Support vector machines

Pavlo Mozharovskyi ${ }^{1}$
${ }^{1}$ LTCI, Télécom Paris, Institut Polytechnique de Paris

Machine learning
Paris, March 12, 2022

Today

Vapnik-Chervonenkis theory, simplest case

The support vector machine Optimal margin classifier Introducing kernels (1992)
Allowing for misclassification: soft margin (1995)

Implementation

Literature

Learning materials include but are not limited to:

- Hastie, T., Tibshirani, R., and Friedman, J. (2009).

The Elements of Statistics Learning: Data Mining, Inference, and
Prediction (Second Edition).
Springer.

- Section 12. $\{1,2,3.1,3.2\}$.
- Slides of the lecture.
- Boser, B. E., Guyon, I. M., and V. N. Vapnik (1992).

A training algorithm for optimal margin classifiers.
In: Proceedings of the Fifth Annual Workshop of Computational Learning Theory, Pittsburgh, ACM, 5, 144-152.

- Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine learning, 20, 273-297.
- Vapnik, V. N. (1998).

Statistical Learning Theory. John Wiley \& Sons.

Binary supervised classification (reminder)

Notation:

- Given: for the random pair (X, Y) in $\mathbb{R}^{d} \times\{-1,1\}$ consisting of a random observation X and its random binary label Y (class), a sample of n i.i.d.: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$.
- Goal: predict the label of the new (unseen before) observation \boldsymbol{x}.
- Method: construct a classification rule:

$$
g: \mathbb{R}^{d} \rightarrow\{-1,1\}, \boldsymbol{x} \mapsto g(\boldsymbol{x})
$$

so $g(\boldsymbol{x})$ is the prediction of the label for observation \boldsymbol{x}.

- Criterion: of the performance of g is the error probability:

$$
R(g)=\mathbb{P}[g(X) \neq Y]=\mathbb{E}[\mathbb{1}(g(X) \neq Y)] .
$$

- The best solution: is to know the distribution of (X, Y) :

$$
g(x)=\operatorname{sign}(2 \mathbb{E}[Y \mid X=x]-1>0)
$$

Contents

Vapnik-Chervonenkis theory, simplest case

The support vector machine
Optimal margin classifier Introducing kernels (1992) Allowing for misclassification: soft margin (1995)

Implementation

Glivenko-Cantelli theorem

Consider the classification rule for a new observation \boldsymbol{x} given the weights vector \boldsymbol{w} :

$$
g(\boldsymbol{x}, \boldsymbol{w})= \begin{cases}1 & \text { if } \boldsymbol{w}^{T} \boldsymbol{x}>0 \\ -1 & \text { otherwise }\end{cases}
$$

What can be said about the error probability, i.e. about the relationship between

$$
\mathbb{P}(g(X, \boldsymbol{w}) \neq Y)=\int_{\mathbb{R}^{d}} \mathbb{1}(g(\boldsymbol{x}, \boldsymbol{w}) \neq Y) d F_{X} \quad \text { and } \quad \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\left(g\left(\boldsymbol{x}_{i}, \boldsymbol{w}\right) \neq y_{i}\right) ?
$$

Let X_{1}, \ldots, X_{n} be a random sample on \mathbb{R}. The empirical distribution function is defined as

$$
\mathbb{F}_{n}(t)=\frac{1}{n} \sum \mathbb{1}\left(X_{i} \leq t\right)
$$

Theorem (Glivenko-Cantelli)
If X_{1}, X_{2}, \ldots are i.i.d. random variables with distribution function F, then

$$
\left\|\mathbb{F}_{n}-F\right\|_{\infty}=\sup _{x \in \mathbb{R}}\left|\mathbb{F}_{n}(x)-F(x)\right| \xrightarrow{\text { a.s. }} 0 .
$$

Uniform one-sided convergence

Under additional conditions, for $g(\boldsymbol{x}, \boldsymbol{w})$ and a probability measure F_{X}, for any $\epsilon>0$ it holds

$$
\mathbb{P}\{\sup _{\boldsymbol{w}}(\underbrace{\mathbb{P}(g(X, \boldsymbol{w}) \neq Y)}_{L(g(\cdot, \boldsymbol{w}))}-\underbrace{\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\left(g\left(X_{i}, \boldsymbol{w}\right) \neq Y_{i}\right)}_{L_{\text {emp }}(g(\cdot, \boldsymbol{w}))})>\epsilon\} \underset{n \rightarrow \infty}{\longrightarrow} 0 .
$$

What can be said about the rate of convergence?
Regard finite set of classification rules $g\left(\boldsymbol{x}, \boldsymbol{w}_{k}\right), k=1, \ldots, N$. The restriction is naturally posed by the finite number of elements in the training set.

