µ and autocovariance function γ. Let µ̂n denote the empirical mean
of the sample X1:n. Then the following assertions hold.

(i) µ̂n is an unbiased estimator of µ, that is, E [µ̂n] = µ for all n ≥ 1.

(ii) If limh→∞ γ(h) = 0, then limn→∞ E
[
(µ̂n − µ)2

]
= 0. In particular,

µ̂n is a weakly consistent estimator of µ.

(iii) If moreover γ ∈ `1, then, as n→∞,

Var (µ̂n) ≤ n−1 ‖γ‖1 , (6.5)

Var (µ̂n) = n−1(2πf(0) + o(1)) , (6.6)

where f is the spectral density of (Xt). In particular, µ̂n is a strongly
consistent estimator of µ.
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Proof. Assertion (i) is immediate and implies that E
[
(µ̂n − µ)2

]
= Var (µ̂n).

Thus we have

Var (µ̂n) = n−2
n∑
s=1

n∑
t=1

Cov (Xs, Xt)

= n−1
∑
τ∈Z

(1− |τ |/n)+γ(τ) ,

where we set τ = s − t and used the notation a+ = max(a, 0). From this
expression, we easily get Assertion (ii) and (6.5). Under the assumption of
(iii), we may apply the dominated convergence and get that

lim
n→∞

nVar (µ̂n) =

∞∑
τ=−∞

lim
n→∞

(1− |τ |/n) γ(τ) =

∞∑
τ=−∞

γ(τ) = 2πf(0) .

Hence we have (6.6). Then we can show that µ̂n is a strongly consistent
estimator of µ as follows. First, (6.6) and the Markov inequality implies
that, for all ε > 0,

∞∑
n=1

P (|µ̂n2 − µ| ≥ ε) <∞ .

By Lemma A.1.1, we get limn→∞ µ̂n2 = 0 a.s. We now need to extend this
result to the sequence (µ̂n). We write

µ̂n − µ =
mn

n
(µ̂mn − µ) + n−1

n∑
s=mn+1

(Xs − µ) , (6.7)

with mn = b
√
nc2. Since mn/n is bounded, we already know the first term

in the right-hand side converges to 0 a.s. The second term is centered and
has the same variance as n−1µ̂n−mn , hence of order O((n − mn)/n2) =
O((n − mn)/n2) = O(n1/2−2). Proceeding as above, Lemma A.1.1 yields
that the second term in the right-hand side of (6.7) also converges to 0 a.s.
This concludes the proof.

The weak consistency amounts to saying that the confidence interval
[µ̂n − ε, µ̂n + ε] contains the true parameter µ with probability tending to
1 as the number of observations n → ∞. Thanks to this simple statistical
application and because it is easier to prove than strong consistency, we
shall mainly use this type of consistency in the following, in particular when
considering covariance estimation.

Also observe that we stated Theorem 6.3.1 in the case of a real-valued
process. Since for both the a.s. convergence and the convergence in prob-
ability, the convergence of a vector is equivalent to the convergence of its
components, it follows that the same result also holds in the case of a Cp-
valued process.
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Similarly we shall provide sufficient conditions for the weak consistency
of the empirical autocovariance function in the case of a real-valued process.
The multi-dimensional case then follows by writing, for two real-valued pro-
cesses (Xt) and (Yt),

Cov (Xs, Yt) =
1

2
[Cov (Xs + Ys, Xt + Yt)− Cov (Xs − Ys, Xt − Yt)] ,

and by observing that a similar relation holds for the corresponding empirical
covariances. Hence applying a consistency result to the real-valued processes
(Xt + Yt) and (Xt − Yt) implies a consistency result which applies to the
cross-covariance function Cov (Xs, Yt).

To obtain a weak consistency result on the empirical autocovariance
function, we shall rely on the computation of its mean and variance. Since
this variance requires the expectation of the product of 4 r.v. Xs (moments
of 4th order of the process X), the second order properties of the under-
lying process is no longer sufficient to carry out the computation. Hence
additional conditions are necessary. The simplest one is to assume that X is
Gaussian but it is very restrictive in practice. Instead we shall use a linear
representation of X, say the following assumption.

Assumption 6.3.1. X = (Xt)t∈Z is a real valued linear process with short
memory, that is, it admits the representation

X = µ+ Fψ(Z) , (6.8)

where µ ∈ R, Z ∼ WN(0, σ2) is real valued and (ψt)t∈Z ∈ `1 is also real
valued.

Then, by Corollary 3.1.3, X is a weakly stationary process with mean
µ, autocovariance function γ and spectral density function f given by

γ(h) = σ2
∑
k∈Z

ψk+hψk (6.9)

f(λ) =
1

2π

∑
τ∈Z

γ(τ)e−iτλ . (6.10)

Now, to compute the 4th order moments of X, we shall just need an as-
sumption on Z. We shall use the following one.

Assumption 6.3.2. The centered white noise Z satisfies, for a constant
η ≥ 1, for all s ≤ t ≤ u ≤ v,

E[Zs Zt Zu Zv] =


ησ4 if s = t = u = v,

σ4 if s = t < u = v,

0 otherwise.
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A simple example is the case where Z is a strong white noise with finite
4th order moment. More generally Assumption 6.3.2 holds if E[Z4

t ] = ησ4,
E[Z3

t |Ft−1] = E[Zt|Ft−1] = 0 and E[Z2
t |Ft−1] = σ2 for all t ∈ Z, where Ft is

a filtration with respect to which Z is adapted (Zs is Ft-measurable for all
s ≤ t).

A direct consequence is the following lemma, whose proof is left to the
reader (see Exercise 6.2).

Lemma 6.3.2. Suppose that Assumption 6.3.1 and Assumption 6.3.2 hold
with µ = 0. Then, for all k, l, p, q ∈ Z

E [XkX`XpXq] = (η − 3)σ4
∑
i∈Z

ψk+iψ`+iψp+iψq+i + γ(k − `)γ(p− q)

+ γ(k − p)γ(`− q) + γ(k − q)γ(`− p) , (6.11)

where γ is the autocovariance function of X. Moreover, there exists a con-
stant C such that, for all m ∈ N,

E

( m∑
t=1

Xt

)4
 ≤ Cm2 . (6.12)

Let us now state a weak consistency result for the empirical covariance
function of a real valued process.

Theorem 6.3.3. Suppose that Assumption 6.3.1 and Assumption 6.3.2
hold. Let γ̂n denote the empirical autocovariance function of the sample
X1:n. Then, for all p, q ∈ Z,

E [γ̂n(p)] = γ(p) +O(n−1) , (6.13)

lim
n→∞

nCov (γ̂n(p), γ̂n(q)) = V (p, q) , (6.14)

where γ is the autocovariance function of X and

V (p, q) = (η − 3)γ(p)γ(q) +
∑
u∈Z

[γ(u)γ(u− p+ q) + γ(u+ q)γ(u− p)] .

