Perceptron, neural network, and the back-propagation algorithm

Pavlo Mozharovskyi¹

¹LTCI, Télécom Paris, Institut Polytechnique de Paris

Machine learning

Paris, March 12, 2022

Today

Rosenblatt's perceptron

Biological analogy Historical learning algorithm Novikoff's convergence theorem

Signal-flow notation and model of an artificial neuron

Least-mean-squares

Minimization of the empirical risk Method of gradient descent The least-mean-square algorithm

The back-propagation algorithm

Derivation for a single-layer network Propagation for a multilayer network An example of the activation function

Additional information on learning networks

Regularization in neural networks Some remarks on the back-propagation

Literature

Supplementary learning materials include but are not limited to:

- Haykin, S. (2009). Neural Networks and Learning Machines (Third Edition). Pearson.
 - Introduction sections 3, 4, 6.
 - Sections 1.1–1.3.
 - Sections 3.3 (steepest descent), 3.5.
 - Sections 4.1–4.4.
- Vapnik, V. N. (1998).
 Statistical Learning Theory.
 John Wiley & Sons.
 - Section 9.1.
 - Section 9.6.
- Goodfellow, J., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.

Bertsekas, D. P. (2016).
 Nonlinear programming (Third Edition).
 Athena Scientific.

Types of machine leaning

- No labels
- No feedback
- "Find hidden structure"

- Decision process
- · Reward system
- · Learn series of actions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Supervised learning (reminder)

Notation:

- ► Given: for the random pair (X, Y) in R^d × {0,1} consisting of a random observation X and its random binary label Y (class), a sample of n i.i.d.: (x₁, y₁), ..., (x_n, y_n).
- **Goal:** predict the label of the new (unseen before) observation *x*.
- Method: construct a classification rule:

$$g : \mathbb{R}^d \to \{0,1\}, \mathbf{x} \mapsto g(\mathbf{x}),$$

so $g(\mathbf{x})$ is the prediction of the label for observation \mathbf{x} .

• **Criterion:** of the performance of g is the **error probability**:

$$R(g) = \mathbb{P}[g(X) \neq Y] = \mathbb{E}[\mathbb{1}(g(X) \neq Y)].$$

The best solution: is to know the distribution of (X,Y):

$$g(\mathbf{x}) = \mathbb{1}(\mathbb{E}[Y|X = \mathbf{x}] > 0.5).$$

Contents

Rosenblatt's perceptron

Biological analogy Historical learning algorithm Novikoff's convergence theorem

Signal-flow notation and model of an artificial neuron

Least-mean-squares

Minimization of the empirical risk Method of gradient descent The least-mean-square algorithm

The back-propagation algorithm

Derivation for a single-layer network Propagation for a multilayer network An example of the activation function

Additional information on learning networks Regularization in neural networks Some remarks on the back-propagation

Contents

Rosenblatt's perceptron

Biological analogy

Historical learning algorithm Novikoff's convergence theorem

Signal-flow notation and model of an artificial neuron

Least-mean-squares

Minimization of the empirical risk Method of gradient descent The least-mean-square algorithm

The back-propagation algorithm

Derivation for a single-layer network Propagation for a multilayer network An example of the activation function

Additional information on learning networks

Regularization in neural networks Some remarks on the back-propagation

Neurons in the human body

Density of neurons in the human brain at different ages

Pyramidal neuron

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ̄豆 ____のへぐ

Contents

Rosenblatt's perceptron

Biological analogy Historical learning algorithm Novikoff's convergence theorem

Signal-flow notation and model of an artificial neuron

Least-mean-squares

Minimization of the empirical risk Method of gradient descent The least-mean-square algorithm

The back-propagation algorithm

Derivation for a single-layer network Propagation for a multilayer network An example of the activation function

Additional information on learning networks

Regularization in neural networks Some remarks on the back-propagation

The three waves of machine learning

Wave 1 1952–1974: The birth and the golden years

Biological analogy – McCulloch and Pitts model of neuron

- First try Rosenblatt's perceptron
- Statistical foundations Vapnik-Chervonenkis theory

The three waves of machine learning

Wave 1 1952–1974: The birth and the golden years

- Biological analogy McCulloch and Pitts model of neuron
- First try Rosenblatt's perceptron
- Statistical foundations Vapnik-Chervonenkis theory

Wave 2 1980–1987: The boom

- Visual cortex model neocognitron by Fukushima
- Expert systems
- Knowledge engineering
- Recurrent architectures Hopfield net
- Learning algorithm back-propagation by Hinton and Rumelhart

The three waves of machine learning

Wave 1 1952–1974: The birth and the golden years

- Biological analogy McCulloch and Pitts model of neuron
- First try Rosenblatt's perceptron
- Statistical foundations Vapnik-Chervonenkis theory

Wave 2 1980–1987: The boom

- Visual cortex model neocognitron by Fukushima
- Expert systems
- Knowledge engineering
- Recurrent architectures Hopfield net
- Learning algorithm back-propagation by Hinton and Rumelhart

Wave 3 1993–.....: Contemporary architectures

- Convolutional networks (CNNs) LeNet by LeCun
- CNNs with ReLU, drop-out, GPUs AlexNet by Krizhevsky et al.

- Generative adversarial networks (GANs) Goodfellow
- Big data deep learning (DL)
- Artificial general intelligence full AI
- ▶

The **perceptron algorithm** was invented in 1957 at the Cornell Aeronautical Laboratory by **Frank Rosenblatt**.

(Photo downloaded from http://www.usbdata.co/rosenblatt-perceptron.html)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The **perceptron algorithm** was invented in 1957 at the Cornell Aeronautical Laboratory by **Frank Rosenblatt**.

(Photo downloaded from http://www.usbdata.co/rosenblatt-perceptron.html)

The Mark I Perceptron machine was the first implementation of the perceptron algorithm. The machine was connected to a **Camera** that used **20x20** cadmium sulfide **photocells** to produce a 400-pixel image. The main visible feature is a **Patchboard** that **allowed experimentation with** different combinations of **input features**. To the right of that are arrays of **Potentiometers** that **implemented** the **adaptive weights**.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let $\boldsymbol{w} = (w_1, w_2, ..., w_d)^T$ be the weight vector, then a new observation $\boldsymbol{x} = (x_1, x_2, ..., x_d)^T$ is classified as

Let $\boldsymbol{w} = (w_1, w_2, ..., w_d)^T$ be the weight vector, then a new observation $\boldsymbol{x} = (x_1, x_2, ..., x_d)^T$ is classified as

$$g(\mathbf{x}) = \begin{cases} 1 & \text{if } \phi \left(\sum_{k=1}^{d} w_k x_k + w_0 \right) > 0 \,, \\ 0 & \text{otherwise }. \end{cases}$$

Initialize w_0 and \boldsymbol{w} randomly or set $w_0 = 0$ and $\boldsymbol{w} = \boldsymbol{0}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Initialize w_0 and \boldsymbol{w} randomly or set $w_0 = 0$ and $\boldsymbol{w} = \boldsymbol{0}$. Choose constant $\gamma \in (0, 1]$ controlling the learning speed.

Initialize w_0 and \boldsymbol{w} randomly or set $w_0 = 0$ and $\boldsymbol{w} = \boldsymbol{0}$. Choose constant $\gamma \in (0, 1]$ controlling the learning speed.

Feed training pairs (\mathbf{x}, \mathbf{y}) , and for each of them update current threshold and weights $w_0^{(i)}$ and $\mathbf{w}^{(i)}$ to $w_0^{(i+1)}$ and $\mathbf{w}^{(i+1)}$ as follows:

Initialize w_0 and \boldsymbol{w} randomly or set $w_0 = 0$ and $\boldsymbol{w} = \boldsymbol{0}$. Choose constant $\gamma \in (0, 1]$ controlling the learning speed.

Feed training pairs (x, y), and for each of them update current threshold and weights $w_0^{(i)}$ and $w^{(i)}$ to $w_0^{(i+1)}$ and $w^{(i+1)}$ as follows:

1. Classify current observation **x**:

$$o^{(i)} = \begin{cases} 1 & \text{if } \sum_{k=1}^d w_k x_k + w_0 > 0 \,, \\ 0 & \text{otherwise} \,. \end{cases}$$

Initialize w_0 and \boldsymbol{w} randomly or set $w_0 = 0$ and $\boldsymbol{w} = \boldsymbol{0}$. Choose constant $\gamma \in (0, 1]$ controlling the learning speed.

Feed training pairs (x, y), and for each of them update current threshold and weights $w_0^{(i)}$ and $w^{(i)}$ to $w_0^{(i+1)}$ and $w^{(i+1)}$ as follows:

1. Classify current observation x:

$$o^{(i)} = \begin{cases} 1 & \text{if } \sum_{k=1}^{d} w_k x_k + w_0 > 0 \,, \\ 0 & \text{otherwise} \,. \end{cases}$$

2. Calculate correction:

$$\delta^{(i)} = \begin{cases} 0 & \text{if } o^{(i)} = y ,\\ 1 & \text{if } o^{(i)} = 0 \text{ but } y = 1 ,\\ -1 & \text{if } o^{(i)} = 1 \text{ but } y = 0 . \end{cases}$$

Initialize w_0 and \boldsymbol{w} randomly or set $w_0 = 0$ and $\boldsymbol{w} = \boldsymbol{0}$. Choose constant $\gamma \in (0, 1]$ controlling the learning speed.

Feed training pairs (x, y), and for each of them update current threshold and weights $w_0^{(i)}$ and $w^{(i)}$ to $w_0^{(i+1)}$ and $w^{(i+1)}$ as follows:

1. Classify current observation **x**:

$$o^{(i)} = \begin{cases} 1 & \text{if } \sum_{k=1}^{d} w_k x_k + w_0 > 0 \,, \\ 0 & \text{otherwise} \,. \end{cases}$$

2. Calculate correction:

$$\delta^{(i)} = \begin{cases} 0 & \text{if } o^{(i)} = y ,\\ 1 & \text{if } o^{(i)} = 0 \text{ but } y = 1 ,\\ -1 & \text{if } o^{(i)} = 1 \text{ but } y = 0 . \end{cases}$$

3. Update threshold and weights:

Fisher's iris data:

Fisher's iris data: is this the same flower?

Fisher's iris data: is this the same flower?

Iris setosa

Iris versicolor

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

lris setosa		Iris versicolor	
Sepal length (cm)	Sepal width (cm)	Sepal length (cm)	Sepal width (cm)
5.1	3.5	7	3.2
4.9	3	6.4	3.2
4.7	3.2	6.9	3.1
4.6	3.1	5.5	2.3
5	3.6	6.5	2.8
5.4	3.9	5.7	2.8
4.6	3.4	6.3	3.3
5	3.4	4.9	2.4
4.4	2.9	6.6	2.9
4.6	3.2	6.2	2.9
5.3	3.7	5.1	2.5
5	3.3	5.7	2.8

E ୬ ଏ.୧

ъ

・ロト ・ 日 ・ ・ ヨ ・

Iris data: perceptron rule after correction 0

Sac

ж

<ロト <回ト < 注ト < 注ト

Iris data: perceptron rule after correction 1

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

Iris data: perceptron rule after correction 2

= 𝒫𝔄𝔄

(日) (同) (日) (日)

Iris data: perceptron rule after correction 3

500

ж

(日) (同) (日) (日)

Iris data: perceptron rule after correction 4

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

Iris data: perceptron rule after correction 5

5 990

(日) (同) (日) (日)

Iris data: perceptron rule after correction 10

▲□ > ▲□ > ▲ 三 > ▲ 三 > ● ④ < ④
Iris data: perceptron rule after correction 50

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Iris data: perceptron rule after correction 100

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

Iris data: perceptron rule after correction 200

▲□ > ▲圖 > ▲ 臣 > ▲ 臣 > → 臣 = ∽ 9 Q ()~.

Iris data: perceptron rule after correction 300

▲□ > ▲□ > ▲ 三 > ▲ 三 > ● ④ < ④

Iris data: perceptron rule after correction 400

Iris data: perceptron rule after correction 500

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Iris data: perceptron rule after correction 600

SOR

æ

Iris data: perceptron rule after correction 650

Iris data: perceptron rule after correction 680

500

æ

Iris data: perceptron rule after correction 681

500

æ

Iris data: perceptron rule after correction 682

JO C

æ

Iris data: perceptron rule after correction 683

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

Iris data: perceptron rule after correction 684

500

æ

Iris data: perceptron rule after correction 685

▲□ > ▲圖 > ▲ 臣 > ▲ 臣 > → 臣 = ∽ 의 < ⊙ < ⊙

Iris data: perceptron rule after correction 686

5 D Q C

Iris data: perceptron rule

▲□ > ▲圖 > ▲ 臣 > ▲ 臣 > → 臣 = ∽ 의 < ⊙ < ⊙

Error of the perceptron rule on the training data

▲□ > ▲□ > ▲ 三 > ▲ 三 > ● ④ < ④

Error of the perceptron rule on the training data (log time)

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

Contents

Rosenblatt's perceptron

Biological analogy Historical learning algorithm Novikoff's convergence theorem

Signal-flow notation and model of an artificial neuron

Least-mean-squares

Minimization of the empirical risk Method of gradient descent The least-mean-square algorithm

The back-propagation algorithm

Derivation for a single-layer network Propagation for a multilayer network An example of the activation function

Additional information on learning networks

Regularization in neural networks Some remarks on the back-propagation

▶ Let *w*₀ = 0

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Let $w_0 = 0$ and set $\gamma = 1$.

• Let
$$w_0 = 0$$
 and set $\gamma = 1$.

• Let
$$(\mathcal{X}, \mathcal{Y}) = (\mathbf{x}_1, y_1), ..., (\mathbf{x}_i, y_i), ...$$
 be an infinite training sequence.

• Let
$$w_0 = 0$$
 and set $\gamma = 1$.