$$
\begin{aligned}
\mathbb{P} & \left\{\sup _{k \in\{1, \ldots, N\}}\left(L\left(g\left(\cdot, \boldsymbol{w}_{k}\right)\right)-L_{e m p}\left(g\left(\cdot, \boldsymbol{w}_{k}\right)\right)\right)>\epsilon\right\} \\
& \leq \sum_{k=1}^{N} \mathbb{P}\left\{\left(L\left(g\left(\cdot, \boldsymbol{w}_{k}\right)\right)-L_{e m p}\left(g\left(\cdot, \boldsymbol{w}_{k}\right)\right)\right)>\epsilon\right\}
\end{aligned}
$$

Uniform one-sided convergence

Theorem (Chernoff-Hoeffding, Bernoulli scheme)
If X_{1}, \ldots, X_{n} are i.i.d. random variables taking values in $\{0,1\}$, then for any $\epsilon>0$ it holds

$$
\mathbb{P}\left(\mathbb{E}\left[X_{i}\right]-\frac{1}{n} \sum_{i=1}^{n} X_{i}>\epsilon\right)<e^{-2 \epsilon^{2} n} .
$$

This allows for:

$$
\begin{aligned}
& \sum_{k=1}^{N} \mathbb{P}\left\{\left(L\left(g\left(\cdot, \boldsymbol{w}_{k}\right)\right)-L_{\text {emp }}\left(g\left(\cdot, \boldsymbol{w}_{k}\right)\right)\right)>\epsilon\right\} \\
= & \sum_{k=1}^{N} \mathbb{P}\{(\underbrace{\mathbb{P}\left(g\left(X, \boldsymbol{w}_{k}\right) \neq Y\right)}_{\mathbb{E}\left[\mathbb{1}\left(g\left(X, \boldsymbol{w}_{k}\right) \neq Y\right)\right]}-\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\left(g\left(X_{i}, \boldsymbol{w}_{k}\right) \neq Y_{i}\right))>\epsilon\} \\
\leq & N e^{-2 \epsilon^{2} n} .
\end{aligned}
$$

Vapnik-Chervonenkis inequality

So:

$$
\mathbb{P}\left\{\sup _{k \in\{1, \ldots, N\}}\left(L\left(g\left(\cdot, \boldsymbol{w}_{k}\right)\right)-L_{e m p}\left(g\left(\cdot, \boldsymbol{w}_{k}\right)\right)\right)>\epsilon\right\} \leq N e^{-2 \epsilon^{2} n}
$$

Let us fix this probability having chosen $0<\eta \leq 1$, by that maintaining reliability $1-\eta$:

$$
N e^{-2 \epsilon^{2} n}=\eta \quad \text { or equivalently } \quad \epsilon=\sqrt{\frac{\log N-\log \eta}{2 n}}
$$

This allows for the following result:
Theorem (Vapnik-Chervonenkis, 1974)
If from a set consisting of N classification rules a rule $g(\cdot, \boldsymbol{w})$ is chosen, which delivers empirical risk $L_{\text {emp }}(g(\cdot, \boldsymbol{w}))$, then with reliability $1-\eta$ one can state that the error probability $L(g(\cdot, \boldsymbol{w}))$ is bounded from above as follows

$$
L(g(\cdot, \boldsymbol{w})) \leq L_{\text {emp }}(g(\cdot, \boldsymbol{w}))+\sqrt{\frac{\log N-\log \eta}{2 n}} .
$$

Particular case: linear rule

Let us try to estimate N for the linear classification rule.
The number $\Phi(d, n)$ of all possible separations of n points in \mathbb{R}^{d} by a hyperplane via the origin is computed as

$$
\Phi(d, n)= \begin{cases}2 \sum_{l=0}^{d-1}\binom{n-1}{l} & \text { if } d \leq n \\ 2^{n} & \text { otherwise }\end{cases}
$$

For $d \leq n$, one can approximate it from above using:

$$
\Phi(d, n) \leq 3 \frac{n^{d-1}}{(d-1)!} \leq n^{d}
$$

Plugging this into the Vapnik-Chervonenkis inequality gives:

$$
L(g(\cdot, \boldsymbol{w})) \leq L_{e m p}(g(\cdot, \boldsymbol{w}))+\sqrt{\frac{d \log n-\log \eta}{2 n}}
$$

Contents

Vapnik-Chervonenkis theory, simplest case

The support vector machine Optimal margin classifier Introducing kernels (1992)
Allowing for misclassification: soft margin (1995)

Implementation

The principle

- The conservative upper bound of Vapnik and Chervonenkis is very pessimistic, as even for a linear classification rule a very large training data set is required to guarantee meaningfulness of the achieved empirical risk.
- As an example, consider the case of two linearly separable training classes. Even in this case, only little can be said about probability of points from one class inside the other one.
- Sticking to this "trivial" case, the safest separating hyperplane would be the one having maximal and equal margin to each of the classes.
- Finding such a hyperplane in a systematic way constitutes the main idea of the optimal margin hyperplane algorithm.

