
Perceptron, neural network,
and the back-propagation algorithm

Pavlo Mozharovskyi1

1LTCI, Télécom Paris, Institut Polytechnique de Paris

Machine learning

Paris, March 12, 2022

Today

Rosenblatt’s perceptron
Biological analogy
Historical learning algorithm
Novikoff’s convergence theorem

Signal-flow notation and model of an artificial neuron

Least-mean-squares
Minimization of the empirical risk
Method of gradient descent
The least-mean-square algorithm

The back-propagation algorithm
Derivation for a single-layer network
Propagation for a multilayer network
An example of the activation function

Additional information on learning networks
Regularization in neural networks
Some remarks on the back-propagation

Literature
Supplementary learning materials include but are not limited to:

I Haykin, S. (2009).
Neural Networks and Learning Machines (Third Edition).
Pearson.

I Introduction sections 3, 4, 6.
I Sections 1.1–1.3.
I Sections 3.3 (steepest descent), 3.5.
I Sections 4.1–4.4.

I Vapnik, V. N. (1998).
Statistical Learning Theory.
John Wiley & Sons.

I Section 9.1.
I Section 9.6.

I Goodfellow, J., Bengio, Y., and Courville, A. (2016).
Deep Learning.
MIT Press.

I Bertsekas, D. P. (2016).
Nonlinear programming (Third Edition).
Athena Scientific.

Types of machine leaning

Supervised learning (reminder)

Notation:

I Given: for the random pair (X ,Y) in Rd × {0, 1} consisting of a
random observation X and its random binary label Y (class), a
sample of n i.i.d.: (x1, y1), ..., (xn, yn).

I Goal: predict the label of the new (unseen before) observation x .

I Method: construct a classification rule:

g : Rd → {0, 1} , x 7→ g(x) ,

so g(x) is the prediction of the label for observation x .

I Criterion: of the performance of g is the error probability:

R(g) = P[g(X) 6= Y] = E[1
(
g(X) 6= Y

)
] .

I The best solution: is to know the distribution of (X,Y):

g(x) = 1
(
E[Y |X = x] > 0.5

)
.

Contents

Rosenblatt’s perceptron
Biological analogy
Historical learning algorithm
Novikoff’s convergence theorem

Signal-flow notation and model of an artificial neuron

Least-mean-squares
Minimization of the empirical risk
Method of gradient descent
The least-mean-square algorithm

The back-propagation algorithm
Derivation for a single-layer network
Propagation for a multilayer network
An example of the activation function

Additional information on learning networks
Regularization in neural networks
Some remarks on the back-propagation

Contents

Rosenblatt’s perceptron
Biological analogy
Historical learning algorithm
Novikoff’s convergence theorem

Signal-flow notation and model of an artificial neuron

Least-mean-squares
Minimization of the empirical risk
Method of gradient descent
The least-mean-square algorithm

The back-propagation algorithm
Derivation for a single-layer network
Propagation for a multilayer network
An example of the activation function

Additional information on learning networks
Regularization in neural networks
Some remarks on the back-propagation

Neurons in the human body

Density of neurons in the human brain at different ages

Pyramidal neuron

assemblies perform operations characteristic of a localized region in the brain.They are fol-
lowed by interregional circuits made up of pathways, columns,and topographic maps,which
involve multiple regions located in different parts of the brain.

Topographic maps are organized to respond to incoming sensory information.
These maps are often arranged in sheets, as in the superior colliculus, where the visual,

8 Introduction

Dendritic spines

Synaptic
inputs

Basal
dendrites

Cell
body

Apical
dendrites

Axon

Synaptic
terminals

Segment
of dendrite

FIGURE 2 The pyramidal cell.

Contents

Rosenblatt’s perceptron
Biological analogy
Historical learning algorithm
Novikoff’s convergence theorem

Signal-flow notation and model of an artificial neuron

Least-mean-squares
Minimization of the empirical risk
Method of gradient descent
The least-mean-square algorithm

The back-propagation algorithm
Derivation for a single-layer network
Propagation for a multilayer network
An example of the activation function

Additional information on learning networks
Regularization in neural networks
Some remarks on the back-propagation

The three waves of machine learning

Wave 1 1952–1974: The birth and the golden years
I Biological analogy – McCulloch and Pitts model of neuron
I First try – Rosenblatt’s perceptron
I Statistical foundations – Vapnik-Chervonenkis theory

Wave 2 1980–1987: The boom
I Visual cortex model – neocognitron by Fukushima
I Expert systems
I Knowledge engineering
I Recurrent architectures – Hopfield net
I Learning algorithm – back-propagation by Hinton and Rumelhart

Wave 3 1993–.......: Contemporary architectures
I Convolutional networks (CNNs) – LeNet by LeCun
I CNNs with ReLU, drop-out, GPUs – AlexNet by Krizhevsky et al.
I Generative adversarial networks (GANs) – Goodfellow
I Big data deep learning (DL)
I Artificial general intelligence – full AI
I ...

The three waves of machine learning

Wave 1 1952–1974: The birth and the golden years
I Biological analogy – McCulloch and Pitts model of neuron
I First try – Rosenblatt’s perceptron
I Statistical foundations – Vapnik-Chervonenkis theory

Wave 2 1980–1987: The boom
I Visual cortex model – neocognitron by Fukushima
I Expert systems
I Knowledge engineering
I Recurrent architectures – Hopfield net
I Learning algorithm – back-propagation by Hinton and Rumelhart

Wave 3 1993–.......: Contemporary architectures
I Convolutional networks (CNNs) – LeNet by LeCun
I CNNs with ReLU, drop-out, GPUs – AlexNet by Krizhevsky et al.
I Generative adversarial networks (GANs) – Goodfellow
I Big data deep learning (DL)
I Artificial general intelligence – full AI
I ...

The three waves of machine learning

Wave 1 1952–1974: The birth and the golden years
I Biological analogy – McCulloch and Pitts model of neuron
I First try – Rosenblatt’s perceptron
I Statistical foundations – Vapnik-Chervonenkis theory

Wave 2 1980–1987: The boom
I Visual cortex model – neocognitron by Fukushima
I Expert systems
I Knowledge engineering
I Recurrent architectures – Hopfield net
I Learning algorithm – back-propagation by Hinton and Rumelhart

Wave 3 1993–.......: Contemporary architectures
I Convolutional networks (CNNs) – LeNet by LeCun
I CNNs with ReLU, drop-out, GPUs – AlexNet by Krizhevsky et al.
I Generative adversarial networks (GANs) – Goodfellow
I Big data deep learning (DL)
I Artificial general intelligence – full AI
I ...

Rosenblatt’s perceptron

The perceptron algorithm was invented in 1957 at the Cornell
Aeronautical Laboratory by Frank Rosenblatt.

(Photo downloaded from http://www.usbdata.co/rosenblatt-perceptron.html)

The Mark I Perceptron machine was the first implementation of the
perceptron algorithm. The machine was connected to a Camera that
used 20x20 cadmium sulfide photocells to produce a 400-pixel image.
The main visible feature is a Patchboard that allowed experimentation
with different combinations of input features. To the right of that are
arrays of Potentiometers that implemented the adaptive weights.

Rosenblatt’s perceptron

The perceptron algorithm was invented in 1957 at the Cornell
Aeronautical Laboratory by Frank Rosenblatt.

(Photo downloaded from http://www.usbdata.co/rosenblatt-perceptron.html)

The Mark I Perceptron machine was the first implementation of the
perceptron algorithm. The machine was connected to a Camera that
used 20x20 cadmium sulfide photocells to produce a 400-pixel image.
The main visible feature is a Patchboard that allowed experimentation
with different combinations of input features. To the right of that are
arrays of Potentiometers that implemented the adaptive weights.

Rosenblatt’s perceptron

x1

x2

x3

xd

w 1

w 2

w 3

w d

Σ

w 0

inputs weights threshold

summation
(transfer function)

φ(•)
activation
function

output

Let w = (w1,w2, ...,wd)T be the weight vector, then a new observation
x = (x1, x2, ..., xd)T is classified as

g(x) =

{
1 ifφ

(∑d
k=1 wkxk + w0

)
> 0 ,

0 otherwise .

Rosenblatt’s perceptron

x1

x2

x3

xd

w 1

w 2

w 3

w d

Σ

w 0

inputs weights threshold

summation
(transfer function)

φ(•)
activation
function

output

Let w = (w1,w2, ...,wd)T be the weight vector, then a new observation
x = (x1, x2, ..., xd)T is classified as

g(x) =

{
1 ifφ

(∑d
k=1 wkxk + w0

)
> 0 ,

0 otherwise .

Rosenblatt’s perceptron

x1

x2

x3

xd

w 1

w 2

w 3

w d

Σ

w 0

inputs weights threshold

summation
(transfer function)

φ(•)
activation
function

output

Let w = (w1,w2, ...,wd)T be the weight vector, then a new observation
x = (x1, x2, ..., xd)T is classified as

g(x) =

{
1 ifφ

(∑d
k=1 wkxk + w0

)
> 0 ,

0 otherwise .

Rosenblatt’s perceptron (training algorithm)
Initialize w0 and w randomly or set w0 = 0 and w = 0.

Choose constant γ ∈ (0, 1] controlling the learning speed.

Feed training pairs (x , y), and for each of them update current threshold

and weights w
(i)
0 and w (i) to w

(i+1)
0 and w (i+1) as follows:

1. Classify current observation x :

o(i) =

{
1 if

∑d
k=1 wkxk + w0 > 0 ,

0 otherwise .

2. Calculate correction:

δ(i) =

0 if o(i) = y ,

1 if o(i) = 0 but y = 1 ,

−1 if o(i) = 1 but y = 0 .

3. Update threshold and weights:

w (i+1) = w (i) + γδ(i)x ,

w
(i+1)
0 = w

(i)
0 + γδ(i) .

Rosenblatt’s perceptron (training algorithm)
Initialize w0 and w randomly or set w0 = 0 and w = 0.
Choose constant γ ∈ (0, 1] controlling the learning speed.

Feed training pairs (x , y), and for each of them update current threshold

and weights w
(i)
0 and w (i) to w

(i+1)
0 and w (i+1) as follows:

1. Classify current observation x :

o(i) =

{
1 if

∑d
k=1 wkxk + w0 > 0 ,

0 otherwise .

2. Calculate correction:

δ(i) =

0 if o(i) = y ,

1 if o(i) = 0 but y = 1 ,

−1 if o(i) = 1 but y = 0 .

3. Update threshold and weights:

w (i+1) = w (i) + γδ(i)x ,

w
(i+1)
0 = w

(i)
0 + γδ(i) .

Rosenblatt’s perceptron (training algorithm)
Initialize w0 and w randomly or set w0 = 0 and w = 0.
Choose constant γ ∈ (0, 1] controlling the learning speed.

Feed training pairs (x , y), and for each of them update current threshold

and weights w
(i)
0 and w (i) to w

(i+1)
0 and w (i+1) as follows:

1. Classify current observation x :

o(i) =

{
1 if

∑d
k=1 wkxk + w0 > 0 ,

0 otherwise .

2. Calculate correction:

δ(i) =

0 if o(i) = y ,

1 if o(i) = 0 but y = 1 ,

−1 if o(i) = 1 but y = 0 .

3. Update threshold and weights:

w (i+1) = w (i) + γδ(i)x ,

w
(i+1)
0 = w

(i)
0 + γδ(i) .

Rosenblatt’s perceptron (training algorithm)
Initialize w0 and w randomly or set w0 = 0 and w = 0.
Choose constant γ ∈ (0, 1] controlling the learning speed.

Feed training pairs (x , y), and for each of them update current threshold

and weights w
(i)
0 and w (i) to w

(i+1)
0 and w (i+1) as follows:

1. Classify current observation x :

o(i) =

{
1 if

∑d
k=1 wkxk + w0 > 0 ,

0 otherwise .

2. Calculate correction:

δ(i) =

0 if o(i) = y ,

1 if o(i) = 0 but y = 1 ,

−1 if o(i) = 1 but y = 0 .

3. Update threshold and weights:

w (i+1) = w (i) + γδ(i)x ,

w
(i+1)
0 = w

(i)
0 + γδ(i) .

Rosenblatt’s perceptron (training algorithm)
Initialize w0 and w randomly or set w0 = 0 and w = 0.
Choose constant γ ∈ (0, 1] controlling the learning speed.

Feed training pairs (x , y), and for each of them update current threshold

and weights w
(i)
0 and w (i) to w

(i+1)
0 and w (i+1) as follows:

1. Classify current observation x :

o(i) =

{
1 if

∑d
k=1 wkxk + w0 > 0 ,

0 otherwise .

2. Calculate correction:

δ(i) =

0 if o(i) = y ,

1 if o(i) = 0 but y = 1 ,

−1 if o(i) = 1 but y = 0 .

3. Update threshold and weights:

w (i+1) = w (i) + γδ(i)x ,

w
(i+1)
0 = w

(i)
0 + γδ(i) .

Rosenblatt’s perceptron (training algorithm)
Initialize w0 and w randomly or set w0 = 0 and w = 0.
Choose constant γ ∈ (0, 1] controlling the learning speed.

Feed training pairs (x , y), and for each of them update current threshold

and weights w
(i)
0 and w (i) to w

(i+1)
0 and w (i+1) as follows:

1. Classify current observation x :

o(i) =

{
1 if

∑d
k=1 wkxk + w0 > 0 ,

0 otherwise .

2. Calculate correction:

δ(i) =

0 if o(i) = y ,

1 if o(i) = 0 but y = 1 ,

−1 if o(i) = 1 but y = 0 .

3. Update threshold and weights:

w (i+1) = w (i) + γδ(i)x ,

w
(i+1)
0 = w

(i)
0 + γδ(i) .

Iris data

Fisher’s iris data:

is this the same flower?

Iris setosa Iris versicolor

Iris data

Fisher’s iris data: is this the same flower?

Iris setosa Iris versicolor

Iris data

Fisher’s iris data: is this the same flower?

Iris setosa Iris versicolor

Iris data

Iris setosa

Sepal length (cm) Sepal width (cm)

5.1 3.5
4.9 3
4.7 3.2
4.6 3.1
5 3.6

5.4 3.9
4.6 3.4
5 3.4

4.4 2.9
... ...
... ...
... ...
4.6 3.2
5.3 3.7
5 3.3

Iris versicolor

Sepal length (cm) Sepal width (cm)

7 3.2
6.4 3.2
6.9 3.1
5.5 2.3
6.5 2.8
5.7 2.8
6.3 3.3
4.9 2.4
6.6 2.9
... ...
... ...
... ...
6.2 2.9
5.1 2.5
5.7 2.8

Rosenblatt’s perceptron (iris data)

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

Rosenblatt’s perceptron (iris data)

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data: perceptron rule after correction 0

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

Rosenblatt’s perceptron (iris data)

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data: perceptron rule after correction 1

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

Rosenblatt’s perceptron (iris data)

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data: perceptron rule after correction 2

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

Rosenblatt’s perceptron (iris data)

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data: perceptron rule after correction 3

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

Rosenblatt’s perceptron (iris data)

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data: perceptron rule after correction 4

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

Rosenblatt’s perceptron (iris data)

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data: perceptron rule after correction 5

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

Rosenblatt’s perceptron (iris data)

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data: perceptron rule after correction 10

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

Rosenblatt’s perceptron (iris data)

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data: perceptron rule after correction 50

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

Rosenblatt’s perceptron (iris data)

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data: perceptron rule after correction 100

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

Rosenblatt’s perceptron (iris data)

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data: perceptron rule after correction 200

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

Rosenblatt’s perceptron (iris data)

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data: perceptron rule after correction 300

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

Rosenblatt’s perceptron (iris data)

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data: perceptron rule after correction 400

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

Rosenblatt’s perceptron (iris data)

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data: perceptron rule after correction 500

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

Rosenblatt’s perceptron (iris data)

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data: perceptron rule after correction 600

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

Rosenblatt’s perceptron (iris data)

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data: perceptron rule after correction 650

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

Rosenblatt’s perceptron (iris data)

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data: perceptron rule after correction 680

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

Rosenblatt’s perceptron (iris data)

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data: perceptron rule after correction 681

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

Rosenblatt’s perceptron (iris data)

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data: perceptron rule after correction 682

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

Rosenblatt’s perceptron (iris data)

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data: perceptron rule after correction 683

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

Rosenblatt’s perceptron (iris data)

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data: perceptron rule after correction 684

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

Rosenblatt’s perceptron (iris data)

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data: perceptron rule after correction 685

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

Rosenblatt’s perceptron (iris data)

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data: perceptron rule after correction 686

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

Rosenblatt’s perceptron (iris data)

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data: perceptron rule

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

Rosenblatt’s perceptron (iris data)

0 100 200 300 400 500 600 700

0.
0

0.
1

0.
2

0.
3

0.
4

Error of the perceptron rule on the training data

Correction iteration

E
rr

or
 o

n
th

e
tr

ai
ni

ng
 s

am
pl

e

Rosenblatt’s perceptron (iris data)

1 2 5 10 20 50 100 200 500

0.
0

0.
1

0.
2

0.
3

0.
4

Error of the perceptron rule on the training data (log time)

Correction iteration

E
rr

or
 o

n
th

e
tr

ai
ni

ng
 s

am
pl

e

Contents

Rosenblatt’s perceptron
Biological analogy
Historical learning algorithm
Novikoff’s convergence theorem

Signal-flow notation and model of an artificial neuron

Least-mean-squares
Minimization of the empirical risk
Method of gradient descent
The least-mean-square algorithm

The back-propagation algorithm
Derivation for a single-layer network
Propagation for a multilayer network
An example of the activation function

Additional information on learning networks
Regularization in neural networks
Some remarks on the back-propagation

Novikoff’s convergence theorem
I Let w0 = 0

and set γ = 1.
I Let (X ,Y) = (x1, y1), ..., (x i , yi), ... be an infinite training sequence.
I In addition, let (construct)
X̃ = {x | (x , y) ∈ (X ,Y), y = 1} ∪ {−x | (x , y) ∈ (X ,Y), y = 0}.