- ▶ Let $(\mathcal{X}, \mathcal{Y}) = (\mathbf{x}_1, y_1), ..., (\mathbf{x}_i, y_i), ...$ be an infinite training sequence.
- ▶ In addition, let (construct) $\tilde{\mathcal{X}} = \{ \mathbf{x} \mid (\mathbf{x}, y) \in (\mathcal{X}, \mathcal{Y}), y = 1 \} \cup \{ -\mathbf{x} \mid (\mathbf{x}, y) \in (\mathcal{X}, \mathcal{Y}), y = 0 \}.$

・ロト・日本・モート モー うへぐ

• Let
$$w_0 = 0$$
 and set $\gamma = 1$.

- ▶ Let $(\mathcal{X}, \mathcal{Y}) = (\mathbf{x}_1, y_1), ..., (\mathbf{x}_i, y_i), ...$ be an infinite training sequence.
- ▶ In addition, let (construct) $\tilde{\mathcal{X}} = \{ \mathbf{x} \mid (\mathbf{x}, y) \in (\mathcal{X}, \mathcal{Y}), y = 1 \} \cup \{ -\mathbf{x} \mid (\mathbf{x}, y) \in (\mathcal{X}, \mathcal{Y}), y = 0 \}.$
- Let $\tilde{\boldsymbol{w}}$ exist such that for some $\rho_0 > 0$ it holds

$$\min_{\tilde{\mathbf{x}}\in\tilde{\mathcal{X}}}\frac{\tilde{\boldsymbol{w}}^{T}\tilde{\boldsymbol{x}}}{\|\tilde{\boldsymbol{w}}\|} \geq \rho_{0}\,.$$

i.e. the classes are **linearly separable via the origin** with margin ρ_0 .

• Let
$$w_0 = 0$$
 and set $\gamma = 1$.

- Let $(\mathcal{X}, \mathcal{Y}) = (\mathbf{x}_1, y_1), ..., (\mathbf{x}_i, y_i), ...$ be an infinite training sequence.
- ▶ In addition, let (construct) $\tilde{\mathcal{X}} = \{ \mathbf{x} \mid (\mathbf{x}, y) \in (\mathcal{X}, \mathcal{Y}), y = 1 \} \cup \{ -\mathbf{x} \mid (\mathbf{x}, y) \in (\mathcal{X}, \mathcal{Y}), y = 0 \}.$
- Let $\tilde{\boldsymbol{w}}$ exist such that for some $\rho_0 > 0$ it holds

$$\min_{\tilde{\boldsymbol{x}}\in\tilde{\mathcal{X}}}\frac{\tilde{\boldsymbol{w}}^{T}\tilde{\boldsymbol{x}}}{\|\tilde{\boldsymbol{w}}\|} \geq \rho_{0}.$$

i.e. the classes are **linearly separable via the origin** with margin ρ_0 .

Let 0 < D < ∞ exist such that it holds</p>

$$\max_{\boldsymbol{x}\in\mathcal{X}}\|\boldsymbol{x}\| < D.$$

Theorem (Novikoff, 1962)

The perceptron constructs a hyperplane that correctly separates all pairs $(\mathbf{x}, y) \in (\mathcal{X}, \mathcal{Y})$ with the number of corrections at most

$$\left\lfloor \frac{D^2}{\rho_0^2} \right\rfloor$$

・ロト ・四ト ・ヨト ・ヨ

Theorem (Novikoff, 1962)

The perceptron constructs a hyperplane that correctly separates all pairs $(\mathbf{x}, y) \in (\mathcal{X}, \mathcal{Y})$ with the number of corrections at most

$$\left\lfloor \frac{D^2}{\rho_0^2} \right\rfloor$$

Theorem (Novikoff, 1962)

The perceptron constructs a hyperplane that correctly separates all pairs $(x, y) \in (\mathcal{X}, \mathcal{Y})$ with the number of corrections at most

$$\left\lfloor \frac{D^2}{\rho_0^2} \right\rfloor$$

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Theorem (Novikoff, 1962)

The perceptron constructs a hyperplane that correctly separates all pairs $(\mathbf{x}, y) \in (\mathcal{X}, \mathcal{Y})$ with the number of corrections at most

$$\left\lfloor \frac{D^2}{\rho_0^2} \right\rfloor$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Contents

Rosenblatt's perceptron

Biological analogy Historical learning algorithm Novikoff's convergence theorem

Signal-flow notation and model of an artificial neuron

Least-mean-squares

Minimization of the empirical risk Method of gradient descent The least-mean-square algorithm

The back-propagation algorithm

Derivation for a single-layer network Propagation for a multilayer network An example of the activation function

Additional information on learning networks Regularization in neural networks

A signal-flaw graph is a network of directed links (branches) that are interconnected at certain points called **nodes**.

(ロ)、(型)、(E)、(E)、 E) の(の)

A **signal-flaw graph** is a network of directed **links (branches)** that are interconnected at certain points called **nodes**.

1. A signal flows along a link only in the direction defined by the arrow on the link.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

There are two types of links:

A **signal-flaw graph** is a network of directed **links (branches)** that are interconnected at certain points called **nodes**.

1. A signal flows along a link only in the direction defined by the arrow on the link.

There are two types of links:

► **Synaptic links**: behavior is defined by a **linear** input-output relation. Specifically, the node signal *x_j* is multiplied with the synaptic weight *w_{kj}* to produce the node signal *y_k*.

A **signal-flaw graph** is a network of directed **links (branches)** that are interconnected at certain points called **nodes**.

1. A signal flows along a link only in the direction defined by the arrow on the link.

There are two types of links:

- ► **Synaptic links**: behavior is defined by a **linear** input-output relation. Specifically, the node signal *x_j* is multiplied with the synaptic weight *w_{kj}* to produce the node signal *y_k*.
- Activation links: behavior is defined by a nonlinear input-output relation. The change of the signal is performed due to the activation function $\phi(\cdot)$.

A **signal-flaw graph** is a network of directed **links (branches)** that are interconnected at certain points called **nodes**.

1. A signal flows along a link only in the direction defined by the arrow on the link.

There are two types of links:

- ► **Synaptic links**: behavior is defined by a **linear** input-output relation. Specifically, the node signal *x_j* is multiplied with the synaptic weight *w_{kj}* to produce the node signal *y_k*.
- Activation links: behavior is defined by a nonlinear input-output relation. The change of the signal is performed due to the activation function $\phi(\cdot)$.

2. A node signal equals the algebraic sum of all signals entering the pertinent node via the incoming links: **synaptic convergence** or **fan-in**.

A **signal-flaw graph** is a network of directed **links (branches)** that are interconnected at certain points called **nodes**.

1. A signal flows along a link only in the direction defined by the arrow on the link.

There are two types of links:

- ► Synaptic links: behavior is defined by a linear input-output relation. Specifically, the node signal x_j is multiplied with the synaptic weight w_{kj} to produce the node signal y_k.
- Activation links: behavior is defined by a nonlinear input-output relation. The change of the signal is performed due to the activation function $\phi(\cdot)$.
- 2. A node signal equals the algebraic sum of all signals entering the pertinent node via the incoming links: **synaptic convergence** or **fan-in**.
- 3. The signal at node is transmitted to each outgoing link originating from that node, with the transmission entirely independent of the transfer functions of the outgoing links: **synaptic divergence** or **fan-out**.
A signal-flow graph of a neuron

・ロト ・聞ト ・ヨト ・ヨト

æ

A **neural network is a directed graph** consisting of nodes with interconnecting synaptic and activation links and is characterized by four properties:

A **neural network is a directed graph** consisting of nodes with interconnecting synaptic and activation links and is characterized by four properties:

1. Each neuron is represented by a set of linear synaptic links, an externally applied bias, and a possibly nonlinear activation link. The bias is represented by a synaptic link connected to an input fixed at +1.

A **neural network is a directed graph** consisting of nodes with interconnecting synaptic and activation links and is characterized by four properties:

- 1. Each neuron is represented by a set of linear synaptic links, an externally applied bias, and a possibly nonlinear activation link. The bias is represented by a synaptic link connected to an input fixed at +1.
- 2. The synaptic links of a neuron weight their respective input signals.

A **neural network is a directed graph** consisting of nodes with interconnecting synaptic and activation links and is characterized by four properties:

- 1. Each neuron is represented by a set of linear synaptic links, an externally applied bias, and a possibly nonlinear activation link. The bias is represented by a synaptic link connected to an input fixed at +1.
- 2. The synaptic links of a neuron weight their respective input signals.
- 3. The weighted sum of the input signals defines the **induced local field** of the neuron in question.

A **neural network is a directed graph** consisting of nodes with interconnecting synaptic and activation links and is characterized by four properties:

- 1. Each neuron is represented by a set of linear synaptic links, an externally applied bias, and a possibly nonlinear activation link. The bias is represented by a synaptic link connected to an input fixed at +1.
- 2. The synaptic links of a neuron weight their respective input signals.
- 3. The weighted sum of the input signals defines the **induced local field** of the neuron in question.
- 4. The **activation link** squashes the induced local field of the neuron to produce **output**.

Activation function $\phi(v)$

Threshold (Heaviside) function:

$$\phi(v) = egin{cases} 1 & ext{if } v \geq 0\,, \ 0 & ext{if } v < 0\,. \end{cases}$$

Threshold (Heaviside) activation function

◆□ > ◆□ > ◆三 > ◆三 > ・三 ● のへで

Activation function $\phi(v)$

Piecewise-linear function:

$$\phi(\mathbf{v}) = \begin{cases} 1 & \text{if } \mathbf{v} \ge \frac{1}{2} \,, \\ \mathbf{v} + \frac{1}{2} & \text{if } -\frac{1}{2} < \mathbf{v} < \frac{1}{2} \,, \\ 0 & \text{if } \mathbf{v} \le -\frac{1}{2} \,. \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Activation function $\phi(v)$

• Sigmoid function:

$$\phi(\mathbf{v}) = rac{1}{1+exp(-av)}$$
 .

Sigmoid activation function

v

Contents

Rosenblatt's perceptron

Biological analogy Historical learning algorithm Novikoff's convergence theorem

Signal-flow notation and model of an artificial neuron

Least-mean-squares

Minimization of the empirical risk Method of gradient descent The least-mean-square algorithm

The back-propagation algorithm

Derivation for a single-layer network Propagation for a multilayer network An example of the activation function

Additional information on learning networks Regularization in neural networks Some remarks on the back-propagation

Contents

Rosenblatt's perceptron

Biological analogy Historical learning algorithm Novikoff's convergence theorem

Signal-flow notation and model of an artificial neuron

Least-mean-squares

Minimization of the empirical risk

Method of gradient descent The least-mean-square algorithm

The back-propagation algorithm

Derivation for a single-layer network Propagation for a multilayer network An example of the activation function

Additional information on learning networks

Regularization in neural networks Some remarks on the back-propagation

Minimization of the empirical risk (reminder)

► For:

- a random pair (X, Y),
- a loss function ℓ : $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$ one seeks a classifier close to:

$$g^* = \operatorname*{arg\,min}_{g} \mathbb{E}[\ell(g(X), Y)].$$

Strategy: Given a training sample (x₁, y₁), (x₂, y₂), ..., (xn, yn) of (X, Y), one minimizes the empirical version of E[ℓ(g(X), Y)]:

$$\frac{1}{n}\sum_{i=1}^n\ell\big(g(\boldsymbol{x}_i),y_i\big)\,.$$

- ▶ Method: Numerical optimization, e.g., gradient descent.
- Stochastic gradient descent: Use a single (randomly drawn) observation to iteratively approximate g*.

Contents

Rosenblatt's perceptron

Biological analogy Historical learning algorithm Novikoff's convergence theorem

Signal-flow notation and model of an artificial neuron

Least-mean-squares

Minimization of the empirical risk Method of gradient descent

The least-mean-square algorithm

The back-propagation algorithm

Derivation for a single-layer network Propagation for a multilayer network An example of the activation function

Additional information on learning networks

Regularization in neural networks Some remarks on the back-propagation

Consider a cost function & that is continuously differentiable function of some unknown weight (parameter) vector w.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Consider a cost function & that is continuously differentiable function of some unknown weight (parameter) vector w.
- In the method of gradient descent, the successive adjustments are applied to w in the direction of gradient descent, *i.e.* in the direction opposite to the gradient vector ∇*E*:

$$\boldsymbol{g} = \nabla \mathcal{E}(\boldsymbol{w}) = \left(\frac{\partial \mathcal{E}}{\partial w_1} \boldsymbol{e}_{w_1}, \frac{\partial \mathcal{E}}{\partial w_2} \boldsymbol{e}_{w_2}, ..., \frac{\partial \mathcal{E}}{\partial w_m} \boldsymbol{e}_{w_m}\right)^T$$

- Consider a cost function & that is continuously differentiable function of some unknown weight (parameter) vector w.
- In the method of gradient descent, the successive adjustments are applied to w in the direction of gradient descent, *i.e.* in the direction opposite to the gradient vector ∇*E*:

$$\boldsymbol{g} = \nabla \mathcal{E}(\boldsymbol{w}) = \left(\frac{\partial \mathcal{E}}{\partial w_1} \boldsymbol{e}_{w_1}, \frac{\partial \mathcal{E}}{\partial w_2} \boldsymbol{e}_{w_2}, ..., \frac{\partial \mathcal{E}}{\partial w_m} \boldsymbol{e}_{w_m}\right)^T$$

The step of the algorithm is then defined as

$$\boldsymbol{w}(n+1) = \boldsymbol{w}(n) - \gamma \boldsymbol{g}(n),$$

where γ is the **learning rate**.

- Consider a cost function & that is continuously differentiable function of some unknown weight (parameter) vector w.
- In the method of gradient descent, the successive adjustments are applied to w in the direction of gradient descent, *i.e.* in the direction opposite to the gradient vector ∇*E*:

$$\boldsymbol{g} = \nabla \mathcal{E}(\boldsymbol{w}) = \left(\frac{\partial \mathcal{E}}{\partial w_1} \boldsymbol{e}_{w_1}, \frac{\partial \mathcal{E}}{\partial w_2} \boldsymbol{e}_{w_2}, ..., \frac{\partial \mathcal{E}}{\partial w_m} \boldsymbol{e}_{w_m}\right)^T$$

The step of the algorithm is then defined as

$$\boldsymbol{w}(n+1) = \boldsymbol{w}(n) - \gamma \boldsymbol{g}(n),$$

where γ is the learning rate.