Contents

Vapnik-Chervonenkis theory, simplest case

The support vector machine Optimal margin classifier Introducing kernels (1992) Allowing for misclassification: soft margin (1995)

Implementation

Optimal margin hyperplane

- Let the training sample consist of n pairs $\left(\boldsymbol{x}_{1}, y_{1}\right),\left(\boldsymbol{x}_{2}, y_{2}\right), \ldots,\left(\boldsymbol{x}_{n}, y_{n}\right)$ taking values in $\mathbb{R}^{d} \times\{-1,1\}$.
- This set is said to be linearly separable if there exist a non-zero vector $\psi \in \mathbb{R}^{d}$ and a scalar $b \in \mathbb{R}$ such that the n following inequalities hold:

$$
\begin{array}{ll}
\boldsymbol{\psi}^{T} \boldsymbol{x}_{i}+b \geq 0 & \text { if } \quad y_{i}=1 \\
\boldsymbol{\psi}^{T} \boldsymbol{x}_{i}+b \leq 0 & \text { if } \quad y_{i}=-1
\end{array}
$$

- Instead of simply requiring separation (the parts " ≥ 0 " and " ≤ 0 " in the above inequality) one can introduce margin $M>0$, i.e., require the distance between any two points stemming from different classes - in projection onto ψ - be at least $2 M$.
- Involving the output (in this notation corresponding to the sign) allows for rewriting the above (restricting) inequalities in the following way:

$$
\frac{y_{i}\left(\boldsymbol{\psi}^{T} \boldsymbol{x}_{i}+b\right)}{\|\boldsymbol{\psi}\|} \geq M, \quad i=1, \ldots, n
$$

Optimal margin hyperplane

- The objective of the training algorithm is then to find the parameter vector ψ that maximizes M :

$$
\begin{array}{ll}
M^{*}=\max & M \\
\text { subject to } & \|\boldsymbol{\psi}\|=1 \\
& y_{i}\left(\boldsymbol{\psi}^{T} \boldsymbol{x}_{i}+b\right) \geq M, \quad i=1, \ldots, n .
\end{array}
$$

- The (last) bound is attained for those patterns satisfying

$$
\min _{i \in\{1, \ldots, n\}} y_{i}\left(\boldsymbol{\psi}^{T} \boldsymbol{x}_{i}+b\right)=M^{*}
$$

- These patterns are called the support vectors of the decision boundary.
- Thus, the problem of finding a hyperplane with maximum margin can be seen as a minimax problem:

$$
\max _{\boldsymbol{\psi} \in \mathbb{R}^{d},\|\boldsymbol{\psi}\|=1} \min _{i \in\{1, \ldots, n\}} y_{i}\left(\boldsymbol{\psi}^{T} \boldsymbol{x}_{i}+b\right)
$$

Optimal margin hyperplane : illustration

Optimal margin hyperplane

- Instead of fixing the norm of ψ, the product of the margin M and the norm of ψ can be fixed, e.g. by:

$$
M\|\boldsymbol{\psi}\|=1
$$

- Now, maximizing the margin M is equivalent to minimizing the norm $\|\psi\|$.
- Then the problem of finding a maximum margin separating hyperplane, characterized by ψ, reduces to solving the following quadratic optimization problem:

$$
\begin{aligned}
& \min \frac{1}{2}\|\boldsymbol{\psi}\|^{2} \\
& \text { subject to } \quad y_{i}\left(\boldsymbol{\psi}^{T} \boldsymbol{x}_{i}+b\right) \geq 1, \quad i=1, \ldots, n
\end{aligned}
$$

- The maximum margin is:

$$
M^{*}=\frac{1}{\left\|\psi^{*}\right\|}
$$

- This approach is impractical:
- if the dimension d is large or infinite,
- because no information about support vectors is gained.

Optimal margin hyperplane: Lagrangian

- Construct a Lagrangian:

$$
L(\boldsymbol{\psi}, b, \boldsymbol{\Lambda})=\frac{1}{2} \boldsymbol{\psi}^{T} \boldsymbol{\psi}-\sum_{i=1}^{n} \alpha_{i}\left(y_{i}\left(\boldsymbol{\psi}^{T} \boldsymbol{x}_{i}+b\right)-1\right)
$$

with $\boldsymbol{\Lambda}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)^{T}$ being the vector of non-negative Lagrange multipliers corresponding to the inequality constraints.

- The solution to the optimization problem is determined by the saddle point of this Lagrangian in the $(d+1+n)$-dimensional space of ψ, b, and $\boldsymbol{\Lambda}$.
- The minimum should be taken w.r.t. the parameters ψ and b, the maximum should be taken w.r.t. the Lagrange multipliers $\boldsymbol{\Lambda}$.