I Let w̃ exist such that for some ρ0 > 0 it holds

min
x̃∈X̃

w̃T x̃
‖w̃‖

≥ ρ0 .

i.e. the classes are linearly separable via the origin with margin ρ0.
I Let 0 < D <∞ exist such that it holds

max
x∈X
‖x‖ < D .

Theorem (Novikoff, 1962)
The perceptron constructs a hyperplane that correctly separates all pairs
(x , y) ∈ (X ,Y) with the number of corrections at most⌊D2

ρ2
0

⌋
.

Novikoff’s convergence theorem
I Let w0 = 0 and set γ = 1.

I Let (X ,Y) = (x1, y1), ..., (x i , yi), ... be an infinite training sequence.
I In addition, let (construct)
X̃ = {x | (x , y) ∈ (X ,Y), y = 1} ∪ {−x | (x , y) ∈ (X ,Y), y = 0}.

I Let w̃ exist such that for some ρ0 > 0 it holds

min
x̃∈X̃

w̃T x̃
‖w̃‖

≥ ρ0 .

i.e. the classes are linearly separable via the origin with margin ρ0.
I Let 0 < D <∞ exist such that it holds

max
x∈X
‖x‖ < D .

Theorem (Novikoff, 1962)
The perceptron constructs a hyperplane that correctly separates all pairs
(x , y) ∈ (X ,Y) with the number of corrections at most⌊D2

ρ2
0

⌋
.

Novikoff’s convergence theorem
I Let w0 = 0 and set γ = 1.
I Let (X ,Y) = (x1, y1), ..., (x i , yi), ... be an infinite training sequence.

I In addition, let (construct)
X̃ = {x | (x , y) ∈ (X ,Y), y = 1} ∪ {−x | (x , y) ∈ (X ,Y), y = 0}.

I Let w̃ exist such that for some ρ0 > 0 it holds

min
x̃∈X̃

w̃T x̃
‖w̃‖

≥ ρ0 .

i.e. the classes are linearly separable via the origin with margin ρ0.
I Let 0 < D <∞ exist such that it holds

max
x∈X
‖x‖ < D .

Theorem (Novikoff, 1962)
The perceptron constructs a hyperplane that correctly separates all pairs
(x , y) ∈ (X ,Y) with the number of corrections at most⌊D2

ρ2
0

⌋
.

Novikoff’s convergence theorem
I Let w0 = 0 and set γ = 1.
I Let (X ,Y) = (x1, y1), ..., (x i , yi), ... be an infinite training sequence.
I In addition, let (construct)
X̃ = {x | (x , y) ∈ (X ,Y), y = 1} ∪ {−x | (x , y) ∈ (X ,Y), y = 0}.

I Let w̃ exist such that for some ρ0 > 0 it holds

min
x̃∈X̃

w̃T x̃
‖w̃‖

≥ ρ0 .

i.e. the classes are linearly separable via the origin with margin ρ0.
I Let 0 < D <∞ exist such that it holds

max
x∈X
‖x‖ < D .

Theorem (Novikoff, 1962)
The perceptron constructs a hyperplane that correctly separates all pairs
(x , y) ∈ (X ,Y) with the number of corrections at most⌊D2

ρ2
0

⌋
.

Novikoff’s convergence theorem
I Let w0 = 0 and set γ = 1.
I Let (X ,Y) = (x1, y1), ..., (x i , yi), ... be an infinite training sequence.
I In addition, let (construct)
X̃ = {x | (x , y) ∈ (X ,Y), y = 1} ∪ {−x | (x , y) ∈ (X ,Y), y = 0}.

I Let w̃ exist such that for some ρ0 > 0 it holds

min
x̃∈X̃

w̃T x̃
‖w̃‖

≥ ρ0 .

i.e. the classes are linearly separable via the origin with margin ρ0.

I Let 0 < D <∞ exist such that it holds

max
x∈X
‖x‖ < D .

Theorem (Novikoff, 1962)
The perceptron constructs a hyperplane that correctly separates all pairs
(x , y) ∈ (X ,Y) with the number of corrections at most⌊D2

ρ2
0

⌋
.

Novikoff’s convergence theorem
I Let w0 = 0 and set γ = 1.
I Let (X ,Y) = (x1, y1), ..., (x i , yi), ... be an infinite training sequence.
I In addition, let (construct)
X̃ = {x | (x , y) ∈ (X ,Y), y = 1} ∪ {−x | (x , y) ∈ (X ,Y), y = 0}.

I Let w̃ exist such that for some ρ0 > 0 it holds

min
x̃∈X̃

w̃T x̃
‖w̃‖

≥ ρ0 .

i.e. the classes are linearly separable via the origin with margin ρ0.
I Let 0 < D <∞ exist such that it holds

max
x∈X
‖x‖ < D .

Theorem (Novikoff, 1962)
The perceptron constructs a hyperplane that correctly separates all pairs
(x , y) ∈ (X ,Y) with the number of corrections at most⌊D2

ρ2
0

⌋
.

Novikoff’s convergence theorem

0 y=0

y=1

Theorem (Novikoff, 1962)
The perceptron constructs a hyperplane that correctly separates all pairs
(x , y) ∈ (X ,Y) with the number of corrections at most⌊D2

ρ2
0

⌋
.

Novikoff’s convergence theorem

0 y=0

y=1

Theorem (Novikoff, 1962)
The perceptron constructs a hyperplane that correctly separates all pairs
(x , y) ∈ (X ,Y) with the number of corrections at most⌊D2

ρ2
0

⌋
.

Novikoff’s convergence theorem

0 y=0

y=1

Theorem (Novikoff, 1962)
The perceptron constructs a hyperplane that correctly separates all pairs
(x , y) ∈ (X ,Y) with the number of corrections at most⌊D2

ρ2
0

⌋
.

Novikoff’s convergence theorem

0 y=0

y=1

D

ρ 0

w x=0 T~

Theorem (Novikoff, 1962)
The perceptron constructs a hyperplane that correctly separates all pairs
(x , y) ∈ (X ,Y) with the number of corrections at most⌊D2

ρ2
0

⌋
.

Contents

Rosenblatt’s perceptron
Biological analogy
Historical learning algorithm
Novikoff’s convergence theorem

Signal-flow notation and model of an artificial neuron

Least-mean-squares
Minimization of the empirical risk
Method of gradient descent
The least-mean-square algorithm

The back-propagation algorithm
Derivation for a single-layer network
Propagation for a multilayer network
An example of the activation function

Additional information on learning networks
Regularization in neural networks
Some remarks on the back-propagation

A signal-flow graph
A signal-flaw graph is a network of directed links (branches) that are
interconnected at certain points called nodes.

1. A signal flows along a link only in the direction defined by the arrow
on the link.
There are two types of links:

I Synaptic links: behavior is defined by a linear input-output relation.
Specifically, the node signal xj is multiplied with the synaptic weight
wkj to produce the node signal yk .

I Activation links: behavior is defined by a nonlinear input-output
relation. The change of the signal is performed due to the activation
function φ(·).

2. A node signal equals the algebraic sum of all signals entering the
pertinent node via the incoming links: synaptic convergence or
fan-in.

3. The signal at node is transmitted to each outgoing link originating
from that node, with the transmission entirely independent of the
transfer functions of the outgoing links: synaptic divergence or
fan-out.

A signal-flow graph
A signal-flaw graph is a network of directed links (branches) that are
interconnected at certain points called nodes.

1. A signal flows along a link only in the direction defined by the arrow
on the link.
There are two types of links:

I Synaptic links: behavior is defined by a linear input-output relation.
Specifically, the node signal xj is multiplied with the synaptic weight
wkj to produce the node signal yk .

I Activation links: behavior is defined by a nonlinear input-output
relation. The change of the signal is performed due to the activation
function φ(·).

2. A node signal equals the algebraic sum of all signals entering the
pertinent node via the incoming links: synaptic convergence or
fan-in.

3. The signal at node is transmitted to each outgoing link originating
from that node, with the transmission entirely independent of the
transfer functions of the outgoing links: synaptic divergence or
fan-out.

A signal-flow graph
A signal-flaw graph is a network of directed links (branches) that are
interconnected at certain points called nodes.

1. A signal flows along a link only in the direction defined by the arrow
on the link.
There are two types of links:

I Synaptic links: behavior is defined by a linear input-output relation.
Specifically, the node signal xj is multiplied with the synaptic weight
wkj to produce the node signal yk .

I Activation links: behavior is defined by a nonlinear input-output
relation. The change of the signal is performed due to the activation
function φ(·).

2. A node signal equals the algebraic sum of all signals entering the
pertinent node via the incoming links: synaptic convergence or
fan-in.

3. The signal at node is transmitted to each outgoing link originating
from that node, with the transmission entirely independent of the
transfer functions of the outgoing links: synaptic divergence or
fan-out.

A signal-flow graph
A signal-flaw graph is a network of directed links (branches) that are
interconnected at certain points called nodes.

1. A signal flows along a link only in the direction defined by the arrow
on the link.
There are two types of links:

I Synaptic links: behavior is defined by a linear input-output relation.
Specifically, the node signal xj is multiplied with the synaptic weight
wkj to produce the node signal yk .

I Activation links: behavior is defined by a nonlinear input-output
relation. The change of the signal is performed due to the activation
function φ(·).

2. A node signal equals the algebraic sum of all signals entering the
pertinent node via the incoming links: synaptic convergence or
fan-in.

3. The signal at node is transmitted to each outgoing link originating
from that node, with the transmission entirely independent of the
transfer functions of the outgoing links: synaptic divergence or
fan-out.

A signal-flow graph
A signal-flaw graph is a network of directed links (branches) that are
interconnected at certain points called nodes.

1. A signal flows along a link only in the direction defined by the arrow
on the link.
There are two types of links:

I Synaptic links: behavior is defined by a linear input-output relation.
Specifically, the node signal xj is multiplied with the synaptic weight
wkj to produce the node signal yk .

I Activation links: behavior is defined by a nonlinear input-output
relation. The change of the signal is performed due to the activation
function φ(·).

2. A node signal equals the algebraic sum of all signals entering the
pertinent node via the incoming links: synaptic convergence or
fan-in.

3. The signal at node is transmitted to each outgoing link originating
from that node, with the transmission entirely independent of the
transfer functions of the outgoing links: synaptic divergence or
fan-out.

A signal-flow graph
A signal-flaw graph is a network of directed links (branches) that are
interconnected at certain points called nodes.

1. A signal flows along a link only in the direction defined by the arrow
on the link.
There are two types of links:

I Synaptic links: behavior is defined by a linear input-output relation.
Specifically, the node signal xj is multiplied with the synaptic weight
wkj to produce the node signal yk .

I Activation links: behavior is defined by a nonlinear input-output
relation. The change of the signal is performed due to the activation
function φ(·).

2. A node signal equals the algebraic sum of all signals entering the
pertinent node via the incoming links: synaptic convergence or
fan-in.

3. The signal at node is transmitted to each outgoing link originating
from that node, with the transmission entirely independent of the
transfer functions of the outgoing links: synaptic divergence or
fan-out.

A signal-flow graph of a neuron

y k

w k0

w k1

w k2

w km

v k

x 1

x 2

x m

x = +1 0

φ (•) k

Definition of a neural network

A neural network is a directed graph consisting of nodes with
interconnecting synaptic and activation links and is characterized by four
properties:

1. Each neuron is represented by a set of linear synaptic links, an
externally applied bias, and a possibly nonlinear activation link. The
bias is represented by a synaptic link connected to an input fixed at
+1.

2. The synaptic links of a neuron weight their respective input signals.

3. The weighted sum of the input signals defines the induced local
field of the neuron in question.

4. The activation link squashes the induced local field of the neuron
to produce output.

Definition of a neural network

A neural network is a directed graph consisting of nodes with
interconnecting synaptic and activation links and is characterized by four
properties:

1. Each neuron is represented by a set of linear synaptic links, an
externally applied bias, and a possibly nonlinear activation link. The
bias is represented by a synaptic link connected to an input fixed at
+1.

2. The synaptic links of a neuron weight their respective input signals.

3. The weighted sum of the input signals defines the induced local
field of the neuron in question.

4. The activation link squashes the induced local field of the neuron
to produce output.

Definition of a neural network

A neural network is a directed graph consisting of nodes with
interconnecting synaptic and activation links and is characterized by four
properties:

1. Each neuron is represented by a set of linear synaptic links, an
externally applied bias, and a possibly nonlinear activation link. The
bias is represented by a synaptic link connected to an input fixed at
+1.

2. The synaptic links of a neuron weight their respective input signals.

3. The weighted sum of the input signals defines the induced local
field of the neuron in question.

4. The activation link squashes the induced local field of the neuron
to produce output.

Definition of a neural network

A neural network is a directed graph consisting of nodes with
interconnecting synaptic and activation links and is characterized by four
properties:

1. Each neuron is represented by a set of linear synaptic links, an
externally applied bias, and a possibly nonlinear activation link. The
bias is represented by a synaptic link connected to an input fixed at
+1.

2. The synaptic links of a neuron weight their respective input signals.

3. The weighted sum of the input signals defines the induced local
field of the neuron in question.

4. The activation link squashes the induced local field of the neuron
to produce output.

Definition of a neural network

A neural network is a directed graph consisting of nodes with
interconnecting synaptic and activation links and is characterized by four
properties:

1. Each neuron is represented by a set of linear synaptic links, an
externally applied bias, and a possibly nonlinear activation link. The
bias is represented by a synaptic link connected to an input fixed at
+1.

2. The synaptic links of a neuron weight their respective input signals.

3. The weighted sum of the input signals defines the induced local
field of the neuron in question.

4. The activation link squashes the induced local field of the neuron
to produce output.

Activation function φ(v)

I Threshold (Heaviside) function:

φ(v) =

{
1 if v ≥ 0 ,

0 if v < 0 .

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Threshold (Heaviside) activation function

v

φ

Activation function φ(v)

I Piecewise-linear function:

φ(v) =

1 if v ≥ 1

2 ,

v + 1
2 if − 1

2 < v < 1
2 ,

0 if v ≤ − 1
2 .

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Piecewise−linear activation function

v

φ

Activation function φ(v)

I Sigmoid function:

φ(v) =
1

1 + exp(−av)
.

−10 −5 0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sigmoid activation function

v

φ

Contents

Rosenblatt’s perceptron
Biological analogy
Historical learning algorithm
Novikoff’s convergence theorem

Signal-flow notation and model of an artificial neuron

Least-mean-squares
Minimization of the empirical risk
Method of gradient descent
The least-mean-square algorithm

The back-propagation algorithm
Derivation for a single-layer network
Propagation for a multilayer network
An example of the activation function

Additional information on learning networks
Regularization in neural networks
Some remarks on the back-propagation

Contents

Rosenblatt’s perceptron
Biological analogy
Historical learning algorithm
Novikoff’s convergence theorem

Signal-flow notation and model of an artificial neuron

Least-mean-squares
Minimization of the empirical risk
Method of gradient descent
The least-mean-square algorithm

The back-propagation algorithm
Derivation for a single-layer network
Propagation for a multilayer network
An example of the activation function

Additional information on learning networks
Regularization in neural networks
Some remarks on the back-propagation

Minimization of the empirical risk (reminder)

I For:
- a random pair (X ,Y),
- a loss function ` : R× R→ R
one seeks a classifier close to:

g∗ = argmin
g

E[`(g(X),Y)] .

I Strategy: Given a training sample (x1, y1), (x2, y2), ..., (xn, yn) of
(X ,Y), one minimizes the empirical version of E[`(g(X),Y)]:

1

n

n∑
i=1

`
(
g(x i), yi

)
.

I Method: Numerical optimization, e.g., gradient descent.

I Stochastic gradient descent: Use a single (randomly drawn)
observation to iteratively approximate g∗.

Contents

Rosenblatt’s perceptron
Biological analogy
Historical learning algorithm
Novikoff’s convergence theorem

Signal-flow notation and model of an artificial neuron

Least-mean-squares
Minimization of the empirical risk
Method of gradient descent
The least-mean-square algorithm

The back-propagation algorithm
Derivation for a single-layer network
Propagation for a multilayer network
An example of the activation function

Additional information on learning networks
Regularization in neural networks
Some remarks on the back-propagation

Method of gradient descent
I Consider a cost function E that is continuously differentiable

function of some unknown weight (parameter) vector w .

I In the method of gradient descent, the successive adjustments are
applied to w in the direction of gradient descent, i.e. in the
direction opposite to the gradient vector ∇E :

g = ∇E(w) =
(∂E
∂w1

ew1 ,
∂E
∂w2

ew2 , ...,
∂E
∂wm

ewm

)T
.

I The step of the algorithm is then defined as

w(n + 1) = w(n)− γg(n) ,

where γ is the learning rate.

I When going from iteration n to iteration n + 1, the correction is
applied to the weights:

∆w(n) = w(n + 1)−w(n)

= −γg(n) .

Method of gradient descent
I Consider a cost function E that is continuously differentiable

function of some unknown weight (parameter) vector w .

I In the method of gradient descent, the successive adjustments are
applied to w in the direction of gradient descent, i.e. in the
direction opposite to the gradient vector ∇E :

g = ∇E(w) =
(∂E
∂w1

ew1 ,
∂E
∂w2

ew2 , ...,
∂E
∂wm

ewm

)T
.

I The step of the algorithm is then defined as

w(n + 1) = w(n)− γg(n) ,

where γ is the learning rate.

I When going from iteration n to iteration n + 1, the correction is
applied to the weights:

∆w(n) = w(n + 1)−w(n)

= −γg(n) .

Method of gradient descent
I Consider a cost function E that is continuously differentiable

function of some unknown weight (parameter) vector w .