▶ When going from iteration *n* to iteration *n* + 1, the **correction** is applied to the weights:

$$\Delta \boldsymbol{w}(n) = \boldsymbol{w}(n+1) - \boldsymbol{w}(n)$$

= $-\gamma \boldsymbol{g}(n)$.

Let us show that the constructed algorithm fulfills the idea of the iterative descent, *i.e.* that it satisfies

 $\mathcal{E}(\mathbf{w}(n+1)) < \mathcal{E}(\mathbf{w}(n)).$

Let us show that the constructed algorithm fulfills the idea of the iterative descent, *i.e.* that it satisfies

$$\mathcal{E}(\boldsymbol{w}(n+1)) < \mathcal{E}(\boldsymbol{w}(n)).$$

► Using the first-order Taylor series expansion around w(n) to approximate *E*(w(n+1)) as

$$\mathcal{E}(\boldsymbol{w}(n+1)) \approx \mathcal{E}(\boldsymbol{w}(n)) + \boldsymbol{g}^{\mathsf{T}}(n)\Delta \boldsymbol{w}(n)$$

is justified for γ small enough.

Let us show that the constructed algorithm fulfills the idea of the iterative descent, *i.e.* that it satisfies

$$\mathcal{E}(\mathbf{w}(n+1)) < \mathcal{E}(\mathbf{w}(n)).$$

► Using the first-order Taylor series expansion around w(n) to approximate *E*(w(n+1)) as

$$\mathcal{E}(\boldsymbol{w}(n+1)) \approx \mathcal{E}(\boldsymbol{w}(n)) + \boldsymbol{g}^{\mathsf{T}}(n)\Delta \boldsymbol{w}(n)$$

is justified for γ small enough.

• Substituting $\Delta w(n)$ gives:

$$\begin{aligned} \mathcal{E} \big(\boldsymbol{w}(n+1) \big) &\approx \quad \mathcal{E} \big(\boldsymbol{w}(n) \big) - \gamma \boldsymbol{g}^{\mathsf{T}}(n) \boldsymbol{g}(n) \\ &= \quad \mathcal{E} \big(\boldsymbol{w}(n) \big) - \gamma \| \boldsymbol{g}(n) \|^2 \,, \end{aligned}$$

and thus for a positive learning rate the cost function decreases on each iteration.

Gradient descent, learnign rate = 0.35, iter = 0

w

w

w

w

Gradient descent, learnign rate = 0.35, iter = 4

w

w

Gradient descent, learnign rate = 0.35, iter = 6

w

▲ロト ▲理 ▶ ▲ ヨ ▶ ▲ 目 ▼ の < ⊙

Gradient descent, learnign rate = 0.35, iter = 7

w

w

▲ロト ▲理 ▶ ▲ ヨ ▶ ▲ 目 ▼ の < ⊙

w

▲ロト ▲理 ▶ ▲ ヨ ▶ ▲ 目 ▼ の < ⊙

Gradient descent, learnign rate = 0.35, iter = 10

w

Gradient descent, learnign rate = 1.65, iter = 0

w

Gradient descent, learnign rate = 1.65, iter = 1

w

Gradient descent, learnign rate = 1.65, iter = 2

w

Gradient descent, learnign rate = 1.65, iter = 3

w

▲ロト ▲圖ト ▲注ト ▲注ト 二注 …のへの

Gradient descent, learnign rate = 1.65, iter = 4

w
Gradient descent, learnign rate = 1.65, iter = 5

w

Gradient descent, learnign rate = 1.65, iter = 6

w

Gradient descent, learnign rate = 1.65, iter = 7

w

Gradient descent, learnign rate = 1.65, iter = 8

w

Gradient descent, learnign rate = 1.65, iter = 9

w

Gradient descent, learnign rate = 1.65, iter = 10

w

The method **converges** to the optimal solution **slowly**. Moreover, the **learning rate** γ has a profound influence on its convergence behavior:

The method **converges** to the optimal solution **slowly**. Moreover, the **learning rate** γ has a profound influence on its convergence behavior:

When γ is small, the transient response of the algorithm is overdamped, and the trajectory of w(n) follows a smooth path in the parameter space.

The method **converges** to the optimal solution **slowly**. Moreover, the **learning rate** γ has a profound influence on its convergence behavior:

- When γ is small, the transient response of the algorithm is overdamped, and the trajectory of w(n) follows a smooth path in the parameter space.
- When γ is large, the transient response is underdamped, and the trajectory of w(n) follows a zigzagging (oscillatory) path.

The method **converges** to the optimal solution **slowly**. Moreover, the **learning rate** γ has a profound influence on its convergence behavior:

- When γ is small, the transient response of the algorithm is overdamped, and the trajectory of w(n) follows a smooth path in the parameter space.
- When γ is large, the transient response is underdamped, and the trajectory of w(n) follows a zigzagging (oscillatory) path.
- When γ exceeds a certain critical value, the algorithm becomes unstable and may diverge.

Gradient descent, learnign rate = 2.5, iter = 0

w

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Gradient descent, learnign rate = 2.5, iter = 1

w

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへ⊙

Gradient descent, learnign rate = 2.5, iter = 2

w

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Gradient descent, learnign rate = 2.5, iter = 3

w

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

2 9 ω E(v) ø 4 2 0 -2 2 _4

Gradient descent, learnign rate = 2.5, iter = 4

w

<ロ>

2 9 ω E(v) ø 4 2 0 -2 2 _4

Gradient descent, learnign rate = 2.5, iter = 5

w

A signal-flow graph of a simplified neuron

<ロト <回ト < 注ト < 注ト

æ

► A simplified neuron has the following prediction function:

$$p_{oldsymbol{w}}(oldsymbol{x}) = \sum_{q=1}^m w_q x_q$$
 .

► A simplified neuron has the following prediction function:

$$p_{oldsymbol{w}}(oldsymbol{x}) = \sum_{q=1}^m w_q x_q$$
 .

▶ For a data sample (x₁, y₁), (x₂, y₂)..., (x_n, y_n), let us measure its empirical error by a convex function, *e.g.* using the quadratic loss:

$$\mathcal{E}(\boldsymbol{w}) = \frac{1}{2} \times \frac{1}{n} \sum_{j=1}^{n} e_j(\boldsymbol{w})^2 = \frac{1}{2} \times \frac{1}{n} \sum_{j=1}^{n} (y_j - p_{\boldsymbol{w}}(\boldsymbol{x}_j))^2.$$

► A simplified neuron has the following prediction function:

$$p_{oldsymbol{w}}(oldsymbol{x}) = \sum_{q=1}^m w_q x_q$$
 .

▶ For a data sample (x₁, y₁), (x₂, y₂)..., (x_n, y_n), let us measure its empirical error by a convex function, *e.g.* using the quadratic loss:

$$\mathcal{E}(\boldsymbol{w}) = \frac{1}{2} \times \frac{1}{n} \sum_{j=1}^{n} e_j(\boldsymbol{w})^2 = \frac{1}{2} \times \frac{1}{n} \sum_{j=1}^{n} (y_j - p_{\boldsymbol{w}}(\boldsymbol{x}_j))^2.$$

The gradient equals:

$$\boldsymbol{g} = \nabla \mathcal{E}(\boldsymbol{w}) = -\frac{1}{n} \sum_{j=1}^{n} (y_j - p_{\boldsymbol{w}}(\boldsymbol{x}_j)) \boldsymbol{x}_j.$$

► A simplified neuron has the following prediction function:

$$p_{oldsymbol{w}}(oldsymbol{x}) = \sum_{q=1}^m w_q x_q$$
 .

▶ For a data sample (x₁, y₁), (x₂, y₂)..., (x_n, y_n), let us measure its empirical error by a convex function, *e.g.* using the quadratic loss:

$$\mathcal{E}(\boldsymbol{w}) = \frac{1}{2} \times \frac{1}{n} \sum_{j=1}^{n} e_j(\boldsymbol{w})^2 = \frac{1}{2} \times \frac{1}{n} \sum_{j=1}^{n} (y_j - p_{\boldsymbol{w}}(\boldsymbol{x}_j))^2.$$

The gradient equals:

$$\boldsymbol{g} = \nabla \mathcal{E}(\boldsymbol{w}) = -\frac{1}{n} \sum_{j=1}^{n} (y_j - p_{\boldsymbol{w}}(\boldsymbol{x}_j)) \boldsymbol{x}_j.$$

The step of the algorithm is then:

$$\boldsymbol{w}(i+1) = \boldsymbol{w}(i) - \gamma \boldsymbol{g}(i) = \boldsymbol{w}(i) + \frac{\gamma}{n} \sum_{j=1}^{n} (y_j - \boldsymbol{w}(i)^T \boldsymbol{x}_j) \boldsymbol{x}_j.$$

Iris data: gradient descent rule after correction 0

Sepal length

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Iris data: gradient descent rule after correction 1

500

æ

<ロト <回ト < 注ト < 注ト

Iris data: gradient descent rule after correction 2

∋ 900

4.0 3.5 Sepal width 3.0 2.5 2.0 4.5 7.0 5.0 5.5 6.0 6.5

Iris data: gradient descent rule after correction 3

Sepal length

・ロト・雪・・雪・・雪・ うらぐ

Iris data: gradient descent rule after correction 4

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

4.0 3.5 Sepal width 3.0 2.5 2.0 4.5 5.5 7.0 5.0 6.0 6.5

Iris data: gradient descent rule after correction 5

Sepal length

4.0 3.5 Sepal width 3.0 2.5 2.0 4.5 5.5 7.0 5.0 6.0 6.5

Iris data: gradient descent rule after correction 6

Sepal length

4.0 3.5 Sepal width 3.0 2.5 2.0 4.5 5.5 7.0 5.0 6.0 6.5

Iris data: gradient descent rule after correction 7

Sepal length

4.0 3.5 Sepal width 3.0 2.5 2.0 4.5 5.5 7.0 5.0 6.0 6.5

Iris data: gradient descent rule after correction 8

Sepal length

4.0 3.5 Sepal width 3.0 2.5 2.0 4.5 5.5 7.0 5.0 6.0 6.5

Iris data: gradient descent rule after correction 9

Sepal length

Iris data: gradient descent rule after correction 10

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Iris data: gradient descent rule

SOC

æ

Error of the gradient descent rule on the training data

Observation evaluation iteration

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > Ξ のへで

Contents

Rosenblatt's perceptron

Biological analogy Historical learning algorithm Novikoff's convergence theorem

Signal-flow notation and model of an artificial neuron

Least-mean-squares

Minimization of the empirical risk Method of gradient descent

The least-mean-square algorithm

The back-propagation algorithm

Derivation for a single-layer network Propagation for a multilayer network An example of the activation function

Additional information on learning networks

Regularization in neural networks Some remarks on the back-propagation

The least-mean-square algorithm

The least-mean-square (LMS) algorithm attempts to minimize the instantaneous value of the cost function

$$\mathcal{E}(\hat{\boldsymbol{w}}) = \frac{1}{2}e^2(n),$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where e(n) is the error measured at time n.
The least-mean-square (LMS) algorithm attempts to minimize the instantaneous value of the cost function

$$\mathcal{E}(\hat{\boldsymbol{w}}) = \frac{1}{2}e^2(n),$$

where e(n) is the error measured at time n.

• Differentiating $\mathcal{E}(\hat{\boldsymbol{w}})$ w.r.t. $\hat{\boldsymbol{w}}$ gives:

$$\frac{\partial \mathcal{E}(\hat{\boldsymbol{w}})}{\partial \hat{\boldsymbol{w}}} = e(n) \frac{\partial e(n)}{\partial \hat{\boldsymbol{w}}}$$

The least-mean-square (LMS) algorithm attempts to minimize the instantaneous value of the cost function

$$\mathcal{E}(\hat{\boldsymbol{w}}) = \frac{1}{2}e^2(n),$$

where e(n) is the error measured at time n.

• Differentiating $\mathcal{E}(\hat{\boldsymbol{w}})$ w.r.t. $\hat{\boldsymbol{w}}$ gives:

$$\frac{\partial \mathcal{E}(\hat{\boldsymbol{w}})}{\partial \hat{\boldsymbol{w}}} = e(n) \frac{\partial e(n)}{\partial \hat{\boldsymbol{w}}}$$

▶ When operating on the linear neuron, the error can be expressed as:

$$e(n) = d(n) - \mathbf{x}^{T}(n)\hat{\mathbf{w}}(n)$$
.

The least-mean-square (LMS) algorithm attempts to minimize the instantaneous value of the cost function

$$\mathcal{E}(\hat{\boldsymbol{w}}) = \frac{1}{2}e^2(n)$$

where e(n) is the error measured at time n.

• Differentiating $\mathcal{E}(\hat{\boldsymbol{w}})$ w.r.t. $\hat{\boldsymbol{w}}$ gives:

$$\frac{\partial \mathcal{E}(\hat{\boldsymbol{w}})}{\partial \hat{\boldsymbol{w}}} = e(n) \frac{\partial e(n)}{\partial \hat{\boldsymbol{w}}}$$

When operating on the linear neuron, the error can be expressed as:

$$e(n) = d(n) - \boldsymbol{x}^{T}(n)\hat{\boldsymbol{w}}(n).$$

Thus

$$rac{\partial e(n)}{\partial \hat{oldsymbol{w}}} = -oldsymbol{x}(n) \quad ext{and} \quad rac{\partial \mathcal{E}(\hat{oldsymbol{w}})}{\partial \hat{oldsymbol{w}}(n)} = -oldsymbol{x}(n) e(n) = \hat{oldsymbol{g}}(n) \,.$$

うしん 同一人間を入所する (四) (1)

The least-mean-square (LMS) algorithm attempts to minimize the instantaneous value of the cost function

$$\mathcal{E}(\hat{\boldsymbol{w}}) = \frac{1}{2}e^2(n)$$

where e(n) is the error measured at time n.