(6.15)

In particular, γ̂n(p) is a weakly consistent estimator of γ(p),

γ̂n(p) = γ(p) +OP (n−1/2) . (6.16)

Proof. We first observe that replacing X by X − µ does not modify the
definitions of γ̂n and γ. Hence we can set µ = 0 without loss of generality.

The Markov inequality, (6.13) and (6.14) yield (6.16). Hence it only
remains to prove (6.13) and (6.14).



6.3. CONSISTENCY 105

To this end, we introduce

γ̃n(h) = n−1
n∑
t=1

Xt+hXt . (6.17)

This is an unbiased estimator of γ(h) when X is known to be centered,
which we assumed in this proof. However it is different from γ̂n(h) even in
the centered case. First this estimator uses more observations (since t + h
is not required to be in {1, . . . , n}), and second µ̂n does not vanish, even in
the centered case. More precisely, we have, for all h ∈ Z,

γ̂n(h)−γ̃n(h) = −
∑

t∈∆n,h

(Xt+h−µ̂n)(Xt−µ̂n)−µ̂n

[
µ̂n −

1

n

n∑
t=1

(Xt+h +Xt)

]
,

where ∆n,h = {1, . . . , n} \ {1− h, . . . , n− h} has cardinality at most |h|. By
Lemma 6.3.2, we have E

[
(µ̂n)4

]
= O(n−2) and

E

( n∑
t=1

Xt+h

)4
 = E

( n∑
t=1

Xt

)4
 = O(n2) .

Thus, by the Cauchy-Schwarz inequality we get that, for all h ∈ Z,

E
[
(γ̂n(h)− γ̃n(h))2

]
= O(n−2) (6.18)

By Jensen’s inequality, we get

E [γ̂n(p)] = E [γ̃n(p)] +O(n−1) , (6.19)

Since γ̃n(p) is an unbiased estimator of γ(p), this yields (6.13). Next, we
have, for all p, q ∈ Z,

Cov (γ̃n(p), γ̃n(q)) = n−2
n∑
s=1

n∑
t=1

Cov (Xs+pXs, Xt+qXt) .

By Lemma 6.3.2, we know that

Cov (Xs+pXs, Xt+qXt) = (η − 3)σ4
∑
i∈Z

ψs+iψs+p+iψt+iψt+q+i

+ γ(s− t+ p− q)γ(s− t) + γ(s+ p− t)γ(s− t− q) .

Note that this term is unchanged when shifting s and t by the same constant.
Hence it can be written as v(s− t) where

v(u) = (η−3)σ4
∑
i∈Z

ψu+iψu+p+iψiψq+i+γ(u)γ(u+p−q)+γ(u+p)γ(u−q) .

(6.20)
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Hence we get, for all p, q ∈ Z,

Cov (γ̃n(p), γ̃n(q)) = n−2
n∑
s=1

n∑
t=1

v(s− t)

= n−2
∑
τ∈Z

(n− |τ |)+ v(τ) .

Using that ψ ∈ `1, we easily get that γ and v are in `1. It follows that as
n→∞,

Cov (γ̂n(p), γ̂n(q)) ∼ n−1
∑
τ∈Z

v(τ) .

Now, by (6.9) and (6.15), we have∑
τ∈Z

v(τ) = V (p, q) .

Hence we get that, as n→∞,

Cov (γ̃n(p), γ̃n(q)) ∼ n−1V (p, q) . (6.21)

From this and (6.18), it follows that, for all p, q ∈ Z,

Cov (γ̂n(p), γ̂n(q)) = Cov (γ̃n(p), γ̃n(q)) +O(n−3/2) . (6.22)

Finally, (6.21) and (6.22) yield (6.14), which concludes the proof.

6.4 Asymptotic distribution of the empirical mean

From Theorem 6.3.1, we know that, under suitable assumptions, µ̂n is an
unbiased estimator with variance asymptotically behaving as O(n−1). A
natural question is thus to determine the convergence of

√
n(µ̂n − µ). This

is useful to build confidence intervals for the mean with given asymptotic
confidence level. In the i.i.d. case, the central limit Theorem (see Theo-
rem 6.1.5) indicates that this sequence converge weakly to a Gaussian dis-
tribution. We may hope that such a result extends for more general time
series. As in Theorem 6.3.3, we need to somehow precise the distribution of
the time series by relying on Assumption 6.3.1 with a suitable assumption
on the white noise Z, namely.

Assumption 6.4.1. The centered white noise (Zt)t∈Z satisfies

n−1/2
n∑
t=1

Zt =⇒ N (0, σ2) .

A first generalization of the CLT in Theorem 6.1.5 is given by the fol-
lowing result.
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Proposition 6.4.1. Suppose that Assumption 6.3.1 and Assumption 6.4.1
hold with a finitely supported sequence ψ. Let µ̂n denote the empirical mean
of the sample X1:n. Then, as n→∞,

√
n (µ̂n − µ) =⇒ N (0, 2πf(0)) (6.23)

where f(λ) = 1
2π

∑∞
τ=−∞ γ(τ)e−iτλ is the spectral density of (Xt).

Proof. Since µ̂n − µ is the empirical mean of the sample X̄1:n with X̄k =
X − µ, we can assume µ = 0 by replacing X by X − µ.

Let m be such that [−m,m] contains the support of ψ. Denote µ̂Zn =
n−1

∑n
t=1 Zt. Then we have

µ̂n =
m∑

j=−m
ψj

(
n−1

n∑
t=1

Zt−j

)

=

∑
j∈Z

ψj

 µ̂Zn + n−1
m∑

j=−m
ψjRn,j ,

where |Rn,j | ≤
∑

s∈In,j |Zs| and In,j is the symmetric difference between

{1, . . . , n} and {1− j, . . . , n− j} (that is, the set of indices that are in one
and only one of these two sets). Since the cardinality of In,j is at most 2j,
we have (E|Rn,j |2)1/2 ≤ 2jσ and thus

∑m
j=−m ψjRn,j = Op(1). Hence we

obtain (6.23).

Now, we can state a more general extension similar to Proposition 6.4.1
but without the assumption on the support of ψ. The idea is to approximate
X = Fψ(Z) by Fψm(Z) where ψm has a finite support.

Theorem 6.4.2. Suppose that Assumption 6.3.1 and Assumption 6.4.1
hold. Let µ̂n denote the empirical mean of the sample X1:n. Then the
CLT (6.23) holds.

Proof. As in the proof of Proposition 6.4.1, we can assume that µ = 0
without loss of generality.