I In the method of gradient descent, the successive adjustments are
applied to w in the direction of gradient descent, i.e. in the
direction opposite to the gradient vector ∇E :

g = ∇E(w) =
(∂E
∂w1

ew1 ,
∂E
∂w2

ew2 , ...,
∂E
∂wm

ewm

)T
.

I The step of the algorithm is then defined as

w(n + 1) = w(n)− γg(n) ,

where γ is the learning rate.

I When going from iteration n to iteration n + 1, the correction is
applied to the weights:

∆w(n) = w(n + 1)−w(n)

= −γg(n) .

Method of gradient descent
I Consider a cost function E that is continuously differentiable

function of some unknown weight (parameter) vector w .

I In the method of gradient descent, the successive adjustments are
applied to w in the direction of gradient descent, i.e. in the
direction opposite to the gradient vector ∇E :

g = ∇E(w) =
(∂E
∂w1

ew1 ,
∂E
∂w2

ew2 , ...,
∂E
∂wm

ewm

)T
.

I The step of the algorithm is then defined as

w(n + 1) = w(n)− γg(n) ,

where γ is the learning rate.

I When going from iteration n to iteration n + 1, the correction is
applied to the weights:

∆w(n) = w(n + 1)−w(n)

= −γg(n) .

Method of gradient descent

I Let us show that the constructed algorithm fulfills the idea of the
iterative descent, i.e. that it satisfies

E
(
w(n + 1)

)
< E

(
w(n)

)
.

I Using the first-order Taylor series expansion around w(n) to
approximate E

(
w(n + 1)

)
as

E
(
w(n + 1)

)
≈ E

(
w(n)

)
+ gT (n)∆w(n)

is justified for γ small enough.

I Substituting ∆w(n) gives:

E
(
w(n + 1)

)
≈ E

(
w(n)

)
− γgT (n)g(n)

= E
(
w(n)

)
− γ‖g(n)‖2 ,

and thus for a positive learning rate the cost function decreases on
each iteration.

Method of gradient descent

I Let us show that the constructed algorithm fulfills the idea of the
iterative descent, i.e. that it satisfies

E
(
w(n + 1)

)
< E

(
w(n)

)
.

I Using the first-order Taylor series expansion around w(n) to
approximate E

(
w(n + 1)

)
as

E
(
w(n + 1)

)
≈ E

(
w(n)

)
+ gT (n)∆w(n)

is justified for γ small enough.

I Substituting ∆w(n) gives:

E
(
w(n + 1)

)
≈ E

(
w(n)

)
− γgT (n)g(n)

= E
(
w(n)

)
− γ‖g(n)‖2 ,

and thus for a positive learning rate the cost function decreases on
each iteration.

Method of gradient descent

I Let us show that the constructed algorithm fulfills the idea of the
iterative descent, i.e. that it satisfies

E
(
w(n + 1)

)
< E

(
w(n)

)
.

I Using the first-order Taylor series expansion around w(n) to
approximate E

(
w(n + 1)

)
as

E
(
w(n + 1)

)
≈ E

(
w(n)

)
+ gT (n)∆w(n)

is justified for γ small enough.

I Substituting ∆w(n) gives:

E
(
w(n + 1)

)
≈ E

(
w(n)

)
− γgT (n)g(n)

= E
(
w(n)

)
− γ‖g(n)‖2 ,

and thus for a positive learning rate the cost function decreases on
each iteration.

Method of gradient descent: example (slow learning rate)

−4 −2 0 2 4

0
2

4
6

8
10

12

Gradient descent, learnign rate = 0.35, iter = 0

w

E
(w

)

●

●

Method of gradient descent: example (slow learning rate)

−4 −2 0 2 4

0
2

4
6

8
10

12

Gradient descent, learnign rate = 0.35, iter = 1

w

E
(w

)

●

●

●

●

Method of gradient descent: example (slow learning rate)

−4 −2 0 2 4

0
2

4
6

8
10

12

Gradient descent, learnign rate = 0.35, iter = 2

w

E
(w

)

●

●

●

●

●

Method of gradient descent: example (slow learning rate)

−4 −2 0 2 4

0
2

4
6

8
10

12

Gradient descent, learnign rate = 0.35, iter = 3

w

E
(w

)

●

●

●

●

●

●

Method of gradient descent: example (slow learning rate)

−4 −2 0 2 4

0
2

4
6

8
10

12

Gradient descent, learnign rate = 0.35, iter = 4

w

E
(w

)

●

●

●

●

●

●

●

Method of gradient descent: example (slow learning rate)

−4 −2 0 2 4

0
2

4
6

8
10

12

Gradient descent, learnign rate = 0.35, iter = 5

w

E
(w

)

●

●

●

●

●

●
●
●

Method of gradient descent: example (slow learning rate)

−4 −2 0 2 4

0
2

4
6

8
10

12

Gradient descent, learnign rate = 0.35, iter = 6

w

E
(w

)

●

●

●

●

●

●
●●●

Method of gradient descent: example (slow learning rate)

−4 −2 0 2 4

0
2

4
6

8
10

12

Gradient descent, learnign rate = 0.35, iter = 7

w

E
(w

)

●

●

●

●

●

●
●●●●

Method of gradient descent: example (slow learning rate)

−4 −2 0 2 4

0
2

4
6

8
10

12

Gradient descent, learnign rate = 0.35, iter = 8

w

E
(w

)

●

●

●

●

●

●
●●●●●

Method of gradient descent: example (slow learning rate)

−4 −2 0 2 4

0
2

4
6

8
10

12

Gradient descent, learnign rate = 0.35, iter = 9

w

E
(w

)

●

●

●

●

●

●
●●●●●●

Method of gradient descent: example (slow learning rate)

−4 −2 0 2 4

0
2

4
6

8
10

12

Gradient descent, learnign rate = 0.35, iter = 10

w

E
(w

)

●

●

●

●

●

●
●●●●●●●

Method of gradient descent: example (fast learning rate)

−4 −2 0 2 4

0
2

4
6

8
10

12

Gradient descent, learnign rate = 1.65, iter = 0

w

E
(w

)

●

●

Method of gradient descent: example (fast learning rate)

−4 −2 0 2 4

0
2

4
6

8
10

12

Gradient descent, learnign rate = 1.65, iter = 1

w

E
(w

)

●

●

●

●

Method of gradient descent: example (fast learning rate)

−4 −2 0 2 4

0
2

4
6

8
10

12

Gradient descent, learnign rate = 1.65, iter = 2

w

E
(w

)

●

●

●

●

●

Method of gradient descent: example (fast learning rate)

−4 −2 0 2 4

0
2

4
6

8
10

12

Gradient descent, learnign rate = 1.65, iter = 3

w

E
(w

)

●

●

●

●

●

●

Method of gradient descent: example (fast learning rate)

−4 −2 0 2 4

0
2

4
6

8
10

12

Gradient descent, learnign rate = 1.65, iter = 4

w

E
(w

)

●

●

●

●

●

●

●

Method of gradient descent: example (fast learning rate)

−4 −2 0 2 4

0
2

4
6

8
10

12

Gradient descent, learnign rate = 1.65, iter = 5

w

E
(w

)

●

●

●

●

●

●
●
●

Method of gradient descent: example (fast learning rate)

−4 −2 0 2 4

0
2

4
6

8
10

12

Gradient descent, learnign rate = 1.65, iter = 6

w

E
(w

)

●

●

●

●

●

●
● ●●

Method of gradient descent: example (fast learning rate)

−4 −2 0 2 4

0
2

4
6

8
10

12

Gradient descent, learnign rate = 1.65, iter = 7

w

E
(w

)

●

●

●

●

●

●
● ●●●

Method of gradient descent: example (fast learning rate)

−4 −2 0 2 4

0
2

4
6

8
10

12

Gradient descent, learnign rate = 1.65, iter = 8

w

E
(w

)

●

●

●

●

●

●
● ●● ●●

Method of gradient descent: example (fast learning rate)

−4 −2 0 2 4

0
2

4
6

8
10

12

Gradient descent, learnign rate = 1.65, iter = 9

w

E
(w

)

●

●

●

●

●

●
● ●● ●●●

Method of gradient descent: example (fast learning rate)

−4 −2 0 2 4

0
2

4
6

8
10

12

Gradient descent, learnign rate = 1.65, iter = 10

w

E
(w

)

●

●

●

●

●

●
● ●● ●●●●

Method of gradient descent, choice of learning rate

The method converges to the optimal solution slowly.
Moreover, the learning rate γ has a profound influence on its
convergence behavior:

I When γ is small, the transient response of the algorithm is
overdamped, and the trajectory of w(n) follows a smooth path in
the parameter space.

I When γ is large, the transient response is underdamped, and the
trajectory of w(n) follows a zigzagging (oscillatory) path.

I When γ exceeds a certain critical value, the algorithm becomes
unstable and may diverge.

Method of gradient descent, choice of learning rate

The method converges to the optimal solution slowly.
Moreover, the learning rate γ has a profound influence on its
convergence behavior:

I When γ is small, the transient response of the algorithm is
overdamped, and the trajectory of w(n) follows a smooth path in
the parameter space.

I When γ is large, the transient response is underdamped, and the
trajectory of w(n) follows a zigzagging (oscillatory) path.

I When γ exceeds a certain critical value, the algorithm becomes
unstable and may diverge.

Method of gradient descent, choice of learning rate

The method converges to the optimal solution slowly.
Moreover, the learning rate γ has a profound influence on its
convergence behavior:

I When γ is small, the transient response of the algorithm is
overdamped, and the trajectory of w(n) follows a smooth path in
the parameter space.

I When γ is large, the transient response is underdamped, and the
trajectory of w(n) follows a zigzagging (oscillatory) path.

I When γ exceeds a certain critical value, the algorithm becomes
unstable and may diverge.

Method of gradient descent, choice of learning rate

The method converges to the optimal solution slowly.
Moreover, the learning rate γ has a profound influence on its
convergence behavior:

I When γ is small, the transient response of the algorithm is
overdamped, and the trajectory of w(n) follows a smooth path in
the parameter space.

I When γ is large, the transient response is underdamped, and the
trajectory of w(n) follows a zigzagging (oscillatory) path.

I When γ exceeds a certain critical value, the algorithm becomes
unstable and may diverge.

Method of gradient descent: example (divergent case)

−4 −2 0 2 4

0
2

4
6

8
10

12

Gradient descent, learnign rate = 2.5, iter = 0

w

E
(w

)

●

●

Method of gradient descent: example (divergent case)

−4 −2 0 2 4

0
2

4
6

8
10

12

Gradient descent, learnign rate = 2.5, iter = 1

w

E
(w

)

●

●

●

●

Method of gradient descent: example (divergent case)

−4 −2 0 2 4

0
2

4
6

8
10

12

Gradient descent, learnign rate = 2.5, iter = 2

w

E
(w

)

●

●

●

●

●

Method of gradient descent: example (divergent case)

−4 −2 0 2 4

0
2

4
6

8
10

12

Gradient descent, learnign rate = 2.5, iter = 3

w

E
(w

)

●

●

●

●

●

●

Method of gradient descent: example (divergent case)

−4 −2 0 2 4

0
2

4
6

8
10

12

Gradient descent, learnign rate = 2.5, iter = 4

w

E
(w

)

●

●

●

●

●

●

●

Method of gradient descent: example (divergent case)

−4 −2 0 2 4

0
2

4
6

8
10

12

Gradient descent, learnign rate = 2.5, iter = 5

w

E
(w

)

●

●

●

●

●

●

A signal-flow graph of a simplified neuron

y k

w k1

w k2

w k3

w km

v k

x 2

x 3

x m

x 1

Method of gradient descent: iris data
I A simplified neuron has the following prediction function:

pw (x) =
m∑

q=1

wqxq .

I For a data sample (x1, y1), (x2, y2) ..., (xn, yn), let us measure its
empirical error by a convex function, e.g. using the quadratic loss:

E(w) =
1

2
× 1

n

n∑
j=1

ej(w)2 =
1

2
× 1

n

n∑
j=1

(
yj − pw (x j)

)2
.

I The gradient equals:

g = ∇E(w) = −1

n

n∑
j=1

(
yj − pw (x j)

)
x j .

I The step of the algorithm is then:

w(i + 1) = w(i)− γg(i) = w(i) +
γ

n

n∑
j=1

(
yj −w(i)Tx j

)
x j .

Method of gradient descent: iris data
I A simplified neuron has the following prediction function:

pw (x) =
m∑

q=1

wqxq .

I For a data sample (x1, y1), (x2, y2) ..., (xn, yn), let us measure its
empirical error by a convex function, e.g. using the quadratic loss:

E(w) =
1

2
× 1

n

n∑
j=1

ej(w)2 =
1

2
× 1

n

n∑
j=1

(
yj − pw (x j)

)2
.

I The gradient equals:

g = ∇E(w) = −1

n

n∑
j=1

(
yj − pw (x j)

)
x j .

I The step of the algorithm is then:

w(i + 1) = w(i)− γg(i) = w(i) +
γ

n

n∑
j=1

(
yj −w(i)Tx j

)
x j .

Method of gradient descent: iris data
I A simplified neuron has the following prediction function:

pw (x) =
m∑

q=1

wqxq .

I For a data sample (x1, y1), (x2, y2) ..., (xn, yn), let us measure its
empirical error by a convex function, e.g. using the quadratic loss:

E(w) =
1

2
× 1

n

n∑
j=1

ej(w)2 =
1

2
× 1

n

n∑
j=1

(
yj − pw (x j)

)2
.

I The gradient equals:

g = ∇E(w) = −1

n

n∑
j=1

(
yj − pw (x j)

)
x j .

I The step of the algorithm is then:

w(i + 1) = w(i)− γg(i) = w(i) +
γ

n

n∑
j=1

(
yj −w(i)Tx j

)
x j .

Method of gradient descent: iris data
I A simplified neuron has the following prediction function:

pw (x) =
m∑

q=1

wqxq .

I For a data sample (x1, y1), (x2, y2) ..., (xn, yn), let us measure its
empirical error by a convex function, e.g. using the quadratic loss:

E(w) =
1

2
× 1

n

n∑
j=1

ej(w)2 =
1

2
× 1

n

n∑
j=1

(
yj − pw (x j)

)2
.

I The gradient equals:

g = ∇E(w) = −1

n

n∑
j=1

(
yj − pw (x j)

)
x j .

I The step of the algorithm is then:

w(i + 1) = w(i)− γg(i) = w(i) +
γ

n

n∑
j=1

(
yj −w(i)Tx j

)
x j .

Method of gradient descent: iris data

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data: gradient descent rule after correction 0

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

Method of gradient descent: iris data

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data: gradient descent rule after correction 1

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

Method of gradient descent: iris data

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data: gradient descent rule after correction 2

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

Method of gradient descent: iris data

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data: gradient descent rule after correction 3

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

Method of gradient descent: iris data

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data: gradient descent rule after correction 4

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

Method of gradient descent: iris data

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data: gradient descent rule after correction 5

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

Method of gradient descent: iris data

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data: gradient descent rule after correction 6

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

Method of gradient descent: iris data

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data: gradient descent rule after correction 7

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

Method of gradient descent: iris data

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data: gradient descent rule after correction 8

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

Method of gradient descent: iris data

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data: gradient descent rule after correction 9

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

Method of gradient descent: iris data

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data: gradient descent rule after correction 10

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

Method of gradient descent: iris data

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data: gradient descent rule

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

Method of gradient descent: iris data

0 200 400 600 800 1000

2
4

6
8

10
12

Error of the gradient descent rule on the training data

Observation evaluation iteration

E
rr

or
 o

n
th

e
tr

ai
ni

ng
 s

am
pl

e

Contents

Rosenblatt’s perceptron
Biological analogy
Historical learning algorithm
Novikoff’s convergence theorem

Signal-flow notation and model of an artificial neuron

Least-mean-squares
Minimization of the empirical risk
Method of gradient descent
The least-mean-square algorithm

The back-propagation algorithm
Derivation for a single-layer network
Propagation for a multilayer network
An example of the activation function

Additional information on learning networks
Regularization in neural networks
Some remarks on the back-propagation

The least-mean-square algorithm
I The least-mean-square (LMS) algorithm attempts to minimize

the instantaneous value of the cost function

E(ŵ) =
1

2
e2(n) ,

where e(n) is the error measured at time n.

I Differentiating E(ŵ) w.r.t. ŵ gives:

∂E(ŵ)

∂ŵ
= e(n)

∂e(n)

∂ŵ
.

I When operating on the linear neuron, the error can be expressed as:

e(n) = d(n)− xT (n)ŵ(n) .

I Thus

∂e(n)

∂ŵ
= −x(n) and

∂E(ŵ)

∂ŵ(n)
= −x(n)e(n) = ĝ(n) .

I Now, LMS can be formulated as follows:

ŵ(n + 1) = ŵ(n) + γx(n)e(n) .

The least-mean-square algorithm
I The least-mean-square (LMS) algorithm attempts to minimize

the instantaneous value of the cost function

E(ŵ) =
1

2
e2(n) ,

where e(n) is the error measured at time n.
I Differentiating E(ŵ) w.r.t. ŵ gives:

∂E(ŵ)

∂ŵ
= e(n)

∂e(n)

∂ŵ
.

I When operating on the linear neuron, the error can be expressed as:

e(n) = d(n)− xT (n)ŵ(n) .

I Thus

∂e(n)

∂ŵ
= −x(n) and

∂E(ŵ)

∂ŵ(n)
= −x(n)e(n) = ĝ(n) .

I Now, LMS can be formulated as follows:

ŵ(n + 1) = ŵ(n) + γx(n)e(n) .

The least-mean-square algorithm
I The least-mean-square (LMS) algorithm attempts to minimize

the instantaneous value of the cost function

E(ŵ) =
1

2
e2(n) ,

where e(n) is the error measured at time n.
I Differentiating E(ŵ) w.r.t. ŵ gives:

∂E(ŵ)

∂ŵ
= e(n)

∂e(n)

∂ŵ
.

