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Example : USD vs EUR currency exchange rate
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Figure: Daily currency exchange rate : price of 1 Euro in US Dollars.
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Example : USD vs EUR currency exchange rate (cont.)

Compare with an IID N (0, 1) sequence:
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Example : USD vs EUR currency exchange rate (cont.)
Applying the differencing operator, we obtain the increment process

Y = ∆X defined by Y t = Xt −Xt−1, t ∈ Z .
Makes the “local” mean “more constant”.
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Figure: Increments of daily USD-EUR currency exchange rate.
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Example : USD vs EUR currency exchange rate (cont.)
Applying the differencing operator of the logs, we obtain the log returns

Y = ∆ logX defined by Y t = logXt − logXt−1, t ∈ Z .
Makes the “local” mean and the variance “more constant”.
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Figure: Log returns of daily USD-EUR currency exchange rate.
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Example : USD vs EUR currency exchange rate (cont.)

Looking at things “locally” ...
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Figure: Daily currency exchange rate : price of 1 Euro in US Dollars, on a shorter
observation window: between 1999-05-21 and 1999-12-17.

The mean and variance does not appear to vary too much, but still not
i.i.d.
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Discrete observations

. If we observe i.i.d. discrete observations X1, . . . , Xn, then the
log-likelihood can be defined as

Ln(θ) =

n∑
k=1

log pθ(Xk) ,

where, for all x in the discrete observation space and parameter θ

pθ(x) = Pθ(X1 = x) .

. We denote the marginal distribution of X1 under Pθ by PX1
θ .

. Setting the definition of PX1
θ or pθ for all θ provides a statistical

model for the observations X1, . . . , Xn.

François Roueffhttp://perso.telecom-paristech.fr/~roueff/ (Telecom ParisTech)IA710 Oct. 14, 2019 11 / 90

http://perso.telecom-paristech.fr/~roueff/


Discrete observations

. If we observe i.i.d. discrete observations X1, . . . , Xn, then the
log-likelihood can be defined as

Ln(θ) =

n∑
k=1

log pθ(Xk) ,

where, for all x in the discrete observation space and parameter θ

pθ(x) = Pθ(X1 = x) .

. We denote the marginal distribution of X1 under Pθ by PX1
θ .

. Setting the definition of PX1
θ or pθ for all θ provides a statistical

model for the observations X1, . . . , Xn.

François Roueffhttp://perso.telecom-paristech.fr/~roueff/ (Telecom ParisTech)IA710 Oct. 14, 2019 11 / 90

http://perso.telecom-paristech.fr/~roueff/


Discrete observations

. If we observe i.i.d. discrete observations X1, . . . , Xn, then the
log-likelihood can be defined as

Ln(θ) =

n∑
k=1

log pθ(Xk) ,

where, for all x in the discrete observation space and parameter θ

pθ(x) = Pθ(X1 = x) .

. We denote the marginal distribution of X1 under Pθ by PX1
θ .

. Setting the definition of PX1
θ or pθ for all θ provides a statistical

model for the observations X1, . . . , Xn.

François Roueffhttp://perso.telecom-paristech.fr/~roueff/ (Telecom ParisTech)IA710 Oct. 14, 2019 11 / 90

http://perso.telecom-paristech.fr/~roueff/


Examples

. Bernoulli model:

pθ(x) = θx(1− θ)1−x , θ ∈ (0, 1) , x ∈ {0, 1} .

. Binomial model (with p ≥ 1 known):

pθ(x) =

(
p

x

)
θx(1− θ)p−x , θ ∈ (0 , 1) , x ∈ {0, . . . , p} .

. Geometric model:

pθ(x) = θ(1− θ)x−1 , θ ∈ (0, 1) , x ∈ N∗ .

. Negative binomial, Poisson, ...
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Continuous observations

. If we observe i.i.d. real valued observations X1, . . . , Xn, then the
log-likelihood can be defined as

Ln(θ) =

n∑
k=1

log pθ(Xk) ,

where, for all x in the discrete observation space and parameter θ, pθ
is the density of PX1

θ :

PX1
θ (A) = Pθ(X1 ∈ A) =

∫
A
pθ(x) dx .

. Again, setting the definition of PX1
θ or pθ for all θ provides a

statistical model for the observations X1, . . . , Xn.
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Examples

. Exponential model:

pλ(x) = λ e−λx 1R+(x) , λ > 0 .

. Gamma model

pθ(x) =
λα

Γ(α)
xα−1e−λx 1R+(x) , θ = (α, λ) ∈ R∗+

2 .

. Beta model :

pθ(x) = B(α, β) xα−1(1− x)β−1 1[0,1](x) , θ = (α, β) ∈ R∗+
2 .

. Gaussian model:

pθ(x) =
1√

2πσ2
e−(x−µ)

2/(2σ2) , θ = (µ, σ2) ∈ R×R∗+ .
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Multivariate data

. Most real life data is multivariate in the sense that it is doubly
indexed, e.g.

