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Binary supervised classification (reminder)

Notation:

>

Given: for the random pair (X, Y) in RY x {—1,1} consisting of a
random observation X and its random binary label Y (class), a
sample of ni.i.d.: (x1,¥1), s (Xn, ¥n)-

Goal: predict the label of the new (unseen before) observation x.

Method: construct a classification rule:
g - Rd_> {_lal}a X’_>g(x)a

so g(x) is the prediction of the label for observation x.

Criterion: of the performance of g is the error probability:
R(g) = Plg(X) # Y] = E[1(g(X) # Y)].
The best solution: is to know the distribution of (X,Y):

g(x) = sign(2E[Y|X =x] —1>0).
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Consider the classification rule for a new observation x given the weights

vector w:
(x. w) 1 ifwx >0,
X, w)= )
g —1 otherwise.

What can be said about the error probability, i.e. about the relationship
between

P(g(X7w) %+ Y) :/

Rd

1 n
1(g(x.w) # Y)dFx and — 3 1(g(xiw) #yi)?
i=1
Let Xi,..., X, be a random sample on R. The empirical distribution
function is defined as

Fa(t) = %Z 11X <t).

Theorem (Glivenko-Cantelli)

If X1, Xa, ... are i.i.d. random variables with distribution function F, then

IFn — Flloo = sup [Fn(x) — F(x)] 23 0.
x€eR
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Uniform one-sided convergence

Under additional conditions, for g(x, w) and a probability measure Fx,
for any € > 0 it holds

n

P{sup( P(g(X7 w) # Y) —%Zl(g(X;, w) # Y,)) > e} njo 0.

i=1

L(g(~,w)) Lemp (g(‘,w))

What can be said about the rate of convergence?

Regard finite set of classification rules g(x,wy), k=1,...,N. The

restriction is naturally posed by the finite number of elements in the
training set.

P{ sup (L(g(~, wi)) — Lemp(g(-, wk))> > 6}

= ZN: P{(L(g(" wi)) — Lemp(g(-, Wk))) > e}

»
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Theorem (Chernoff-Hoeffding, Bernoulli scheme)

If X1, ..., Xy are i.i.d. random variables taking values in {0,1}, then for
any € > 0 it holds
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Vapnik-Chervonenkis inequality
So:

P, sop , (L(eC.w) = Lem(glwi)) ) > e} < Ne 2,

Let us fix this probability having chosen 0 < n < 1, by that maintaining
reliability 1 — n:

[log N —1
Ne=2n = n or equivalently e= )2 08T 5 %81
n

This allows for the following result:

Theorem (Vapnik-Chervonenkis, 1974)

If from a set consisting of N classification rules a rule g(-, w) is chosen,
which delivers empirical risk Lemp(g(+,w)), then with reliability 1 — n one
can state that the error probability L(g(-, w)) is bounded from above as

follows
|O N — |0
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Particular case: linear rule
Let us try to estimate N for the linear classification rule.

The number ®(d, n) of all possible separations of n points in RY by a
hyperplane via the origin is computed as

2N ifd <,
2" otherwise .

®(d,n) = {

For d < n, one can approximate it from above using:
d—1

n d
<3—— < .
¢(d,n)_3(d_1)! <n

Plugging this into the Vapnik-Chervonenkis inequality gives:
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The principle

» The conservative upper bound of Vapnik and Chervonenkis is
very pessimistic, as even for a linear classification rule a very large
training data set is required to guarantee meaningfulness of the
achieved empirical risk.

> As an example, consider the case of two linearly separable training
classes. Even in this case, only little can be said about probability
of points from one class inside the other one.

» Sticking to this “trivial” case, the safest separating hyperplane
would be the one having maximal and equal margin to each of the
classes.

» Finding such a hyperplane in a systematic way constitutes the main
idea of the optimal margin hyperplane algorithm.
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Optimal margin hyperplane

>

Let the training sample consist of n pairs

(x1,y1), (X2, ¥2); -y (Xn, yn) taking values in RY x {—1,1}.

This set is said to be linearly separable if there exist a non-zero
vector 1 € R and a scalar b € R such that the n following
inequalities hold:

P xi+b>0 if yi=1,
W xi+b<0 if yi=—1.

Instead of simply requiring separation (the parts “> 0" and “< 0" in
the above inequality) one can introduce margin M > 0, i.e., require
the distance between any two points stemming from different classes
— in projection onto 1) — be at least 2M.