I When operating on the linear neuron, the error can be expressed as:

e(n) = d(n)− xT (n)ŵ(n) .

I Thus

∂e(n)

∂ŵ
= −x(n) and

∂E(ŵ)

∂ŵ(n)
= −x(n)e(n) = ĝ(n) .

I Now, LMS can be formulated as follows:

ŵ(n + 1) = ŵ(n) + γx(n)e(n) .

The least-mean-square algorithm
I The least-mean-square (LMS) algorithm attempts to minimize

the instantaneous value of the cost function

E(ŵ) =
1

2
e2(n) ,

where e(n) is the error measured at time n.
I Differentiating E(ŵ) w.r.t. ŵ gives:

∂E(ŵ)

∂ŵ
= e(n)

∂e(n)

∂ŵ
.

I When operating on the linear neuron, the error can be expressed as:

e(n) = d(n)− xT (n)ŵ(n) .

I Thus

∂e(n)

∂ŵ
= −x(n) and

∂E(ŵ)

∂ŵ(n)
= −x(n)e(n) = ĝ(n) .

I Now, LMS can be formulated as follows:

ŵ(n + 1) = ŵ(n) + γx(n)e(n) .

The least-mean-square algorithm
I The least-mean-square (LMS) algorithm attempts to minimize

the instantaneous value of the cost function

E(ŵ) =
1

2
e2(n) ,

where e(n) is the error measured at time n.
I Differentiating E(ŵ) w.r.t. ŵ gives:

∂E(ŵ)

∂ŵ
= e(n)

∂e(n)

∂ŵ
.

I When operating on the linear neuron, the error can be expressed as:

e(n) = d(n)− xT (n)ŵ(n) .

I Thus

∂e(n)

∂ŵ
= −x(n) and

∂E(ŵ)

∂ŵ(n)
= −x(n)e(n) = ĝ(n) .

I Now, LMS can be formulated as follows:

ŵ(n + 1) = ŵ(n) + γx(n)e(n) .

The least-mean-square algorithm
Input:

I Input signals x(n) with correct outputs d(n) for n=1,2,...

I Learning rate γ.

Initialization:

I Set ŵ(1) = 0.

Iterations:
I For n = 1, 2, ... , compute

I e(n) = d(n) − ŵT (n)x(n),
I ŵ(n + 1) = ŵ(n) + γx(n)e(n).

Remarks:

I The inverse of the learning rate acts as a measure of the memory
of the LMS algorithm: the smaller γ is set, the longer the memory
span over which the LMS remembers the past data will be.

I Having ŵ(n) in place of w(n) emphasizes that the LMS algorithm
produces the instantaneous estimate of the weights, which would
result from the gradient descent.

I For this last reason, the LMS-updated weights ŵ(n) trace a random
trajectory in the parameter space: stochastic gradient descent.

The least-mean-square algorithm
Input:

I Input signals x(n) with correct outputs d(n) for n=1,2,...

I Learning rate γ.

Initialization:

I Set ŵ(1) = 0.

Iterations:
I For n = 1, 2, ... , compute

I e(n) = d(n) − ŵT (n)x(n),
I ŵ(n + 1) = ŵ(n) + γx(n)e(n).

Remarks:

I The inverse of the learning rate acts as a measure of the memory
of the LMS algorithm: the smaller γ is set, the longer the memory
span over which the LMS remembers the past data will be.

I Having ŵ(n) in place of w(n) emphasizes that the LMS algorithm
produces the instantaneous estimate of the weights, which would
result from the gradient descent.

I For this last reason, the LMS-updated weights ŵ(n) trace a random
trajectory in the parameter space: stochastic gradient descent.

The least-mean-square algorithm
Input:

I Input signals x(n) with correct outputs d(n) for n=1,2,...

I Learning rate γ.

Initialization:

I Set ŵ(1) = 0.

Iterations:
I For n = 1, 2, ... , compute

I e(n) = d(n) − ŵT (n)x(n),
I ŵ(n + 1) = ŵ(n) + γx(n)e(n).

Remarks:

I The inverse of the learning rate acts as a measure of the memory
of the LMS algorithm: the smaller γ is set, the longer the memory
span over which the LMS remembers the past data will be.

I Having ŵ(n) in place of w(n) emphasizes that the LMS algorithm
produces the instantaneous estimate of the weights, which would
result from the gradient descent.

I For this last reason, the LMS-updated weights ŵ(n) trace a random
trajectory in the parameter space: stochastic gradient descent.

The least-mean-square algorithm
Input:

I Input signals x(n) with correct outputs d(n) for n=1,2,...

I Learning rate γ.

Initialization:

I Set ŵ(1) = 0.

Iterations:
I For n = 1, 2, ... , compute

I e(n) = d(n) − ŵT (n)x(n),
I ŵ(n + 1) = ŵ(n) + γx(n)e(n).

Remarks:

I The inverse of the learning rate acts as a measure of the memory
of the LMS algorithm: the smaller γ is set, the longer the memory
span over which the LMS remembers the past data will be.

I Having ŵ(n) in place of w(n) emphasizes that the LMS algorithm
produces the instantaneous estimate of the weights, which would
result from the gradient descent.

I For this last reason, the LMS-updated weights ŵ(n) trace a random
trajectory in the parameter space: stochastic gradient descent.

The least-mean-square algorithm: iris data

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data: least−mean−square rule after correction 0

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

The least-mean-square algorithm: iris data

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data: least−mean−square rule after correction 1

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

The least-mean-square algorithm: iris data

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data: least−mean−square rule after correction 2

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

The least-mean-square algorithm: iris data

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data: least−mean−square rule after correction 3

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

The least-mean-square algorithm: iris data

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data: least−mean−square rule after correction 4

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

The least-mean-square algorithm: iris data

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data: least−mean−square rule after correction 5

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

The least-mean-square algorithm: iris data

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data: least−mean−square rule after correction 6

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

The least-mean-square algorithm: iris data

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data: least−mean−square rule after correction 7

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

The least-mean-square algorithm: iris data

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data: least−mean−square rule after correction 8

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

The least-mean-square algorithm: iris data

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data: least−mean−square rule after correction 9

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

The least-mean-square algorithm: iris data

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data: least−mean−square rule after correction 10

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

The least-mean-square algorithm: iris data

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data: least−mean−square rule after correction 11

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

The least-mean-square algorithm: iris data

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data: least−mean−square rule after correction 12

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

The least-mean-square algorithm: iris data

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data: least−mean−square rule after correction 13

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

The least-mean-square algorithm: iris data

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data: least−mean−square rule after correction 14

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

The least-mean-square algorithm: iris data

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data: least−mean−square rule after correction 15

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

The least-mean-square algorithm: iris data

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data: least−mean−square rule after correction 25

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

The least-mean-square algorithm: iris data

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data: least−mean−square rule after correction 50

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

The least-mean-square algorithm: iris data

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data: least−mean−square rule after correction 100

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

The least-mean-square algorithm: iris data

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris data: least−mean−square rule

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

The least-mean-square algorithm: iris data

0 20 40 60 80 100

2
4

6
8

10
12

Error of the least−mean−square rule on the training data

Observation evaluation iteration

E
rr

or
 o

n
th

e
tr

ai
ni

ng
 s

am
pl

e

Contents

Rosenblatt’s perceptron
Biological analogy
Historical learning algorithm
Novikoff’s convergence theorem

Signal-flow notation and model of an artificial neuron

Least-mean-squares
Minimization of the empirical risk
Method of gradient descent
The least-mean-square algorithm

The back-propagation algorithm
Derivation for a single-layer network
Propagation for a multilayer network
An example of the activation function

Additional information on learning networks
Regularization in neural networks
Some remarks on the back-propagation

Contents

Rosenblatt’s perceptron
Biological analogy
Historical learning algorithm
Novikoff’s convergence theorem

Signal-flow notation and model of an artificial neuron

Least-mean-squares
Minimization of the empirical risk
Method of gradient descent
The least-mean-square algorithm

The back-propagation algorithm
Derivation for a single-layer network
Propagation for a multilayer network
An example of the activation function

Additional information on learning networks
Regularization in neural networks
Some remarks on the back-propagation

Single layer perceptron

I n
 p

 u
 t

 s
 i

g
n

a
l

Output

signal

Input
layer

Output
layer

Preliminaries
I Error signal produced at the output of neuron j is defined by

ej(n) = dj(n)− yj(n) ,

where dj(n) is the correct output.

I As before, we define the cost function penalizing neuron j as

Ej(n) =
1

2
e2
j (n) .

I The induced local field vj(n) produced at the input of the
activation function associated with neuron j is therefore

vj(n) =
m∑
i=0

wji (n)yi (n) ,

where m is the number of inputs excluding bias applied to neuron j .

I The output signal yj(n) appearing at the output of neuron j at
iteration n equals:

yj(n) = φ
(
vj(n)

)
.

Preliminaries
I Error signal produced at the output of neuron j is defined by

ej(n) = dj(n)− yj(n) ,

where dj(n) is the correct output.

I As before, we define the cost function penalizing neuron j as

Ej(n) =
1

2
e2
j (n) .

I The induced local field vj(n) produced at the input of the
activation function associated with neuron j is therefore

vj(n) =
m∑
i=0

wji (n)yi (n) ,

where m is the number of inputs excluding bias applied to neuron j .

I The output signal yj(n) appearing at the output of neuron j at
iteration n equals:

yj(n) = φ
(
vj(n)

)
.

Preliminaries
I Error signal produced at the output of neuron j is defined by

ej(n) = dj(n)− yj(n) ,

where dj(n) is the correct output.

I As before, we define the cost function penalizing neuron j as

Ej(n) =
1

2
e2
j (n) .

I The induced local field vj(n) produced at the input of the
activation function associated with neuron j is therefore

vj(n) =
m∑
i=0

wji (n)yi (n) ,

where m is the number of inputs excluding bias applied to neuron j .

I The output signal yj(n) appearing at the output of neuron j at
iteration n equals:

yj(n) = φ
(
vj(n)

)
.

Preliminaries
I Error signal produced at the output of neuron j is defined by

ej(n) = dj(n)− yj(n) ,

where dj(n) is the correct output.

I As before, we define the cost function penalizing neuron j as

Ej(n) =
1

2
e2
j (n) .

I The induced local field vj(n) produced at the input of the
activation function associated with neuron j is therefore

vj(n) =
m∑
i=0

wji (n)yi (n) ,

where m is the number of inputs excluding bias applied to neuron j .

I The output signal yj(n) appearing at the output of neuron j at
iteration n equals:

yj(n) = φ
(
vj(n)

)
.

A signal-flow graph of a neuron and its output

w (n) j0

y = +1 0

φ (•) jw (n) ji

y (n) 1

y (n) i

y (n) m

v (n) j y (n) j

-1

d (n) j

e (n) j

A signal-flow graph of a neuron and its output

w (n) j0

y = +1 0

φ (•) jw (n) ji

y (n) 1

y (n) i

y (n) m

v (n) j y (n) j

-1

d (n) j

e (n) j

Neuron j

Derivation for a single (output-layer) neuron
I In a manner similar to the LMS algorithm, the back-propagation

algorithm applies a correction ∆wji (n) to the synaptic weight wji ,

which is proportional to the partial derivative ∂E(n)
∂wji (n) . Applying of

the chain rule of the calculus, this gradient can be expressed as:

∂E(n)

∂wji (n)
=

∂E(n)

∂ej(n)
× ∂ej(n)

∂yj(n)
× ∂yj(n)

∂vj(n)
× ∂vj(n)

∂wji (n)
.

I Partial derivatives equal:

∂E(n)

∂ej(n)
= ej(n) ,

∂ej(n)

∂yj(n)
= −1 ,

∂yj(n)

∂vj(n)
= φ′j

(
vj(n)

)
,

∂vj(n)

∂wji (n)
= yi (n) .

Derivation for a single (output-layer) neuron
I In a manner similar to the LMS algorithm, the back-propagation

algorithm applies a correction ∆wji (n) to the synaptic weight wji ,

which is proportional to the partial derivative ∂E(n)
∂wji (n) . Applying of

the chain rule of the calculus, this gradient can be expressed as:

∂E(n)

∂wji (n)
=
∂E(n)

∂ej(n)
×

∂ej(n)

∂yj(n)
× ∂yj(n)

∂vj(n)
× ∂vj(n)

∂wji (n)
.

I Partial derivatives equal:

∂E(n)

∂ej(n)
= ej(n) ,

∂ej(n)

∂yj(n)
= −1 ,

∂yj(n)

∂vj(n)
= φ′j

(
vj(n)

)
,

∂vj(n)

∂wji (n)
= yi (n) .

Derivation for a single (output-layer) neuron
I In a manner similar to the LMS algorithm, the back-propagation

algorithm applies a correction ∆wji (n) to the synaptic weight wji ,

which is proportional to the partial derivative ∂E(n)
∂wji (n) . Applying of

the chain rule of the calculus, this gradient can be expressed as:

∂E(n)

∂wji (n)
=
∂E(n)

∂ej(n)
× ∂ej(n)

∂yj(n)
×

∂yj(n)

∂vj(n)
× ∂vj(n)

∂wji (n)
.

I Partial derivatives equal:

∂E(n)

∂ej(n)
= ej(n) ,

∂ej(n)

∂yj(n)
= −1 ,

∂yj(n)

∂vj(n)
= φ′j

(
vj(n)

)
,

∂vj(n)

∂wji (n)
= yi (n) .

Derivation for a single (output-layer) neuron
I In a manner similar to the LMS algorithm, the back-propagation

algorithm applies a correction ∆wji (n) to the synaptic weight wji ,

which is proportional to the partial derivative ∂E(n)
∂wji (n) . Applying of

the chain rule of the calculus, this gradient can be expressed as:

∂E(n)

∂wji (n)
=
∂E(n)

∂ej(n)
× ∂ej(n)

∂yj(n)
× ∂yj(n)

∂vj(n)
×

∂vj(n)

∂wji (n)
.

I Partial derivatives equal:

∂E(n)

∂ej(n)
= ej(n) ,

∂ej(n)

∂yj(n)
= −1 ,

∂yj(n)

∂vj(n)
= φ′j

(
vj(n)

)
,

∂vj(n)

∂wji (n)
= yi (n) .

Derivation for a single (output-layer) neuron
I In a manner similar to the LMS algorithm, the back-propagation

algorithm applies a correction ∆wji (n) to the synaptic weight wji ,

which is proportional to the partial derivative ∂E(n)
∂wji (n) . Applying of

the chain rule of the calculus, this gradient can be expressed as:

∂E(n)

∂wji (n)
=
∂E(n)

∂ej(n)
× ∂ej(n)

∂yj(n)
× ∂yj(n)

∂vj(n)
× ∂vj(n)

∂wji (n)
.

I Partial derivatives equal:

∂E(n)

∂ej(n)
= ej(n) ,

∂ej(n)

∂yj(n)
= −1 ,

∂yj(n)

∂vj(n)
= φ′j

(
vj(n)

)
,

∂vj(n)

∂wji (n)
= yi (n) .

Derivation for a single (output-layer) neuron
I In a manner similar to the LMS algorithm, the back-propagation

algorithm applies a correction ∆wji (n) to the synaptic weight wji ,

which is proportional to the partial derivative ∂E(n)
∂wji (n) . Applying of

the chain rule of the calculus, this gradient can be expressed as:

∂E(n)

∂wji (n)
=
∂E(n)

∂ej(n)
× ∂ej(n)

∂yj(n)
× ∂yj(n)

∂vj(n)
× ∂vj(n)

∂wji (n)
.

I Partial derivatives equal:

∂E(n)

∂ej(n)
= ej(n) ,

∂ej(n)

∂yj(n)
= −1 ,

∂yj(n)

∂vj(n)
= φ′j

(
vj(n)

)
,

∂vj(n)

∂wji (n)
= yi (n) .

Derivation for a single (output-layer) neuron
I In a manner similar to the LMS algorithm, the back-propagation

algorithm applies a correction ∆wji (n) to the synaptic weight wji ,

which is proportional to the partial derivative ∂E(n)
∂wji (n) . Applying of

the chain rule of the calculus, this gradient can be expressed as:

∂E(n)

∂wji (n)
=
∂E(n)

∂ej(n)
× ∂ej(n)

∂yj(n)
× ∂yj(n)

∂vj(n)
× ∂vj(n)

∂wji (n)
.

I Partial derivatives equal:

∂E(n)

∂ej(n)
= ej(n) ,

∂ej(n)

∂yj(n)
= −1 ,

∂yj(n)

∂vj(n)
= φ′j

(
vj(n)

)
,

∂vj(n)

∂wji (n)
= yi (n) .

Derivation for a single (output-layer) neuron
I In a manner similar to the LMS algorithm, the back-propagation

algorithm applies a correction ∆wji (n) to the synaptic weight wji ,

which is proportional to the partial derivative ∂E(n)
∂wji (n) . Applying of

the chain rule of the calculus, this gradient can be expressed as:

∂E(n)

∂wji (n)
=
∂E(n)

∂ej(n)
× ∂ej(n)

∂yj(n)
× ∂yj(n)

∂vj(n)
× ∂vj(n)

∂wji (n)
.

I Partial derivatives equal:

∂E(n)

∂ej(n)
= ej(n) ,

∂ej(n)

∂yj(n)
= −1 ,

∂yj(n)

∂vj(n)
= φ′j

(
vj(n)

)
,

∂vj(n)

∂wji (n)
= yi (n) .

