EXERCISE CLASS : Linear regression

For \(i = 1, \ldots, n \), we consider \(y_i \in \mathbb{R} \) and \(x_i = (x_{i,0}, \ldots, x_{i,p})^T \in \mathbb{R}^{p+1} \) with \(x_{i,0} = 1 \). The OLS estimator is any coefficient vector \(\hat{\theta}_n = (\hat{\theta}_{n,0}, \ldots, \hat{\theta}_{n,p})^T \in \mathbb{R}^{p+1} \) such that

\[
\hat{\theta}_n \in \arg \min_{\theta \in \mathbb{R}^{p+1}} \sum_{i=1}^n (y_i - x_i^T \theta)^2.
\]

With the notations

\[
X = \begin{pmatrix}
X_1^T \\
\vdots \\
X_n^T
\end{pmatrix} = \begin{pmatrix}
x_{1,0} & \cdots & x_{1,p} \\
\vdots & \ddots & \vdots \\
x_{n,0} & \cdots & x_{n,p}
\end{pmatrix} \in \mathbb{R}^{n \times (p+1)}, \quad Y = \begin{pmatrix}
y_1 \\
\vdots \\
y_n
\end{pmatrix}.
\]

We have

\[
\hat{\theta}_n \in \arg \min_{\theta \in \mathbb{R}^p} \|Y - X\theta\|. \tag{1}
\]

Let \(X = (1_n, \tilde{X}) \) and introduce \(\hat{\mu}_X = (\tilde{X}^T 1_n)/n \) and \(\hat{\mu}_Y = (1_n^T Y)/n \). Define the centred version of \(Y \) and \(\tilde{X} \), given by \(Y_c = Y - 1_n \hat{\mu}_Y \) and \(\tilde{X}_c = \tilde{X} - 1_n \hat{\mu}_X \), respectively. Consider the following alternative procedure:

\[
\hat{\theta}_{n,c} = \arg \min_{\theta \in \mathbb{R}^p} \|Y_c - \tilde{X}_c \theta\|, \tag{2}
\]

for which, the predictor at \(\tilde{x} \in \mathbb{R}^p \) is given by \(\hat{\mu}_X + (\tilde{x} - \hat{\mu}_X)^T \hat{\theta}_{n,c} \).

Exercise 1. Aim is to show that

\[
\min_{\theta \in \mathbb{R}^p} \|Y_c - \tilde{X}_c \theta\| = \min_{\theta \in \mathbb{R}^{p+1}} \|Y - X\theta\|.
\]

and, assuming that \(X \) has full rank, we have the following relationship between the traditional OLS and the OLS based on centred data,

\[
\hat{\theta}_{n,0} = \hat{\mu}_Y - \hat{\mu}_X \hat{\theta}_{n,c}, \quad (\hat{\theta}_{n,1}, \ldots, \hat{\theta}_{n,p}) = \hat{\theta}_{n,c}^T. \tag{3}
\]

Consequently, the 2 methods give the same predictor.

1. Start by obtaining that the inequality \(\geq \) holds true.
2. Then show that for any sequence \((z_i) \), and for all \(z \in \mathbb{R} \), it holds that \(\|Z - z 1_n\| \geq \|Z - \bar{z} 1_n\| \), where \(Z = (z_1, \ldots, z_n) \) and \(\bar{z} = n^{-1} \sum_{i=1}^n z_i \).
3. Find \(\hat{\mu}_X \) such that, for any \(\theta_0 \in \mathbb{R} \) and \(\theta \in \mathbb{R}^p \), \(\|Y - \theta_0 1_n - \tilde{X} \theta\| \geq \|Y - \hat{\mu}_X 1_n - \tilde{X} \theta\| \).
4. Conclude that \(\min_{\theta \in \mathbb{R}^p} \|Y_c - \tilde{X}_c \theta\| = \min_{\theta \in \mathbb{R}^p, \theta_0 \in \mathbb{R}} \|Y - X(\theta_0, \theta^T)^T\| \).
5. Use the Lebesgue projection theorem to conclude that whenever \(\text{ker}(X) = \{0\} \), we have (3).