Define the sequence ψm by

ψmk =

{
ψk if |k| ≤ m,

0 otherwise.
(6.24)

Let µ̂mn be the empirical mean of the the sample [Fψm(Z)]1:n. Then by
Proposition 6.4.1, we have, for all m ≥ 1, as n→∞,

√
n (µ̂mn − µ) =⇒ N (0, σ2

m) , (6.25)
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where

σ2
m =

 m∑
j=−m

ψj

2

.

Moreover, using that ψ ∈ `1, we have σ2
m → 2πf(0) as m → ∞ and thus,

applying Proposition 6.1.4, as n→∞,

N (0, σ2
m) =⇒ N (0, 2πf(0)) .

By Lemma A.1.9, this convergence and (6.25) imply (6.23) if for all ε > 0,
we have

lim
n→∞

lim sup
n→∞

P(
√
n|µ̂n − µ̂mn | > ε) = 0 . (6.26)

Hence it only remains to show (6.26). Observe that, by linearity of the
empirical mean, µ̂n − µ̂mn is the empirical mean of [Fψ−ψm(Z)]1:n. More-
over the process Fψ−ψm(Z) has an autocovariance function γn with `1-norm

satisfying ‖γn‖1 ≤
(∑

|j|>m |ψj |
)2

. Applying Theorem 6.3.1, we get

E
[
(µ̂n − µ̂mn )2

]
= Var (µ̂n − µ̂mn ) ≤ n−1

∑
|j|>m

|ψj |

2

.

Assertion (6.26) follows by the Markov inequality.

Proposition 6.4.1 and Theorem 6.4.2 heavily rely on the linear represen-
tation of Assumption 6.3.1. It is interesting to note that the above technique
can be applied in the following framework which do not assume a linear rep-
resentation.

Definition 6.4.1. Le m ≥ 1. A process X = (Xt)t∈Z is said to be m-
dependent if, for all t ∈ Z, (Xs)s≤t and (Xs)s>t+m are independent.

Theorem 6.4.3. Let X be an L2 real valued strictly stationary m-dependant
process with mean µ and autocovariance function γ. Let µ̂n denote the em-
pirical mean of the sample X1:n. Then the CLT (6.23) holds.

Proof. As usual, we can assume µ = 0 without loss of generality.
The proof relies on an approximation of µ̂n by weakly convergent se-

quences (denoted by µ̂pn below) and then by making use of Lemma A.1.9, as
in the proof of Theorem 6.4.2. Let p ≥ 1 and define the integers p and r by
the Euclidean division n = (p+m)k + r. Then we have

µ̂n = n−1
k−1∑
j=1

p+m∑
s=1

Xj(p+m)+s + n−1
r∑
s=1

Xk(p+m)+s

= n−1
k−1∑
j=1

Sj,p +Rn,p ,
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where we defined

Sj,p =

p∑
s=1

Xj(p+m)+s

and

Rn,p = n−1
k−1∑
j=1

p+m∑
s=p+1

Xj(p+m)+s + n−1
r∑
s=1

Xk(p+m)+s .

Using that (Xt)t∈Z is m-dependent, we get that (Sp,j)j≥1 is an i.i.d. se-
quence. Hence the CLT in Theorem 6.1.5 applies and we have

n−1/2
k−1∑
j=1

Sj,p =⇒ N (0, σ2
p) ,

where

σ2
p = Var(S1,p) =

∑
τ∈Z

(p− |τ |)+γ(τ) .

Observe that σ2
p converges to 2πf(0) as p → ∞. So, by Lemma A.1.9, to

conclude the proof, it only remains to show that, for all ε > 0,

lim
p→∞

lim sup
n→∞

P(
√
n|Rn,p| > ε) = 0 . (6.27)

We first observe that, since r ≤ p+m for all n, we have

Var

(
r∑
s=1

Xk(p+m)+s

)
≤ C (p+m) , (6.28)

where

C =
∑
τ∈Z
|γ(τ)| .

Now, for p ≥ m the sums
∑p+m

s=p+1Xj(p+m)+s, j ≥ 1 are i.i.d., and we find
that

Var

k−1∑
j=1

p+m∑
s=p+1

Xj(p+m)+s

 ≤ C (k − 1)m .

Hence, with (6.28) and the definition of Rn,p above, we get that, for p ≥ m,

E
[
nR2

n,p

]
≤ 2n−1C (km+ p) ≤ 2C ((m+ p)−1 + pn−1) .

Hence, by the Markov inequality, we obtain (6.27) and the proof is finished.
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6.5 Asymptotic distribution of the empirical au-
tocovariance function

An approach similar to Theorem 6.4.2 can be used to derive the asymptotic
distribution of the empirical autocovariance function under a more precise
assumption on the white noise Z of the linear representation (6.8).

Assumption 6.5.1. The centered white noise (Zt)t∈Z is a strong noise and
E[Z4

0 ] = ησ4 for some η ≥ 1.

We already mentioned that this assumption implies Assumption 6.3.2.
Thus the asymptotic behavior of the covariances Cov (γ̂n(p), γ̂n(q)) are given
by Theorem 6.3.3. It is thus not surprising that γ̂n is asymptotically normal
with an asymptotic covariance at two different values p and q given by V
in (6.14). This result is stated in the following theorem.

Theorem 6.5.1. Suppose that Assumption 6.3.1 and Assumption 6.5.1
hold. Let γ̂n denote the empirical autocovariance function of the sample
X1:n. Then, as n→∞,

√
n (γ̂n − γ)

fidi
=⇒ N (0, V ) , (6.29)

where V is defined by (6.15). As a consequence, we also have, as n→∞,

√
n (ρ̂n − ρ)

fidi
=⇒ N (0,W ) , (6.30)

where ρ̂n(h) = γ̂n(h)/γ̂n(0) and ρ(h) = γ(h)/γ(0).

W (p, q) =

∞∑
u=1

{ρ(u+ p) + ρ(u− p)− 2ρ(u)ρ(p)}

× {ρ(u+ q) + ρ(u− q)− 2ρ(u)ρ(q)} . (6.31)

Proof. The CLT (6.30) follows from (6.29) (see Exercise 6.3), so we only
show (6.29).

As in the proof of Theorem 6.3.3, we can take µ = 0 without loss of
generality. We also observe that (6.18) implies that γ̂n = γ̃n + Op(n

−1).
Hence it is sufficient to prove that, as n→∞,

√
n (γ̃n − γ)

fidi
=⇒ N (0, V ) , (6.32)

The proof of this is left to the reader, see Exercise 6.4.

The asymptotic covariances of the empirical autocovariances V are a bit
intricate and depend on η. Surprisingly (at least at first sight) η no longer
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appears in the asymptotic covariance when one considers the empirical au-
tocorrelation function defined by

ρ̂n(h) =
γ̂n(h)

γ̂n(0)

which is used as an estimator of ρ(h) = γ(h)/γ(0), where ρ is called the
autocorrelation function.

6.6 Application to ARMA processes

Let us give some applications of the above asymptotic results on some ex-
amples of ARMA processes.