Optimal margin hyperplane: Lagrangian

- At the point of minimum (w.r.t. $\boldsymbol{\psi}$ and b) one obtains:

$$
\begin{aligned}
& \left.\frac{\partial L(\boldsymbol{\psi}, b, \boldsymbol{\Lambda})}{\partial \boldsymbol{\psi}}\right|_{\psi=\boldsymbol{\psi}^{*}}=\left(\psi^{*}-\sum_{i=1}^{n} \alpha_{i} y_{i} \boldsymbol{x}_{i}\right)=0 \\
& \left.\frac{\partial L(\boldsymbol{\psi}, b, \boldsymbol{\Lambda})}{\partial b}\right|_{b=b^{*}}=\sum_{i=1}^{n} y_{i} \alpha_{i}=0
\end{aligned}
$$

- From the upper equality one can derive:

$$
\psi^{*}=\sum_{i=1}^{n} \alpha_{i} y_{i} \boldsymbol{x}_{i}
$$

- This means that the optimal hyperplane can be written as a linear combination of training observations.
- Only training observations $\boldsymbol{x}_{\boldsymbol{i}}$ with (strictly) positive Lagrange multipliers (i.e. with $\alpha_{i}>0$) have an efficient contribution to the sum - the support vectors.

Optimal margin hyperplane: Lagrangian

- Substitution of the minimum conditions into the Lagrangian yields the following optimization problem:

$$
\begin{aligned}
\max W(\boldsymbol{\Lambda})= & \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \boldsymbol{x}_{i}^{T} \boldsymbol{x}_{j} \\
\text { subject to } \quad & \sum_{i=1}^{n} \alpha_{i} y_{i}=0 \\
& \alpha_{i} \geq 0, \quad i=1, \ldots, n
\end{aligned}
$$

- Usually it is written in the matrix form:

$$
\begin{aligned}
\max W(\boldsymbol{\Lambda})= & \boldsymbol{\Lambda}^{T} \mathbf{1}-\frac{1}{2} \boldsymbol{\Lambda}^{T} \mathbf{D} \boldsymbol{\Lambda} \\
\text { subject to } \quad & \boldsymbol{\Lambda}^{T} \boldsymbol{Y}=0 \\
& \boldsymbol{\Lambda} \geq \mathbf{0}
\end{aligned}
$$

with \boldsymbol{D} being a $(n \times n)$-dimensional matrix with entries $D_{i j}=y_{i} y_{j} \boldsymbol{x}_{i}^{T} \boldsymbol{x}_{j}, \boldsymbol{Y}=\left(y_{1}, \ldots, y_{n}\right)^{T}$, and $\mathbf{0}$ and $\mathbf{1}$ standing for n-dimensional vectors of zeros and ones.

Optimal margin hyperplane: classification

- After the optimal pair $\left(\psi^{*}, b^{*}\right)$ is obtained, classification of an observation $\boldsymbol{x} \in \mathbb{R}^{d}$ reduces to determining its position in the projection onto $\boldsymbol{\psi}^{*}$:

$$
\begin{aligned}
g(\boldsymbol{x}) & =\operatorname{sign}\left(\boldsymbol{\psi}^{* T} \boldsymbol{x}+b^{*}\right) \\
& =\operatorname{sign}\left(\sum_{i=1}^{n} y_{i} \alpha_{i}^{*} \boldsymbol{x}_{i}^{T} \boldsymbol{x}+b^{*}\right) .
\end{aligned}
$$

- From this it becomes clear how to calculate b^{*} : it should position the separating hyperplane exactly in the middle between two support vectors from different classes, in the projection onto ψ^{*} :

$$
\begin{aligned}
b^{*} & =-\frac{1}{2}\left(\psi^{* T} \boldsymbol{x}_{A}+\boldsymbol{\psi}^{* T} \boldsymbol{x}_{B}\right) \\
& =-\frac{1}{2} \sum_{i=1}^{n} y_{i} \alpha_{i}^{*}\left(\boldsymbol{x}_{i}^{T} \boldsymbol{x}_{A}+\boldsymbol{x}_{i}^{T} \boldsymbol{x}_{B}\right) .
\end{aligned}
$$

with $\boldsymbol{x}_{A} \in\left\{\boldsymbol{x}_{i}: y_{i}=1, \alpha_{i}^{*}>0, i=1, \ldots, n\right\}$ and $x_{B} \in\left\{x_{i}: y_{i}=-1, \alpha_{i}^{*}>0, i=1, \ldots, n\right\}$.

- Only support vectors influence the classification rule. (Analogy with a mine field on the front line between two enemies.)