Derivation for a single (output-layer) neuron
I In a manner similar to the LMS algorithm, the back-propagation

algorithm applies a correction ∆wji (n) to the synaptic weight wji ,

which is proportional to the partial derivative ∂E(n)
∂wji (n) . Applying of

the chain rule of the calculus, this gradient can be expressed as:

∂E(n)

∂wji (n)
=
∂E(n)

∂ej(n)
× ∂ej(n)

∂yj(n)
× ∂yj(n)

∂vj(n)
× ∂vj(n)

∂wji (n)
.

I Partial derivatives equal:

∂E(n)

∂ej(n)
= ej(n) ,

∂ej(n)

∂yj(n)
= −1 ,

∂yj(n)

∂vj(n)
= φ′j

(
vj(n)

)
,

∂vj(n)

∂wji (n)
= yi (n) .

Derivation for a single (output-layer) neuron
I From these, the partial derivative can be composed as:

∂E(n)

∂wji (n)
= −ej(n)φ′j

(
vj(n)

)
yi (n) .

I This partial derivative represents a sensitivity factor, which
determines the direction of search in the parameter space for
synaptic weight wji .

I The correction ∆wji (n) applied to wji (n) is defined as:

∆wji (n) = −γ ∂E(n)

∂wji (n)
,

with γ being the learning parameter of the back-propagation
algorithm.

I Accordingly, one can generalize

∆wji (n) = γδj(n)yi (n)

where the local gradient δj(n) is defined by

δj(n) = − ∂E(n)

∂vj(n)
= − ∂E(n)

∂ej(n)

∂ej(n)

∂yj(n)

∂yj(n)

∂vj(n)
= ej(n)φ′j

(
vj(n)

)
.

Derivation for a single (output-layer) neuron
I From these, the partial derivative can be composed as:

∂E(n)

∂wji (n)
= −ej(n)φ′j

(
vj(n)

)
yi (n) .

I This partial derivative represents a sensitivity factor, which
determines the direction of search in the parameter space for
synaptic weight wji .

I The correction ∆wji (n) applied to wji (n) is defined as:

∆wji (n) = −γ ∂E(n)

∂wji (n)
,

with γ being the learning parameter of the back-propagation
algorithm.

I Accordingly, one can generalize

∆wji (n) = γδj(n)yi (n)

where the local gradient δj(n) is defined by

δj(n) = − ∂E(n)

∂vj(n)
= − ∂E(n)

∂ej(n)

∂ej(n)

∂yj(n)

∂yj(n)

∂vj(n)
= ej(n)φ′j

(
vj(n)

)
.

Derivation for a single (output-layer) neuron
I From these, the partial derivative can be composed as:

∂E(n)

∂wji (n)
= −ej(n)φ′j

(
vj(n)

)
yi (n) .

I This partial derivative represents a sensitivity factor, which
determines the direction of search in the parameter space for
synaptic weight wji .

I The correction ∆wji (n) applied to wji (n) is defined as:

∆wji (n) = −γ ∂E(n)

∂wji (n)
,

with γ being the learning parameter of the back-propagation
algorithm.

I Accordingly, one can generalize

∆wji (n) = γδj(n)yi (n)

where the local gradient δj(n) is defined by

δj(n) = − ∂E(n)

∂vj(n)
= − ∂E(n)

∂ej(n)

∂ej(n)

∂yj(n)

∂yj(n)

∂vj(n)
= ej(n)φ′j

(
vj(n)

)
.

Derivation for a single (output-layer) neuron
I From these, the partial derivative can be composed as:

∂E(n)

∂wji (n)
= −ej(n)φ′j

(
vj(n)

)
yi (n) .

I This partial derivative represents a sensitivity factor, which
determines the direction of search in the parameter space for
synaptic weight wji .

I The correction ∆wji (n) applied to wji (n) is defined as:

∆wji (n) = −γ ∂E(n)

∂wji (n)
,

with γ being the learning parameter of the back-propagation
algorithm.

I Accordingly, one can generalize

∆wji (n) = γδj(n)yi (n)

where the local gradient δj(n) is defined by

δj(n) = − ∂E(n)

∂vj(n)
= − ∂E(n)

∂ej(n)

∂ej(n)

∂yj(n)

∂yj(n)

∂vj(n)
= ej(n)φ′j

(
vj(n)

)
.

Derivation for a single (output-layer) neuron
I From these, the partial derivative can be composed as:

∂E(n)

∂wji (n)
= −ej(n)φ′j

(
vj(n)

)
yi (n) .

I This partial derivative represents a sensitivity factor, which
determines the direction of search in the parameter space for
synaptic weight wji .

I The correction ∆wji (n) applied to wji (n) is defined as:

∆wji (n) = −γ ∂E(n)

∂wji (n)
,

with γ being the learning parameter of the back-propagation
algorithm.

I Accordingly, one can generalize

∆wji (n) = γδj(n)yi (n)

where the local gradient δj(n) is defined by

δj(n) = − ∂E(n)

∂vj(n)

= − ∂E(n)

∂ej(n)

∂ej(n)

∂yj(n)

∂yj(n)

∂vj(n)
= ej(n)φ′j

(
vj(n)

)
.

Derivation for a single (output-layer) neuron
I From these, the partial derivative can be composed as:

∂E(n)

∂wji (n)
= −ej(n)φ′j

(
vj(n)

)
yi (n) .

I This partial derivative represents a sensitivity factor, which
determines the direction of search in the parameter space for
synaptic weight wji .

I The correction ∆wji (n) applied to wji (n) is defined as:

∆wji (n) = −γ ∂E(n)

∂wji (n)
,

with γ being the learning parameter of the back-propagation
algorithm.

I Accordingly, one can generalize

∆wji (n) = γδj(n)yi (n)

where the local gradient δj(n) is defined by

δj(n) = − ∂E(n)

∂vj(n)
= − ∂E(n)

∂ej(n)

∂ej(n)

∂yj(n)

∂yj(n)

∂vj(n)

= ej(n)φ′j
(
vj(n)

)
.

Derivation for a single (output-layer) neuron
I From these, the partial derivative can be composed as:

∂E(n)

∂wji (n)
= −ej(n)φ′j

(
vj(n)

)
yi (n) .

I This partial derivative represents a sensitivity factor, which
determines the direction of search in the parameter space for
synaptic weight wji .

I The correction ∆wji (n) applied to wji (n) is defined as:

∆wji (n) = −γ ∂E(n)

∂wji (n)
,

with γ being the learning parameter of the back-propagation
algorithm.

I Accordingly, one can generalize

∆wji (n) = γδj(n)yi (n)

where the local gradient δj(n) is defined by

δj(n) = − ∂E(n)

∂vj(n)
= − ∂E(n)

∂ej(n)

∂ej(n)

∂yj(n)

∂yj(n)

∂vj(n)
= ej(n)φ′j

(
vj(n)

)
.

Single neuron: iris data

4.5 5.0 5.5 6.0 6.5 7.0

2.0

2.5

3.0

3.5

4.0

Iris data: discriminating rule of a single neuron

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

Contents

Rosenblatt’s perceptron
Biological analogy
Historical learning algorithm
Novikoff’s convergence theorem

Signal-flow notation and model of an artificial neuron

Least-mean-squares
Minimization of the empirical risk
Method of gradient descent
The least-mean-square algorithm

The back-propagation algorithm
Derivation for a single-layer network
Propagation for a multilayer network
An example of the activation function

Additional information on learning networks
Regularization in neural networks
Some remarks on the back-propagation

Multilayer neural network (example)

I n
 p

 u
 t

 s
 i

g
n

a
l

Output

signal

Input
layer

Output
layer

First
hidden

layer

Second
hidden

layer

Derivation for a hidden neuron
I Problem: When neuron j is located in a hidden layer, there is no

specified desired response for it.

I For a hidden neuron j , one may define the local gradient δj(n) as:

δj(n) = − ∂E(n)

∂yj(n)

∂yj(n)

∂vj(n)

= − ∂E(n)

∂yj(n)
φ′j
(
vj(n)

)
, neuron j is hidden .

I To calculate the partial derivative ∂E(n)
∂yj (n) , one may proceed as

follows (denoting C the set of all output neurons for generality):

E(n) =
1

2

∑
k∈C

e2
k (n) , neuron k is an output node .

I Differentiating this w.r.t. the output of neuron j yj(n), one gets

∂E(n)

∂yj(n)
=
∑
k∈C

ek
∂ek(n)

∂yj(n)
.

Derivation for a hidden neuron
I Problem: When neuron j is located in a hidden layer, there is no

specified desired response for it.
I For a hidden neuron j , one may define the local gradient δj(n) as:

δj(n) = − ∂E(n)

∂yj(n)

∂yj(n)

∂vj(n)

= − ∂E(n)

∂yj(n)
φ′j
(
vj(n)

)
, neuron j is hidden .

I To calculate the partial derivative ∂E(n)
∂yj (n) , one may proceed as

follows (denoting C the set of all output neurons for generality):

E(n) =
1

2

∑
k∈C

e2
k (n) , neuron k is an output node .

I Differentiating this w.r.t. the output of neuron j yj(n), one gets

∂E(n)

∂yj(n)
=
∑
k∈C

ek
∂ek(n)

∂yj(n)
.

Derivation for a hidden neuron
I Problem: When neuron j is located in a hidden layer, there is no

specified desired response for it.
I For a hidden neuron j , one may define the local gradient δj(n) as:

δj(n) = − ∂E(n)

∂yj(n)

∂yj(n)

∂vj(n)

= − ∂E(n)

∂yj(n)
φ′j
(
vj(n)

)
, neuron j is hidden .

I To calculate the partial derivative ∂E(n)
∂yj (n) , one may proceed as

follows (denoting C the set of all output neurons for generality):

E(n) =
1

2

∑
k∈C

e2
k (n) , neuron k is an output node .

I Differentiating this w.r.t. the output of neuron j yj(n), one gets

∂E(n)

∂yj(n)
=
∑
k∈C

ek
∂ek(n)

∂yj(n)
.

Derivation for a hidden neuron
I Problem: When neuron j is located in a hidden layer, there is no

specified desired response for it.
I For a hidden neuron j , one may define the local gradient δj(n) as:

δj(n) = − ∂E(n)

∂yj(n)

∂yj(n)

∂vj(n)

= − ∂E(n)

∂yj(n)
φ′j
(
vj(n)

)
, neuron j is hidden .

I To calculate the partial derivative ∂E(n)
∂yj (n) , one may proceed as

follows (denoting C the set of all output neurons for generality):

E(n) =
1

2

∑
k∈C

e2
k (n) , neuron k is an output node .

I Differentiating this w.r.t. the output of neuron j yj(n), one gets

∂E(n)

∂yj(n)
=
∑
k∈C

ek
∂ek(n)

∂yj(n)
.

Derivation for a hidden neuron
I Problem: When neuron j is located in a hidden layer, there is no

specified desired response for it.
I For a hidden neuron j , one may define the local gradient δj(n) as:

δj(n) = − ∂E(n)

∂yj(n)

∂yj(n)

∂vj(n)

= − ∂E(n)

∂yj(n)
φ′j
(
vj(n)

)
, neuron j is hidden .

I To calculate the partial derivative ∂E(n)
∂yj (n) , one may proceed as

follows (denoting C the set of all output neurons for generality):

E(n) =
1

2

∑
k∈C

e2
k (n) , neuron k is an output node .

I Differentiating this w.r.t. the output of neuron j yj(n), one gets

∂E(n)

∂yj(n)
=
∑
k∈C

ek
∂ek(n)

∂yj(n)
.

Derivation for a hidden neuron
I Application of the chain rule to the partial derivative ∂ek (n)

∂yj (n) gives:

∂E(n)

∂yj(n)
=
∑
k∈C

ek(n)
∂ek(n)

∂vk(n)

∂vk(n)

∂yj(n)
.

I Using

ek(n) = dk(n)− yk(n)

= dk(n)− φk
(
vk(n)

)
, neuron k is an output node ,

one gets
∂ek(n)

∂vk(n)
= −φ′k

(
vk(n)

)
.

I Taking into account that the induced local field for neuron k is

vk(n) =
m∑
j=0

wkj(n)yj(n) ,

(with m being the number of inputs) one obtains

∂vk(n)

∂yj(n)
= wkj(n) .

Derivation for a hidden neuron
I Application of the chain rule to the partial derivative ∂ek (n)

∂yj (n) gives:

∂E(n)

∂yj(n)
=
∑
k∈C

ek(n)
∂ek(n)

∂vk(n)

∂vk(n)

∂yj(n)
.

I Using

ek(n) = dk(n)− yk(n)

= dk(n)− φk
(
vk(n)

)
, neuron k is an output node ,

one gets
∂ek(n)

∂vk(n)
= −φ′k

(
vk(n)

)
.

I Taking into account that the induced local field for neuron k is

vk(n) =
m∑
j=0

wkj(n)yj(n) ,

(with m being the number of inputs) one obtains

∂vk(n)

∂yj(n)
= wkj(n) .

Derivation for a hidden neuron
I Application of the chain rule to the partial derivative ∂ek (n)

∂yj (n) gives:

∂E(n)

∂yj(n)
=
∑
k∈C

ek(n)
∂ek(n)

∂vk(n)

∂vk(n)

∂yj(n)
.

I Using

ek(n) = dk(n)− yk(n)

= dk(n)− φk
(
vk(n)

)
, neuron k is an output node ,

one gets
∂ek(n)

∂vk(n)
= −φ′k

(
vk(n)

)
.

I Taking into account that the induced local field for neuron k is

vk(n) =
m∑
j=0

wkj(n)yj(n) ,

(with m being the number of inputs) one obtains

∂vk(n)

∂yj(n)
= wkj(n) .

Derivation for a hidden neuron
I Application of the chain rule to the partial derivative ∂ek (n)

∂yj (n) gives:

∂E(n)

∂yj(n)
=
∑
k∈C

ek(n)
∂ek(n)

∂vk(n)

∂vk(n)

∂yj(n)
.

I Using

ek(n) = dk(n)− yk(n)

= dk(n)− φk
(
vk(n)

)
, neuron k is an output node ,

one gets
∂ek(n)

∂vk(n)
= −φ′k

(
vk(n)

)
.

I Taking into account that the induced local field for neuron k is

vk(n) =
m∑
j=0

wkj(n)yj(n) ,

(with m being the number of inputs) one obtains

∂vk(n)

∂yj(n)
= wkj(n) .

Derivation for a hidden neuron
I Application of the chain rule to the partial derivative ∂ek (n)

∂yj (n) gives:

∂E(n)

∂yj(n)
=
∑
k∈C

ek(n)
∂ek(n)

∂vk(n)

∂vk(n)

∂yj(n)
.

I Using

ek(n) = dk(n)− yk(n)

= dk(n)− φk
(
vk(n)

)
, neuron k is an output node ,

one gets
∂ek(n)

∂vk(n)
= −φ′k

(
vk(n)

)
.

I Taking into account that the induced local field for neuron k is

vk(n) =
m∑
j=0

wkj(n)yj(n) ,

(with m being the number of inputs)

one obtains

∂vk(n)

∂yj(n)
= wkj(n) .

Derivation for a hidden neuron
I Application of the chain rule to the partial derivative ∂ek (n)

∂yj (n) gives:

∂E(n)

∂yj(n)
=
∑
k∈C

ek(n)
∂ek(n)

∂vk(n)

∂vk(n)

∂yj(n)
.

I Using

ek(n) = dk(n)− yk(n)

= dk(n)− φk
(
vk(n)

)
, neuron k is an output node ,

one gets
∂ek(n)

∂vk(n)
= −φ′k

(
vk(n)

)
.

I Taking into account that the induced local field for neuron k is

vk(n) =
m∑
j=0

wkj(n)yj(n) ,

(with m being the number of inputs) one obtains

∂vk(n)

∂yj(n)
= wkj(n) .

Derivation for a hidden neuron
I The desired partial derivative equals

∂E(n)

∂yj(n)
= −

∑
k∈C

ek(n)φ′k
(
vk(n)

)
wkj(n)

= −
∑
k∈C

δk(n)wkj(n) ,

with δk(n) = ek(n)φ′k
(
vk(n)

)
as before.

I Finally, the back-propagation formula for the local gradient δj(n)
can be written as:

δj(n) = φ′j
(
vj(n)

)∑
k∈C

δk(n)wkj(n) , neuron j is hidden .

Summarizing:
1. If neuron j is an output neuron, the local gradient equals

δj(n) = φ′j(n)ej(n) .

2. If neuron j is a hidden neuron, the local gradient equals

δj(n) = φ′j(n)
∑
k

δk(n)wkj(n) , k indexes next layer neurons .

Derivation for a hidden neuron
I The desired partial derivative equals

∂E(n)

∂yj(n)
= −

∑
k∈C

ek(n)φ′k
(
vk(n)

)
wkj(n)

= −
∑
k∈C

δk(n)wkj(n) ,

with δk(n) = ek(n)φ′k
(
vk(n)

)
as before.

I Finally, the back-propagation formula for the local gradient δj(n)
can be written as:

δj(n) = φ′j
(
vj(n)

)∑
k∈C

δk(n)wkj(n) , neuron j is hidden .

Summarizing:
1. If neuron j is an output neuron, the local gradient equals

δj(n) = φ′j(n)ej(n) .

2. If neuron j is a hidden neuron, the local gradient equals

δj(n) = φ′j(n)
∑
k

δk(n)wkj(n) , k indexes next layer neurons .

Derivation for a hidden neuron
I The desired partial derivative equals

∂E(n)

∂yj(n)
= −

∑
k∈C

ek(n)φ′k
(
vk(n)

)
wkj(n)

= −
∑
k∈C

δk(n)wkj(n) ,

with δk(n) = ek(n)φ′k
(
vk(n)

)
as before.

I Finally, the back-propagation formula for the local gradient δj(n)
can be written as:

δj(n) = φ′j
(
vj(n)

)∑
k∈C

δk(n)wkj(n) , neuron j is hidden .

Summarizing:
1. If neuron j is an output neuron, the local gradient equals

δj(n) = φ′j(n)ej(n) .