Xt = Xi,t i = 1, . . . , p ,

where t is the time index and i enumerates individuals, assets,
features etc.

. Examples: portfolio returns, panel data (or longitudinal data), Risk
indices, ...

. To simplify the presentation, let us see the index i as a spatial index
(as opposed to time index).

. A multivariate model will generally try to capture the spatial
covariance structure through random vector models: e.g. Gaussian
vectors, Ising model, or more general graphical models...
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Example: i.i.d. Gaussian vectors

. Consider a portfolio of n asset returns Xt = Xi,t i = 1, . . . , p.

. Suppose that X1, . . . ,Xn are i.i.d. N (µ,Σ), where

. µ ∈ Rp is the unknown mean.

. Σ ∈ Rp×p is the unknown covariance matrix

. Then the log-likelihood reads, for all θ = (µ,Σ),

Ln(θ) =

n∑
k=1

log pθ(Xk)

= − 1

2n

(
log det(2πΣ) +

n∑
k=1

(Xk − µ)TΣ−1(Xk − µ)

)
.
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Example: i.i.d. Gaussian vectors, estimators

. Using a classical moment estimation method, we obtain the empirical
estimators:

. the empirical mean

µ̂n,i =
1

n

n∑
t=1

Xi,t .

. the empirical covariance matrix

Σ̂n[i, j] =
1

n

n∑
t=1

(Xi,t − µ̂n,i)(Xj,t − µ̂n,j) .

. Maximizing the likelihood yields to much more complicated
estimators...

. In high dimension (p and n are of similar order), it is sometimes
advantageous to make a sparse or low rank assumption.

. From a regression perspective, it is easier to use sparsity of the
precision matrix M = Σ−1 .
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From bivariate distribution to conditional distribution

. In a regression model, each multivariate observation Xi is split into a
pair of variables : Xi = (Zi, Y i), where, usually, Zi itself is
multivariate, say valued in Rp, and Y i is univariate (discrete or
continuous).

. Thus we can see the distribution of X1 as a bivariate distribution
PX1
θ = P(Z1,Y 1)

θ .

. Every bivariate distribution can be decomposed using

. the marginal distribution of the first variable;

. the conditional distribution of the second variable given the first
variable.

. In a regression model, we see Zi as an input (regression variable) and
Y i as an output (observation or response variable) and are only
interested on the conditional distribution of the output given the
input.
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Likelihood of a regression model

. The decomposition of the bivariate distribution PX1
θ = P(Z1,Y 1)

θ then
yields

pθ(x) = q(z)pθ(y|z) , x = (z, y) ,

where q(z) denotes the density of Z1 and pθ(y|z) denotes the
conditional density of Y 1 (or the conditional probability of X1 = x)
given Z1 = z under parameter θ.

. It follows that the log-likelihood takes the form, up to an additive
constant:

logLn(θ) =
n∑
k=1

log pθ(Y k|Zk)

. Estimating θ allows one to propose a predictor of Y given a new input
Z, assuming that they are distributed according to the same bivariate
distribution as the learning data set.
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Two examples

. The linear regression model:

pθ,σ2(y|z) =
1√

2πσ2
e−(y−θ

T z)2/(2σ2) , (θ, σ2) ∈ Rp×R∗+ , y ∈ R .

Optimizing the likelihood leads to the least mean square estimator.

. The logit regression model:

pθ(y|z) =

(
eθ

T z

1 + eθT z

)y (
1

1 + eθT z

)1−y
, θ ∈ Rp , y ∈ {0, 1} .
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3 Introducing dynamics

4 Stationary Time series

5 Weakly stationary time series

François Roueffhttp://perso.telecom-paristech.fr/~roueff/ (Telecom ParisTech)IA710 Oct. 14, 2019 23 / 90

http://perso.telecom-paristech.fr/~roueff/


The mixture model

. In certain cases, each (univariate or multivariate) observation Xi can
be seen as a partial observation of a larger set of data. The
unobserved part of the data is represented by a hidden variable V i.

. Again we can then decompose the bivariate distribution P(V 1,X1)
θ of

the complete data (V 1,X1) using

. the marginal distribution of the hidden variable V 1;

. the conditional distribution of the observed variable X1 given the
hidden variable V 1.

. The resulting marginal distribution PX1
θ is called a mixture model.

. The simplest case is that of a finite mixture, where the hidden
variable takes its values in a finite set {1, 2, . . . ,K}. This case
amounts to see the data as being separated into K clusters, each of
them following a different distribution, namely, the conditional
distribution of X1 given V 1 = k, for k = 1, 2, . . . ,K.

. A standard example of hidden variable for financial data is the
(conditional) volatility.
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Likelihood of a mixture model

. The natural decomposition of the bivariate distribution P(V 1,X1)
θ yields

pθ(v,x) = qθ(v)pθ(x|v) ,

where qθ(v) denotes the density of V 1 (or the probability of V 1 = v)
and pθ(x|v) denotes the conditional density of X1 (or the conditional
probability of X1 = x) given V 1 = v under parameter θ.