Optimal margin classifier (algorithm)

Finding the optimal margin hyperplane (training)
Input: Training sample $\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right) \subset \mathbb{R}^{d} \times\{-1,1\}$.

1. Solve the constraint quadratic optimization problem to obtain $\mathbf{\Lambda}^{*}=\left(\alpha_{1}^{*}, \ldots, \alpha_{n}^{*}\right)^{T}$:

$$
\begin{aligned}
\max & \boldsymbol{\Lambda}^{T} \mathbf{1}-\frac{1}{2} \boldsymbol{\Lambda}^{T} \boldsymbol{D} \boldsymbol{\Lambda} \\
\text { subject to } & \boldsymbol{\Lambda}^{T} \boldsymbol{Y}=0 \\
& \boldsymbol{\Lambda} \geq \mathbf{0}
\end{aligned}
$$

2. Taking any two support vectors from opposite classes $\boldsymbol{x}_{A} \in\left\{\boldsymbol{x}_{i}: y_{i}=1, \alpha_{i}^{*}>0\right\}$ and $\boldsymbol{x}_{B} \in\left\{\boldsymbol{x}_{i}: y_{i}=-1, \alpha_{i}^{*}>0\right\}$, calculate the threshold:

$$
b^{*}=-\frac{1}{2} \sum_{i=1}^{n} y_{i} \alpha_{i}^{*}\left(\boldsymbol{x}_{i}^{T} \boldsymbol{x}_{A}+\boldsymbol{x}_{i}^{T} \boldsymbol{x}_{B}\right)
$$

Output: The classifier: $g(\boldsymbol{x})=\operatorname{sign}\left(\sum_{i=1}^{n} y_{i} \alpha_{i}^{*} \boldsymbol{x}_{i}^{T} \boldsymbol{x}+b^{*}\right)$.

Optimal margin classifier: some comments

- The training phase is reduced to solving a problem of quadratic optimization, which is usually computationally tractable.
- The time of the training algorithm depends on dimension d only when calculating the matrix of quadratic coefficients \boldsymbol{D}, the dimension of the original space is irrelevant for the optimization time.
- As only the support vectors are relevant, only these should be stored for the classification rule.
- The problem can be solved iteratively by chunks, as in each (previous) chunk only support vectors are important (for further chunks).

But:

- Linear classification rule has poor approximation performance.
- Misclassification is not allowed.

Contents

Vapnik-Chervonenkis theory, simplest case

The support vector machine Optimal margin classifier
Introducing kernels (1992)
Allowing for misclassification: soft margin (1995)

Implementation

Convolution of the inner product

- The algorithm described above constructs a hyperplane (defining by that linear classification rule) in the input space \mathbb{R}^{d}.
- Idea: To increase the approximation power of the classification rule but keep its algorithmic linearity, one maps the input space to a feature space, i.e. transforms the d-dimensional input vector \boldsymbol{x} into a D-dimensional feature space through a choice of a D-dimensional vector function ϕ :

$$
\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{D} .
$$

- Then, a D-dimensional linear separator $(\psi, b) \in \mathbb{R}^{D} \times \mathbb{R}$ is constructed for the set of transformed vectors:

$$
\phi\left(\boldsymbol{x}_{i}\right)=\left(\phi_{1}\left(\boldsymbol{x}_{i}\right), \phi_{2}\left(\boldsymbol{x}_{i}\right), \ldots, \phi_{D}\left(\boldsymbol{x}_{i}\right)\right) \in \mathbb{R}^{D}, \quad i=1, \ldots, n .
$$

- Note: \mathbb{R}^{D} can be of infinite dimension.

Convolution of the inner product

$\left(x_{1}, x_{2}\right)$

$$
\begin{aligned}
& \mapsto\left(\phi\left(x_{1}, x_{2}\right)\right) \\
& =\left(x_{1}, x_{2}, x_{1}^{2}+x_{2}^{2}\right)
\end{aligned}
$$

Convolution of the inner product

- The classification of an unknown vector \boldsymbol{x} is done by first transforming it into the feature space

$$
x \mapsto \phi(x),
$$

and then classifying the featured vector with

$$
g(\boldsymbol{x})=\operatorname{sign}\left(\boldsymbol{\psi}^{* T} \phi(\boldsymbol{x})+b^{*}\right) .
$$

- According to the properties of the classifier, it can be written as a linear combination of the support vectors (in the feature space):

$$
\boldsymbol{\psi}^{*}=\sum_{i=1}^{n} y_{i} \alpha_{i}^{*} \phi\left(\boldsymbol{x}_{i}\right)
$$

- The linearity of the inner product implies that the classifier $g(\boldsymbol{x})$ only depends on the inner products:

$$
g(\boldsymbol{x})=\operatorname{sign}\left(\boldsymbol{\psi}^{* T} \phi(\boldsymbol{x})+b^{*}\right)=\operatorname{sign}\left(\sum_{i=1}^{n} y_{i} \alpha_{i}^{*} \phi\left(\boldsymbol{x}_{i}\right)^{T} \boldsymbol{\phi}(\boldsymbol{x})+b^{*}\right) .
$$

- The quadratic problem depends only inner products as well.

