
Course: Machine learning

By: Pavlo Mozharovskyi

Tutorial to Lecture 5 (part R): Perceptron, neural net-
work, and the back-propagation algorithm

Task 1: Rosenblatt’s perceptron.

(a) Visualize two variables sepal length and sepal width of the two classes, setosa and ver-

sicolor, of the iris data set. You can obtain the data set by simply typing data(iris).

Do they seem linearly separable?

(b) Program the original algorithm of the Rosenblatt’s perceptron. For this, create functions

perceptron.train (which takes training sample, learning rate and initial values of the

normal vector and of the intercept as input arguments; you can additionally provide

upper bound on the number of iterations) and perceptron.classify (which takes new

observations, the normal vector and the intercept as input arguments).

(c) Visualize the perceptron rule trained on the data from part (a): On a 2D-plot show

training observations and fill the areas of different class assignment with different colors.

You can use the provided function filled.contour2.

(d) The exclusive logical disjunction or eXclusive logical OR, usually shortened and known

as XOR, can be described by the following table:

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0

Let us call noisy XOR data generated according to the following scheme (n = 100

being the total number of points): Let a set consisting of n/4 points generated from

N (
[
0
0

]
,
[
0.01 0
0 0.01

]
) and of n/4 points generated from N (

[
1
1

]
,
[
0.01 0
0 0.01

]
) have label 0

and a set consisting of n/4 points generated from N (
[
0
1

]
,
[
0.01 0
0 0.01

]
) and of n/4 points

generated from N (
[
1
0

]
,
[
0.01 0
0 0.01

]
) have label 1. Visualize this data set. Are the two

classes linearly separable?

(e) Create functions perceptron2.train and perceptron2.classify which call functions

perceptron.train and perceptron.classify, respectively, feeding them with second-

order polynomial extension of the data. For example, a two-dimensional input vector

x = (x1, x2)
T should be preliminary transformed into x̃ = (x1, x2, x1 · x2, x21, x22)T .

To save time you can restrict here to two-dimensional data only. We will call this a

generalized perceptron.

1



(f) Visualize the generalized perceptron rule trained on the data from part (d): On a 2D-

plot show training observations and fill the areas of different class assignment with

different colors.

Task 2: Classification with a multilayer perceptron.

(a) Generate data from distributional setting 1 from Table 1 (Appendix of Tutorial 2)

with a training sample containing 200 observations (100 observations from each class).

What is the optimal classifier for this setting? Train a single neuron using the back-

propagation algorithm (you can use function neuralnet from R-package neuralnet).

Visualize the structure of this neuron (you can use the generic function plot or function

plotnet from R-package NeuralNetTools). Explain the obtained plot. Visualize the

classification rule of the trained neuron: On a 2D-plot show training observations and

fill the areas of different class assignment with different colors (you can use functions

compute and filled.contour2).

(b) Train the linear discriminant analysis (LDA) classifier on the same data (you can use

function lda from R-package MASS). For both neuron from (a) and the trained LDA

compute (and print) the (unit) normal vector of the separating line. Further compute

the angle between these two vectors in degrees (and print it).

(c) Generate data from distributional setting 2 from Table 1 (Appendix of Tutorial 2) with

a training sample containing 200 observations (100 observations from each class). What

is the optimal classifier for this setting? Train a two-layer perceptron using the back-

propagation algorithm. Visualize its structure and explain the obtained plot. Further,

visualize its classification rule: On a 2D-plot show training observations and fill the

areas of different class assignment with different colors.

(d) Train the quadratic discriminant analysis (QDA) classifier on the data from (c) and plot

its separating line on the plot from (c) (you can use function contour). Are the two

rules similar? Repeat training phase in (c) to obtain a rule resembling this by QDA

until you are satisfied with the result.

Task 3: Reconstruction of functional dependencies.

(a) Generate n (= 100) inputs {x1, ..., xn} uniformly distributed on the interval [0, 2π] and

their corresponding outputs being yi = sin(xi) + εi with εi ∼ N (0, 0.12) for i = 1, ..., n.

Draw the points (xi, yi)
>, i = 1, ..., n on a plot with limits [0, 6π]. Superpose the y =

sin(x) function on this plot. Train a multilayer perceptron using the back-propagation

algorithm and taking these n points as training data to approximate the sin function.

Visualize the network’s structure. Superpose the predicted function for each (visible)

value of the abscissa on the existing plot. Is the approximation/prediction reliable?

Retrain the neural network to predict as good as possible.

Hint: use a radial-basis activation function, e.g., φ(v) = e−v
2
.

2



(b) Generate n (= 100) bivariate inputs
{

(x11, x12)
>, (x21, x22)

>, ..., (xn1, xn2)
>} uniformly

distributed on [0, 1]2 and their corresponding outputs being yi = cos(

√
x2
i1+x2

i2√
2

π) + εi

with εi ∼ N (0, 0.052) for i = 1, ..., n. Visualize these n points (xi1, xi2, yi)
>, i = 1, ..., n

on a 3D-plot. You can use function cloud from R-package lattice. Train a multilayer

perceptron using the back-propagation algorithm and taking these n points as training

data to approximate the function cos(

√
x2
i1+x2

i2√
2

π). Visualize the network’s structure.

Visualize the obtained surface on [0, 1]2. You can use function wireframe from R-

package lattice. Is the approximation reliable?

3



Appendix: Examples of produced figures

1. Task 1: Rosenblatt’s perceptron.

2. Task 2: Classification with a multilayer perceptron.

4



3. Task 3: Reconstruction of functional dependencies.

0 5 10 15

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

y

true
predicted

Sample points

0.0
0.2

0.4
0.6

0.8
1.0 0.0

0.2
0.4

0.6
0.8

1.0

−1.0

−0.5

0.0

0.5

1.0

x1
x2

y

Predicted surface

0.0
0.2

0.4
0.6

0.8
1.0 0.0

0.2
0.4

0.6
0.8

1.0

−1.0

−0.5

0.0

0.5

1.0

x1
x2

y

5