• Differentiating $\mathcal{E}(\hat{\boldsymbol{w}})$ w.r.t. $\hat{\boldsymbol{w}}$ gives:

$$\frac{\partial \mathcal{E}(\hat{\boldsymbol{w}})}{\partial \hat{\boldsymbol{w}}} = e(n) \frac{\partial e(n)}{\partial \hat{\boldsymbol{w}}}$$

When operating on the linear neuron, the error can be expressed as:

$$e(n) = d(n) - \mathbf{x}^{\mathsf{T}}(n)\hat{\mathbf{w}}(n).$$

Thus

$$rac{\partial e(n)}{\partial \hat{oldsymbol{w}}} = -oldsymbol{x}(n) \quad ext{and} \quad rac{\partial \mathcal{E}(\hat{oldsymbol{w}})}{\partial \hat{oldsymbol{w}}(n)} = -oldsymbol{x}(n) e(n) = \hat{oldsymbol{g}}(n) \,.$$

Now, LMS can be formulated as follows:

$$\hat{\boldsymbol{w}}(n+1) = \hat{\boldsymbol{w}}(n) + \gamma \boldsymbol{x}(n) \boldsymbol{e}(n).$$

Input:

▶ Input signals x(n) with correct outputs d(n) for n=1,2,...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Learning rate γ.

Initialization:

• Set $\hat{\boldsymbol{w}}(1) = \boldsymbol{0}$.

Iterations:

▶ For n = 1, 2, ..., compute

•
$$e(n) = d(n) - \hat{\boldsymbol{w}}^T(n)\boldsymbol{x}(n),$$

$$\hat{\boldsymbol{w}}(n+1) = \hat{\boldsymbol{w}}(n) + \gamma \boldsymbol{x}(n) \boldsymbol{e}(n).$$

Input:

- ▶ Input signals x(n) with correct outputs d(n) for n=1,2,...
- Learning rate γ.

Initialization:

• Set $\hat{\boldsymbol{w}}(1) = \boldsymbol{0}$.

Iterations:

▶ For *n* = 1, 2, ... , compute

•
$$e(n) = d(n) - \hat{\boldsymbol{w}}^{T}(n)\boldsymbol{x}(n),$$

$$\hat{\boldsymbol{w}}(n+1) = \hat{\boldsymbol{w}}(n) + \gamma \boldsymbol{x}(n) \boldsymbol{e}(n).$$

Remarks:

The inverse of the learning rate acts as a measure of the memory of the LMS algorithm: the smaller γ is set, the longer the memory span over which the LMS remembers the past data will be.

Input:

- ▶ Input signals x(n) with correct outputs d(n) for n=1,2,...
- Learning rate γ.

Initialization:

• Set $\hat{\boldsymbol{w}}(1) = \boldsymbol{0}$.

Iterations:

▶ For *n* = 1, 2, ... , compute

•
$$e(n) = d(n) - \hat{\boldsymbol{w}}^T(n)\boldsymbol{x}(n),$$

$$\hat{\boldsymbol{w}}(n+1) = \hat{\boldsymbol{w}}(n) + \gamma \boldsymbol{x}(n) \boldsymbol{e}(n).$$

Remarks:

- The inverse of the learning rate acts as a measure of the memory of the LMS algorithm: the smaller γ is set, the longer the memory span over which the LMS remembers the past data will be.
- ► Having ŵ(n) in place of w(n) emphasizes that the LMS algorithm produces the instantaneous estimate of the weights, which would result from the gradient descent.

Input:

- ▶ Input signals x(n) with correct outputs d(n) for n=1,2,...
- Learning rate γ.

Initialization:

• Set $\hat{\boldsymbol{w}}(1) = \boldsymbol{0}$.

Iterations:

▶ For *n* = 1, 2, ... , compute

•
$$e(n) = d(n) - \hat{\boldsymbol{w}}^T(n)\boldsymbol{x}(n),$$

$$\hat{\boldsymbol{w}}(n+1) = \hat{\boldsymbol{w}}(n) + \gamma \boldsymbol{x}(n) \boldsymbol{e}(n).$$

Remarks:

- The inverse of the learning rate acts as a measure of the memory of the LMS algorithm: the smaller γ is set, the longer the memory span over which the LMS remembers the past data will be.
- ► Having ŵ(n) in place of w(n) emphasizes that the LMS algorithm produces the instantaneous estimate of the weights, which would result from the gradient descent.
- ► For this last reason, the LMS-updated weights ŵ(n) trace a random trajectory in the parameter space: stochastic gradient descent.

Iris data: least-mean-square rule after correction 0

Sepal length

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Iris data: least-mean-square rule after correction 1

Sepal length

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Iris data: least-mean-square rule after correction 2

Sepal length

◆ロト ◆昼 → ◆ 臣 → ◆ 臣 → のへぐ

Iris data: least-mean-square rule after correction 3

Sepal length

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Iris data: least-mean-square rule after correction 4

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Iris data: least-mean-square rule after correction 5

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Iris data: least-mean-square rule after correction 6

Iris data: least-mean-square rule after correction 7

Iris data: least-mean-square rule after correction 8

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Iris data: least-mean-square rule after correction 9

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Iris data: least-mean-square rule after correction 10

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Iris data: least-mean-square rule after correction 11

Sepal length

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

æ

Iris data: least-mean-square rule after correction 12

Sepal length

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Iris data: least-mean-square rule after correction 13

Sepal length

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Iris data: least-mean-square rule after correction 14

Sepal length

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Iris data: least-mean-square rule after correction 15

Iris data: least-mean-square rule after correction 25

Sepal length

・ロト ・聞ト ・ヨト ・ヨト

æ

Iris data: least-mean-square rule after correction 50

Iris data: least-mean-square rule after correction 100

Iris data: least-mean-square rule

Error of the least-mean-square rule on the training data

Observation evaluation iteration

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

Contents

Rosenblatt's perceptron

Biological analogy Historical learning algorithm Novikoff's convergence theorem

Signal-flow notation and model of an artificial neuron

Least-mean-squares

Minimization of the empirical risk Method of gradient descent The least-mean-square algorithm

The back-propagation algorithm

Derivation for a single-layer network Propagation for a multilayer network An example of the activation function

Additional information on learning networks Regularization in neural networks Some remarks on the back-propagation

Contents

Rosenblatt's perceptron

Biological analogy Historical learning algorithm Novikoff's convergence theorem

Signal-flow notation and model of an artificial neuron

Least-mean-squares

Minimization of the empirical risk Method of gradient descent The least-mean-square algorithm

The back-propagation algorithm

Derivation for a single-layer network

Propagation for a multilayer network An example of the activation function

Additional information on learning networks

Regularization in neural networks Some remarks on the back-propagation

Single layer perceptron

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Error signal produced at the output of neuron *j* is defined by

$$e_j(n)=d_j(n)-y_j(n)\,,$$

where $d_j(n)$ is the correct output.

Error signal produced at the output of neuron *j* is defined by

$$e_j(n)=d_j(n)-y_j(n)\,,$$

where $d_j(n)$ is the correct output.

▶ As before, we define the **cost function** penalizing neuron *j* as

$$\mathcal{E}_j(n) = \frac{1}{2}e_j^2(n)$$
.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Error signal produced at the output of neuron j is defined by

$$e_j(n)=d_j(n)-y_j(n)\,,$$

where $d_j(n)$ is the correct output.

▶ As before, we define the **cost function** penalizing neuron *j* as

$$\mathcal{E}_j(n) = \frac{1}{2}e_j^2(n)$$
.

The induced local field v_j(n) produced at the input of the activation function associated with neuron j is therefore

$$v_j(n) = \sum_{i=0}^m w_{ji}(n) y_i(n),$$

where m is the number of inputs excluding bias applied to neuron j.

Error signal produced at the output of neuron *j* is defined by

$$e_j(n)=d_j(n)-y_j(n)\,,$$

where $d_j(n)$ is the correct output.

▶ As before, we define the **cost function** penalizing neuron *j* as

$$\mathcal{E}_j(n) = \frac{1}{2}e_j^2(n)$$
.

The induced local field v_j(n) produced at the input of the activation function associated with neuron j is therefore

$$v_j(n) = \sum_{i=0}^m w_{ji}(n) y_i(n) \,,$$

where m is the number of inputs excluding bias applied to neuron j.

The output signal y_j(n) appearing at the output of neuron j at iteration n equals:

$$y_j(n) = \phi(v_j(n)).$$
A signal-flow graph of a neuron and its output

э

A signal-flow graph of a neuron and its output

・ロト ・聞ト ・ヨト ・ヨト

æ

▶ In a manner similar to the LMS algorithm, the back-propagation algorithm applies a correction $\Delta w_{ji}(n)$ to the synaptic weight w_{ji} , which is proportional to the partial derivative $\frac{\partial \mathcal{E}(n)}{\partial w_{ji}(n)}$. Applying of the **chain rule** of the calculus, this gradient can be expressed as:

$$\frac{\partial \mathcal{E}(n)}{\partial w_{ji}(n)} =$$

▶ In a manner similar to the LMS algorithm, the back-propagation algorithm applies a correction $\Delta w_{ji}(n)$ to the synaptic weight w_{ji} , which is proportional to the partial derivative $\frac{\partial \mathcal{E}(n)}{\partial w_{ji}(n)}$. Applying of the **chain rule** of the calculus, this gradient can be expressed as:

$$rac{\partial \mathcal{E}(n)}{\partial w_{ji}(n)} = rac{\partial \mathcal{E}(n)}{\partial e_j(n)} imes$$

▶ In a manner similar to the LMS algorithm, the back-propagation algorithm applies a correction $\Delta w_{ji}(n)$ to the synaptic weight w_{ji} , which is proportional to the partial derivative $\frac{\partial \mathcal{E}(n)}{\partial w_{ji}(n)}$. Applying of the **chain rule** of the calculus, this gradient can be expressed as:

$$\frac{\partial \mathcal{E}(n)}{\partial w_{ji}(n)} = \frac{\partial \mathcal{E}(n)}{\partial e_j(n)} \times \frac{\partial e_j(n)}{\partial y_j(n)} \times$$

▶ In a manner similar to the LMS algorithm, the back-propagation algorithm applies a correction $\Delta w_{ji}(n)$ to the synaptic weight w_{ji} , which is proportional to the partial derivative $\frac{\partial \mathcal{E}(n)}{\partial w_{ji}(n)}$. Applying of the **chain rule** of the calculus, this gradient can be expressed as:

$$\frac{\partial \mathcal{E}(n)}{\partial w_{ji}(n)} = \frac{\partial \mathcal{E}(n)}{\partial e_j(n)} \times \frac{\partial e_j(n)}{\partial y_j(n)} \times \frac{\partial y_j(n)}{\partial v_j(n)} \times$$

▶ In a manner similar to the LMS algorithm, the back-propagation algorithm applies a correction $\Delta w_{ji}(n)$ to the synaptic weight w_{ji} , which is proportional to the partial derivative $\frac{\partial \mathcal{E}(n)}{\partial w_{ji}(n)}$. Applying of the **chain rule** of the calculus, this gradient can be expressed as:

$$\frac{\partial \mathcal{E}(n)}{\partial w_{ji}(n)} = \frac{\partial \mathcal{E}(n)}{\partial e_j(n)} \times \frac{\partial e_j(n)}{\partial y_j(n)} \times \frac{\partial y_j(n)}{\partial v_j(n)} \times \frac{\partial v_j(n)}{\partial w_{ji}(n)} \,.$$

▶ In a manner similar to the LMS algorithm, the back-propagation algorithm applies a correction $\Delta w_{ji}(n)$ to the synaptic weight w_{ji} , which is proportional to the partial derivative $\frac{\partial \mathcal{E}(n)}{\partial w_{ji}(n)}$. Applying of the **chain rule** of the calculus, this gradient can be expressed as:

$$\frac{\partial \mathcal{E}(n)}{\partial w_{ji}(n)} = \frac{\partial \mathcal{E}(n)}{\partial e_j(n)} \times \frac{\partial e_j(n)}{\partial y_j(n)} \times \frac{\partial y_j(n)}{\partial v_j(n)} \times \frac{\partial v_j(n)}{\partial w_{ji}(n)} \,.$$

Partial derivatives equal:

$$rac{\partial \mathcal{E}(n)}{\partial e_j(n)} = e_j(n),$$

▶ In a manner similar to the LMS algorithm, the back-propagation algorithm applies a correction $\Delta w_{ji}(n)$ to the synaptic weight w_{ji} , which is proportional to the partial derivative $\frac{\partial \mathcal{E}(n)}{\partial w_{ji}(n)}$. Applying of the **chain rule** of the calculus, this gradient can be expressed as:

$$\frac{\partial \mathcal{E}(n)}{\partial w_{ji}(n)} = \frac{\partial \mathcal{E}(n)}{\partial e_j(n)} \times \frac{\partial e_j(n)}{\partial y_j(n)} \times \frac{\partial y_j(n)}{\partial v_j(n)} \times \frac{\partial v_j(n)}{\partial w_{ji}(n)} \,.$$

Partial derivatives equal:

$$egin{array}{rcl} rac{\partial \mathcal{E}(n)}{\partial e_j(n)} &=& e_j(n)\,, \ rac{\partial e_j(n)}{\partial y_j(n)} &=& -1\,, \end{array}$$

▶ In a manner similar to the LMS algorithm, the back-propagation algorithm applies a correction $\Delta w_{ji}(n)$ to the synaptic weight w_{ji} , which is proportional to the partial derivative $\frac{\partial \mathcal{E}(n)}{\partial w_{ji}(n)}$. Applying of the **chain rule** of the calculus, this gradient can be expressed as:

$$\frac{\partial \mathcal{E}(n)}{\partial w_{ji}(n)} = \frac{\partial \mathcal{E}(n)}{\partial e_j(n)} \times \frac{\partial e_j(n)}{\partial y_j(n)} \times \frac{\partial y_j(n)}{\partial v_j(n)} \times \frac{\partial v_j(n)}{\partial w_{ji}(n)} \,.$$