Convolution of the inner product

- Consider the general form of the inner product in a Hilbert space:

$$
\phi(\boldsymbol{u})^{T} \phi(\boldsymbol{v})=K(\boldsymbol{u}, \boldsymbol{v})
$$

- According to Hilbert-Schmidt Theory any symmetric function $K(\boldsymbol{u}, \boldsymbol{v})$, with $K(\boldsymbol{u}, \boldsymbol{v}) \in L_{2}$, can be expanded in the form:

$$
K(\boldsymbol{u}, \boldsymbol{v})=\sum_{j=1}^{\infty} \lambda_{j} \phi_{j}(\boldsymbol{u}) \phi_{j}(\boldsymbol{v})
$$

with $\lambda_{i} \in \mathbb{R}$ and ϕ_{i} being eigenvalues and eigenfunctions of the integral operator defined by the kernel $K(\boldsymbol{u}, \boldsymbol{v})$, i.e.

$$
\int K(\boldsymbol{u}, \boldsymbol{v}) \phi_{j}(\boldsymbol{u}) d \boldsymbol{u}=\lambda_{j} \phi_{j}(\boldsymbol{v}) .
$$

- A sufficient condition to ensure that $K(\boldsymbol{u}, \boldsymbol{v})$ defines an inner product in the feature space is that all the eigenvalues λ_{i} are positive.

Convolution of the inner product

- According to Mercer's theorem, for $\lambda_{i} s$ to be positive, it is necessary and sufficient that

$$
\iint K(\boldsymbol{u}, \boldsymbol{v}) h(\boldsymbol{u}) h(\boldsymbol{v}) d \boldsymbol{u} d \boldsymbol{v}>0
$$

holds for all h such that

$$
\int h^{2}(\boldsymbol{u}) d \boldsymbol{u}<\infty
$$

- Thus, functions that satisfy the Mercer's theorem can be used as inner products in the feature space.
Examples of such functions:
- Gaussian kernel $=$ potential function $=$ radial basis function:

$$
K(\boldsymbol{u}, \boldsymbol{v})=e^{-\frac{\|u-v\|^{2}}{2 \sigma^{2}}}=e^{-\gamma\|\boldsymbol{u}-\boldsymbol{v}\|^{2}} .
$$

- Polynomial kernel:

$$
K(\boldsymbol{u}, \boldsymbol{v})=\left(\boldsymbol{u}^{\top} \boldsymbol{v}+1\right)^{\beta} .
$$

Convolution of the inner product

- Using different kernel functions $K(\boldsymbol{u}, \boldsymbol{v})$ as inner products (with different parameters, e.g., σ, γ, β) one can construct different learning machines with arbitrary types of decision surfaces.
- To find the optimal coefficient vector $\boldsymbol{\Lambda}^{*}=\left(\alpha_{1}^{*}, \ldots, \alpha_{n}^{*}\right)$, threshold b^{*}, and support vectors $\boldsymbol{x}_{i} \mathrm{~s}$, one follows the same solution scheme as for the original optimal margin classifier by solving the quadratic optimization problem.
- The only difference consists in using the matrix \boldsymbol{D} with entries:

$$
D_{i j}=y_{i} y_{j} K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right), \quad i, j=1, \ldots, n
$$

- The decision rule has then form:

$$
g(\boldsymbol{x})=\sum_{i=1}^{n} y_{i} \alpha_{i}^{*} K\left(\boldsymbol{x}, \boldsymbol{x}_{i}\right)+b^{*}
$$

where one can only restrict to support vectors \boldsymbol{x}_{i} and their coefficients $\alpha_{i}^{*}>0$.

Contents

Vapnik-Chervonenkis theory, simplest case

The support vector machine
Optimal margin classifier
Introducing kernels (1992)
Allowing for misclassification: soft margin (1995)

Implementation

Soft margin classifier

- The kernel trick allows to "ignore" the transform on the algorithmic level.
- Consider the case where the training data cannot be separated without error.
- In this case one may want to separate the training set with a minimal number of errors.
- Let us introduce non-negative variables $\xi_{i} \geq 0, i=1, \ldots, n$.
- We can then minimize the functional

$$
\sum_{i=1}^{n} \xi_{i}^{\sigma}
$$

for some small $\sigma>0$ subject to constraints

$$
\begin{aligned}
y_{i}\left(\boldsymbol{\psi}^{\top} \boldsymbol{x}_{i}+b\right) & \geq 1-\xi_{i}, & & i=1, \ldots, n, \\
\xi_{i} & \geq 0, & & i=1, \ldots, n .
\end{aligned}
$$

- For sufficiently small σ the minimized functional describes the number of errors on the training set.