Example 6.6.1 (Strong white noise). If (Xt)t∈Z ∼ IID(0, σ2), we are in the
i.i.d. case. Of course Theorem 6.4.2 and Theorem 6.5.1 apply. Note that
ρ(h) = 0 for all h 6= 0 and W (p, q) = 1{p=q}. Hence (6.30) implies that,
for any K ≥ 1,

√
n[ρ̂n(1), . . . , ρ̂n(K)] converges weakly to an i.i.d. standard

Gaussian vector. As a consequence the statistic

Tn =

K∑
l=1

ρ̂n(l)2

converges weakly to a χ2 (“chi squared”) distribution with K degrees of free-
dom, see[6]. This result can be used to obtain a test of the null hypothesis
H0: “X is a white noise” for a given asymptotic false detection probability.

Example 6.6.2 (MA(1) process). Define X by the non-centered MA(1)
equation

Xt = µ+ Zt + θZt−1 ,

where Z ∼ IID(0, σ2). Then the conditions of Theorem 6.4.2 and Theo-
rem 6.5.1 are satisfied. We have 2πf(0) = σ2(1 + θ)2 and

ρ(h) =


1 if h = 0
θ1

1 + θ2
1

if |h| = 1,

0 otherwise.

It follows that

W (h, h) =

{
1− 3ρ2(1) + 4ρ4(1) if |h| = 1

1 + 2ρ(1)2 if |h| ≥ 2

One easily deduces confidence intervals for µ and ρ(h) for given coverage
probabilities.
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Example 6.6.3 (Empirical mean of an AR(1) process). Let X be the unique
stationary solution of the non-centered AR(1) equation

Xt − µ = φ(Xt−1 − µ) + Zt

where Z ∼ IID(0, σ2) and |φ| < 1. Then X has mean µ and autocovariance
function given by

γ(k) =
σ2

(1− φ2)
φ|k|

and its spectral density function reads

f(λ) =
σ2

2π |1− φe−iλ|2
.

Then the assumptions of Theorem 6.4.2 are satisfied and the limit variance
in (6.23) reads 2πf(0) = σ2/(1 − φ)2. As a consequence, the confidence
interval with asymptotic coverage probability 95% for the mean µ is given by
[µ̂n− 1.96σn−1/2/(1−φ), µ̂n + 1.96σn−1/2/(1−φ)], hence has maximal size
when φ→ 1 and minimal size when φ→ −1.

The assumptions of Theorem 6.5.1 also hold. A direct computation yields

W (h, h) =
h∑

m=1

φ2h(φ−m − φm)2 +
∞∑

m=h+1

φ2m(φ−i − φi)2

= (1− φ2h)(1 + φ2)(1− φ2)−1 − 2hφ2h

6.7 Maximum likelihood estimation

Maximum likelihood estimation is a general approach for the estimation of
the parameter in the framework of a dominated model. Let us consider
an observed data set, for instance a sample of the Rp-valued time series
(Zt)t∈Z at time instants t = 1, . . . , n. We will denote Z1:n = (Z1, . . . ,Zn).
A dominated model means that Z1:n admits a density p(·|θ∗) with respect
to a known dominating measure, where θ∗ is unknown in a given (finite-
dimensional) parameter set Θ.

Definition 6.7.1 (Maximum likelihood estimator). The likelihood of an
observation set is defined as the (random) function

θ 7→ Ln(θ) = p(Z1:n|θ) .

The maximum likelihood estimator is then defined as

θ̂n
def
= argmin

θ∈Θ
− logLn(θ) , (6.33)

when this argmin is well defined.
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In practice, θ̂n is often obtained through a numerical procedure which,
in the best cases, insure that

− logLn(θ̂n) ≤ inf
θ∈Θ
−Ln(θ) + oP (n−1/2) . (6.34)

To apply such a numerical procedure, the primary question is that of nu-
merically computing the negated log-likelihood − logLn(θ) efficiently for all
θ ∈ Θ, and for certain procedures its gradient and perhaps also its Hessian.

If Z1:n is a Gaussian vector, Z1:n ∼ N (µ(θ∗),Σ(θ∗)) with Σ(θ) invertible
for all θ ∈ Θ, then the dominating measure can be taken to be the Lebesgue
measure on Rn and we have

− logLn(θ) =
n

2
log(2π)+

1

2
log detΣ(θ)+

1

2

(
(Z1:n − µ(θ))TΣ(θ)−1(Z1:n − µ(θ))

)
.

This expression is fine if the inverse and the determinant of Σ(t) are easily
computed, which can become quite a difficult problem if n is large. An alter-
native, which moreover applies in a more general context than the Gaussian
one, is to use the successive conditional density,

p(Zn|Z1:n−1, θ) =
p(Z1:n|θ)
p(Z1:n−1|θ)

,

with the convention that p(Z1|Z1:0, θ) = p(Z1|θ). As a function of Zn, this
is a well defined density a.s. in Z1:n−1 and it is the density of the conditional
distribution of Zn given Z1:n−1 under the parameter θ. It follows that

− logLn(θ) = −
n∑
t=1

log p(Zt|Z1:t−1, θ) . (6.35)

Under the usual regular assumption (see [1]), the Information matrix is
defined as

In(θ) = Cov (∂ logLn(θ)|θ) = −E
[
∂∂T logLn(θ)|θ

]
, (6.36)

where the mention of θ in the conditional expectation and in the covariance
indicate that these are calculated under the distribution given by the param-
eter θ. As a consequence of (6.35) and (6.36), In(θ) may also be computed
as a sum of more elementary terms.

In nice models such as i.i.d. regular models (but not only these ones!),
the maximum likelihood estimator defined by (6.33) (or satisfying (6.34)) is
consistent and asymptoticly normal. Moreover, the information matrix is
asymptotically equivalent to nI(θ) with I(θ) invertible, which provides the
asymptotic covariance matrix of the maximum likelihood estimator,

√
n(θ̂n − θ∗) =⇒ N

(
0, I−1(θ)

)
(6.37)
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Here we state these facts without details; however, let us stress that such
asymptotic results may be quite involved to prove in the dependent case
(that is, when Z1:n is not an i.i.d. sample) or may even fail to hold.

Now, returning to the Gaussian assumption, the conditional density

p(Zt|Z1:t−1, θ) is that of N
(
Zt − ηt(θ), Σ̃t(θ)

)
where

ηt(θ) = Zt − E [Zt|Z1:t−1, θ] , (6.38)

Σ̃t(θ) = Cov (Zt − ηt(θ)|θ) , (6.39)

Hence (6.35) yields

− 2 logLn(θ) = n log(2π) +

n∑
t=1

log detΣ̃t(θ) +

n∑
t=1

ηt(θ)
T Σ̃t(θ)

−1ηt(θ) .