. It follows that the log-likelihood takes the form (in the case of
continuous hidden variables):

logLn(θ) =
n∑
k=1

log

∫
qθ(v) pθ(Xk|v) dv .

. For discrete mixtures, estimating θ allows one to clustering the data
by identifying those who most likely share the same hidden variable.
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Two examples

. Mixture of two Gaussian variables with parameter
θ = (α, µ0, µ1, σ

2
0, σ

2
1) ∈ (0, 1)×R2 ×R∗ 2+ : V 1 ∼Bernoulli(α) and

given V 1 = v, X1 ∼ N (µv, σ
2
v). Hence

qθ(v) = αv(1− α)1−v

pθ(x|v) =
(
2πσ2v

)−1/2
e−(x−µv)

2/(2σ2
v) .

. Discrete mixture of Gaussian vectors with parameter
θ = (αk,µk,Σk)1≤k≤K :

qθ(v) = αv

pθ(x|v) = (det(2πΣv))
−1/2 exp

(
−1

2
(x− µv)

TΣ−1v (x− µv)

)
Optimizing the likelihood is a difficult question (related to the
k-means algorithm).
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Two examples (cont)

−4 −2 0 2 4 6 8

0.
0
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Figure: Density of the mixture of two Gaussian distributions
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Two examples (cont)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ● ●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
● ●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●
●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●●

●

●

●

●

● ● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

● ●

●

●

●● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●●

●

●
● ●●

●●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●
●

●

●

●

●
● ●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●
●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

● ●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

● ●

●

●

●●
●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

0 2 4 6

0
5

10

Figure: IID draws of the mixture of 5 bidimensional Gaussian distributions. Colors
represent the (supposedly hidden) cluster variables.
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Back to the USD vs EUR currency exchange rate.
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Figure: Top : price of 1 Euro in US Dollars between 1999-05-21 and 1999-12-17;
Bottom : the same in randomly shuffled order.
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Order of observations is not taken into account in i.i.d.
models

. The log-likelihood of an i.i.d. model has the form

Ln(θ) =

n∑
k=1

log pθ(Xk) ,

where X1, . . . , Xn are the n observations, hence is invariant trough
permutation of indices: (X1, . . . , Xn) 7→ (Xσ(1), . . . , Xσ(n)), where
σ : {1, . . . , n} → {1, . . . , n} is a permutation.

. The two previous time series are the same up to a permutation of
time indices.

. Hence they have the same likelihood for any i.i.d. model.
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Some useful notation

. For any integers k ≥ l and sequence (xt) we denote the subsample
with indices between k and l by

xk:l = (xk, . . . , xl)

. If (X,Y) is valued in Rp ×Rn and admits a density, we denote

. by p(X,Y) : (x, y) 7→ p(X,Y)(x, y) the density of (X,Y),

. by pX the density of X :

pX(x) =

∫
Rn

p(X,Y)(x,y) dy =

∫
· · ·
∫
p(X,Y)(x, y1:n) dy1 . . . dyn .

. by pY|X(·|x) the conditional density of Y given X = x :

pY|X(y|x) =
p(X,Y)(x, y)

pX(x)

. We add a subscript θ if the density depends on the unknown

parameter θ: p
(X,Y)
θ , pXθ , p

Y|X
θ ...

François Roueffhttp://perso.telecom-paristech.fr/~roueff/ (Telecom ParisTech)IA710 Oct. 14, 2019 34 / 90

http://perso.telecom-paristech.fr/~roueff/


General form of the likelihood

. How to generalize the product form of likelihood without the i.i.d.
assumption ?

. Suppose that X1:n admits a density pX1:n
θ .

. Conditioning successively, we have

pX1:n
θ (x1:n) = p

Xn|X1:(n−1)

θ (xn|x1:n−1)pX1:n−1

θ (x1:n)

· · ·

=

n∏
k=2

p
Xk|X1:(k−1)

θ (xk|x1:k−1)pX1
θ (x1) .

. It is therefore of primary importance to understand the dynamics of
the model through the conditional distribution of Xk given its past
X1:(k−1).
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Two important particular cases

. The i.i.d. case :

In this case, by independence of Xk and X1:(k−1), we have that

p
Xk|X1:(k−1)

θ (xk|x1:k−1) does not depend on x1:k−1, so that

p
Xk|X1:(k−1)

θ (xk|x1:k−1) = pXk
θ (xk) .

And, by the ”i.d.” property,

p
Xk|X1:(k−1)

θ (xk|x1:k−1) = pXk
θ (xk) = pθ(xk) ,

where pθ is the common density of all Xk’s.
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Two important particular cases (cont.)

. The homogeneous Markov case :

In this case, we have that p
Xk|X1:(k−1)

θ (xk|x1:k−1) only depends on xk−1,
so that

p
Xk|X1:(k−1)

θ (xk|x1:k−1) = p
Xk|Xk−1

θ (xk|xk−1) .