Soft margin classifier

- In the minimum, strictly positive $\xi_{i j}>0, j=1, \ldots, k$ will identify the minimal subset of training errors:

$$
\left(x_{i_{1}}, y_{i_{1}}\right),\left(x_{i_{2}}, y_{i_{2}}\right), \ldots,\left(x_{i_{k}}, y_{i_{k}}\right) .
$$

- After these data are excluded, one can separate the remaining part of the training set without errors using the usual optimal separating hyperplane.
- Formally this can be expressed as:

$$
\begin{array}{rlrl}
\min \quad \frac{1}{2}\|\boldsymbol{\psi}\|^{2}+C F\left(\sum_{i=1}^{n} \xi_{i}^{\sigma}\right) & & \\
\text { subject to } \quad y_{i}\left(\boldsymbol{\psi}^{T} \boldsymbol{x}_{i}+b\right) & \geq 1-\xi_{i}, & & i=1, \ldots, n, \\
\xi_{i} & \geq 0, & i=1, \ldots, n .
\end{array}
$$

with $F(u)$ being a monotonic convex function and C being a positive constant.

- For sufficiently large C and sufficiently small σ, the pair $\left(\psi^{*}, b^{*}\right)$ minimizing this functional will determine the hyperplane minimizing the number of errors and separating the rest with maximum margin.

Soft margin classifier

- However, the problem of finding a hyperplane minimizing number of errors is NP-complete.
- For the reasons of computational tractability, we consider the (most commonly used) case:

$$
\begin{aligned}
F(u) & =u, \\
\sigma & =1,
\end{aligned}
$$

and choose appropriate value for the regularizing constant C.

- The problem then becomes:

$$
\begin{array}{rlrl}
\min \quad \frac{1}{2}\|\boldsymbol{\psi}\|^{2}+C \sum_{i=1}^{n} \xi_{i} & & \\
\text { subject to } \quad y_{i}\left(\boldsymbol{\psi}^{T} \boldsymbol{x}_{i}+b\right) & \geq 1-\xi_{i}, & & i=1, \ldots, n, \\
\xi_{i} & \geq 0, & & i=1, \ldots, n .
\end{array}
$$

Soft margin classifier

- The corresponding Lagrangian is:

$$
L(\boldsymbol{\psi}, b, \boldsymbol{\xi}, \boldsymbol{\Lambda}, \boldsymbol{r})=\frac{1}{2} \boldsymbol{\psi}^{T} \boldsymbol{\psi}+C \sum_{i=1}^{n} \xi_{i}-\sum_{i=1}^{n} \alpha_{i}\left(y_{i}\left(\boldsymbol{\psi}^{T} \boldsymbol{x}_{i}+b\right)-1+\xi_{i}\right)-\sum_{i=1}^{n} r_{i} \xi_{i}
$$

with $\boldsymbol{\Lambda}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)^{T}$ and $\boldsymbol{r}=\left(r_{1}, \ldots, r_{n}\right)^{T}$ being the vectors of non-negative Lagrange multipliers corresponding to the two groups of inequality constraints.

- The solution to the optimization problem is determined by the saddle point of this Lagrangian in the $(d+1+n+n+n)$-dimensional space of $\boldsymbol{\psi}, b, \boldsymbol{\xi}, \boldsymbol{\Lambda}$, and \boldsymbol{r}.
- The minimum should be taken w.r.t. the parameters ψ, b, and ξ, the maximum should be taken w.r.t. the Lagrange multipliers $\boldsymbol{\Lambda}$ and \boldsymbol{r}.

Soft margin classifier

- At the point of minimum (w.r.t. $\boldsymbol{\psi}, b$, and $\boldsymbol{\xi}$) one obtains:

$$
\begin{aligned}
& \left.\frac{\partial L(\boldsymbol{\psi}, b, \boldsymbol{\xi}, \boldsymbol{\Lambda}, \boldsymbol{r})}{\partial \boldsymbol{\psi}}\right|_{\boldsymbol{\psi}=\boldsymbol{\psi}^{*}}=\left(\boldsymbol{\psi}^{*}-\sum_{i=1}^{n} \alpha_{i} y_{i} \boldsymbol{x}_{i}\right)=0 \\
& \left.\frac{\partial L(\boldsymbol{\psi}, b, \boldsymbol{\xi}, \boldsymbol{\Lambda}, \boldsymbol{r})}{\partial b}\right|_{b=b^{*}}=\sum_{i=1}^{n} y_{i} \alpha_{i}=0 \\
& \left.\frac{\partial L(\boldsymbol{\psi}, b, \boldsymbol{\xi}, \boldsymbol{\Lambda}, \boldsymbol{r})}{\partial \xi_{i}}\right|_{\xi_{i}=\xi_{i}^{*}}=C-\alpha_{i}-r_{i}=0, \quad i=1, \ldots, n
\end{aligned}
$$