Partial derivatives equal:

$$\begin{array}{lll} \displaystyle \frac{\partial \mathcal{E}(n)}{\partial e_j(n)} & = & e_j(n) \,, \\ \displaystyle \frac{\partial e_j(n)}{\partial y_j(n)} & = & -1 \,, \\ \displaystyle \frac{\partial y_j(n)}{\partial v_i(n)} & = & \phi_j'(v_j(n)) \,, \end{array}$$

▶ In a manner similar to the LMS algorithm, the back-propagation algorithm applies a correction $\Delta w_{ji}(n)$ to the synaptic weight w_{ji} , which is proportional to the partial derivative $\frac{\partial \mathcal{E}(n)}{\partial w_{ji}(n)}$. Applying of the **chain rule** of the calculus, this gradient can be expressed as:

$$\frac{\partial \mathcal{E}(n)}{\partial w_{ji}(n)} = \frac{\partial \mathcal{E}(n)}{\partial e_j(n)} \times \frac{\partial e_j(n)}{\partial y_j(n)} \times \frac{\partial y_j(n)}{\partial v_j(n)} \times \frac{\partial v_j(n)}{\partial w_{ji}(n)} \,.$$

Partial derivatives equal:

$$\begin{array}{lll} \frac{\partial \mathcal{E}(n)}{\partial e_j(n)} &=& e_j(n) \,, \\ \frac{\partial e_j(n)}{\partial y_j(n)} &=& -1 \,, \\ \frac{\partial y_j(n)}{\partial v_j(n)} &=& \phi_j'(v_j(n)) \,, \\ \frac{\partial v_j(n)}{\partial w_{ji}(n)} &=& y_i(n) \,. \end{array}$$

> From these, the partial derivative can be composed as:

$$\frac{\partial \mathcal{E}(n)}{\partial w_{ji}(n)} = -e_j(n)\phi'_j(v_j(n))y_i(n).$$

(ロ)、(型)、(E)、(E)、 E) の(の)

From these, the partial derivative can be composed as:

$$\frac{\partial \mathcal{E}(n)}{\partial w_{ji}(n)} = -e_j(n)\phi'_j(v_j(n))y_i(n).$$

This partial derivative represents a sensitivity factor, which determines the direction of search in the parameter space for synaptic weight w_{ji}.

From these, the partial derivative can be composed as:

$$\frac{\partial \mathcal{E}(n)}{\partial w_{ji}(n)} = -e_j(n)\phi'_j(v_j(n))y_i(n).$$

- This partial derivative represents a sensitivity factor, which determines the direction of search in the parameter space for synaptic weight w_{ji}.
- The correction $\Delta w_{ji}(n)$ applied to $w_{ji}(n)$ is defined as:

$$\Delta w_{ji}(n) = -\gamma \frac{\partial \mathcal{E}(n)}{\partial w_{ji}(n)},$$

with γ being the learning parameter of the back-propagation algorithm.

From these, the partial derivative can be composed as:

$$\frac{\partial \mathcal{E}(n)}{\partial w_{ji}(n)} = -e_j(n)\phi'_j(v_j(n))y_i(n).$$

- This partial derivative represents a sensitivity factor, which determines the direction of search in the parameter space for synaptic weight w_{ji}.
- The correction $\Delta w_{ji}(n)$ applied to $w_{ji}(n)$ is defined as:

$$\Delta w_{ji}(n) = -\gamma \frac{\partial \mathcal{E}(n)}{\partial w_{ji}(n)},$$

with γ being the learning parameter of the back-propagation algorithm.

Accordingly, one can generalize

$$\Delta w_{ji}(n) = \gamma \delta_j(n) y_i(n)$$

From these, the partial derivative can be composed as:

$$\frac{\partial \mathcal{E}(n)}{\partial w_{ji}(n)} = -e_j(n)\phi'_j(v_j(n))y_i(n).$$

- This partial derivative represents a sensitivity factor, which determines the direction of search in the parameter space for synaptic weight w_{ji}.
- The correction $\Delta w_{ji}(n)$ applied to $w_{ji}(n)$ is defined as:

$$\Delta w_{ji}(n) = -\gamma \frac{\partial \mathcal{E}(n)}{\partial w_{ji}(n)},$$

with γ being the learning parameter of the back-propagation algorithm.

Accordingly, one can generalize

$$\Delta w_{ji}(n) = \gamma \delta_j(n) y_i(n)$$

where the **local gradient** $\delta_j(n)$ is defined by

$$\delta_j(n) = -\frac{\partial \mathcal{E}(n)}{\partial v_j(n)}$$

From these, the partial derivative can be composed as:

$$\frac{\partial \mathcal{E}(n)}{\partial w_{ji}(n)} = -e_j(n)\phi'_j(v_j(n))y_i(n).$$

- This partial derivative represents a sensitivity factor, which determines the direction of search in the parameter space for synaptic weight w_{ji}.
- The correction $\Delta w_{ji}(n)$ applied to $w_{ji}(n)$ is defined as:

$$\Delta w_{ji}(n) = -\gamma \frac{\partial \mathcal{E}(n)}{\partial w_{ji}(n)},$$

with γ being the learning parameter of the back-propagation algorithm.

Accordingly, one can generalize

$$\Delta w_{ji}(n) = \gamma \delta_j(n) y_i(n)$$

where the **local gradient** $\delta_j(n)$ is defined by

$$\delta_j(n) = -\frac{\partial \mathcal{E}(n)}{\partial v_j(n)} = -\frac{\partial \mathcal{E}(n)}{\partial e_j(n)} \frac{\partial e_j(n)}{\partial y_j(n)} \frac{\partial y_j(n)}{\partial v_j(n)}$$

From these, the partial derivative can be composed as:

$$\frac{\partial \mathcal{E}(n)}{\partial w_{ji}(n)} = -e_j(n)\phi'_j(v_j(n))y_i(n).$$

- ► This partial derivative represents a **sensitivity factor**, which determines the direction of search in the parameter space for synaptic weight w_{ii} .
- The correction $\Delta w_{ii}(n)$ applied to $w_{ii}(n)$ is defined as:

$$\Delta w_{ji}(n) = -\gamma \frac{\partial \mathcal{E}(n)}{\partial w_{ji}(n)},$$

with γ being the **learning parameter** of the back-propagation algorithm.

Accordingly, one can generalize

$$\Delta w_{ji}(n) = \gamma \delta_j(n) y_i(n)$$

where the **local gradient** $\delta_i(n)$ is defined by

$$\delta_j(n) = -\frac{\partial \mathcal{E}(n)}{\partial v_j(n)} = -\frac{\partial \mathcal{E}(n)}{\partial e_j(n)} \frac{\partial e_j(n)}{\partial y_j(n)} \frac{\partial y_j(n)}{\partial v_j(n)} = e_j(n)\phi_j'(v_j(n)).$$

Single neuron: iris data

Iris data: discriminating rule of a single neuron

Sepal length

Contents

Rosenblatt's perceptron

Biological analogy Historical learning algorithm Novikoff's convergence theorem

Signal-flow notation and model of an artificial neuron

Least-mean-squares

Minimization of the empirical risk Method of gradient descent The least-mean-square algorithm

The back-propagation algorithm

Derivation for a single-layer network Propagation for a multilayer network An example of the activation function

Additional information on learning networks

Regularization in neural networks Some remarks on the back-propagation

Multilayer neural network (example)

▲□ > ▲圖 > ▲ 臣 > ▲ 臣 > → 臣 = ∽ 의 < ⊙ < ⊙

Problem: When neuron j is located in a hidden layer, there is no specified desired response for it.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Problem: When neuron j is located in a hidden layer, there is no specified desired response for it.
- For a hidden neuron *j*, one may define the local gradient $\delta_j(n)$ as:

$$\delta_j(n) = -\frac{\partial \mathcal{E}(n)}{\partial y_j(n)} \frac{\partial y_j(n)}{\partial v_j(n)}$$

- Problem: When neuron j is located in a hidden layer, there is no specified desired response for it.
- For a hidden neuron *j*, one may define the local gradient $\delta_j(n)$ as:

$$\begin{split} \delta_j(n) &= -\frac{\partial \mathcal{E}(n)}{\partial y_j(n)} \frac{\partial y_j(n)}{\partial v_j(n)} \\ &= -\frac{\partial \mathcal{E}(n)}{\partial y_j(n)} \phi'_j(v_j(n)) , \quad \text{neuron } j \text{ is hidden }. \end{split}$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Problem: When neuron j is located in a hidden layer, there is no specified desired response for it.
- For a hidden neuron *j*, one may define the local gradient $\delta_j(n)$ as:

$$\begin{split} \delta_j(n) &= -\frac{\partial \mathcal{E}(n)}{\partial y_j(n)} \frac{\partial y_j(n)}{\partial v_j(n)} \\ &= -\frac{\partial \mathcal{E}(n)}{\partial y_j(n)} \phi'_j(v_j(n)) , \quad \text{neuron } j \text{ is hidden }. \end{split}$$

► To calculate the partial derivative ∂E(n)/∂y_j(n), one may proceed as follows (denoting C the set of all output neurons for generality):

$$\mathcal{E}(n) = \frac{1}{2} \sum_{k \in C} e_k^2(n)$$
, neuron k is an output node.

- Problem: When neuron j is located in a hidden layer, there is no specified desired response for it.
- For a **hidden neuron** *j*, one may define the local gradient $\delta_i(n)$ as:

$$\begin{split} \delta_j(n) &= -\frac{\partial \mathcal{E}(n)}{\partial y_j(n)} \frac{\partial y_j(n)}{\partial v_j(n)} \\ &= -\frac{\partial \mathcal{E}(n)}{\partial y_j(n)} \phi'_j(v_j(n)) , \quad \text{neuron } j \text{ is hidden }. \end{split}$$

► To calculate the partial derivative ∂E(n)/∂y_j(n), one may proceed as follows (denoting C the set of all output neurons for generality):

$$\mathcal{E}(n) = rac{1}{2} \sum_{k \in C} e_k^2(n)$$
, neuron k is an output node.

▶ Differentiating this w.r.t. the output of neuron $j y_j(n)$, one gets

$$\frac{\partial \mathcal{E}(n)}{\partial y_j(n)} = \sum_{k \in C} e_k \frac{\partial e_k(n)}{\partial y_j(n)}.$$

▶ Application of the chain rule to the partial derivative $\frac{\partial e_k(n)}{\partial y_i(n)}$ gives:

$$\frac{\partial \mathcal{E}(n)}{\partial y_j(n)} = \sum_{k \in C} e_k(n) \frac{\partial e_k(n)}{\partial v_k(n)} \frac{\partial v_k(n)}{\partial y_j(n)} \,.$$

・ロト・日本・モト・モート ヨー うへで

► Application of the chain rule to the partial derivative $\frac{\partial e_k(n)}{\partial y_i(n)}$ gives:

$$\frac{\partial \mathcal{E}(n)}{\partial y_j(n)} = \sum_{k \in C} e_k(n) \frac{\partial e_k(n)}{\partial v_k(n)} \frac{\partial v_k(n)}{\partial y_j(n)} \,.$$

・ロト・日本・モト・モート ヨー うへで

$$e_k(n) = d_k(n) - y_k(n)$$

▶ Application of the chain rule to the partial derivative $\frac{\partial e_k(n)}{\partial y_i(n)}$ gives:

$$\frac{\partial \mathcal{E}(n)}{\partial y_j(n)} = \sum_{k \in C} e_k(n) \frac{\partial e_k(n)}{\partial v_k(n)} \frac{\partial v_k(n)}{\partial y_j(n)}$$

Using

$$e_k(n) = d_k(n) - y_k(n)$$

= $d_k(n) - \phi_k(v_k(n))$, neuron k is an output node,

▶ Application of the chain rule to the partial derivative $\frac{\partial e_k(n)}{\partial y_i(n)}$ gives:

$$\frac{\partial \mathcal{E}(n)}{\partial y_j(n)} = \sum_{k \in C} e_k(n) \frac{\partial e_k(n)}{\partial v_k(n)} \frac{\partial v_k(n)}{\partial y_j(n)} \,.$$

Using

$$\begin{array}{rcl} e_k(n) &=& d_k(n) - y_k(n) \\ &=& d_k(n) - \phi_k\big(v_k(n)\big)\,, & \mbox{neuron } k \mbox{ is an output node}\,, \end{array}$$

one gets

$$\frac{\partial e_k(n)}{\partial v_k(n)} = -\phi'_k(v_k(n)).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Application of the chain rule to the partial derivative $\frac{\partial e_k(n)}{\partial y_i(n)}$ gives:

$$\frac{\partial \mathcal{E}(n)}{\partial y_j(n)} = \sum_{k \in C} e_k(n) \frac{\partial e_k(n)}{\partial v_k(n)} \frac{\partial v_k(n)}{\partial y_j(n)}$$

Using

$$egin{array}{rcl} e_k(n)&=&d_k(n)-y_k(n)\ &=&d_k(n)-\phi_kig(v_k(n)ig)\,, & ext{neuron}\ k ext{ is an output node}\,, \end{array}$$

one gets

$$\frac{\partial e_k(n)}{\partial v_k(n)} = -\phi'_k(v_k(n)).$$

Taking into account that the induced local field for neuron k is

$$v_k(n) = \sum_{j=0}^m w_{kj}(n) y_j(n) \,,$$

(with *m* being the number of inputs)

• Application of the chain rule to the partial derivative $\frac{\partial e_k(n)}{\partial y_i(n)}$ gives:

$$\frac{\partial \mathcal{E}(n)}{\partial y_j(n)} = \sum_{k \in C} e_k(n) \frac{\partial e_k(n)}{\partial v_k(n)} \frac{\partial v_k(n)}{\partial y_j(n)}$$

Using

$$egin{array}{rcl} e_k(n)&=&d_k(n)-y_k(n)\ &=&d_k(n)-\phi_kig(v_k(n)ig)\,, & ext{neuron}\ k ext{ is an output node}\,, \end{array}$$

one gets

$$\frac{\partial e_k(n)}{\partial v_k(n)} = -\phi'_k(v_k(n)).$$

Taking into account that the induced local field for neuron k is

$$v_k(n) = \sum_{j=0}^m w_{kj}(n) y_j(n) \,,$$

(with m being the number of inputs) one obtains

$$\frac{\partial v_k(n)}{\partial y_j(n)} = w_{kj}(n)$$
.