And “homogeneous” means that p
Xk|Xk−1

θ does not depend on k and is
given by a common conditional density, say qθ(·|·), hence

p
Xk|X1:(k−1)

θ (xk|x1:k−1) = p
Xk|Xk−1

θ (xk|xk−1) = qθ(xk|xk−1) .
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Graphical representation of a homogeneous Markov chain

Xk Xk+1Xk−1 . . .. . .
qθqθ

. Arrows indicate the dependence structure: given all other variables, a
child can be generated using only its own parents.

. Here, each child only has 1 parent: the generation of the child is
carried out through the conditional density qθ.
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Examples of conditional density

An homoscedastic model : AR(1).

In this case, qθ(·|x) is the density of N (φx, σ2), with
θ = (φ, σ2) ∈ (−1, 1)×R∗+.
Equivalently, this model is given by the dynamical equation

Xk = φXk−1 + εk ,

with (εt)t∈Z i.i.d. ∼ N (0, σ2).

Xk−1
×
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Examples of conditional density (cont.)

An heteroscedastic model : ARCH(1).

In this case, qθ(·|x) is the density of N (0, a+ bx2), with
θ = (a, b) ∈ R∗+ ×R+.
Equivalently, this model is given by the dynamical equation

Xk =
√
a+ bX2

k−1 εk ,

with (εt)t∈Z i.i.d. ∼ N (0, 1).

Xk−1
×
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Likelihood for univariate time series

. The simplest model beyond the i.i.d. model that contains some
non-trivial dynamics is the homogeneous Markov model.

. Its log-likelihood takes the form

Ln(θ) =

n∑
k=2

log qθ(Xk|Xk−1) + .
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Likelihood for univariate time series

. The simplest model beyond the i.i.d. model that contains some
non-trivial dynamics is the homogeneous Markov model.

. Its conditional log-likelihood takes the form

Ln(θ) =

n∑
k=2

log qθ(Xk|Xk−1) +������
log pX1(X1) .
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Likelihood for univariate time series

. The simplest model beyond the i.i.d. model that contains some
non-trivial dynamics is the homogeneous Markov model.

. Its conditional log-likelihood takes the form

Ln(θ) =

n∑
k=2

log qθ(Xk|Xk−1) +������
log pX1(X1) .

. The likelihood is no longer invariant by permutation.
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Exemple: likelihood of the Gaussian AR(1) model

Consider the AR(1) model . Then we have

qθ(xk|xk−1) =
1√

2πσ2
e−(xk−φxk−1)

2/(2σ2) .

It follows that the (conditional) negated log likelihood reads

−Ln(θ) =
n− 1

2
log(2πσ2) +

1

2σ2

n∑
k=2

(Xk − φXk−1)
2 ,

which leads to the estimators

φ̂n =

∑n
k=2Xk−1Xk∑n
k=2X

2
k−1

and σ̂2n =
1

n− 1

n∑
k=2

(Xk − φ̂nXk−1)
2 .
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Exemple: likelihood of the conditionally Gaussian ARCH(1)
model

Consider the ARCH(1) model . Then we have

qθ(xk|xk−1) =
1√

2π(a+ bx2k−1)
e−x

2
k/(2(a+bx

2
k−1)) .

It follows that the (conditional) negated log likelihood reads

−Ln(θ) =
1

2

n∑
k=2

(
log(2π(a+ bX2

k−1)) +
X2
k

a+ bX2
k−1

)
,

which can be minimized in θ = (a, b) using a gradient descent algorithm.
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Multivariate time series

. Exactly as in the IID case, a time series (Xt) can be multivariate, i.e.
Xt is valued in Rp for some p ≥ 2.

. For instance, under the homogeneous Markov chain assumption, the
(conditional) likelihood then reads

Ln(θ) =
n∑
k=2

log qθ(Xk|Xk−1) .

. In particular, consider a univariate p-order Markov time series with log
likelihood

Ln(θ) =
n∑

k=p+2

log qθ(Xk|Xk−p:k−1) .

To obtain a multivariate (first order) Markov time series, one can set
Xk = Xk−p+1:k.
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Exemple of Multivariate time series: AR(p) time series

An AR(p) time series (Xt) satisfies the AR(p) equation

Xt =

p∑
k=1

φkXt−k + εt , t ∈ Z .

Setting Xk =
[
Xk Xk−1 . . . Xk−p+1

]T
, this leads to the vector

AR(1) equation:
Xt = ΦXt−1 + εt , t ∈ Z .

where

Φ =


φ1 φ2 . . . φp
1 0 . . . 0

0
. . .

. . . 0
0 . . . 1 0

 and εt =

εt0...
0

 .
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Exemple of Multivariate time series: general bivariate case

Consider the bivariate case Xt = (Xt(1), Xt(2)).

. IID case

Xk(1) Xk+1(1)

Xk+1(2)Xk(2)

. . .