(6.40)
Denoting by ∂i the derivative with respect to the i-th component of θ, the
gradient is then given by

−2∂i logLn =

n∑
t=1

{
Trace

(
Σ̃−1
t [∂iΣ̃t]

)
+ 2ηTt Σ̃−1

t [∂iηt]− ηTt Σ̃−1
t [∂iΣ̃t]Σ̃

−1
t ηt

}
,

(6.41)
and the Hessian matrix by

−2∂i∂j logLn =
n∑
t=1

{
Trace

(
Σ̃−1
t [∂i∂jΣ̃t]

)
− Trace

(
Σ̃−1
t [∂iΣ̃t]Σ̃

−1
t [∂jΣ̃t]

)
+ 2ηTt Σ̃−1

t [∂i∂jηt] + 2[∂iη
T
t ]Σ̃−1

t [∂jηt]− 2ηTt Σ̃−1
t [∂iΣ̃t]Σ̃

−1
t [∂jηt]

− 2ηTt Σ̃−1
t [∂jΣ̃t]Σ̃

−1
t [∂iηt]− ηTt Σ̃−1

t [∂i∂jΣ̃t]Σ̃
−1
t ηt

+2ηTt Σ̃−1
t [∂iΣ̃t]Σ̃

−1
t [∂jΣ̃t]Σ̃

−1
t ηt

}
. (6.42)

Observe that by (6.38), the derivatives of any order of ηt with respect to
θ are σ(Z1:t−1)-measurable (the term Zt vanishes). On the other hand, Σ̃t

is deterministic and we have E [ηt(θ)|Z1:t−1, θ] = 0. Hence, when applying
this conditional expectation to the summand in (6.42), the following terms
vanishes :

ηTt Σ̃−1
t [∂i∂jηt], −2ηTt Σ̃−1

t [∂iΣ̃t]Σ̃
−1
t [∂jηt], −2ηTt Σ̃−1

t [∂jΣ̃t]Σ̃
−1
t [∂iηt] .

Now using that E[{ηtηTt }(θ)|θ] = Σ̃t(θ), we further have

E
[{

ηTt Σ̃−1
t [∂i∂jΣ̃t]Σ̃

−1
t ηt

}
(θ)
∣∣∣ θ] = Trace

({
Σ̃−1
t [∂i∂jΣ̃t]

}
(θ)
)
,

and

E
[{

ηTt Σ̃−1
t [∂iΣ̃t]Σ̃

−1
t [∂jΣ̃t]Σ̃

−1
t ηt

}
(θ)
∣∣∣ θ] = Trace

({
Σ̃−1
t [∂iΣ̃t]Σ̃

−1
t [∂jΣ̃t]

}
(θ)
)
.
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Using these facts to compute the expectation of −2∂i∂j logLn, we finally
obtain

In(i, j; θ) =

n∑
t=1

{
E
[{

[∂iη
T
t ]Σ̃−1

t [∂jηt]
}

(θ)
∣∣∣ θ]

+
1

2
Trace

({
Σ̃−1
t [∂iΣ̃t]Σ̃

−1
t [∂jΣ̃t]

}
(θ)
)}

. (6.43)

As a result a meaningful estimator of In(θ∗) is obtained with

În(i, j) =

n∑
t=1

[{
[∂iη

T
t ]Σ̃−1

t [∂jηt]
}

(θ̂n) +
1

2
Trace

({
Σ̃−1
t [∂iΣ̃t]Σ̃

−1
t [∂jΣ̃t]

}
(θ̂n)

)]
,

and, in view of (6.37), one may use the following approximation to build
confidence regions for θ∗,

P(

√
În(θ̂n − θ∗) ∈ R) ≈ P(U ∈ R) ,

where U ∼ N (0, I) and

√
În is such that

√
În(În)−1

√
În

T

is the identity

matrix (for instance using a Choleski decomposition of În).
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6.8 Exercises

Exercise 6.1. Let (Xn)n∈N and (Yn)n∈N be two sequences of random vari-
ables valued in Rp. Denote Zn = Xn + Yn.

1. Show that Xn
P−→ 0 and Yn

P−→ 0 implies Zn
P−→ 0.

2. Show that if (Xn)n∈N and (Yn)n∈N are stochastically bounded, then
so is (Zn)n∈N.

3. In the case where p = 1, show that if Xn
P−→ 0 and (Yn)n∈N is stochas-

tically bounded, then Xn Yn
P−→ 0.

Exercise 6.2. Let (Xt)t∈Z satisfy Assumption 6.3.1 and Assumption 6.3.2
with µ = 0.

1. Show that (6.11) holds for all k, l, p, q ∈ Z.

Define

A =
m∑

k,`,p,q=1

∞∑
i=−∞

ψk+iψ`+iψp+iψq+i

B =

m∑
k,`,p,q=1

{γ(k − `)γ(p− q) + γ(k − p)γ(`− q) + γ(k − q)γ(`− p)} .

2. Show that

|A| ≤
m∑
k=1

∞∑
i=∞
|ψk+i|

 ∞∑
j=−∞

|ψj |

3

.

3. Show that

B ≤ 3m2

( ∞∑
h=−∞

|γ(h)|

)2

.

4. Conclude that (6.12) holds.

Exercise 6.3. Use the δ-method to show that (6.29) implies (6.30).

Exercise 6.4. Suppose that Assumption 6.3.1 and Assumption 6.5.1 hold
with µ = 0. Let γ̂n denote the empirical autocovariance function of the
sample X1:n. Let γ̃n be defined by (6.17). For any m ≥ 1, define X(m) =

Fψm(Z) with ψm defined by (6.24) and γ̃
(m)
n be defined as in (6.17) with X

replaced by X(m).

1. Compute the autocovariance function γm of
(
X

(m)
t

)
t∈Z

.
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Let us define, for all p, q ∈ Z,

Vm(p, q) = (η−3)γm(p)γm(q)+
∑
u∈Z

[γm(u)γm(u− p+ q) + γm(u+ q)γm(u− p)] .

2. Use Theorem 6.4.3 to show that

√
n
(
γ̃(m)
n − γm

)
fidi
=⇒ N (0, Vm) ,

where Vm is defined by (6.15).

3. Proceed as in the proof of Theorem 6.3.3 to show that

lim
m→∞

lim sup
n→∞

n Var
(
γ̃n − γ̃(m)

n

)
= 0 .

4. Use Lemma A.1.9 to conclude the proof of Theorem 6.5.1.

Exercise 6.5. Let (Xt) be a weakly stationary real valued process with mean
µ and autocovariance function γ. We observe X1, . . . , Xn.

1. Determine the linear unbiased estimator µ̂n of µ that minimizes the
risk

EQM = E[(µ− µ̂n)2].