► The desired partial derivative equals

$$\frac{\partial \mathcal{E}(n)}{\partial y_j(n)} = -\sum_{k \in C} e_k(n) \phi'_k(v_k(n)) w_{kj}(n)$$

(ロ)、(型)、(E)、(E)、 E) の(の)

▶ The desired partial derivative equals

$$\frac{\partial \mathcal{E}(n)}{\partial y_j(n)} = -\sum_{k \in C} e_k(n) \phi'_k(v_k(n)) w_{kj}(n) = -\sum_{k \in C} \delta_k(n) w_{kj}(n) ,$$

with $\delta_k(n) = e_k(n)\phi'_k(v_k(n))$ as before.

The desired partial derivative equals

$$\frac{\partial \mathcal{E}(n)}{\partial y_j(n)} = -\sum_{k \in C} e_k(n) \phi'_k(v_k(n)) w_{kj}(n)$$

$$= -\sum_{k \in C} \delta_k(n) w_{kj}(n) ,$$

with $\delta_k(n) = e_k(n)\phi'_k(v_k(n))$ as before.

Finally, the back-propagation formula for the local gradient δ_j(n) can be written as:

$$\delta_j(n) = \phi_j'(v_j(n)) \sum_{k \in C} \delta_k(n) w_{kj}(n)$$
, neuron *j* is hidden.

The desired partial derivative equals

$$\frac{\partial \mathcal{E}(n)}{\partial y_j(n)} = -\sum_{k \in C} e_k(n) \phi'_k(v_k(n)) w_{kj}(n)$$

$$= -\sum_{k \in C} \delta_k(n) w_{kj}(n) ,$$

with $\delta_k(n) = e_k(n)\phi'_k(v_k(n))$ as before.

Finally, the back-propagation formula for the local gradient δ_j(n) can be written as:

$$\delta_j(n) = \phi_j'(v_j(n)) \sum_{k \in C} \delta_k(n) w_{kj}(n)$$
, neuron *j* is hidden.

Summarizing:

1. If neuron j is an **output neuron**, the local gradient equals

$$\delta_j(n) = \phi'_j(n) e_j(n) \, .$$
Derivation for a hidden neuron

The desired partial derivative equals

$$\frac{\partial \mathcal{E}(n)}{\partial y_j(n)} = -\sum_{k \in C} e_k(n) \phi'_k(v_k(n)) w_{kj}(n)$$

$$= -\sum_{k \in C} \delta_k(n) w_{kj}(n) ,$$

with $\delta_k(n) = e_k(n)\phi'_k(v_k(n))$ as before.

Finally, the back-propagation formula for the local gradient δ_j(n) can be written as:

$$\delta_j(n) = \phi_j'(v_j(n)) \sum_{k \in C} \delta_k(n) w_{kj}(n)$$
, neuron *j* is hidden.

Summarizing:

1. If neuron j is an **output neuron**, the local gradient equals

$$\delta_j(n) = \phi'_j(n) e_j(n) \, .$$

2. If neuron j is a **hidden neuron**, the local gradient equals

 $\delta_j(n) = \phi'_j(n) \sum_k \delta_k(n) w_{kj}(n), \quad k \text{ indexes next layer neurons.}$

► The back-propagation algorithm applies correction ∆w_{ji}(n) to the synaptic weight connecting neuron i to neuron j, defined by the delta rule:

$$egin{pmatrix} Weight \ correction \ \Delta w_{ji}(n) \end{pmatrix} = egin{pmatrix} learning \ rate \ \gamma \end{pmatrix} imes egin{pmatrix} local \ gradient \ \delta_j(n) \end{pmatrix} imes egin{pmatrix} local \ gradient \ \delta_j(n) \end{pmatrix} imes egin{pmatrix} not \ not \$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

► The back-propagation algorithm applies correction ∆w_{ji}(n) to the synaptic weight connecting neuron i to neuron j, defined by the delta rule:

$$egin{pmatrix} Weight \ correction \ \Delta w_{ji}(n) \end{pmatrix} = egin{pmatrix} learning \ rate \ \gamma \end{pmatrix} imes egin{pmatrix} local \ gradient \ \delta_j(n) \end{pmatrix} imes egin{pmatrix} local \ gradient \ \delta_j(n) \end{pmatrix} imes egin{pmatrix} input signal \ of \ neuron j \ , \ y_i(n) \end{pmatrix}$$

To increase the rate of learning while avoiding the danger of instability one may include a momentum term:

$$\Delta w_{ji}(n) = \alpha \Delta w_{ji}(n-1) + \gamma \delta_j(n) y_j(n),$$

where α is usually a positive number called **momentum constant**.

► The back-propagation algorithm applies correction ∆w_{ji}(n) to the synaptic weight connecting neuron i to neuron j, defined by the delta rule:

$$egin{pmatrix} Weight \ correction \ \Delta w_{ji}(n) \end{pmatrix} = egin{pmatrix} learning \ rate \ \gamma \end{pmatrix} imes egin{pmatrix} local \ gradient \ \delta_j(n) \end{pmatrix} imes egin{pmatrix} local \ gradient \ \delta_j(n) \end{pmatrix} imes egin{pmatrix} input signal \ of \ neuron j \ , \ y_i(n) \end{pmatrix}$$

To increase the rate of learning while avoiding the danger of instability one may include a momentum term:

$$\Delta w_{ji}(n) = \alpha \Delta w_{ji}(n-1) + \gamma \delta_j(n) y_j(n),$$

where α is usually a positive number called **momentum constant**. This rule is also called the generalized delta rule (delta rule is its special case with $\alpha = 0$).

► The back-propagation algorithm applies correction ∆w_{ji}(n) to the synaptic weight connecting neuron i to neuron j, defined by the delta rule:

$$egin{pmatrix} Weight \ correction \ \Delta w_{ji}(n) \end{pmatrix} = egin{pmatrix} learning \ rate \ \gamma \end{pmatrix} imes egin{pmatrix} local \ gradient \ \delta_j(n) \end{pmatrix} imes egin{pmatrix} local \ gradient \ \delta_j(n) \end{pmatrix} imes egin{pmatrix} input signal \ of \ neuron j \ , \ y_i(n) \end{pmatrix}$$

To increase the rate of learning while avoiding the danger of instability one may include a momentum term:

$$\Delta w_{ji}(n) = \alpha \Delta w_{ji}(n-1) + \gamma \delta_j(n) y_j(n),$$

where α is usually a positive number called **momentum constant**. This rule is also called the generalized delta rule (delta rule is its special case with $\alpha = 0$).

Criterion of convergence:

The back-propagation algorithm is considered to have converged when the absolute rate of change in the average square error per epoch is sufficiently small.

1. **Initialization:** Pick the synaptic weights and thresholds from a uniform distribution with mean 0 and variance chosen due to the shape of the sigmoid function.

- 1. **Initialization:** Pick the synaptic weights and thresholds from a uniform distribution with mean 0 and variance chosen due to the shape of the sigmoid function.
- 2. **Presentation of training examples:** Present the network an epoch of training examples, repeating for each example steps 3. and 4.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 1. **Initialization:** Pick the synaptic weights and thresholds from a uniform distribution with mean 0 and variance chosen due to the shape of the sigmoid function.
- 2. **Presentation of training examples:** Present the network an epoch of training examples, repeating for each example steps 3. and 4.
- 3. Forward computation (classification): Passing layers *l* = 1, ..., *L*, compute outputs and errors:

$$y^{(0)}(n) = x_j(n); \ y_j^{(l)}(n) = \phi_j \left(\sum_i w_{ji}^{(l)}(n) y_i^{(l-1)}(n) \right); \ e_j(n) = d_j(n) - y_j^{(L)}(n)$$

- 1. **Initialization:** Pick the synaptic weights and thresholds from a uniform distribution with mean 0 and variance chosen due to the shape of the sigmoid function.
- 2. **Presentation of training examples:** Present the network an epoch of training examples, repeating for each example steps 3. and 4.
- Forward computation (classification): Passing layers *l* = 1, ..., *L*, compute outputs and errors:

$$y^{(0)}(n) = x_j(n); y_j^{(l)}(n) = \phi_j \left(\sum_i w_{ji}^{(l)}(n) y_i^{(l-1)}(n) \right); e_j(n) = d_j(n) - y_j^{(L)}(n)$$

4. **Backward computation:** Passing layers *l* = 1, ..., *L*, compute local gradients:

$$\delta_j^{(l)}(n) = \begin{cases} \phi_j'(\sum_i w_{ji}^{(L)}(n)y_i^{(L-1)}(n)) e_j^{(L)}(n) & \text{if output}, \\ \phi_j'(\sum_i w_{ji}^{(l)}(n)y_i^{(l-1)}(n)) \sum_k \delta_k^{(l+1)}(n)w_{kj}^{(l+1)}(n) & \text{if hidden}. \end{cases}$$

Adjust synaptic weights:

$$w_{ji}^{(l)}(n+1) = w_{ji}^{(l)}(n) + \alpha w_{ji}^{(l)}(n-1) + \gamma \delta_j^{(l)}(n) y_i^{(l-1)}(n).$$

- 1. **Initialization:** Pick the synaptic weights and thresholds from a uniform distribution with mean 0 and variance chosen due to the shape of the sigmoid function.
- 2. **Presentation of training examples:** Present the network an epoch of training examples, repeating for each example steps 3. and 4.
- Forward computation (classification): Passing layers *l* = 1, ..., *L*, compute outputs and errors:

$$y^{(0)}(n) = x_j(n); \ y_j^{(l)}(n) = \phi_j \left(\sum_i w_{ji}^{(l)}(n) y_i^{(l-1)}(n) \right); \ e_j(n) = d_j(n) - y_j^{(L)}(n)$$

4. **Backward computation:** Passing layers *l* = 1, ..., *L*, compute local gradients:

$$\delta_{j}^{(l)}(n) = \begin{cases} \phi_{j}'(\sum_{i} w_{ji}^{(L)}(n)y_{i}^{(L-1)}(n)) e_{j}^{(L)}(n) & \text{if output}, \\ \phi_{j}'(\sum_{i} w_{ji}^{(l)}(n)y_{i}^{(l-1)}(n)) \sum_{k} \delta_{k}^{(l+1)}(n)w_{kj}^{(l+1)}(n) & \text{if hidden}. \end{cases}$$

Adjust synaptic weights:

$$w_{ji}^{(l)}(n+1) = w_{ji}^{(l)}(n) + \alpha w_{ji}^{(l)}(n-1) + \gamma \delta_j^{(l)}(n) y_i^{(l-1)}(n) \,.$$

5. Iteration: Feed randomly permuted epochs till convergence.

Contents

Rosenblatt's perceptron

Biological analogy Historical learning algorithm Novikoff's convergence theorem

Signal-flow notation and model of an artificial neuron

Least-mean-squares

Minimization of the empirical risk Method of gradient descent The least-mean-square algorithm

The back-propagation algorithm

Derivation for a single-layer network Propagation for a multilayer network An example of the activation function

Additional information on learning networks

Regularization in neural networks Some remarks on the back-propagation

▶ In its general form logistic function is defined by:

$$\phi_j(v_j(n)) = \frac{1}{1 + \exp(-av_j(n))}, \quad a > 0,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

where $v_j(n)$ is the induced local field of neuron *j*.

▶ In its general form logistic function is defined by:

$$\phi_jig(v_j(n)ig) = rac{1}{1+\expig(-av_j(n)ig)}\,,\quad a>0\,,$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where $v_j(n)$ is the induced local field of neuron *j*.

• Differentiating w.r.t. $v_j(n)$ one gets:

$$\phi_j'(v_j(n)) = \frac{a \exp(-av_j(n))}{\left(1 + \exp(-av_j(n))\right)^2}$$

In its general form logistic function is defined by:

$$\phi_jig(v_j(n)ig) = rac{1}{1+\expig(-av_j(n)ig)}\,,\quad a>0\,,$$

where $v_j(n)$ is the induced local field of neuron j.

• Differentiating w.r.t. $v_j(n)$ one gets:

$$\phi_j'(v_j(n)) = \frac{a \exp(-av_j(n))}{\left(1 + \exp(-av_j(n))\right)^2} = ay_j(n)(1 - y_j(n)).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

In its general form logistic function is defined by:

$$\phi_jig(v_j(n)ig) = rac{1}{1+\expig(-av_j(n)ig)}\,,\quad a>0\,,$$

where $v_i(n)$ is the induced local field of neuron *j*.

• Differentiating w.r.t. $v_j(n)$ one gets:

$$\phi_j'(v_j(n)) = \frac{a \exp(-av_j(n))}{\left(1 + \exp(-av_j(n))\right)^2} = ay_j(n)(1 - y_j(n)).$$

► Denoting network output $o_j(n) = y_j(n)$, the local gradient equals $\delta_j(n) = \phi'_j(v_j(n)) e_j(n)$ $= a(d_j(n) - o_j(n)) o_j(n) (1 - o_j(n))$, *j* is an output neuron,

In its general form logistic function is defined by:

$$\phi_jig(v_j(n)ig) = rac{1}{1+\expig(-av_j(n)ig)}\,,\quad a>0\,,$$

where $v_i(n)$ is the induced local field of neuron *j*.