. . .

. . .

. . .

. Markov case:

Xk(1) Xk+1(1)

Xk+1(2)Xk(2)

. . .

. . .

. . .

. . .
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Partially observed multivariate time series

. Exactly as in the IID case, adding hidden variables allows one to build
a wild variety of models, while allowing the practitioner to provide
intuitive interpretations of the model.

. The most widely used such time series model is the linear state-space
model, or dynamic linear model, defined through two linear equations

Xt = ΦXt−1 + Ut (State Equation) (1a)

Yt = AXt + Vt (Observation Equation) , (1b)

where (Yt) is the observed time series, and (Xt) is the hidden time
series (also called the state variables), and (Ut) and (Vt) are IID
noise sequences.

. This is a articular instance of the general class of the partially
observed Markov models, where one has a bivariate Markov chain
((Xt,Yt)), where only the component (Y t) is observed.
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Examples of partially observed multivariate time series

. IID case

Xk Xk+1

Y k+1Y k

. . .

. . .

. . .

. . .

. Partially observed Markov model: general case.

Xk Xk+1

Yk+1Yk

. . .

. . .

. . .

. . .
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Examples of partially observed multivariate time series
(cont.)

. Hidden Markov model.

Xk Xk+1

Yk+1Yk

. . .

. . .

. . .

. . .

In this special case:

. (Xt) alone is a Markov chain.

. Given (Xt), the observations (Y t) are conditionally independent.

. Two highly popular special cases:

. HMM with finite state space : when Xt takes values in
{1, . . . ,K}.

. The dynamic linear model, see (1).
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Example : an HMM with two hidden states.
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Figure: An HMM with two (supposedly) hidden states (red and black).
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Example : Noisy observations of an hidden AR(1) state
variables.
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Figure: Observations (black ’o’) obtained by adding noise to a (supposedly)
hidden AR(1) process (red lines).
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Observation driven models

. For most of the partially observed Markov models, there are no closed
form formula for the likelihood and computational cost of Ln can be
very high as n increases.

. Observation driven models stand as a popular exception. Their
dependence structure takes the following form:

Xk Xk+1

Yk+1Yk

. . .

. . .

. . .

. . .

With the additional property that the conditional distribution of Xk+1

given (Xk, Y k) is degenerate.
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Exemple: GARCH(1,1) model

GARCH(1,1) model

For parameter θ = (a, b, c) ∈ (0,∞)3, (Y t) satisfies the GARCH(1,1)
equation

σ2t = a+ b Y t−1 + c σ2t−1 (2a)

Y t = σtεt , (2b)

where (εt)t∈Z i.i.d. ∼ N (0, 1).
Moreover it is assumed that (σt) is non-anticipative solution, in the sense
that, for all t ∈ Z, σt only depends on (εs)s<t

The fact that (σt) is non-anticipative ensures that, for all t ∈ Z, given
(εs)s<t, the conditional distribution of Y t is N (0, σt).
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Exemple: GARCH(1,1) model, likelihood

Iterating (2a) with a given θ, for all k = 2, . . . , n, one can express σ2k as a
deterministic function of Y 1:k−1 and σ21, say

σ2k = ψθ < Y 1:k−1 > (σ21). (3)

Note that ψθ < Y 1:k−1 > (σ21) is easy to compute iteratively.

Using (3) and (2b), the (conditional) negated log likelihood (given
σ21 = s21 and Y 1 for some arbitrary s21) is given by

−Ln(θ) =
1

2

n∑
k=2

(
log
(

2π ψθ < Y 1:k−1 > (s21)
)

+
Y 2
k

ψθ < Y 1:k−1 > (s21)

)
,

which can be minimized in θ = (a, b, c) using a gradient descent algorithm.
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Basic (important) definitions

Definition : Data set

A data set is a collection of values, say X1:n = X1, . . . , Xn. Time series
data sets are usually sampled from recorded measurements.

Definition : Model

A model is a collection of probability distributions. The data set is
assumed to be distributed according to one of them.

Definition : Statistic

A statistic is any value which can be computed from the data.
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Raw data set

A time series X1, . . . , Xn is usually presented as

. a list of real values X1, . . . , Xn in a data or spreadsheet file,

. a corresponding list of dates (days, years, seconds...)

. or, equivalently, a starting date (in some unit), and a frequency.
For instance :

. a date in years and frequency= 12 corresponds to monthly data,

. a date in years and frequency= 4 corresponds to quarterly data,

. a date in days and frequency= 1 corresponds to daily data,

.
...

. Remarks :

. There may be missing values (usually expressed as ’NA’)

. In the case of multivariate time series, each variable usually
corresponds to a column (so each row corresponds to a date).
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.
...