2. If neuron j is a hidden neuron, the local gradient equals

δj(n) = φ′j(n)
∑
k

δk(n)wkj(n) , k indexes next layer neurons .

Derivation for a hidden neuron
I The desired partial derivative equals

∂E(n)

∂yj(n)
= −

∑
k∈C

ek(n)φ′k
(
vk(n)

)
wkj(n)

= −
∑
k∈C

δk(n)wkj(n) ,

with δk(n) = ek(n)φ′k
(
vk(n)

)
as before.

I Finally, the back-propagation formula for the local gradient δj(n)
can be written as:

δj(n) = φ′j
(
vj(n)

)∑
k∈C

δk(n)wkj(n) , neuron j is hidden .

Summarizing:
1. If neuron j is an output neuron, the local gradient equals

δj(n) = φ′j(n)ej(n) .

2. If neuron j is a hidden neuron, the local gradient equals

δj(n) = φ′j(n)
∑
k

δk(n)wkj(n) , k indexes next layer neurons .

Derivation for a hidden neuron
I The desired partial derivative equals

∂E(n)

∂yj(n)
= −

∑
k∈C

ek(n)φ′k
(
vk(n)

)
wkj(n)

= −
∑
k∈C

δk(n)wkj(n) ,

with δk(n) = ek(n)φ′k
(
vk(n)

)
as before.

I Finally, the back-propagation formula for the local gradient δj(n)
can be written as:

δj(n) = φ′j
(
vj(n)

)∑
k∈C

δk(n)wkj(n) , neuron j is hidden .

Summarizing:
1. If neuron j is an output neuron, the local gradient equals

δj(n) = φ′j(n)ej(n) .

2. If neuron j is a hidden neuron, the local gradient equals

δj(n) = φ′j(n)
∑
k

δk(n)wkj(n) , k indexes next layer neurons .

Summary of the back-propagation algorithm
I The back-propagation algorithm applies correction ∆wji (n) to the

synaptic weight connecting neuron i to neuron j , defined by the
delta rule: Weight

correction
∆wji (n)

 =

learning
rate
γ

×
 local
gradient
δj(n)

×
 input signal
of neuron j ,

yi (n)

I To increase the rate of learning while avoiding the danger of
instability one may include a momentum term:

∆wji (n) = α∆wji (n − 1) + γδj(n)yj(n) ,

where α is usually a positive number called momentum constant.
This rule is also called the generalized delta rule (delta rule is its
special case with α = 0).

I Criterion of convergence:
The back-propagation algorithm is considered to have converged
when the absolute rate of change in the average square error per
epoch is sufficiently small.

Summary of the back-propagation algorithm
I The back-propagation algorithm applies correction ∆wji (n) to the

synaptic weight connecting neuron i to neuron j , defined by the
delta rule: Weight

correction
∆wji (n)

 =

learning
rate
γ

×
 local
gradient
δj(n)

×
 input signal
of neuron j ,

yi (n)

I To increase the rate of learning while avoiding the danger of

instability one may include a momentum term:

∆wji (n) = α∆wji (n − 1) + γδj(n)yj(n) ,

where α is usually a positive number called momentum constant.

This rule is also called the generalized delta rule (delta rule is its
special case with α = 0).

I Criterion of convergence:
The back-propagation algorithm is considered to have converged
when the absolute rate of change in the average square error per
epoch is sufficiently small.

Summary of the back-propagation algorithm
I The back-propagation algorithm applies correction ∆wji (n) to the

synaptic weight connecting neuron i to neuron j , defined by the
delta rule: Weight

correction
∆wji (n)

 =

learning
rate
γ

×
 local
gradient
δj(n)

×
 input signal
of neuron j ,

yi (n)

I To increase the rate of learning while avoiding the danger of

instability one may include a momentum term:

∆wji (n) = α∆wji (n − 1) + γδj(n)yj(n) ,

where α is usually a positive number called momentum constant.
This rule is also called the generalized delta rule (delta rule is its
special case with α = 0).

I Criterion of convergence:
The back-propagation algorithm is considered to have converged
when the absolute rate of change in the average square error per
epoch is sufficiently small.

Summary of the back-propagation algorithm
I The back-propagation algorithm applies correction ∆wji (n) to the

synaptic weight connecting neuron i to neuron j , defined by the
delta rule: Weight

correction
∆wji (n)

 =

learning
rate
γ

×
 local
gradient
δj(n)

×
 input signal
of neuron j ,

yi (n)

I To increase the rate of learning while avoiding the danger of

instability one may include a momentum term:

∆wji (n) = α∆wji (n − 1) + γδj(n)yj(n) ,

where α is usually a positive number called momentum constant.
This rule is also called the generalized delta rule (delta rule is its
special case with α = 0).

I Criterion of convergence:
The back-propagation algorithm is considered to have converged
when the absolute rate of change in the average square error per
epoch is sufficiently small.

Summary of the back-propagation algorithm
1. Initialization: Pick the synaptic weights and thresholds from a

uniform distribution with mean 0 and variance chosen due to the
shape of the sigmoid function.

2. Presentation of training examples: Present the network an epoch
of training examples, repeating for each example steps 3. and 4.

3. Forward computation (classification): Passing layers l = 1, ..., L,
compute outputs and errors:

y (0)(n) = xj(n); y
(l)
j (n) = φj

(∑
i

w
(l)
ji (n)y

(l−1)
i (n)

)
; ej(n) = dj(n)−y (L)

j (n)

4. Backward computation: Passing layers l = 1, ..., L, compute local
gradients:

δ
(l)
j (n) =

{
φ′j
(∑

i w
(L)
ji (n)y

(L−1)
i (n)

)
e

(L)
j (n) if output ,

φ′j
(∑

i w
(l)
ji (n)y

(l−1)
i (n)

) ∑
k δ

(l+1)
k (n)w

(l+1)
kj (n) if hidden .

Adjust synaptic weights:

w
(l)
ji (n + 1) = w

(l)
ji (n) + αw

(l)
ji (n − 1) + γδ

(l)
j (n)y

(l−1)
i (n) .

5. Iteration: Feed randomly permuted epochs till convergence.

Summary of the back-propagation algorithm
1. Initialization: Pick the synaptic weights and thresholds from a

uniform distribution with mean 0 and variance chosen due to the
shape of the sigmoid function.

2. Presentation of training examples: Present the network an epoch
of training examples, repeating for each example steps 3. and 4.

3. Forward computation (classification): Passing layers l = 1, ..., L,
compute outputs and errors:

y (0)(n) = xj(n); y
(l)
j (n) = φj

(∑
i

w
(l)
ji (n)y

(l−1)
i (n)

)
; ej(n) = dj(n)−y (L)

j (n)

4. Backward computation: Passing layers l = 1, ..., L, compute local
gradients:

δ
(l)
j (n) =

{
φ′j
(∑

i w
(L)
ji (n)y

(L−1)
i (n)

)
e

(L)
j (n) if output ,

φ′j
(∑

i w
(l)
ji (n)y

(l−1)
i (n)

) ∑
k δ

(l+1)
k (n)w

(l+1)
kj (n) if hidden .

Adjust synaptic weights:

w
(l)
ji (n + 1) = w

(l)
ji (n) + αw

(l)
ji (n − 1) + γδ

(l)
j (n)y

(l−1)
i (n) .

5. Iteration: Feed randomly permuted epochs till convergence.

Summary of the back-propagation algorithm
1. Initialization: Pick the synaptic weights and thresholds from a

uniform distribution with mean 0 and variance chosen due to the
shape of the sigmoid function.

2. Presentation of training examples: Present the network an epoch
of training examples, repeating for each example steps 3. and 4.

3. Forward computation (classification): Passing layers l = 1, ..., L,
compute outputs and errors:

y (0)(n) = xj(n); y
(l)
j (n) = φj

(∑
i

w
(l)
ji (n)y

(l−1)
i (n)

)
; ej(n) = dj(n)−y (L)

j (n)

4. Backward computation: Passing layers l = 1, ..., L, compute local
gradients:

δ
(l)
j (n) =

{
φ′j
(∑

i w
(L)
ji (n)y

(L−1)
i (n)

)
e

(L)
j (n) if output ,

φ′j
(∑

i w
(l)
ji (n)y

(l−1)
i (n)

) ∑
k δ

(l+1)
k (n)w

(l+1)
kj (n) if hidden .

Adjust synaptic weights:

w
(l)
ji (n + 1) = w

(l)
ji (n) + αw

(l)
ji (n − 1) + γδ

(l)
j (n)y

(l−1)
i (n) .

5. Iteration: Feed randomly permuted epochs till convergence.

Summary of the back-propagation algorithm
1. Initialization: Pick the synaptic weights and thresholds from a

uniform distribution with mean 0 and variance chosen due to the
shape of the sigmoid function.

2. Presentation of training examples: Present the network an epoch
of training examples, repeating for each example steps 3. and 4.

3. Forward computation (classification): Passing layers l = 1, ..., L,
compute outputs and errors:

y (0)(n) = xj(n); y
(l)
j (n) = φj

(∑
i

w
(l)
ji (n)y

(l−1)
i (n)

)
; ej(n) = dj(n)−y (L)

j (n)

4. Backward computation: Passing layers l = 1, ..., L, compute local
gradients:

δ
(l)
j (n) =

{
φ′j
(∑

i w
(L)
ji (n)y

(L−1)
i (n)

)
e

(L)
j (n) if output ,

φ′j
(∑

i w
(l)
ji (n)y

(l−1)
i (n)

) ∑
k δ

(l+1)
k (n)w

(l+1)
kj (n) if hidden .

Adjust synaptic weights:

w
(l)
ji (n + 1) = w

(l)
ji (n) + αw

(l)
ji (n − 1) + γδ

(l)
j (n)y

(l−1)
i (n) .

5. Iteration: Feed randomly permuted epochs till convergence.

Summary of the back-propagation algorithm
1. Initialization: Pick the synaptic weights and thresholds from a

uniform distribution with mean 0 and variance chosen due to the
shape of the sigmoid function.

2. Presentation of training examples: Present the network an epoch
of training examples, repeating for each example steps 3. and 4.

3. Forward computation (classification): Passing layers l = 1, ..., L,
compute outputs and errors:

y (0)(n) = xj(n); y
(l)
j (n) = φj

(∑
i

w
(l)
ji (n)y

(l−1)
i (n)

)
; ej(n) = dj(n)−y (L)

j (n)

4. Backward computation: Passing layers l = 1, ..., L, compute local
gradients:

δ
(l)
j (n) =

{
φ′j
(∑

i w
(L)
ji (n)y

(L−1)
i (n)

)
e

(L)
j (n) if output ,

φ′j
(∑

i w
(l)
ji (n)y

(l−1)
i (n)

) ∑
k δ

(l+1)
k (n)w

(l+1)
kj (n) if hidden .

Adjust synaptic weights:

w
(l)
ji (n + 1) = w

(l)
ji (n) + αw

(l)
ji (n − 1) + γδ

(l)
j (n)y

(l−1)
i (n) .

5. Iteration: Feed randomly permuted epochs till convergence.

Contents

Rosenblatt’s perceptron
Biological analogy
Historical learning algorithm
Novikoff’s convergence theorem

Signal-flow notation and model of an artificial neuron

Least-mean-squares
Minimization of the empirical risk
Method of gradient descent
The least-mean-square algorithm

The back-propagation algorithm
Derivation for a single-layer network
Propagation for a multilayer network
An example of the activation function

Additional information on learning networks
Regularization in neural networks
Some remarks on the back-propagation

An example of φ(·): logistic function
I In its general form logistic function is defined by:

φj
(
vj(n)

)
=

1

1 + exp
(
−avj(n)

) , a > 0 ,

where vj(n) is the induced local field of neuron j .

I Differentiating w.r.t. vj(n) one gets:

φ′j
(
vj(n)

)
=

a exp
(
−avj(n)

)(
1 + exp

(
−avj(n)

))2 = ayj(n)
(
1− yj(n)

)
.

I Denoting network output oj(n) = yj(n), the local gradient equals

δj(n) = φ′j
(
vj(n)

)
ej(n)

= a
(
dj(n)− oj(n)

)
oj(n)

(
1− oj(n)

)
, j is an output neuron ,

I and respectively

δj(n) = φ′j
(
vj(n)

) ∑
k

δk(n)wkj(n)

= ayj(n)
(
1− yj(n)

)∑
k

δk(n)wkj(n) , j is a hidden neuron .

An example of φ(·): logistic function
I In its general form logistic function is defined by:

φj
(
vj(n)

)
=

1

1 + exp
(
−avj(n)

) , a > 0 ,

where vj(n) is the induced local field of neuron j .
I Differentiating w.r.t. vj(n) one gets:

φ′j
(
vj(n)

)
=

a exp
(
−avj(n)

)(
1 + exp

(
−avj(n)

))2

= ayj(n)
(
1− yj(n)

)
.

I Denoting network output oj(n) = yj(n), the local gradient equals

δj(n) = φ′j
(
vj(n)

)
ej(n)

= a
(
dj(n)− oj(n)

)
oj(n)

(
1− oj(n)

)
, j is an output neuron ,

I and respectively

δj(n) = φ′j
(
vj(n)

) ∑
k

δk(n)wkj(n)

= ayj(n)
(
1− yj(n)

)∑
k

δk(n)wkj(n) , j is a hidden neuron .

An example of φ(·): logistic function
I In its general form logistic function is defined by:

φj
(
vj(n)

)
=

1

1 + exp
(
−avj(n)

) , a > 0 ,

where vj(n) is the induced local field of neuron j .
I Differentiating w.r.t. vj(n) one gets:

φ′j
(
vj(n)

)
=

a exp
(
−avj(n)

)(
1 + exp

(
−avj(n)

))2 = ayj(n)
(
1− yj(n)

)
.

I Denoting network output oj(n) = yj(n), the local gradient equals

δj(n) = φ′j
(
vj(n)

)
ej(n)

= a
(
dj(n)− oj(n)

)
oj(n)

(
1− oj(n)

)
, j is an output neuron ,

I and respectively

δj(n) = φ′j
(
vj(n)

) ∑
k

δk(n)wkj(n)

= ayj(n)
(
1− yj(n)

)∑
k

δk(n)wkj(n) , j is a hidden neuron .

An example of φ(·): logistic function
I In its general form logistic function is defined by:

φj
(
vj(n)

)
=

1

1 + exp
(
−avj(n)

) , a > 0 ,

where vj(n) is the induced local field of neuron j .
I Differentiating w.r.t. vj(n) one gets:

φ′j
(
vj(n)

)
=

a exp
(
−avj(n)

)(
1 + exp

(
−avj(n)

))2 = ayj(n)
(
1− yj(n)

)
.

I Denoting network output oj(n) = yj(n), the local gradient equals

δj(n) = φ′j
(
vj(n)

)
ej(n)

= a
(
dj(n)− oj(n)

)
oj(n)

(
1− oj(n)

)
, j is an output neuron ,

I and respectively

δj(n) = φ′j
(
vj(n)

) ∑
k

δk(n)wkj(n)

= ayj(n)
(
1− yj(n)

)∑
k

δk(n)wkj(n) , j is a hidden neuron .

An example of φ(·): logistic function
I In its general form logistic function is defined by:

φj
(
vj(n)

)
=

1

1 + exp
(
−avj(n)

) , a > 0 ,

where vj(n) is the induced local field of neuron j .
I Differentiating w.r.t. vj(n) one gets:

φ′j
(
vj(n)

)
=

a exp
(
−avj(n)

)(
1 + exp

(
−avj(n)

))2 = ayj(n)
(
1− yj(n)

)
.

I Denoting network output oj(n) = yj(n), the local gradient equals

δj(n) = φ′j
(
vj(n)

)
ej(n)

= a
(
dj(n)− oj(n)

)
oj(n)

(
1− oj(n)

)
, j is an output neuron ,

I and respectively

δj(n) = φ′j
(
vj(n)

) ∑
k

δk(n)wkj(n)

= ayj(n)
(
1− yj(n)

)∑
k

δk(n)wkj(n) , j is a hidden neuron .

Contents

Rosenblatt’s perceptron
Biological analogy
Historical learning algorithm
Novikoff’s convergence theorem

Signal-flow notation and model of an artificial neuron

Least-mean-squares
Minimization of the empirical risk
Method of gradient descent
The least-mean-square algorithm

The back-propagation algorithm
Derivation for a single-layer network
Propagation for a multilayer network
An example of the activation function

Additional information on learning networks
Regularization in neural networks
Some remarks on the back-propagation

Contents

Rosenblatt’s perceptron
Biological analogy
Historical learning algorithm
Novikoff’s convergence theorem

Signal-flow notation and model of an artificial neuron

Least-mean-squares
Minimization of the empirical risk
Method of gradient descent
The least-mean-square algorithm

The back-propagation algorithm
Derivation for a single-layer network
Propagation for a multilayer network
An example of the activation function

Additional information on learning networks
Regularization in neural networks
Some remarks on the back-propagation

Complexity regularization
I In designing a multilayer perceptron by whatever method, we are in

effect building a non-linear model of the physical phenomenon
responsible for the generation of the input-output examples used to
train the network.

I Insofar as the network design is statistical in nature, we need an
appropriate tradeoff between reliability of the training data and
goodness of the model.

I In the context of back-propagation learning, or any other supervised
learning procedure for that matter, we may realize this tradeoff by
minimizing the total risk, expressed as a function of the parameter
vector w , as follows:

R(w) = Eav (w) + λEc(w) .

I Eav (w) is the standard performance metric, which depends on
both the network (model) and the input data, and in
back-propagation learning is typically defined as a mean-square error.

I Ec(w) is the complexity penalty, where the notion of complexity is
measured in terms of the network (weights) alone.

I λ is a regularization parameter.

Complexity regularization
I In designing a multilayer perceptron by whatever method, we are in

effect building a non-linear model of the physical phenomenon
responsible for the generation of the input-output examples used to
train the network.