• Differentiating w.r.t. $v_j(n)$ one gets:

$$\phi_j'(v_j(n)) = \frac{a \exp(-av_j(n))}{\left(1 + \exp(-av_j(n))\right)^2} = ay_j(n)(1 - y_j(n)).$$

▶ Denoting network output $o_j(n) = y_j(n)$, the local gradient equals

$$\begin{split} \delta_j(n) &= \phi_j'\big(v_j(n)\big) \, e_j(n) \\ &= a\big(d_j(n) - o_j(n)\big) o_j(n)\big(1 - o_j(n)\big) \,, \quad j \text{ is an output neuron }, \end{split}$$

and respectively

$$\begin{split} \delta_j(n) &= \phi_j'(v_j(n)) \sum_k \delta_k(n) w_{kj}(n) \\ &= a y_j(n) (1 - y_j(n)) \sum_k \delta_k(n) w_{kj}(n), \quad j \text{ is a hidden neuron }. \end{split}$$

Contents

Rosenblatt's perceptron

Biological analogy Historical learning algorithm Novikoff's convergence theorem

Signal-flow notation and model of an artificial neuron

Least-mean-squares

Minimization of the empirical risk Method of gradient descent The least-mean-square algorithm

The back-propagation algorithm

Derivation for a single-layer network Propagation for a multilayer network An example of the activation function

Additional information on learning networks Regularization in neural networks Some remarks on the back-propagation

Contents

Rosenblatt's perceptron

Biological analogy Historical learning algorithm Novikoff's convergence theorem

Signal-flow notation and model of an artificial neuron

Least-mean-squares

Minimization of the empirical risk Method of gradient descent The least-mean-square algorithm

The back-propagation algorithm

Derivation for a single-layer network Propagation for a multilayer network An example of the activation function

Additional information on learning networks Regularization in neural networks

Some remarks on the back-propagation

In designing a multilayer perceptron by whatever method, we are in effect building a non-linear model of the physical phenomenon responsible for the generation of the input-output examples used to train the network.

(ロ)、(型)、(E)、(E)、 E) のQの

- In designing a multilayer perceptron by whatever method, we are in effect building a non-linear model of the physical phenomenon responsible for the generation of the input-output examples used to train the network.
- Insofar as the network design is statistical in nature, we need an appropriate tradeoff between reliability of the training data and goodness of the model.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- In designing a multilayer perceptron by whatever method, we are in effect building a non-linear model of the physical phenomenon responsible for the generation of the input-output examples used to train the network.
- Insofar as the network design is statistical in nature, we need an appropriate tradeoff between reliability of the training data and goodness of the model.
- In the context of back-propagation learning, or any other supervised learning procedure for that matter, we may realize this tradeoff by minimizing the **total risk**, expressed as a function of the parameter vector *w*, as follows:

$$R(\mathbf{w}) = \mathcal{E}_{av}(\mathbf{w}) + \lambda \mathcal{E}_{c}(\mathbf{w}).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- In designing a multilayer perceptron by whatever method, we are in effect building a non-linear model of the physical phenomenon responsible for the generation of the input-output examples used to train the network.
- Insofar as the network design is statistical in nature, we need an appropriate tradeoff between reliability of the training data and goodness of the model.
- In the context of back-propagation learning, or any other supervised learning procedure for that matter, we may realize this tradeoff by minimizing the **total risk**, expressed as a function of the parameter vector *w*, as follows:

$$R(\mathbf{w}) = \mathcal{E}_{av}(\mathbf{w}) + \lambda \mathcal{E}_{c}(\mathbf{w}).$$

 \$\mathcal{E}_{av}(\mathcal{w})\$ is the standard performance metric, which depends on both the network (model) and the input data, and in back-propagation learning is typically defined as a mean-square error.

- In designing a multilayer perceptron by whatever method, we are in effect building a non-linear model of the physical phenomenon responsible for the generation of the input-output examples used to train the network.
- Insofar as the network design is statistical in nature, we need an appropriate tradeoff between reliability of the training data and goodness of the model.
- In the context of back-propagation learning, or any other supervised learning procedure for that matter, we may realize this tradeoff by minimizing the **total risk**, expressed as a function of the parameter vector *w*, as follows:

$$R(\mathbf{w}) = \mathcal{E}_{av}(\mathbf{w}) + \lambda \mathcal{E}_{c}(\mathbf{w}).$$

- \$\mathcal{E}_{av}(\mathcal{w})\$ is the standard performance metric, which depends on both the network (model) and the input data, and in back-propagation learning is typically defined as a mean-square error.
- ► C_c(w) is the complexity penalty, where the notion of complexity is measured in terms of the network (weights) alone.

- In designing a multilayer perceptron by whatever method, we are in effect building a non-linear model of the physical phenomenon responsible for the generation of the input-output examples used to train the network.
- Insofar as the network design is statistical in nature, we need an appropriate tradeoff between reliability of the training data and goodness of the model.
- In the context of back-propagation learning, or any other supervised learning procedure for that matter, we may realize this tradeoff by minimizing the **total risk**, expressed as a function of the parameter vector *w*, as follows:

$$R(\mathbf{w}) = \mathcal{E}_{av}(\mathbf{w}) + \lambda \mathcal{E}_{c}(\mathbf{w}).$$

- \$\mathcal{E}_{av}(\mathcal{w})\$ is the standard performance metric, which depends on both the network (model) and the input data, and in back-propagation learning is typically defined as a mean-square error.
- ► C_c(w) is the complexity penalty, where the notion of complexity is measured in terms of the network (weights) alone.
- λ is a **regularization parameter**.

A simple and most common parameter norm penalty is the L² parameter norm penalty commonly known as weight decay:

$$\mathcal{E}_{c}(\boldsymbol{w}) = \frac{1}{2} \|\boldsymbol{w}\|_{2}^{2} = \frac{1}{2} \sum_{k \in \mathcal{C}_{total}} w_{k}^{2}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A simple and most common parameter norm penalty is the L² parameter norm penalty commonly known as weight decay:

$$\mathcal{E}_{c}(\boldsymbol{w}) = \frac{1}{2} \|\boldsymbol{w}\|_{2}^{2} = \frac{1}{2} \sum_{k \in \mathcal{C}_{total}} w_{k}^{2}$$

▶ It is also called *ridge regression* of *Tikhonov regularization*.

A simple and most common parameter norm penalty is the L² parameter norm penalty commonly known as weight decay:

$$\mathcal{E}_c(\boldsymbol{w}) = \frac{1}{2} \|\boldsymbol{w}\|_2^2 = \frac{1}{2} \sum_{k \in \mathcal{C}_{total}} w_k^2$$

- ▶ It is also called *ridge regression* of *Tikhonov regularization*.
- Such a model has the following total risk:

$$R(\boldsymbol{w}) = \frac{\lambda}{2} \boldsymbol{w}^{\top} \boldsymbol{w} + \mathcal{E}_{av}(\boldsymbol{w}),$$

A simple and most common parameter norm penalty is the L² parameter norm penalty commonly known as weight decay:

$$\mathcal{E}_c(\boldsymbol{w}) = \frac{1}{2} \|\boldsymbol{w}\|_2^2 = \frac{1}{2} \sum_{k \in \mathcal{C}_{total}} w_k^2$$

- ▶ It is also called *ridge regression* of *Tikhonov regularization*.
- Such a model has the following total risk:

$$R(\boldsymbol{w}) = \frac{\lambda}{2} \boldsymbol{w}^{\top} \boldsymbol{w} + \mathcal{E}_{av}(\boldsymbol{w}),$$

and the corresponding parameter gradient:

$$oldsymbol{g} = \lambda oldsymbol{w} +
abla oldsymbol{\mathcal{E}}_{\mathsf{av}}(oldsymbol{w})$$
 .

A simple and most common parameter norm penalty is the L² parameter norm penalty commonly known as weight decay:

$$\mathcal{E}_c(\boldsymbol{w}) = \frac{1}{2} \|\boldsymbol{w}\|_2^2 = \frac{1}{2} \sum_{k \in \mathcal{C}_{total}} w_k^2$$

- ▶ It is also called *ridge regression* of *Tikhonov regularization*.
- Such a model has the following total risk:

$$R(\boldsymbol{w}) = \frac{\lambda}{2} \boldsymbol{w}^{\top} \boldsymbol{w} + \mathcal{E}_{av}(\boldsymbol{w}),$$

and the corresponding parameter gradient:

$$\boldsymbol{g} = \lambda \boldsymbol{w} + \nabla \mathcal{E}_{\boldsymbol{av}}(\boldsymbol{w}).$$

The weight update is:

$$oldsymbol{w}(n+1) = (1 - \gamma \lambda)oldsymbol{w}(n) - \gamma
abla oldsymbol{\mathcal{E}}_{\mathsf{av}}ig(oldsymbol{w}(n)ig)$$
 .

L² parameter regularization

A simple and most common parameter norm penalty is the L² parameter norm penalty commonly known as weight decay:

$$\mathcal{E}_{c}(\boldsymbol{w}) = \frac{1}{2} \|\boldsymbol{w}\|_{2}^{2} = \frac{1}{2} \sum_{k \in \mathcal{C}_{total}} w_{k}^{2}$$

- ▶ It is also called *ridge regression* of *Tikhonov regularization*.
- Such a model has the following total risk:

$$R(\boldsymbol{w}) = \frac{\lambda}{2} \boldsymbol{w}^{\top} \boldsymbol{w} + \mathcal{E}_{av}(\boldsymbol{w}),$$

and the corresponding parameter gradient:

$$\boldsymbol{g} = \lambda \boldsymbol{w} + \nabla \mathcal{E}_{\boldsymbol{av}}(\boldsymbol{w})$$

The weight update is:

$$\boldsymbol{w}(n+1) = (1 - \gamma \lambda) \boldsymbol{w}(n) - \gamma \nabla \mathcal{E}_{\mathsf{av}}(\boldsymbol{w}(n))$$

The weight decay term now multiplicatively shrinks the weight vector by a constant factor, just before performing the usual gradient update.

► While L² weight decay is the most common form of weight decay, another option is to use L¹ regularization.

(ロ)、(型)、(E)、(E)、 E) の(の)

- ► While L² weight decay is the most common form of weight decay, another option is to use L¹ regularization.
- L^1 regularization on the model parameter \boldsymbol{w} is defined as:

$$\mathcal{E}_c(\boldsymbol{w}) = \|\boldsymbol{w}\|_1 = \sum_{k \in \mathcal{C}_{total}} |w_k|.$$

- ► While L² weight decay is the most common form of weight decay, another option is to use L¹ regularization.
- > L^1 regularization on the model parameter **w** is defined as:

$$\mathcal{E}_c(\boldsymbol{w}) = \|\boldsymbol{w}\|_1 = \sum_{k \in \mathcal{C}_{total}} |w_k|.$$

The total risk is given by:

$$R(\boldsymbol{w}) = \lambda \|\boldsymbol{w}\|_1 + \mathcal{E}_{\mathsf{av}}(\boldsymbol{w}),$$

- ► While L² weight decay is the most common form of weight decay, another option is to use L¹ regularization.
- > L^1 regularization on the model parameter **w** is defined as:

$$\mathcal{E}_c(\boldsymbol{w}) = \|\boldsymbol{w}\|_1 = \sum_{k \in \mathcal{C}_{total}} |w_k|.$$

The total risk is given by:

$$R(\mathbf{w}) = \lambda \|\mathbf{w}\|_1 + \mathcal{E}_{\mathsf{av}}(\mathbf{w}),$$

and the corresponding gradient:

$$\boldsymbol{g} = \lambda \operatorname{sign}(\boldsymbol{w}) + \nabla \mathcal{E}_{av}(\boldsymbol{w}).$$

- ► While L² weight decay is the most common form of weight decay, another option is to use L¹ regularization.
- L^1 regularization on the model parameter \boldsymbol{w} is defined as:

$$\mathcal{E}_c(\boldsymbol{w}) = \|\boldsymbol{w}\|_1 = \sum_{k \in \mathcal{C}_{total}} |w_k|.$$

The total risk is given by:

$$R(\boldsymbol{w}) = \lambda \|\boldsymbol{w}\|_1 + \mathcal{E}_{\mathsf{av}}(\boldsymbol{w}),$$

and the corresponding gradient:

$$oldsymbol{g} = \lambda ext{sign}(oldsymbol{w}) +
abla oldsymbol{\mathcal{E}}_{\mathsf{av}}(oldsymbol{w})$$
 .

The weight update is then:

$$\boldsymbol{w}(n+1) = \boldsymbol{w}(n) - \gamma \lambda \operatorname{sign}(\boldsymbol{w}) - \gamma \nabla \mathcal{E}_{av}(\boldsymbol{w}(n))$$

- ► While L² weight decay is the most common form of weight decay, another option is to use L¹ regularization.
- L^1 regularization on the model parameter w is defined as:

$$\mathcal{E}_c(\boldsymbol{w}) = \|\boldsymbol{w}\|_1 = \sum_{k \in \mathcal{C}_{total}} |w_k|.$$

The total risk is given by:

$$R(\boldsymbol{w}) = \lambda \|\boldsymbol{w}\|_1 + \mathcal{E}_{\mathsf{av}}(\boldsymbol{w}),$$

and the corresponding gradient:

$$oldsymbol{g} = \lambda {
m sign}(oldsymbol{w}) +
abla \mathcal{E}_{oldsymbol{av}}(oldsymbol{w}) \,.$$

The weight update is then:

$$\boldsymbol{w}(n+1) = \boldsymbol{w}(n) - \gamma \lambda \operatorname{sign}(\boldsymbol{w}) - \gamma \nabla \mathcal{E}_{av}(\boldsymbol{w}(n))$$
.

The regularization contribution to the gradient is a constant factor with a sign equal (component-wise) to sign(w_k).
L¹ parameter regularization

- ► While L² weight decay is the most common form of weight decay, another option is to use L¹ regularization.
- L^1 regularization on the model parameter w is defined as:

$$\mathcal{E}_c(\boldsymbol{w}) = \|\boldsymbol{w}\|_1 = \sum_{k \in \mathcal{C}_{total}} |w_k|.$$

The total risk is given by:

$$R(\boldsymbol{w}) = \lambda \|\boldsymbol{w}\|_1 + \mathcal{E}_{\mathsf{av}}(\boldsymbol{w}),$$

and the corresponding gradient:

$$oldsymbol{g} = \lambda {
m sign}(oldsymbol{w}) +
abla \mathcal{E}_{oldsymbol{av}}(oldsymbol{w}) \,.$$

The weight update is then:

$$\boldsymbol{w}(n+1) = \boldsymbol{w}(n) - \gamma \lambda \operatorname{sign}(\boldsymbol{w}) - \gamma \nabla \mathcal{E}_{av}(\boldsymbol{w}(n))$$
.