. Remarks :

. There may be missing values (usually expressed as ’NA’)

. In the case of multivariate time series, each variable usually
corresponds to a column (so each row corresponds to a date).
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Example : US GNP data set

# Title: Gross National Product

# Source: U.S. Department of Commerce

# Frequency: Quarterly

DATE,VALUE

1947-01-01,238.1

1947-04-01,241.5

1947-07-01,245.6

1947-10-01,255.6

1948-01-01,261.7

1948-04-01,268.7

1948-07-01,275.3

1948-10-01,276.6

1949-01-01,271.3

1949-04-01,267.5

1949-07-01,268.9

...
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First step : remove an additive trend

. Consider a time series X1, . . . , Xn.

. It often includes an additive trend, for instance:

. a polynomial trend,

. a seasonal trend.

. Then X = D + Y where D belongs to a finite dimensional space V
and Y is a centered random process.

. Trends can be estimated or removed by

. Fitting the trend using least squares,

D̂ = argmin
d∈V

∑
t

|Xt − dt|2 .

. Or applying a well chosen filter Fψ, such that Fψ(D) = 0 and
thus

Fψ(X) = Fψ(Y ) .
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R code example: Johnson and Johnson trend adjustment

trend-adjustment.html
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Second step : choose a stochastic model on the random
part

In time series analysis, one is interested in modeling the time dependence
in the trend adjusted data Y 1, . . . , Y n.

This can be done by using

. a parametric model.

Example

Y 1, . . . , Y n is the sample of a Gaussian ARMA(p, q) model with
(unknown) parameter ϑ = (θ1, . . . , θq, φ1, . . . , φp, σ

2).

. a non-parametric model.

Example

Y 1, . . . , Y n is the sample of a centered stationary Gaussian process with
(unknown) autocovariance γ (or spectral density f).
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Third step : estimate parameters, test hypotheses

Once a model is fixed for Y 1, . . . , Y n, it can be used to

. Estimate a parameter of the model such as ϑ, γ(t), σ2, f , . . .

→ Define an estimator, say ϑ̂n, which is a statistic based on the
sample Y 1, . . . , Y n.

. Test hypotheses, for instance

H0 = {Y is white noise} against H1 = {Y is ARMA(p, q)}

→ Define a statistical test, say

δ =

{
1 if Tn > tn ,

0 otherwise ,

where Tn is a statistic based on the sample Y 1, . . . , Y n and tn is a
threshold.
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Stationary and ergodic models

. We see Y 1, . . . , Y n as a finite sample of a stochastic process (Y t)t∈T ,
with T = N or Z, distributed according to a statistical model.

. It is crucial to work with stationary and ergodic models.

. Stationary means that the model is shift invariant: for all n ≥ 1, and
all t1, . . . , tn ∈ T , we have

(Xt1 , . . . , Xtn)
d
= (Xt1+1, . . . , Xtn+1) .

. Ergodic means that observing one path (Y t)t∈T allows one to recover
the distribution entirely.
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Examples

. An IID process is stationary and ergodic;

. A sequence of independent variables that are not identically
distributed is not stationary;

. some models are not stationary but can be made so through some
basic transformations:

. removing trends,

. linear filters such as taking the increments (random walks),

. non-linear filters such as taking the logs.

. A sequence of variables (Y t)t∈Z that is constant, i.e. Y t = Y 0 for all
t, is stationary but is not ergodic;

. A Markov chain on a finite state space can be made stationary by
choosing the initial state adequately. If it is irreducible, then it is
ergodic.
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R code example: dependent data

non-iid-data.html
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L2 space

We denote

L2(Ω,F ,P) =
{
X C-valued r.v. such that E

[
|X|2

]
<∞

}
.

(L2, 〈, 〉) is a Hilbert space with

〈X,Y 〉 = E
[
XY

]
.

Definition : L2 Processes

The process X = (Xt)t∈T defined on (Ω,F ,P) with values in C is an L2

process if Xt ∈ L2(Ω,F ,P) for all t ∈ T .
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Mean and covariance functions

Let X = (Xt)t∈T be an L2 process.

. Its mean function is defined by µ(t) = E [Xt],

. Its covariance function is defined by

γ(s, t) = cov(Xs, Xt) = E
[
XsXt

]
− E [Xs]E

[
Xt

]
.

Hermitian symmetry, non-negative definiteness

For all finite subset I ⊂ T , ΓI = Cov([X(t)]t∈I) = [γ(s, t)]s,t∈I is a
hermitian non-negative definite matrix.
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Hermitian symmetry, non-negative definiteness

For all finite subset I ⊂ T , ΓI = Cov([X(t)]t∈I) = [γ(s, t)]s,t∈I is a
hermitian non-negative definite matrix.
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Examples

. L2 independent random variables (Xt)t∈Z have mean µ(t) = E [Xt]
and covariance

γ(s, t) =

{
var(Xt) if s = t,

0 otherwise.

. A Gaussian process is an L2 process whose law is entirely determined
by its mean and covariance functions: for all I = {t1, . . . , tn},

(Xs)s∈I ∼ N ((µs)s∈I ,ΓI) .
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Weakly stationary processes

. Let T = Z. Let X be an L2 strictly stationary process with mean
function µ and covariance function γ.