I Insofar as the network design is statistical in nature, we need an
appropriate tradeoff between reliability of the training data and
goodness of the model.

I In the context of back-propagation learning, or any other supervised
learning procedure for that matter, we may realize this tradeoff by
minimizing the total risk, expressed as a function of the parameter
vector w , as follows:

R(w) = Eav (w) + λEc(w) .

I Eav (w) is the standard performance metric, which depends on
both the network (model) and the input data, and in
back-propagation learning is typically defined as a mean-square error.

I Ec(w) is the complexity penalty, where the notion of complexity is
measured in terms of the network (weights) alone.

I λ is a regularization parameter.

Complexity regularization
I In designing a multilayer perceptron by whatever method, we are in

effect building a non-linear model of the physical phenomenon
responsible for the generation of the input-output examples used to
train the network.

I Insofar as the network design is statistical in nature, we need an
appropriate tradeoff between reliability of the training data and
goodness of the model.

I In the context of back-propagation learning, or any other supervised
learning procedure for that matter, we may realize this tradeoff by
minimizing the total risk, expressed as a function of the parameter
vector w , as follows:

R(w) = Eav (w) + λEc(w) .

I Eav (w) is the standard performance metric, which depends on
both the network (model) and the input data, and in
back-propagation learning is typically defined as a mean-square error.

I Ec(w) is the complexity penalty, where the notion of complexity is
measured in terms of the network (weights) alone.

I λ is a regularization parameter.

Complexity regularization
I In designing a multilayer perceptron by whatever method, we are in

effect building a non-linear model of the physical phenomenon
responsible for the generation of the input-output examples used to
train the network.

I Insofar as the network design is statistical in nature, we need an
appropriate tradeoff between reliability of the training data and
goodness of the model.

I In the context of back-propagation learning, or any other supervised
learning procedure for that matter, we may realize this tradeoff by
minimizing the total risk, expressed as a function of the parameter
vector w , as follows:

R(w) = Eav (w) + λEc(w) .

I Eav (w) is the standard performance metric, which depends on
both the network (model) and the input data, and in
back-propagation learning is typically defined as a mean-square error.

I Ec(w) is the complexity penalty, where the notion of complexity is
measured in terms of the network (weights) alone.

I λ is a regularization parameter.

Complexity regularization
I In designing a multilayer perceptron by whatever method, we are in

effect building a non-linear model of the physical phenomenon
responsible for the generation of the input-output examples used to
train the network.

I Insofar as the network design is statistical in nature, we need an
appropriate tradeoff between reliability of the training data and
goodness of the model.

I In the context of back-propagation learning, or any other supervised
learning procedure for that matter, we may realize this tradeoff by
minimizing the total risk, expressed as a function of the parameter
vector w , as follows:

R(w) = Eav (w) + λEc(w) .

I Eav (w) is the standard performance metric, which depends on
both the network (model) and the input data, and in
back-propagation learning is typically defined as a mean-square error.

I Ec(w) is the complexity penalty, where the notion of complexity is
measured in terms of the network (weights) alone.

I λ is a regularization parameter.

Complexity regularization
I In designing a multilayer perceptron by whatever method, we are in

effect building a non-linear model of the physical phenomenon
responsible for the generation of the input-output examples used to
train the network.

I Insofar as the network design is statistical in nature, we need an
appropriate tradeoff between reliability of the training data and
goodness of the model.

I In the context of back-propagation learning, or any other supervised
learning procedure for that matter, we may realize this tradeoff by
minimizing the total risk, expressed as a function of the parameter
vector w , as follows:

R(w) = Eav (w) + λEc(w) .

I Eav (w) is the standard performance metric, which depends on
both the network (model) and the input data, and in
back-propagation learning is typically defined as a mean-square error.

I Ec(w) is the complexity penalty, where the notion of complexity is
measured in terms of the network (weights) alone.

I λ is a regularization parameter.

L2 parameter regularization
I A simple and most common parameter norm penalty is the L2

parameter norm penalty commonly known as weight decay:

Ec(w) =
1

2
‖w‖2

2 =
1

2

∑
k∈Ctotal

w2
k .

I It is also called ridge regression of Tikhonov regularization.

I Such a model has the following total risk:

R(w) =
λ

2
w>w + Eav (w) ,

I and the corresponding parameter gradient:

g = λw +∇Eav (w) .

I The weight update is:

w(n + 1) = (1− γλ)w(n)− γ∇Eav
(
w(n)

)
.

I The weight decay term now multiplicatively shrinks the weight
vector by a constant factor, just before performing the usual
gradient update.

L2 parameter regularization
I A simple and most common parameter norm penalty is the L2

parameter norm penalty commonly known as weight decay:

Ec(w) =
1

2
‖w‖2

2 =
1

2

∑
k∈Ctotal

w2
k .

I It is also called ridge regression of Tikhonov regularization.

I Such a model has the following total risk:

R(w) =
λ

2
w>w + Eav (w) ,

I and the corresponding parameter gradient:

g = λw +∇Eav (w) .

I The weight update is:

w(n + 1) = (1− γλ)w(n)− γ∇Eav
(
w(n)

)
.

I The weight decay term now multiplicatively shrinks the weight
vector by a constant factor, just before performing the usual
gradient update.

L2 parameter regularization
I A simple and most common parameter norm penalty is the L2

parameter norm penalty commonly known as weight decay:

Ec(w) =
1

2
‖w‖2

2 =
1

2

∑
k∈Ctotal

w2
k .

I It is also called ridge regression of Tikhonov regularization.

I Such a model has the following total risk:

R(w) =
λ

2
w>w + Eav (w) ,

I and the corresponding parameter gradient:

g = λw +∇Eav (w) .

I The weight update is:

w(n + 1) = (1− γλ)w(n)− γ∇Eav
(
w(n)

)
.

I The weight decay term now multiplicatively shrinks the weight
vector by a constant factor, just before performing the usual
gradient update.

L2 parameter regularization
I A simple and most common parameter norm penalty is the L2

parameter norm penalty commonly known as weight decay:

Ec(w) =
1

2
‖w‖2

2 =
1

2

∑
k∈Ctotal

w2
k .

I It is also called ridge regression of Tikhonov regularization.

I Such a model has the following total risk:

R(w) =
λ

2
w>w + Eav (w) ,

I and the corresponding parameter gradient:

g = λw +∇Eav (w) .

I The weight update is:

w(n + 1) = (1− γλ)w(n)− γ∇Eav
(
w(n)

)
.

I The weight decay term now multiplicatively shrinks the weight
vector by a constant factor, just before performing the usual
gradient update.

L2 parameter regularization
I A simple and most common parameter norm penalty is the L2

parameter norm penalty commonly known as weight decay:

Ec(w) =
1

2
‖w‖2

2 =
1

2

∑
k∈Ctotal

w2
k .

I It is also called ridge regression of Tikhonov regularization.

I Such a model has the following total risk:

R(w) =
λ

2
w>w + Eav (w) ,

I and the corresponding parameter gradient:

g = λw +∇Eav (w) .

I The weight update is:

w(n + 1) = (1− γλ)w(n)− γ∇Eav
(
w(n)

)
.

I The weight decay term now multiplicatively shrinks the weight
vector by a constant factor, just before performing the usual
gradient update.

L2 parameter regularization
I A simple and most common parameter norm penalty is the L2

parameter norm penalty commonly known as weight decay:

Ec(w) =
1

2
‖w‖2

2 =
1

2

∑
k∈Ctotal

w2
k .

I It is also called ridge regression of Tikhonov regularization.

I Such a model has the following total risk:

R(w) =
λ

2
w>w + Eav (w) ,

I and the corresponding parameter gradient:

g = λw +∇Eav (w) .

I The weight update is:

w(n + 1) = (1− γλ)w(n)− γ∇Eav
(
w(n)

)
.

I The weight decay term now multiplicatively shrinks the weight
vector by a constant factor, just before performing the usual
gradient update.

L1 parameter regularization
I While L2 weight decay is the most common form of weight decay,

another option is to use L1 regularization.

I L1 regularization on the model parameter w is defined as:

Ec(w) = ‖w‖1 =
∑

k∈Ctotal

|wk | .

I The total risk is given by:

R(w) = λ‖w‖1 + Eav (w) ,

I and the corresponding gradient:

g = λsign(w) +∇Eav (w) .

I The weight update is then:

w(n + 1) = w(n)− γλsign(w)− γ∇Eav
(
w(n)

)
.

I The regularization contribution to the gradient is a constant
factor with a sign equal (component-wise) to sign(wk).

I L1 regularization introduces sparsity (some wk have optimal value
= 0). This is used for feature selection, see also LASSO.

L1 parameter regularization
I While L2 weight decay is the most common form of weight decay,

another option is to use L1 regularization.

I L1 regularization on the model parameter w is defined as:

Ec(w) = ‖w‖1 =
∑

k∈Ctotal

|wk | .

I The total risk is given by:

R(w) = λ‖w‖1 + Eav (w) ,

I and the corresponding gradient:

g = λsign(w) +∇Eav (w) .

I The weight update is then:

w(n + 1) = w(n)− γλsign(w)− γ∇Eav
(
w(n)

)
.

I The regularization contribution to the gradient is a constant
factor with a sign equal (component-wise) to sign(wk).

I L1 regularization introduces sparsity (some wk have optimal value
= 0). This is used for feature selection, see also LASSO.

L1 parameter regularization
I While L2 weight decay is the most common form of weight decay,

another option is to use L1 regularization.

I L1 regularization on the model parameter w is defined as:

Ec(w) = ‖w‖1 =
∑

k∈Ctotal

|wk | .

I The total risk is given by:

R(w) = λ‖w‖1 + Eav (w) ,

I and the corresponding gradient:

g = λsign(w) +∇Eav (w) .

I The weight update is then:

w(n + 1) = w(n)− γλsign(w)− γ∇Eav
(
w(n)

)
.

I The regularization contribution to the gradient is a constant
factor with a sign equal (component-wise) to sign(wk).

I L1 regularization introduces sparsity (some wk have optimal value
= 0). This is used for feature selection, see also LASSO.

L1 parameter regularization
I While L2 weight decay is the most common form of weight decay,

another option is to use L1 regularization.

I L1 regularization on the model parameter w is defined as:

Ec(w) = ‖w‖1 =
∑

k∈Ctotal

|wk | .

I The total risk is given by:

R(w) = λ‖w‖1 + Eav (w) ,

I and the corresponding gradient:

g = λsign(w) +∇Eav (w) .

I The weight update is then:

w(n + 1) = w(n)− γλsign(w)− γ∇Eav
(
w(n)

)
.

I The regularization contribution to the gradient is a constant
factor with a sign equal (component-wise) to sign(wk).

I L1 regularization introduces sparsity (some wk have optimal value
= 0). This is used for feature selection, see also LASSO.

L1 parameter regularization
I While L2 weight decay is the most common form of weight decay,

another option is to use L1 regularization.

I L1 regularization on the model parameter w is defined as:

Ec(w) = ‖w‖1 =
∑

k∈Ctotal

|wk | .

I The total risk is given by:

R(w) = λ‖w‖1 + Eav (w) ,

I and the corresponding gradient:

g = λsign(w) +∇Eav (w) .

I The weight update is then:

w(n + 1) = w(n)− γλsign(w)− γ∇Eav
(
w(n)

)
.

I The regularization contribution to the gradient is a constant
factor with a sign equal (component-wise) to sign(wk).

I L1 regularization introduces sparsity (some wk have optimal value
= 0). This is used for feature selection, see also LASSO.

L1 parameter regularization
I While L2 weight decay is the most common form of weight decay,

another option is to use L1 regularization.

I L1 regularization on the model parameter w is defined as:

Ec(w) = ‖w‖1 =
∑

k∈Ctotal

|wk | .

I The total risk is given by:

R(w) = λ‖w‖1 + Eav (w) ,

I and the corresponding gradient:

g = λsign(w) +∇Eav (w) .

I The weight update is then:

w(n + 1) = w(n)− γλsign(w)− γ∇Eav
(
w(n)

)
.

I The regularization contribution to the gradient is a constant
factor with a sign equal (component-wise) to sign(wk).

I L1 regularization introduces sparsity (some wk have optimal value
= 0). This is used for feature selection, see also LASSO.

L1 parameter regularization
I While L2 weight decay is the most common form of weight decay,

another option is to use L1 regularization.

I L1 regularization on the model parameter w is defined as:

Ec(w) = ‖w‖1 =
∑

k∈Ctotal

|wk | .

I The total risk is given by:

R(w) = λ‖w‖1 + Eav (w) ,

I and the corresponding gradient:

g = λsign(w) +∇Eav (w) .

I The weight update is then:

w(n + 1) = w(n)− γλsign(w)− γ∇Eav
(
w(n)

)
.

I The regularization contribution to the gradient is a constant
factor with a sign equal (component-wise) to sign(wk).

I L1 regularization introduces sparsity (some wk have optimal value
= 0).

This is used for feature selection, see also LASSO.

L1 parameter regularization
I While L2 weight decay is the most common form of weight decay,

another option is to use L1 regularization.

I L1 regularization on the model parameter w is defined as:

Ec(w) = ‖w‖1 =
∑

k∈Ctotal

|wk | .

I The total risk is given by:

R(w) = λ‖w‖1 + Eav (w) ,

I and the corresponding gradient:

g = λsign(w) +∇Eav (w) .

I The weight update is then:

w(n + 1) = w(n)− γλsign(w)− γ∇Eav
(
w(n)

)
.

I The regularization contribution to the gradient is a constant
factor with a sign equal (component-wise) to sign(wk).

I L1 regularization introduces sparsity (some wk have optimal value
= 0). This is used for feature selection, see also LASSO.

The dropout strategy

I Dropout provides a computationally inexpensive but powerful
method of regularizing a broad family of models.

I To a first approximation, dropout can be thought of as a method of
making bagging practical for ensembles of very many large neural
networks.

I Bagging involves training multiple models, and evaluating multiple
models on each test example. This seems impractical when each
model is a large neural network, since training and evaluating such
networks is costly in terms of computation time and memory.

I It is common to use ensembles of five to ten neural networks, but
more than this rapidly becomes unwieldy.

I Dropout provides an inexpensive approximation to training and
evaluating a bagged ensemble of exponentially many neural
networks.

I Specifically, dropout trains the ensemble consisting of all
sub-networks that can be formed by removing non-output neurons
from an underlying base network.

The dropout strategy

I Dropout provides a computationally inexpensive but powerful
method of regularizing a broad family of models.

I To a first approximation, dropout can be thought of as a method of
making bagging practical for ensembles of very many large neural
networks.

I Bagging involves training multiple models, and evaluating multiple
models on each test example. This seems impractical when each
model is a large neural network, since training and evaluating such
networks is costly in terms of computation time and memory.

I It is common to use ensembles of five to ten neural networks, but
more than this rapidly becomes unwieldy.

I Dropout provides an inexpensive approximation to training and
evaluating a bagged ensemble of exponentially many neural
networks.

I Specifically, dropout trains the ensemble consisting of all
sub-networks that can be formed by removing non-output neurons
from an underlying base network.

The dropout strategy

I Dropout provides a computationally inexpensive but powerful
method of regularizing a broad family of models.

I To a first approximation, dropout can be thought of as a method of
making bagging practical for ensembles of very many large neural
networks.

I Bagging involves training multiple models, and evaluating multiple
models on each test example. This seems impractical when each
model is a large neural network, since training and evaluating such
networks is costly in terms of computation time and memory.

I It is common to use ensembles of five to ten neural networks, but
more than this rapidly becomes unwieldy.

I Dropout provides an inexpensive approximation to training and
evaluating a bagged ensemble of exponentially many neural
networks.

I Specifically, dropout trains the ensemble consisting of all
sub-networks that can be formed by removing non-output neurons
from an underlying base network.

The dropout strategy

I Dropout provides a computationally inexpensive but powerful
method of regularizing a broad family of models.

I To a first approximation, dropout can be thought of as a method of
making bagging practical for ensembles of very many large neural
networks.

I Bagging involves training multiple models, and evaluating multiple
models on each test example. This seems impractical when each
model is a large neural network, since training and evaluating such
networks is costly in terms of computation time and memory.

I It is common to use ensembles of five to ten neural networks, but
more than this rapidly becomes unwieldy.

I Dropout provides an inexpensive approximation to training and
evaluating a bagged ensemble of exponentially many neural
networks.

I Specifically, dropout trains the ensemble consisting of all
sub-networks that can be formed by removing non-output neurons
from an underlying base network.

The dropout strategy

I Dropout provides a computationally inexpensive but powerful
method of regularizing a broad family of models.

I To a first approximation, dropout can be thought of as a method of
making bagging practical for ensembles of very many large neural
networks.

I Bagging involves training multiple models, and evaluating multiple
models on each test example. This seems impractical when each
model is a large neural network, since training and evaluating such
networks is costly in terms of computation time and memory.

I It is common to use ensembles of five to ten neural networks, but
more than this rapidly becomes unwieldy.

I Dropout provides an inexpensive approximation to training and
evaluating a bagged ensemble of exponentially many neural
networks.

I Specifically, dropout trains the ensemble consisting of all
sub-networks that can be formed by removing non-output neurons
from an underlying base network.

The dropout strategy

I Dropout provides a computationally inexpensive but powerful
method of regularizing a broad family of models.

I To a first approximation, dropout can be thought of as a method of
making bagging practical for ensembles of very many large neural
networks.

I Bagging involves training multiple models, and evaluating multiple
models on each test example. This seems impractical when each
model is a large neural network, since training and evaluating such
networks is costly in terms of computation time and memory.

I It is common to use ensembles of five to ten neural networks, but
more than this rapidly becomes unwieldy.

I Dropout provides an inexpensive approximation to training and
evaluating a bagged ensemble of exponentially many neural
networks.