2. Give the corresponding risk.

Exercise 6.6 (AR estimation using moments). Let (Xt)t∈Z be a real valued
centered weakly stationary process with covariance function γ. Denote, for
all t ≥ 1,

Γt = Cov
([
X1, . . . , Xt

]T)
=
[
γ(i− j)

]
1≤i,j≤t .

Similarly, we define, for all t ≥ 1,

Γ̂t =
[
γ̂n(i− j)

]
1≤i,j≤t ,

where γ̂n is the empirical autocovariance function of the sample X1, . . . , Xn.

1. Show that empirical covariance matrices Γ̂t are invertible for all t ≥ 1
under a simple condition on X1, . . . , Xn. [Hint : use that γ̂n is a
nonnegative definite hermitian function and Exercise 2.9.]

Consider the AR(p) process

Xt =

p∑
k=1

φkXt−k + εt

where (εt)t∈Z ∼ WN(0, σ2). Suppose that we observe a sample X1, . . . , Xn

of this process.
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2. Define a moment estimator of φ1, . . . , φp and σ2 by solving the Yule-
Walker equations with γ replaced by the empirical autocovariance
function γ̂n. Show that this approach does provide uniquely defined
estimators φ̂1, . . . , φ̂p and σ̂2.

3. Show that the operator Φ̂(B) = 1−
∑p

k=1 φ̂k Bk is causally invertible.

4. Give a condition on φ1, . . . , φp for which this method appears to be
appropriate.

Exercise 6.7 (Likelihood of Gaussian processes). Consider n observations
X1, . . . , Xn from a regular, centered, 2nd order stationary Gaussian process
with autocovariance function γθ depending on an unknown parameter θ ∈ Θ.
For an assumed value of θ, define the following innovation sequence{

I1,θ = X1, υ1,θ = γθ(0)

It,θ = Xt − X̂t,θ, υt,θ = Var(It,θ|θ) for t = 2, . . . , n

where X̂t,θ denotes the L2 projection of Xt onto Span(X1, . . . , Xt−1) and
Var(·|θ) the variance, under the distribution of parameter θ.

1. Show that the log-likelihood of θ can be written as

log p(X1, . . . , Xn|θ) = −1

2

[
n log(2π) +

n∑
t=1

{
log υt,θ +

I2
t,θ

υt,θ

}]

2. Consider the AR(1) model Xt = φXt−1 + εt where (εt) is a Gaussian
white noise of variance σ2 and define θ = (φ, σ2) and Θ = (−1, 1) ×
(0,∞). Show that the log-likelihood then satisfies

log pθ(X1, . . . , Xn) = −1

2

[
n log(2π) + log

(
σ2

1− φ2

)
+
X2

1 (1− φ2)

σ2

+ (n− 1) log σ2 +

n∑
t=2

(Xt − φXt−1)2

σ2

]

Deduce the expression of the “conditional” maximum likelihood esti-
mator θ̂n = (φ̂n, σ̂

2
n), obtained by maximizing log pθ(X2, . . . , Xn|X1).

3. How to handle the case where Θ = [−1, 1]c×(0,∞) or, more generally,
Θ = (R \ {−1, 1})× (0,∞)?

In the following, we assume that Θ = (−1, 1)× (0,∞).

4. Show that the Fisher information matrix for θ is equivalent to nJ when
n→∞, where J is a matrix to be determined.
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We admit that the maximum likelihood estimator is asymptotically efficient,
that is, √

n(θ̂n − θ)
L→ N2(0, J−1) .

5. Construct an asymptotic test for testing the null hypothesis H0 : φ = 0
against the alternative H1 : φ 6= 0 at asymptotic level α ∈ (0, 1). That
is, find a statistic Tn and a decision threshold tα such that, under the
null hypothesis,

lim
n→∞

P(Tn > tα) = α .

The decision threshold tα will be expressed as a quantile of the N (0, 1)
law.

We now consider the MA(1) model Xt = εt + ρεt−1, where (εt)t∈Z is a
centered Gaussian white noise with variance σ2 and θ = (ρ, σ2) ∈ Θ =
(−1, 1)× (0,∞).

6. Show that the innovation sequence can be computed according to the
following recursion:{
I1,θ = X1, υ1,θ = (1 + ρ2)σ2

It,θ = Xt − ρ σ2

υt−1,θ
It−1,θ, υt,θ = (1 + ρ2)σ2 − ρ2σ4

υt−1,θ
for t = 2, . . . , n

7. Considering υ̃t,θ = υt,θ/σ
2, obtain the expression of σ̂2

n as a function
of ρ̂n and of the observations X1, . . . , Xn.

8. Show that, for all θ ∈ Θ, υ̃t,θ → 1.
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Appendix A

Convergence of random
variables in a metric space

In this appendix we provide the main definitions and results concerning the
convergence of a sequence of random elements valued in a metric space. The
strong convergence and the convergence in probability are not more difficult
in this setting than in the case of vector valued random variables. The
weak convergence is more delicate as some topology properties of the metric
space have to be considered. A classical reference for the weak convergence
in metric spaces is [2]. Here we provide a brief account of the essential
classical definitions and results. The detailed proofs can be found in [2].

From now on, we let (X, d) be a metric space. We note Cb(X) (resp.
Lipb(X)) the space of real-valued bounded continuous functions (resp. bounded
and Lipschitz) on (X, d). We denote by B(X) the Borel σ-fields on X and by
M1(X) the set of probability measures on B(X).

A.1 Definitions and characterizations

As mentioned above, the weak convergence is in general more delicate to
handle than other convergences. An additional difficulty is that it is often
presented as a “convergence” of a sequence of random variables, but the
word “convergence” is not rigorous in such a presentation. In fact the weak
convergence defines a convergence for the sequence of the marginal distribu-
tions, thus, for a sequence valued in M1(X), the set of probability measures
on X.

The term weak convergence is opposed to strong convergence which, in
contrast, makes sense only for a sequence of random variables.

Definition A.1.1 (Strong convergence). Let X, Xn, n ≥ 1 be random vari-
ables valued in (X,B(X)) and defined on the same probability space (Ω,F ,P).
We will say that Xn strongly converges to X and denote Xn

a.s.−→ X in (X, d)
(or simply Xn

a.s.−→ X if no ambiguity occurs) if d(Xn, X)→ 0 almost surely.
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A basic criterion for proving strong convergence is based on the Borel
Cantelli lemma.

Lemma A.1.1 (Borel Cantelli’s Lemma). Let (Ω,F ,P) be a probability
space. Let (An)n∈N be a sequence of measurable sets. Then,∑

k∈N
P(An) <∞⇒ P(lim supAn) = 0 .

In particular, if X, Xn, n ≥ 1 are random variables valued in (X,B(X)) and
defined on (Ω,F ,P) such that, for any ε > 0,∑

k∈N
P(d(Xn, X) > ε) <∞ ,

then Xn
a.s.−→ X.