. Then µ(t) = µ(0) and γ(s, t) = γ(s− t, 0) for all s, t ∈ T .

Definition : Weak stationarity

We say that a random process X is weakly stationary with mean µ ∈ C
and autocovariance function γ : Z→ C if it is L2 with mean function
t 7→ µ and covariance function (s, t) 7→ γ(s− t).

. The autocorrelation function is then defined (when γ(0) > 0) by

ρ(h) =
γ(h)

γ(0)
∈ [−1, 1] .
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Autocorrelation=slope of regression line
We have, for all t ∈ Z and h = 1, 2, . . . ,

Xt = Constant + ρ(h)Xt−h + εt,h with εt,h⊥Span (1, Xt−h) .
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Partial Autocorrelation

. We can also write, for all t ∈ Z and h = 1, 2, . . . ,

Xt = Constant +

h−1∑
k=1

φkXt−k + κ(h)Xt−h + εt,h

where
εt,h⊥Span (1, Xt−1, . . . , Xt−h) .

. In the following, we plot successively

. Xt as a function of Xt−h, compared to the regression line;

. Xt as a function of Xt−h, compared to the predictor

Constant +

h−1∑
k=1

φkXt−k + κ(h)Xt−h.

. Xt −

(
Constant +

h−1∑
k=1

φkXt−k

)
as a function of Xt−h,

compared to the regression line Xt−h 7→ κ(h)Xt−h.
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Partial Autocorrelation=slope of partial regression
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Examples

. An L2 strictly stationary process is weakly stationary.

. The constant L2 process has constant autocovariance function.

Strong and weak white noise

. A sequence of L2 i.i.d. random variables is called a strong white
noise, denoted by X ∼ IID(µ, σ2).

. An L2 process X with constant mean µ and constant diagonal
covariance function equal to σ2 is called a weak white noise. It is
denoted by X ∼WN(µ, σ2). (It does not have to be i.i.d.)
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Examples based on stationarity preserving linear filters

. Let X be weakly stationary with mean µ and autocovariance γ.

. Let ψ ∈ `1. We define Y = Fψ(X) by

Y t =
∑
k

ψkXt−k , t ∈ Z .

. Then Y is weakly stationary with mean µ′ and autocovariance γ′

given by

µ′ = µ
∑
k

ψk

γ′(τ) =
∑
`,k

ψkψ`γ(τ + `− k) (4)
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Spectral measure

. Given a function γ : Z→ C, does there exist a weakly stationary
process (Xt)t∈Z with autocovariance γ?

. A necessary and sufficient condition is that ΓI = [γ(s− t)]s,t∈I is a
hermitian non-negative definite matrix for all finite subset I ⊂ Z.

. We say that γ is hermitian symmetric and non-negative definite.

Herglotz Theorem

Let γ : Z→ C. Then the two following assertions are equivalent:

(i) γ is hermitian symmetric and non-negative definite.

(ii) There exists a finite non-negative measure ν on T = R/2πZ such
that,

for all t ∈ Z, γ(t) =

∫
T

eiλt ν(dλ) . (5)

When these two assertions hold, ν is uniquely defined by (5).
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Herglotz Theorem

Let γ : Z→ C. Then the two following assertions are equivalent:

(i) γ is hermitian symmetric and non-negative definite.

(ii) There exists a finite non-negative measure ν on T = R/2πZ such
that,

for all t ∈ Z, γ(t) =

∫
T

eiλt ν(dλ) . (5)

When these two assertions hold, ν is uniquely defined by (5).
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Spectral density

If moreover γ ∈ `1(Z), these assertions are equivalent to

f(λ) :=
1

2π

∑
t∈Z

e−iλtγ(t) ≥ 0 for all λ ∈ R ,

and ν has density f (that is, ν(dλ) = f(λ)dλ).

Definition : spectral measure and spectral density

If γ is the autocovariance of a weakly stationary process X, the
corresponding measure ν is called the spectral measure of X. Whenever
the spectral measure ν admits a density f , it is called the spectral density
function.
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Examples

. Let X ∼WN(µ, σ2). Then f(λ) = σ2

2π .

. Let X be a weakly stationary process with covariance function
γ/spectral measure ν. Define

Y t =
∑
k

ψkXt−k

for a sequence ψ ∈ `1.

. Recall that Y is a weakly stationary process with covariance function

γ′(τ) =
∑
`,k

ψkψ`γ(τ + `− k) .