I Specifically, dropout trains the ensemble consisting of all
sub-networks that can be formed by removing non-output neurons
from an underlying base network.

The dropout strategy

I An example of applying the dropout strategy:

Reducing Overfitting - Dropout

x Output of each hidden neuron is
set to zero with probability 0.5

x Learning more robust features
x Doubles the number of

iterations required to converge
x Applied in the first two fully

connected layers

[N. Srivastava et al., Dropout: A Simple Way to Prevent Neural Networks from Overfitting, 2014]

19

Standard neural network After applying dropout

The dropout strategy

I In most modern neural networks, based on a series of affine
transformations and nonlinearities, we can effectively remove a
neuron from a network by multiplying its output value by zero.

I To train with dropout, we use a minibatch-based learning
algorithm that makes small steps, such as stochastic gradient
descent.

I Each time we randomly sample a different binary mask to apply
to all of the input and hidden neurons in the network.

I Typically, an input neuron is included with probability 0.8 and a
hidden neuron is included with probability 0.5. These probabilities
constitute a hyperparameter to be fixed in advance.

I The forward propagation, back-propagation, and the learning update
are run as usual.

I To predict an unknown observation, we average the output from
many masks. Even 10–20 masks are often sufficient to obtain good
performance.

The dropout strategy

I In most modern neural networks, based on a series of affine
transformations and nonlinearities, we can effectively remove a
neuron from a network by multiplying its output value by zero.

I To train with dropout, we use a minibatch-based learning
algorithm that makes small steps, such as stochastic gradient
descent.

I Each time we randomly sample a different binary mask to apply
to all of the input and hidden neurons in the network.

I Typically, an input neuron is included with probability 0.8 and a
hidden neuron is included with probability 0.5. These probabilities
constitute a hyperparameter to be fixed in advance.

I The forward propagation, back-propagation, and the learning update
are run as usual.

I To predict an unknown observation, we average the output from
many masks. Even 10–20 masks are often sufficient to obtain good
performance.

The dropout strategy

I In most modern neural networks, based on a series of affine
transformations and nonlinearities, we can effectively remove a
neuron from a network by multiplying its output value by zero.

I To train with dropout, we use a minibatch-based learning
algorithm that makes small steps, such as stochastic gradient
descent.

I Each time we randomly sample a different binary mask to apply
to all of the input and hidden neurons in the network.

I Typically, an input neuron is included with probability 0.8 and a
hidden neuron is included with probability 0.5. These probabilities
constitute a hyperparameter to be fixed in advance.

I The forward propagation, back-propagation, and the learning update
are run as usual.

I To predict an unknown observation, we average the output from
many masks. Even 10–20 masks are often sufficient to obtain good
performance.

The dropout strategy

I In most modern neural networks, based on a series of affine
transformations and nonlinearities, we can effectively remove a
neuron from a network by multiplying its output value by zero.

I To train with dropout, we use a minibatch-based learning
algorithm that makes small steps, such as stochastic gradient
descent.

I Each time we randomly sample a different binary mask to apply
to all of the input and hidden neurons in the network.

I Typically, an input neuron is included with probability 0.8 and a
hidden neuron is included with probability 0.5. These probabilities
constitute a hyperparameter to be fixed in advance.

I The forward propagation, back-propagation, and the learning update
are run as usual.

I To predict an unknown observation, we average the output from
many masks. Even 10–20 masks are often sufficient to obtain good
performance.

The dropout strategy

I In most modern neural networks, based on a series of affine
transformations and nonlinearities, we can effectively remove a
neuron from a network by multiplying its output value by zero.

I To train with dropout, we use a minibatch-based learning
algorithm that makes small steps, such as stochastic gradient
descent.

I Each time we randomly sample a different binary mask to apply
to all of the input and hidden neurons in the network.

I Typically, an input neuron is included with probability 0.8 and a
hidden neuron is included with probability 0.5. These probabilities
constitute a hyperparameter to be fixed in advance.

I The forward propagation, back-propagation, and the learning update
are run as usual.

I To predict an unknown observation, we average the output from
many masks. Even 10–20 masks are often sufficient to obtain good
performance.

The dropout strategy

I In most modern neural networks, based on a series of affine
transformations and nonlinearities, we can effectively remove a
neuron from a network by multiplying its output value by zero.

I To train with dropout, we use a minibatch-based learning
algorithm that makes small steps, such as stochastic gradient
descent.

I Each time we randomly sample a different binary mask to apply
to all of the input and hidden neurons in the network.

I Typically, an input neuron is included with probability 0.8 and a
hidden neuron is included with probability 0.5. These probabilities
constitute a hyperparameter to be fixed in advance.

I The forward propagation, back-propagation, and the learning update
are run as usual.

I To predict an unknown observation, we average the output from
many masks. Even 10–20 masks are often sufficient to obtain good
performance.

Contents

Rosenblatt’s perceptron
Biological analogy
Historical learning algorithm
Novikoff’s convergence theorem

Signal-flow notation and model of an artificial neuron

Least-mean-squares
Minimization of the empirical risk
Method of gradient descent
The least-mean-square algorithm

The back-propagation algorithm
Derivation for a single-layer network
Propagation for a multilayer network
An example of the activation function

Additional information on learning networks
Regularization in neural networks
Some remarks on the back-propagation

Stopping criteria
I In general, back-propagation algorithm cannot be shown to converge,

and there are no well-defined criteria for stopping its operation.

I A necessary condition for w∗ to be a (local!) minimum is that the
gradient vector g(w) of the error surface w.r.t. the weight vector w
must be zero at w = w∗.

I The back-propagation algorithm is considered to have
converged when the Euclidean norm of the gradient vector
reaches a sufficiently small gradient threshold.

I But with this criterion learning time may be long.

I The back-propagation algorithm is considered to have
converged when the absolute rate of change in the average
squared error per epoch is sufficiently small.

I The rate of convergence in the average squared error is typically
considered to be small enough if it lies in the range of 0.1 t 1
percent per epoch (0.01 percent per epoch is used as well).

Stopping criteria
I In general, back-propagation algorithm cannot be shown to converge,

and there are no well-defined criteria for stopping its operation.

I A necessary condition for w∗ to be a (local!) minimum is that the
gradient vector g(w) of the error surface w.r.t. the weight vector w
must be zero at w = w∗.

I The back-propagation algorithm is considered to have
converged when the Euclidean norm of the gradient vector
reaches a sufficiently small gradient threshold.

I But with this criterion learning time may be long.

I The back-propagation algorithm is considered to have
converged when the absolute rate of change in the average
squared error per epoch is sufficiently small.

I The rate of convergence in the average squared error is typically
considered to be small enough if it lies in the range of 0.1 t 1
percent per epoch (0.01 percent per epoch is used as well).

Stopping criteria
I In general, back-propagation algorithm cannot be shown to converge,

and there are no well-defined criteria for stopping its operation.

I A necessary condition for w∗ to be a (local!) minimum is that the
gradient vector g(w) of the error surface w.r.t. the weight vector w
must be zero at w = w∗.

I The back-propagation algorithm is considered to have
converged when the Euclidean norm of the gradient vector
reaches a sufficiently small gradient threshold.

I But with this criterion learning time may be long.

I The back-propagation algorithm is considered to have
converged when the absolute rate of change in the average
squared error per epoch is sufficiently small.

I The rate of convergence in the average squared error is typically
considered to be small enough if it lies in the range of 0.1 t 1
percent per epoch (0.01 percent per epoch is used as well).

Stopping criteria
I In general, back-propagation algorithm cannot be shown to converge,

and there are no well-defined criteria for stopping its operation.

I A necessary condition for w∗ to be a (local!) minimum is that the
gradient vector g(w) of the error surface w.r.t. the weight vector w
must be zero at w = w∗.

I The back-propagation algorithm is considered to have
converged when the Euclidean norm of the gradient vector
reaches a sufficiently small gradient threshold.

I But with this criterion learning time may be long.

I The back-propagation algorithm is considered to have
converged when the absolute rate of change in the average
squared error per epoch is sufficiently small.

I The rate of convergence in the average squared error is typically
considered to be small enough if it lies in the range of 0.1 t 1
percent per epoch (0.01 percent per epoch is used as well).

Stopping criteria
I In general, back-propagation algorithm cannot be shown to converge,

and there are no well-defined criteria for stopping its operation.

I A necessary condition for w∗ to be a (local!) minimum is that the
gradient vector g(w) of the error surface w.r.t. the weight vector w
must be zero at w = w∗.

I The back-propagation algorithm is considered to have
converged when the Euclidean norm of the gradient vector
reaches a sufficiently small gradient threshold.

I But with this criterion learning time may be long.

I The back-propagation algorithm is considered to have
converged when the absolute rate of change in the average
squared error per epoch is sufficiently small.

I The rate of convergence in the average squared error is typically
considered to be small enough if it lies in the range of 0.1 t 1
percent per epoch (0.01 percent per epoch is used as well).

Stopping criteria
I In general, back-propagation algorithm cannot be shown to converge,

and there are no well-defined criteria for stopping its operation.

I A necessary condition for w∗ to be a (local!) minimum is that the
gradient vector g(w) of the error surface w.r.t. the weight vector w
must be zero at w = w∗.

I The back-propagation algorithm is considered to have
converged when the Euclidean norm of the gradient vector
reaches a sufficiently small gradient threshold.

I But with this criterion learning time may be long.

I The back-propagation algorithm is considered to have
converged when the absolute rate of change in the average
squared error per epoch is sufficiently small.

I The rate of convergence in the average squared error is typically
considered to be small enough if it lies in the range of 0.1 t 1
percent per epoch (0.01 percent per epoch is used as well).

Remarks on the back-propagation algorithm
Heuristics for making the back-propagation algorithm perform better:

I Stochastic learning is preferable to the large batch/entire training
sample, updates especially when the training data sample is large
and highly redundant.

I Maximizing information content, e.g. shuffling observations to
ensure that successive examples rarely belong to the same class.

I Correct choice of the activation function, e.g. a sigmoid one which
is odd in its argument.

I Choosing target values properly w.r.t. the activation function.
I Normalizing the inputs: mean removal, decorrelation, covariance

equalization.
I Initialization: not large (saturation!) and not small (slowing down!)

initial values; e.g. uniform distribution with zero mean and variance
equal to the reciprocal of the number of synaptic connections of a
neuron.

I Learning from hints: include prior information about your task,
e.g. sparsity (weight sharing) in the convolutional neural networks.

I Learning rates: learning rate can be smaller in the last layers than
in the front layers.

Remarks on the back-propagation algorithm
Heuristics for making the back-propagation algorithm perform better:

I Stochastic learning is preferable to the large batch/entire training
sample, updates especially when the training data sample is large
and highly redundant.

I Maximizing information content, e.g. shuffling observations to
ensure that successive examples rarely belong to the same class.

I Correct choice of the activation function, e.g. a sigmoid one which
is odd in its argument.

I Choosing target values properly w.r.t. the activation function.
I Normalizing the inputs: mean removal, decorrelation, covariance

equalization.
I Initialization: not large (saturation!) and not small (slowing down!)

initial values; e.g. uniform distribution with zero mean and variance
equal to the reciprocal of the number of synaptic connections of a
neuron.

I Learning from hints: include prior information about your task,
e.g. sparsity (weight sharing) in the convolutional neural networks.

I Learning rates: learning rate can be smaller in the last layers than
in the front layers.

Remarks on the back-propagation algorithm
Heuristics for making the back-propagation algorithm perform better:

I Stochastic learning is preferable to the large batch/entire training
sample, updates especially when the training data sample is large
and highly redundant.

I Maximizing information content, e.g. shuffling observations to
ensure that successive examples rarely belong to the same class.

I Correct choice of the activation function, e.g. a sigmoid one which
is odd in its argument.

I Choosing target values properly w.r.t. the activation function.
I Normalizing the inputs: mean removal, decorrelation, covariance

equalization.
I Initialization: not large (saturation!) and not small (slowing down!)

initial values; e.g. uniform distribution with zero mean and variance
equal to the reciprocal of the number of synaptic connections of a
neuron.

I Learning from hints: include prior information about your task,
e.g. sparsity (weight sharing) in the convolutional neural networks.

I Learning rates: learning rate can be smaller in the last layers than
in the front layers.

Remarks on the back-propagation algorithm
Heuristics for making the back-propagation algorithm perform better:

I Stochastic learning is preferable to the large batch/entire training
sample, updates especially when the training data sample is large
and highly redundant.

I Maximizing information content, e.g. shuffling observations to
ensure that successive examples rarely belong to the same class.

I Correct choice of the activation function, e.g. a sigmoid one which
is odd in its argument.

I Choosing target values properly w.r.t. the activation function.

I Normalizing the inputs: mean removal, decorrelation, covariance
equalization.

I Initialization: not large (saturation!) and not small (slowing down!)
initial values; e.g. uniform distribution with zero mean and variance
equal to the reciprocal of the number of synaptic connections of a
neuron.

I Learning from hints: include prior information about your task,
e.g. sparsity (weight sharing) in the convolutional neural networks.

I Learning rates: learning rate can be smaller in the last layers than
in the front layers.

Remarks on the back-propagation algorithm
Heuristics for making the back-propagation algorithm perform better:

I Stochastic learning is preferable to the large batch/entire training
sample, updates especially when the training data sample is large
and highly redundant.

I Maximizing information content, e.g. shuffling observations to
ensure that successive examples rarely belong to the same class.

I Correct choice of the activation function, e.g. a sigmoid one which
is odd in its argument.

I Choosing target values properly w.r.t. the activation function.
I Normalizing the inputs: mean removal, decorrelation, covariance

equalization.

I Initialization: not large (saturation!) and not small (slowing down!)
initial values; e.g. uniform distribution with zero mean and variance
equal to the reciprocal of the number of synaptic connections of a
neuron.

I Learning from hints: include prior information about your task,
e.g. sparsity (weight sharing) in the convolutional neural networks.

I Learning rates: learning rate can be smaller in the last layers than
in the front layers.

Remarks on the back-propagation algorithm
Heuristics for making the back-propagation algorithm perform better:

I Stochastic learning is preferable to the large batch/entire training
sample, updates especially when the training data sample is large
and highly redundant.

I Maximizing information content, e.g. shuffling observations to
ensure that successive examples rarely belong to the same class.

I Correct choice of the activation function, e.g. a sigmoid one which
is odd in its argument.

I Choosing target values properly w.r.t. the activation function.
I Normalizing the inputs: mean removal, decorrelation, covariance

equalization.
I Initialization: not large (saturation!) and not small (slowing down!)

initial values; e.g. uniform distribution with zero mean and variance
equal to the reciprocal of the number of synaptic connections of a
neuron.

I Learning from hints: include prior information about your task,
e.g. sparsity (weight sharing) in the convolutional neural networks.

I Learning rates: learning rate can be smaller in the last layers than
in the front layers.

Remarks on the back-propagation algorithm
Heuristics for making the back-propagation algorithm perform better:

I Stochastic learning is preferable to the large batch/entire training
sample, updates especially when the training data sample is large
and highly redundant.

I Maximizing information content, e.g. shuffling observations to
ensure that successive examples rarely belong to the same class.

I Correct choice of the activation function, e.g. a sigmoid one which
is odd in its argument.

I Choosing target values properly w.r.t. the activation function.
I Normalizing the inputs: mean removal, decorrelation, covariance

equalization.
I Initialization: not large (saturation!) and not small (slowing down!)

initial values; e.g. uniform distribution with zero mean and variance
equal to the reciprocal of the number of synaptic connections of a
neuron.

I Learning from hints: include prior information about your task,
e.g. sparsity (weight sharing) in the convolutional neural networks.

I Learning rates: learning rate can be smaller in the last layers than
in the front layers.

Remarks on the back-propagation algorithm
Heuristics for making the back-propagation algorithm perform better:

I Stochastic learning is preferable to the large batch/entire training
sample, updates especially when the training data sample is large
and highly redundant.

I Maximizing information content, e.g. shuffling observations to
ensure that successive examples rarely belong to the same class.

I Correct choice of the activation function, e.g. a sigmoid one which
is odd in its argument.

I Choosing target values properly w.r.t. the activation function.
I Normalizing the inputs: mean removal, decorrelation, covariance

equalization.
I Initialization: not large (saturation!) and not small (slowing down!)

initial values; e.g. uniform distribution with zero mean and variance
equal to the reciprocal of the number of synaptic connections of a
neuron.

I Learning from hints: include prior information about your task,
e.g. sparsity (weight sharing) in the convolutional neural networks.

I Learning rates: learning rate can be smaller in the last layers than
in the front layers.

Thank you for your attention!

Thank you for your attention!

And some references
I Hastie, T., Tibshirani, R., and Friedman, J. (2009).

The Elements of Statistics Learning: Data Mining, Inference, and
Prediction (Second Edition).
Springer.

I Devroye, L., Gyöfri, L., Lugosi, G. (1996).
A Probabilistic Theory of Pattern Recognition.
Springer.

I Vapnik, V. N. (1998).
Statistical Learning Theory.
John Wiley & Sons.

I Haykin, S. (2009).
Neural Networks and Learning Machines (Third Edition).
Pearson.

I Goodfellow, J., Bengio, Y., and Courville, A. (2016).
Deep Learning.
MIT Press.

I Bishop, C. M. (2006).
Pattern Recognition and Machine Learning.
Springer.

	Perceptron, neural network, and the back-propagation algorithm
	Rosenblatt's perceptron
	Biological analogy
	Historical learning algorithm
	Novikoff's convergence theorem

	Signal-flow notation and model of an artificial neuron
	Least-mean-squares
	Minimization of the empirical risk
	Method of gradient descent
	The least-mean-square algorithm

	The back-propagation algorithm
	Derivation for a single-layer network
	Propagation for a multilayer network
	An example of the activation function

	Additional information on learning networks
	Regularization in neural networks
	Some remarks on the back-propagation