The convergence in probability also applies to a sequence of random
variables. It is weaker than the strong convergence.

Definition A.1.2 (Convergence in probability). Let X, Xn, n ≥ 1 be ran-
dom variables valued in (X,B(X)) and defined on the same probability space
(Ω,F ,P). We will say that Xn converges in probability to X and denote

Xn
P−→ X in (X, d) (or simply Xn

P−→ X if no ambiguity occurs) if P(d(Xn, X) >
ε)→ 0 for any ε > 0.

It is straightforward to verify that the convergence in probability can be
characterized with the strong convergence as follows.

Theorem A.1.2. Let X, Xn, n ≥ 1 be random variables valued in (X,B(X))

and defined on the same probability space (Ω,F ,P). Then we have Xn
P−→ X

if and only if for all subsequence (Xαn), there is a subsequence (Xαβn
) such

that Xαβn

a.s.−→ X.

The following result shows that any probability measure µ defined on
(X,B(X)) is regular, in the sense that it can be defined for all A ∈ B(X) by

µ(A) = inf {µ(U) : U open set ⊃ A} = sup {µ(F ) : F closed set ⊂ A} .
(A.1)

Proposition A.1.3. Let µ ∈M1(X). Then (A.1) holds for all A ∈ B(X).

Definition A.1.3 (Weak convergence of probability measures). Let µn, µ ∈
M1(X). We say that µn converges weakly to µ if, for all f ∈ Cb(X),∫
f dµn →

∫
f dµ.

Weak convergence is also often used for a sequence of random variables.
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Definition A.1.4 (Weak convergence of random variables). Let X, Xn, n ≥
1 be random variables valued in (X,B(X)). We will say that Xn converges
weakly to X and denote Xn =⇒ X in (X, d) (or simply Xn =⇒ X if no
ambiguity occurs) if µn converges weakly to µ, where µn is the probability
distribution of Xn and µ is the probability distribution of X.

The following theorem provides various characterizations of the weak
convergence. It is often referred to as the Portmanteau theorem.

Theorem A.1.4. Let µn, µ ∈ M1(X). The following properties are equiva-
lent:

(i) µn converges weakly to µ,

(ii) for all f ∈ Lipb(X),
∫
f dµn →

∫
f dµ,

(iii) for all closed set F , lim supn µn(F ) ≤ µ(F ),

(iv) for all open set U , lim infn µn(U) ≥ µ(U),

(v) for all B ∈ B(X) such that µ(∂B) = 0, limn µn(B) = µ(B).

Let (Y, δ) be a metric space. For all measurable h : X→ Y, we denote

Dh
def
= {x ∈ X : h is discontinuous at x} . (A.2)

The following theorem is often referred to as the continuous mapping theo-
rem.

Theorem A.1.5. Let µn, µ ∈ M1(X) and h : X → Y be measurable. We
assume that µn converges weakly to µ and that µ(Dh) = 0. Then µn ◦ h−1

converges weakly to µ ◦ h−1.

The weak convergence is equivalent to the convergence of integrals of
bounded continuous functions. The case of unbounded continuous functions
is treated in the following result.

Proposition A.1.6. Assume that µn converges weakly to µ. Let f be a
continuous function such that lima→∞ supn

∫
|f |>a |f | dµn = 0. Then f is

µ-integrable and
∫
fdµn →

∫
fdµ.

We now provide a statement expressed with random variables for con-
venience and add the equivalent statement for the strong convergence and
the convergence in probability. It is a direct application of Theorem A.1.5
and Theorem A.1.2.

Theorem A.1.7 (Continuous mapping theorem for the three convergences).
Let X, Xn, n ≥ 1 be random variables valued in (X,B(X)) and defined on
the same probability space (Ω,F ,P). Let h : X → Y measurable and define
Dh as in (A.2). Assume that P(X ∈ Dh) = 0. Then the following assertions
hold.
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( i) If Xn
a.s.−→ X, then h(Xn)

a.s.−→ h(X) .

( ii) If Xn
P−→ X, then h(Xn)

P−→ h(X) .

( iii) If Xn =⇒ X, then h(Xn) =⇒ h(X) .

Let us recall briefly some standard results on the weak convergence,
strong convergence and convergence in probability.

Theorem A.1.8. Let (X, d) and (Y, δ) be two metric space. We equip X×Y
with the metric d + δ. Let X, Xn, n ≥ 1 be random variables valued in
(X,B(X)) and defined on the same probability space (Ω,F ,P). Let Yn, n ≥ 1
be random variables valued in (Y,B(X)) and defined on the same probability
space (Ω,F ,P). The following assertions hold.

( i) If Xn
a.s.−→ X, then Xn

P−→ X.

( ii) If Xn
P−→ X, then Xn =⇒ X.

( iii) For all c ∈ X, Xn
P−→ c if and only if Xn =⇒ c,

( iv) Suppose that the spaces (X, d) and (Y, δ) coincide. If Xn =⇒ X and

d(Xn, Yn)
P−→ 0, then Yn =⇒ X.

( v) For all c ∈ X, if Xn =⇒ X and Yn
P−→ c, then (Xn, Yn) =⇒ (X, c).

( vi) If Xn
P−→ X and Yn

P−→ Y , then (Xn, Yn)
P−→ (X,Y ).

The following classical lemma can be useful.

Lemma A.1.9. Let (Zn,m)n,m≥1 be an array of random variables in X.
Suppose that for all m ≥ 1, Zn,m converges weakly to Zm as n → ∞ and
that Zm converges weakly to Z as m → ∞. Let now (Xn)n≥1 be random
variables in X such that, for all ε > 0,

lim
m→∞

lim sup
n→∞

P(d(Xn, Zm,n) > ε) = 0 .

Then Xn converges weakly to Z as n→∞.

Proof. Let f ∈ Lipb(X) so that |f(x)− f(y)| ≤ K d(x, y) and |f(x)| ≤ C for
all x, y ∈ X. Then we write

E [f(Xn)]− E [f(Z)] = E [f(Xn)− f(Zm,n)]

+ [E [f(Zm,n)]− E [f(Zm)]] + [E [f(Zm)]− E [f(Z)]] . (A.3)

Then, for all ε > 0, since |f(Xn) − f(Zm,n)| ≤ K ε if d(Xn, Zm,n) ≤ ε and
|f(Xn)− f(Zm,n)| ≤ C otherwise, we have,

E [|f(Xn)− f(Zm,n)|] ≤ K ε+ C P(d(Xn, Zm,n) > ε)
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By Theorem A.1.4 and using the assumptions of the lemma, we get that,
for some large enough m,

lim sup
n→∞

|E [f(Xn)]− E [f(Z)]| ≤ (K ε+ C)ε+ 0 + ε .