- The regularization contribution to the gradient is a constant factor with a sign equal (component-wise) to sign(w_k).
- ► L¹ regularization introduces sparsity (some w_k have optimal value = 0).

L¹ parameter regularization

- ► While L² weight decay is the most common form of weight decay, another option is to use L¹ regularization.
- L^1 regularization on the model parameter w is defined as:

$$\mathcal{E}_c(\boldsymbol{w}) = \|\boldsymbol{w}\|_1 = \sum_{k \in \mathcal{C}_{total}} |w_k|.$$

The total risk is given by:

$$R(\boldsymbol{w}) = \lambda \|\boldsymbol{w}\|_1 + \mathcal{E}_{\mathsf{av}}(\boldsymbol{w}),$$

and the corresponding gradient:

$$oldsymbol{g} = \lambda {
m sign}(oldsymbol{w}) +
abla \mathcal{E}_{oldsymbol{av}}(oldsymbol{w}) \,.$$

The weight update is then:

$$\boldsymbol{w}(n+1) = \boldsymbol{w}(n) - \gamma \lambda \operatorname{sign}(\boldsymbol{w}) - \gamma \nabla \mathcal{E}_{av}(\boldsymbol{w}(n))$$
.

- The regularization contribution to the gradient is a constant factor with a sign equal (component-wise) to sign(w_k).
- L^1 regularization introduces **sparsity** (some w_k have optimal value = 0). This is used for *feature selection*, see also *LASSO*.

 Dropout provides a computationally inexpensive but powerful method of regularizing a broad family of models.

- Dropout provides a computationally inexpensive but powerful method of regularizing a broad family of models.
- To a first approximation, dropout can be thought of as a method of making bagging practical for ensembles of very many large neural networks.

- Dropout provides a computationally inexpensive but powerful method of regularizing a broad family of models.
- To a first approximation, dropout can be thought of as a method of making bagging practical for ensembles of very many large neural networks.
- Bagging involves training multiple models, and evaluating multiple models on each test example. This seems impractical when each model is a large neural network, since training and evaluating such networks is costly in terms of computation time and memory.

- Dropout provides a computationally inexpensive but powerful method of regularizing a broad family of models.
- To a first approximation, dropout can be thought of as a method of making bagging practical for ensembles of very many large neural networks.
- Bagging involves training multiple models, and evaluating multiple models on each test example. This seems impractical when each model is a large neural network, since training and evaluating such networks is costly in terms of computation time and memory.
- It is common to use ensembles of five to ten neural networks, but more than this rapidly becomes unwieldy.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Dropout provides a computationally inexpensive but powerful method of regularizing a broad family of models.
- To a first approximation, dropout can be thought of as a method of making bagging practical for ensembles of very many large neural networks.
- Bagging involves training multiple models, and evaluating multiple models on each test example. This seems impractical when each model is a large neural network, since training and evaluating such networks is costly in terms of computation time and memory.
- It is common to use ensembles of five to ten neural networks, but more than this rapidly becomes unwieldy.
- Dropout provides an inexpensive approximation to training and evaluating a bagged ensemble of exponentially many neural networks.

- Dropout provides a computationally inexpensive but powerful method of regularizing a broad family of models.
- To a first approximation, dropout can be thought of as a method of making bagging practical for ensembles of very many large neural networks.
- Bagging involves training multiple models, and evaluating multiple models on each test example. This seems impractical when each model is a large neural network, since training and evaluating such networks is costly in terms of computation time and memory.
- It is common to use ensembles of five to ten neural networks, but more than this rapidly becomes unwieldy.
- Dropout provides an inexpensive approximation to training and evaluating a bagged ensemble of exponentially many neural networks.
- Specifically, dropout trains the ensemble consisting of all sub-networks that can be formed by removing non-output neurons from an underlying base network.

• An example of applying the dropout strategy:

Standard neural network

After applying dropout

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

In most modern neural networks, based on a series of affine transformations and nonlinearities, we can effectively remove a neuron from a network by multiplying its output value by zero.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

In most modern neural networks, based on a series of affine transformations and nonlinearities, we can effectively remove a neuron from a network by multiplying its output value by zero.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

► To train with dropout, we use a minibatch-based learning algorithm that makes small steps, such as *stochastic gradient descent*.

- In most modern neural networks, based on a series of affine transformations and nonlinearities, we can effectively remove a neuron from a network by multiplying its output value by zero.
- ► To train with dropout, we use a minibatch-based learning algorithm that makes small steps, such as *stochastic gradient descent*.
- Each time we **randomly sample a** different **binary mask** to apply to all of the input and hidden neurons in the network.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- In most modern neural networks, based on a series of affine transformations and nonlinearities, we can effectively remove a neuron from a network by multiplying its output value by zero.
- ► To train with dropout, we use a minibatch-based learning algorithm that makes small steps, such as *stochastic gradient descent*.
- Each time we **randomly sample a** different **binary mask** to apply to all of the input and hidden neurons in the network.
- Typically, an input neuron is included with probability 0.8 and a hidden neuron is included with probability 0.5. These probabilities constitute a hyperparameter to be fixed in advance.

- In most modern neural networks, based on a series of affine transformations and nonlinearities, we can effectively remove a neuron from a network by multiplying its output value by zero.
- ► To train with dropout, we use a minibatch-based learning algorithm that makes small steps, such as *stochastic gradient descent*.
- Each time we **randomly sample a** different **binary mask** to apply to all of the input and hidden neurons in the network.
- Typically, an input neuron is included with probability 0.8 and a hidden neuron is included with probability 0.5. These probabilities constitute a hyperparameter to be fixed in advance.
- The forward propagation, back-propagation, and the learning update are run as usual.

- In most modern neural networks, based on a series of affine transformations and nonlinearities, we can effectively remove a neuron from a network by multiplying its output value by zero.
- ► To train with dropout, we use a minibatch-based learning algorithm that makes small steps, such as *stochastic gradient descent*.
- Each time we **randomly sample a** different **binary mask** to apply to all of the input and hidden neurons in the network.
- Typically, an input neuron is included with probability 0.8 and a hidden neuron is included with probability 0.5. These probabilities constitute a hyperparameter to be fixed in advance.
- The forward propagation, back-propagation, and the learning update are run as usual.
- ► To predict an unknown observation, we average the output from many masks. Even 10–20 masks are often sufficient to obtain good performance.

Contents

Rosenblatt's perceptron

Biological analogy Historical learning algorithm Novikoff's convergence theorem

Signal-flow notation and model of an artificial neuron

Least-mean-squares

Minimization of the empirical risk Method of gradient descent The least-mean-square algorithm

The back-propagation algorithm

Derivation for a single-layer network Propagation for a multilayer network An example of the activation function

Additional information on learning networks Regularization in neural networks Some remarks on the back-propagation

In general, back-propagation algorithm cannot be shown to converge, and there are no well-defined criteria for stopping its operation.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- In general, back-propagation algorithm cannot be shown to converge, and there are no well-defined criteria for stopping its operation.
- A necessary condition for w^{*} to be a (*local*!) minimum is that the gradient vector g(w) of the error surface w.r.t. the weight vector w must be zero at w = w^{*}.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- In general, back-propagation algorithm cannot be shown to converge, and there are no well-defined criteria for stopping its operation.
- ► A necessary condition for *w*^{*} to be a (*local*!) minimum is that the gradient vector *g*(*w*) of the error surface w.r.t. the weight vector *w* must be zero at *w* = *w*^{*}.
- The back-propagation algorithm is considered to have converged when the Euclidean norm of the gradient vector reaches a sufficiently small gradient threshold.

- In general, back-propagation algorithm cannot be shown to converge, and there are no well-defined criteria for stopping its operation.
- A necessary condition for w* to be a (*local*!) minimum is that the gradient vector g(w) of the error surface w.r.t. the weight vector w must be zero at w = w*.
- The back-propagation algorithm is considered to have converged when the Euclidean norm of the gradient vector reaches a sufficiently small gradient threshold.

But with this criterion learning time may be long.

- In general, back-propagation algorithm cannot be shown to converge, and there are no well-defined criteria for stopping its operation.
- A necessary condition for w* to be a (*local*!) minimum is that the gradient vector g(w) of the error surface w.r.t. the weight vector w must be zero at w = w*.
- The back-propagation algorithm is considered to have converged when the Euclidean norm of the gradient vector reaches a sufficiently small gradient threshold.
- But with this criterion learning time may be long.
- The back-propagation algorithm is considered to have converged when the absolute rate of change in the average squared error per epoch is sufficiently small.

- In general, back-propagation algorithm cannot be shown to converge, and there are no well-defined criteria for stopping its operation.
- A necessary condition for w* to be a (*local*!) minimum is that the gradient vector g(w) of the error surface w.r.t. the weight vector w must be zero at w = w*.
- The back-propagation algorithm is considered to have converged when the Euclidean norm of the gradient vector reaches a sufficiently small gradient threshold.
- But with this criterion learning time may be long.
- The back-propagation algorithm is considered to have converged when the absolute rate of change in the average squared error per epoch is sufficiently small.
- The rate of convergence in the average squared error is typically considered to be small enough if it lies in the range of 0.1 t 1 percent per epoch (0.01 percent per epoch is used as well).

Heuristics for making the back-propagation algorithm perform better:

Stochastic learning is preferable to the large batch/entire training sample, updates especially when the training data sample is large and highly redundant.

Heuristics for making the back-propagation algorithm perform better:

- Stochastic learning is preferable to the *large batch/entire training sample*, updates especially when the training data sample is large and highly redundant.
- Maximizing information content, e.g. shuffling observations to ensure that successive examples rarely belong to the same class.

Heuristics for making the back-propagation algorithm perform better:

- Stochastic learning is preferable to the *large batch/entire training sample*, updates especially when the training data sample is large and highly redundant.
- ► Maximizing information content, *e.g.* shuffling observations to ensure that successive examples rarely belong to the same class.
- Correct choice of the activation function, e.g. a sigmoid one which is odd in its argument.

Heuristics for making the back-propagation algorithm perform better:

- Stochastic learning is preferable to the *large batch/entire training sample*, updates especially when the training data sample is large and highly redundant.
- ► Maximizing information content, *e.g.* shuffling observations to ensure that successive examples rarely belong to the same class.
- Correct choice of the activation function, e.g. a sigmoid one which is odd in its argument.

Choosing target values properly w.r.t. the activation function.

Heuristics for making the back-propagation algorithm perform better:

- Stochastic learning is preferable to the *large batch/entire training sample*, updates especially when the training data sample is large and highly redundant.
- ► Maximizing information content, *e.g.* shuffling observations to ensure that successive examples rarely belong to the same class.
- Correct choice of the activation function, e.g. a sigmoid one which is odd in its argument.
- Choosing target values properly w.r.t. the activation function.
- Normalizing the inputs: mean removal, decorrelation, covariance equalization.

Heuristics for making the back-propagation algorithm perform better:

- Stochastic learning is preferable to the large batch/entire training sample, updates especially when the training data sample is large and highly redundant.
- ► Maximizing information content, *e.g.* shuffling observations to ensure that successive examples rarely belong to the same class.
- Correct choice of the activation function, e.g. a sigmoid one which is odd in its argument.
- Choosing target values properly w.r.t. the activation function.
- ► **Normalizing the inputs**: *mean removal, decorrelation, covariance equalization.*
- Initialization: not large (saturation!) and not small (slowing down!) initial values; e.g. uniform distribution with zero mean and variance equal to the reciprocal of the number of synaptic connections of a neuron.

Heuristics for making the back-propagation algorithm perform better:

- Stochastic learning is preferable to the large batch/entire training sample, updates especially when the training data sample is large and highly redundant.
- ► Maximizing information content, *e.g.* shuffling observations to ensure that successive examples rarely belong to the same class.
- Correct choice of the activation function, e.g. a sigmoid one which is odd in its argument.
- Choosing target values properly w.r.t. the activation function.
- ► **Normalizing the inputs**: *mean removal, decorrelation, covariance equalization.*
- Initialization: not large (saturation!) and not small (slowing down!) initial values; e.g. uniform distribution with zero mean and variance equal to the reciprocal of the number of synaptic connections of a neuron.
- Learning from hints: include prior information about your task, e.g. sparsity (weight sharing) in the convolutional neural networks.

Heuristics for making the back-propagation algorithm perform better:

- Stochastic learning is preferable to the *large batch/entire training sample*, updates especially when the training data sample is large and highly redundant.
- ► Maximizing information content, *e.g.* shuffling observations to ensure that successive examples rarely belong to the same class.
- Correct choice of the activation function, e.g. a sigmoid one which is odd in its argument.
- Choosing target values properly w.r.t. the activation function.
- ► **Normalizing the inputs**: *mean removal, decorrelation, covariance equalization.*
- Initialization: not large (saturation!) and not small (slowing down!) initial values; e.g. uniform distribution with zero mean and variance equal to the reciprocal of the number of synaptic connections of a neuron.
- Learning from hints: include prior information about your task, e.g. sparsity (weight sharing) in the convolutional neural networks.
- Learning rates: learning rate can be smaller in the last layers than in the front layers.

Thank you for your attention!

Thank you for your attention!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

And some references

- Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistics Learning: Data Mining, Inference, and Prediction (Second Edition). Springer.
- Devroye, L., Gyöfri, L., Lugosi, G. (1996).
 A Probabilistic Theory of Pattern Recognition.
 Springer.
- Vapnik, V. N. (1998).
 Statistical Learning Theory.
 John Wiley & Sons.
- Haykin, S. (2009). Neural Networks and Learning Machines (Third Edition). Pearson.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Goodfellow, J., Bengio, Y., and Courville, A. (2016). Deep Learning.
 MIT Press.
- Bishop, C. M. (2006).
 Pattern Recognition and Machine Learning.
 Springer.