Exercise 2 (on-line ols and cross-validation). The goal of this exercise is to show that the OLS estimator \(\hat{\theta}_n \) associated with design matrix \(X_n(\in \mathbb{R}^{n \times (p+1)}) \) and output \(y_n(\in \mathbb{R}^n) \) can be easily updated when a new pair of observation \((x_{n,1}, y_{n,1}) \in \mathbb{R}^{(p+1)} \times \mathbb{R} \) is given. We apply the result to cross validation procedure in the end.

To clarify the notation:

\[
X_{(n,1)} = \begin{pmatrix}
X_{(n)} \\
x_{(n,1)}^T
\end{pmatrix} \in \mathbb{R}^{(n+1) \times (p+1)}, \quad \text{and} \quad y_{(n,1)} = \begin{pmatrix}
y_{(n)} \\
y_{(n,1)}
\end{pmatrix} \in \mathbb{R}^{n+1}
\]

We assume from now on that \(X_n(\in \mathbb{R}^{n \times (p+1)}) \) are full column rank (i.e., the columns of each matrix are independent vectors).

NB : Some of the questions require some computation (in particular obtaining (4) and (6)). Even if you could not prove it, it can be use later.
1) Let \(A, B, C, D \) be matrices with respective sizes \((d, d), (d,k), (k,k), (k,d)\). Show that if \(A \) and \(C \) are invertible, then
\[
(A + BCD)^{-1} = A^{-1} - A^{-1}B(DA^{-1}B + C^{-1})^{-1}DA^{-1}.
\] (4)

2) Obtain that
\[
(X^T_{(n+1)}X_{(n+1)})^{-1} = \left(X^T_{(n)}X_{(n)}\right)^{-1} - \frac{\zeta_{n+1}s^T_{n+1}}{1 + b_{n+1}}
\] (5)
where \(\zeta_{n+1} = (X^T_{(n)}X_{(n)})^{-1}x_{n+1} \) and \(b_{n+1} = x^T_{n+1}(X^T_{(n)}X_{(n)})^{-1}x_{n+1} \).

3) Express \(X^T_{(n+1)}y_{(n+1)} \) with respect to \(X^T_{(n)}y_{(n)} \) and \(y_{n+1}x_{n+1} \).

4) Show that the OLS estimator \(\hat{\theta}_{n+1} \) associated with design matrix \(X_{(n+1)} \) and output \(y_{(n+1)} \) can be obtained as follows:
\[
\hat{\theta}_{n+1} = \hat{\theta}_n + \frac{u_{n+1}}{1 + b_{n+1}} \zeta_{n+1},
\] (6)
where \(u_{n+1} = y_{n+1} - x^T_{n+1}\hat{\theta}_n \).

5) Keeping in memory \((X^T_{(n)}X_{(n)})^{-1} \) and \(\hat{\theta}_n \), explain how to update \(\hat{\theta}_{n+1} \) using a minimal number of operations of the kind : matrix \((p+1,p+1)\) times vector \((p+1,1)\). How many such operations are needed?

6) Using Equation (5) above, show that
\[
1 + b_{n+1} = \frac{1}{1 - h_{n+1}}
\]
where \(h_{n+1} = x^T_{n+1}(X^T_{(n+1)}X_{(n+1)})^{-1}x_{n+1} \).

7) The prediction of \(y_{n+1} \) given by the model is \(\hat{y}_{n+1} := x^T_{n+1}\hat{\theta}_{n+1} \). With the following formula
\[
\hat{y}_{n+1} = x^T_{n+1}\hat{\theta}_n + \frac{u_{n+1}b_{n+1}}{1 + b_{n+1}}.
\]
prove that
\[
y_{n+1} - \hat{y}_{n+1} = u_{n+1}(1 - h_{n+1}).
\]

8) Given some data \((y, X)\), leave-one-out cross-validation consists in computing the risk
\[
R_{cv} = \frac{1}{n} \sum_{i=1}^{n} (y_i - x_i^T\hat{\theta}_{(-i)})^2
\]
where \(\hat{\theta}_{(-i)} \) is the OLS estimator based on \((y_{(-i)}, X_{(-i)})\), i.e., the data \((y, X)\) without the \(i \)-th line. Applying what have been done so far, show that
\[
R_{cv} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2/(1 - \hat{h}_i)^2,
\]
with \(\hat{h}_i = x_i^T(X^TX)^{-1}x_i \) and \(\hat{y}_i = x_i^T\hat{\theta}_n \).