- This leads to the following quadratic problem:

$$
\begin{aligned}
\max W(\boldsymbol{\Lambda})= & \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \boldsymbol{x}_{i}^{T} \boldsymbol{x}_{j} \\
\text { subject to } \quad & \sum_{i=1}^{n} \alpha_{i} y_{i}=0 \\
& 0 \leq \alpha_{i} \leq C, \quad i=1, \ldots, n
\end{aligned}
$$

Support vector machine (SVM)

- The training phase:

$$
\begin{array}{ll}
\max & \boldsymbol{\Lambda}^{T} \mathbf{1}-\frac{1}{2} \boldsymbol{\Lambda}^{T} \boldsymbol{D} \boldsymbol{\Lambda} \\
\text { subject to } & \boldsymbol{\Lambda}^{T} \boldsymbol{Y}=0 \\
& \mathbf{0} \leq \boldsymbol{\Lambda} \leq C \mathbf{1}
\end{array}
$$

with $\boldsymbol{Y}=\left(y_{1}, \ldots, y_{n}\right)^{T}, \mathbf{0}$ and $\mathbf{1}$ standing for n-dimensional vectors of zeros and ones, C being a properly chosen constant, and \boldsymbol{D} being a $(n \times n)$-dimensional matrix with entries

$$
D_{i j}=y_{i} y_{j} K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right), \quad i, j=1, \ldots, n
$$

where $K(\boldsymbol{u}, \boldsymbol{v})$ is a properly chosen kernel function.
The result is the optimal vector $\boldsymbol{\Lambda}^{*}=\left(\alpha_{1}^{*}, \ldots, \alpha_{n}^{*}\right)^{T}$.
Then, taking any two support vectors $\boldsymbol{x}_{i_{A}}$ and $\boldsymbol{x}_{i_{B}}$ from opposite classes, i.e. with $i_{A} \in \arg \max _{j: y_{j}=1, \alpha_{j}^{*}>0} \sum_{i=1}^{n} y_{i} \alpha_{i}^{*} K\left(\boldsymbol{x}_{j}, \boldsymbol{x}_{i}\right)$ and $i_{B} \in \arg \min _{j: y_{j}=-1, \alpha_{j}^{*}>0} \sum_{i=1}^{n} y_{i} \alpha_{i}^{*} K\left(\boldsymbol{x}_{j}, \boldsymbol{x}_{i}\right)$, calculate threshold:

$$
b^{*}=-\frac{1}{2} \sum_{i=1}^{n} y_{i} \alpha_{i}^{*}\left(K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{i_{A}}\right)+K\left(\boldsymbol{x}_{i}^{T} \boldsymbol{x}_{i_{B}}\right)\right)
$$

Normal location alternative

Location alternative (Normal1)

SVM: normal location alternative

SVM (linear kernel) for Normal1 data

Normal location-scale alternative

Location-scale alternative (Normal2)

SVM: normal location-scale alternative

SVM (linear kernel) for Normal2 data

SVM: normal location-scale alternative

SVM (radial kernel) for Normal2 data

Contents

```
Vapnik-Chervonenkis theory, simplest case
The support vector machine
    Optimal margin classifier
    Introducing kernels (1992)
    Allowing for misclassification: soft margin (1995)
```

Implementation

Implementing SVM

When implementing and applying SVM, its parameters have to be chosen:

- kernel function,
- kernel parameter,
- regularization constant (=box constraint).

In practice, these parameters are usually chosen by cross-validation. This process is called tuning of the SVM. The SVM possesses certain degree of insensitivity w.r.t. parameters, which can be limited depending on the application of interest.

For R-software, SVM is implemented in such packages as, e.g., e1071, kernlab, klaR, svmpath.
For an overview, see, e.g.:

- Karatzoglou, A., Meyer, D., and Hornik, K. (2006). Support vector machines in R. Journal of Statistical Software, 15(9).

Thank you for your attention!

Thank you for your attention!

And some references

- Hastie, T., Tibshirani, R., and Friedman, J. (2009).

The Elements of Statistics Learning: Data Mining, Inference, and Prediction (Second Edition).
Springer.

- Devroye, L., Gyöfri, L., Lugosi, G. (1996).

A Probabilistic Theory of Pattern Recognition. Springer.

- Vapnik, V. N. (1998).

Statistical Learning Theory. John Wiley \& Sons.

- Haykin, S. (2009).

Neural Networks and Learning Machines (Third Edition).
Pearson.