Hence, since ε > 0 can be taken arbitrarily small, limn→∞ E [f(Xn)] =
E [f(Z)] and we conclude with Theorem A.1.4.

A.2 Some topology results

An important fact about the weak convergence on M1(X) is that it is metriz-
able, provided that X is separable. This is shown in the two following results.

Let us denote by S the class of closed sets of X and, for A ⊂ X and
α > 0, Aα = {x ∈ X, d(x,A) < α}. Aα is an open set and Aα ↓ A if α ↓ 0.
We set, for λ, µ ∈M1(X),

ρ(λ, µ) = inf {α > 0 : λ(F ) ≤ µ(Fα) + α for all F ∈ S} . (A.4)

The following result shows that ρ is indeed a metric, which is not completely
obvious from (A.4).

Lemma A.2.1. ρ defined in (A.4) is a metric on M1(X).

The following result indicates that the metric ρ defines the topology of
the weak convergence whenever (X, d) is separable.

Proposition A.2.2. Assume that (X, d) is separable. Let (µn)n∈N ⊂M1(X)
and µ ∈ M1(X). Then (µn)n∈N converges weakly to µ iff ρ(µn, µ) → 0.
Moreover (M1(X),ρ) is separable.

In the following, we assume that (X, d) is separable, so that, by Propo-
sition A.2.2, (M1(X),ρ) is a separable metric space associated to the weak
convergence. As a consequence, a subset Γ ⊂ M1(X) is compact if it is
sequentially compact.

The relative compactness of a subset of M1(X) can be related to its
tightness, that is, coarsely speaking, the property of all the measures of this
subset to be almost supported on the same compact subset of X.

Definition A.2.1. Let Γ be a subset of M1(X).

(i) We say that Γ is tight if for all ε > 0, there exists a compact set K ⊂ X
such that µ(K) ≥ 1− ε for all µ ∈ Γ.

(ii) We say that Γ is relatively compact if every sequence of elements in
Γ contains a weakly convergent subsequence, or, equivalently if Γ is
compact.
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The following result is often referred to as the Prokhorov theorem.

Theorem A.2.3. Let (X, d) be separable. Then if Γ ⊂ M1(X) is tight, it is
relatively compact.

This theorem has the following converse result in the case where (X, d)
is complete.

Theorem A.2.4. Let (X, d) be separable and complete. If Γ ⊂ M1(X) is
relatively compact, then it is tight.

Since singletons are compact, a direct but important consequence of this
theorem is that any {µ} ⊂M1(X) is tight.

Let us conclude this section with a last topological result.

Theorem A.2.5. Let (X, d) be separable and complete. Then (M1(X),ρ) is
separable and complete.
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One-lag covariance algorithm, 86

Partial autocorrelation function, 52
Path, 7
Periodogram, 106
Portmanteau (theorem), 129
Prediction coefficients, 29
Prokhorov (theorem), 132

Random process, 4
L2, 17
m-dependent, 114
deterministic, 31
ergodic, 107
Gaussian, 11
harmonic, 20
I.i.d., 9
Independent, 9
linear, 40
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linearly predictable, 27
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regular, 31, 52
strictly stationary, 12
strong linear, 40, 110
weakly stationary, 18

Random variable
Gaussian, 9

Random walk, 21
with drift, 79

Regression
autocorrelated errors, 91
multivariate, 91

Relatively compact set, 131
Ricatti equation, 88

Sample mean, see Empirical mean
Shift operator, 12, 13
Shift-invariant, 14
Slutsky’s Lemma, 101
Spectral density function, 25
Spectral measure, 22
State

equation, 77
space, 76

State-space model
linear, see DLM

Stochastic order symbols, 103
Strong convergence, 127

Tightness, 131
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Toeplitz matrix, 19

Weak convergence, 128
White noise

strong, 12, 20
weak, 20

Wold decomposition, 32

Yule-Walker equations, 30, 64



Bibliography

[1] T. W. Anderson. An Introduction to Multivariate Statistical Analysis.
Wiley, New York, NY, third edition, 2003.

[2] P. Billingsley. Convergence of probability measures. Wiley Series in
Probability and Statistics: Probability and Statistics. John Wiley &
Sons Inc., New York, second edition, 1999. A Wiley-Interscience Pub-
lication.

[3] P. J. Brockwell and R. A. Davis. Time Series: Theory and Methods.
Springer, 2nd edition, 1991.

[4] P. E. Caines. Linear Stochastic Systems. Wiley, 1988.

[5] E. Hannan and M. Deistler. The Statistical Theory of Linear Systems.
John Wiley & Sons, 1988.

[6] J. Jacod and P. Protter. Probability essentials. Universitext. Springer-
Verlag, Berlin, second edition, 2003.

[7] R. Kalman. A new approach to linear filtering and prediction problems.
Journal of Basic Engineering, 82(Series D):35–45, 1960.

[8] R. E. Kalman and R. Bucy. New results in linear filtering and prediction
theory. J. Basic Eng., Trans. ASME, Series D, 83(3):95–108, 1961.

[9] R. Shumway and D. Stoffer. Time Series Analysis and Its Applications.
New York: Springer, 3rd edition, 2011.

[10] The R project for statistical computing. http://www.r-project.org/.

[11] N. Young. An introduction to Hilbert space. Cambridge Mathematical
Textbooks. Cambridge University Press, Cambridge, 1988.

129

http://www.r-project.org/

	Random processes
	Introduction
	Random processes
	Definitions
	Finite dimensional distributions
	Gaussian processes

	Strict stationarity of a random process in discrete time
	Definition
	Stationarity preserving transformations

	Exercises

	Weakly stationary processes
	L2 processes
	Weakly stationary processes
	Properties of the autocovariance function
	Empirical mean and autocovariance function

	Spectral measure
	Innovation process
	Exercises

	Linear models
	Linear filtering using absolutely summable coefficients
	FIR filters inversion
	Definition of ARMA processes
	MA(q) processes
	AR(p) processes
	ARMA(p,q) processes

	Representations of an ARMA(p,q) process
	Innovations of ARMA processes
	Autocovariance function of ARMA processes
	Beyond absolutely summable coefficients
	Exercises

	Linear forecasting
	Forecasting for weakly stationary process
	Choleski decomposition
	Levinson-Durbin Algorithm
	The innovations algorithm

	Exercises

	Kalman filter
	Conditional mean for Gaussian vectors
	Dynamic linear models (DLM)
	Kalman Filter
	Steady State approximations
	Correlated Errors
	Vector ARMAX models
	Likelihood of dynamic linear models
	Exercises

	Statistical inference
	Convergence of vector valued random variables
	Empirical estimation
	Consistency
	Empirical mean
	Empirical autocovariance
	Application to ARMA processes
	Maximum likelihood estimation
	Exercises

	Convergence of random variables
	Definitions and characterizations
	Some topology results