. Then Y is a weakly stationary process with spectral measure ν ′

having density λ 7→
∣∣∑

k ψke
−iλk∣∣2 with respect to ν,

ν ′(dλ) =

∣∣∣∣∣∑
k

ψke
−iλk

∣∣∣∣∣
2

ν(dλ) .
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A special one : the harmonic process
Let (Ak)1≤k≤N be N real valued L2 random variables. Denote
σ2k = E

[
A2
k

]
. Let (Φk)1≤k≤N be N i.i.d. random variables with a uniform

distribution on [0, 2π], and independent of (Ak)1≤k≤N . Define

Xt =

N∑
k=1

Ak cos(λkt+ Φk) , (6)

where (λk)1≤k≤N ∈ [−π, π] are N frequencies. The process (Xt) is called
a harmonic process. It satisfies E [Xt] = 0 and, for all s, t ∈ Z,

E [XsXt] =
1

2

N∑
k=1

σ2k cos(λk(s− t)) .

Hence X is weakly stationary with autocovariance

γ(t) =
1

2

N∑
k=1

σ2k cos(λkt) =

∫
T

eiλt

(
1

4

N∑
k=1

σ2k(δ−λk(dλ) + δλk(dλ))

)
.
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Empirical estimates

. Suppose you want to estimate the mean and the autocovariance from
a sample X1, . . . , Xn.

. Define the empirical mean as

µ̂n =
1

n

n∑
k=1

Xk ,

. Define the empirical autocovariance and autocorrelation functions as

γ̂n(h) =
1

n

n−|h|∑
k=1

(Xk − µ̂n)(Xk+|h| − µ̂n) and

ρ̂n(h) =
γ̂n(h)

γ̂n(0)
.
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Periodogram

. The previous formula only work for h = −n+ 1, . . . , n− 1.

. Define γ̂n(h) = ρ̂n(h) = 0 for all |h| ≥ n.

. Now γ̂n is defined on Z and satisfies

γ̂n(h) =

∫ π

−π
eiλh In(λ) dλ ,

where In is called the (raw) periodogram and is defined by

In(λ) =
1

2πn

∣∣∣∣∣
n∑
k=1

(Xk − µ̂n) e−iλk

∣∣∣∣∣
2

.

. In(λ) can be seen as a (bad) estimator of the spectral density f(λ).

François Roueffhttp://perso.telecom-paristech.fr/~roueff/ (Telecom ParisTech)IA710 Oct. 14, 2019 90 / 90

http://perso.telecom-paristech.fr/~roueff/


Periodogram

. The previous formula only work for h = −n+ 1, . . . , n− 1.

. Define γ̂n(h) = ρ̂n(h) = 0 for all |h| ≥ n.

. Now γ̂n is defined on Z and satisfies

γ̂n(h) =

∫ π

−π
eiλh In(λ) dλ ,

where In is called the (raw) periodogram and is defined by

In(λ) =
1

2πn

∣∣∣∣∣
n∑
k=1

(Xk − µ̂n) e−iλk

∣∣∣∣∣
2

.

. In(λ) can be seen as a (bad) estimator of the spectral density f(λ).

François Roueffhttp://perso.telecom-paristech.fr/~roueff/ (Telecom ParisTech)IA710 Oct. 14, 2019 90 / 90

http://perso.telecom-paristech.fr/~roueff/


Periodogram

. The previous formula only work for h = −n+ 1, . . . , n− 1.

. Define γ̂n(h) = ρ̂n(h) = 0 for all |h| ≥ n.

. Now γ̂n is defined on Z and satisfies

γ̂n(h) =

∫ π

−π
eiλh In(λ) dλ ,

where In is called the (raw) periodogram and is defined by

In(λ) =
1

2πn

∣∣∣∣∣
n∑
k=1

(Xk − µ̂n) e−iλk

∣∣∣∣∣
2

.

. In(λ) can be seen as a (bad) estimator of the spectral density f(λ).

François Roueffhttp://perso.telecom-paristech.fr/~roueff/ (Telecom ParisTech)IA710 Oct. 14, 2019 90 / 90

http://perso.telecom-paristech.fr/~roueff/


Periodogram

. The previous formula only work for h = −n+ 1, . . . , n− 1.

. Define γ̂n(h) = ρ̂n(h) = 0 for all |h| ≥ n.

. Now γ̂n is defined on Z and satisfies

γ̂n(h) =

∫ π

−π
eiλh In(λ) dλ ,

where In is called the (raw) periodogram and is defined by

In(λ) =
1

2πn

∣∣∣∣∣
n∑
k=1

(Xk − µ̂n) e−iλk

∣∣∣∣∣
2

.

. In(λ) can be seen as a (bad) estimator of the spectral density f(λ).

François Roueffhttp://perso.telecom-paristech.fr/~roueff/ (Telecom ParisTech)IA710 Oct. 14, 2019 90 / 90

http://perso.telecom-paristech.fr/~roueff/

	Example of time series
	Reminders: i.i.d. models
	Univariate models
	Multivariate models
	Regression model
	Hidden variables

	Introducing dynamics
	What's wrong with i.i.d. models ?
	Univariate models
	Multivariate models
	Partially observed multivariate time series

	Stationary Time series
	The statistical approach
	Classical steps of statistical inference
	Stationary and ergodic models

	Weakly stationary time series
	L2 processes
	Weak stationarity
	Spectral measure
	Empirical estimation