Involving the output (in this notation corresponding to the sign)
allows for rewriting the above (restricting) inequalities in the
following way:

yi(¢ " x; + b)
||| -



Optimal margin hyperplane

» The objective of the training algorithm is then to find the parameter
vector 1 that maximizes M:
M* = max M
subject to  |[¥]| =1,
yi(wai+b)2M7 i:17"'7n'
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Optimal margin hyperplane

» The objective of the training algorithm is then to find the parameter
vector 1 that maximizes M:
M* = max M
subject to ||| =1,
yi(wTXi+b)2M7 I':lv"'7n'

» The (last) bound is attained for those patterns satisfying

. T *
i i+ b)=M".
efuin | yilW xi+b)

» These patterns are called the support vectors of the decision
boundary.

> Thus, the problem of finding a hyperplane with maximum margin
can be seen as a minimax problem:

i T
max min , x4 b).
PERY, ||[p||=1 i€{1,...,n} yi(¥ ' xi )



Optimal margin hyperplane : illustration
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Optimal margin hyperplane

>

Instead of fixing the norm of 1, the product of the margin M and
the norm of 1) can be fixed, e.g. by:

Milp[| = 1.

Now, maximizing the margin M is equivalent to minimizing the
norm /4.

Then the problem of finding a maximum margin separating
hyperplane, characterized by 1), reduces to solving the following
quadratic optimization problem:

1 >
min 39
subject to  y;(p x;+b)>1, i=1,..,n.
The maximum margin is:
1
M= ——.
[

This approach is impractical:
- if the dimension d is large or infinite,
- because no information about support vectors is gained.
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Optimal margin hyperplane: Lagrangian

» Construct a Lagrangian:
1 n
L(w, b, ) = 597 = > S oi(yi(w " xi + b) = 1)
i=1

with A = (g, ...,a,) T being the vector of non-negative Lagrange
multipliers corresponding to the inequality constraints.

» The solution to the optimization problem is determined by the
saddle point of this Lagrangian in the (d 4+ 1 + n)-dimensional space
of @, b, and A.

» The minimum should be taken w.r.t. the parameters v and b, the
maximum should be taken w.r.t. the Lagrange multipliers A.
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Optimal margin hyperplane: Lagrangian
» At the point of minimum (w.r.t. ¥ and b) one obtains:

OL(v, b, N) < _
b b=b* Z;y,a, =0.

» From the upper equality one can derive:

n
* J—
Y= ayix;.
i—1

» This means that the optimal hyperplane can be written as a linear
combination of training observations.

> Only training observations x; with (strictly) positive Lagrange
multipliers (i.e. with a; > 0) have an efficient contribution to the
sum — the support vectors.
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Optimal margin hyperplane: Lagrangian

» Substitution of the minimum conditions into the Lagrangian yields
the following optimization problem:

max W(R) Za,—fZZa Q;YiyiX; XJ

i=1 j=1
subject to Z a;yi =0,

a; >0, i=1,...,n.

» Usually it is written in the matrix form:
1
max W(N) =A"1 — E/\TD/\
subject to ATy = 0,
AN>0

with D being a (n x n)-dimensional matrix with entries
D = yiyix]'x;, ¥ = (y1,--,ya)", and 0 and 1 standing for
n-dimensional vectors of zeros and ones.
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Optimal margin hyperplane: classification

» After the optimal pair (1", b*) is obtained, classification of an
observation x € RY reduces to determining its position in the
projection onto 1)*:

g(x) = sign(y* " x + b*)
= sign (Z yiaix] x + b*) .
i=1

» From this it becomes clear how to calculate b*: it should position
the separating hyperplane exactly in the middle between two support
vectors from different classes, in the projection onto )™:

1
b* = _E(Q/J*TXA—FQ/)*TXB)

n
= —% Zy,-a,’f(x,-TxA +x'xg).
i=1
with xa € {x; 1 yy=1,aF>0,i=1,...,n} and
xge{x;i yi=-1,af>0,i=1,..,n}
» Only support vectors influence the classification rule.
(Analogy with a mine field on the front line between two enemies.)
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A>0.



Optimal margin classifier (algorithm)
Finding the optimal margin hyperplane (training)
Input: Training sample ((xl,yl), ceny (x,,,yn)) CRYx {~1,1}.

1. Solve the constraint quadratic optimization problem to obtain
N = (af,...a5)T:

1
max AT1-— E/\TD/\

subject to ATY =0,
A>0.

2. Taking any two support vectors from opposite classes
xa€{x;:yi=1,af >0} and xg € {x; : yi=—1, af >0},
calculate the threshold:

Zy, X; xA+x XB)



Optimal margin classifier (algorithm)
Finding the optimal margin hyperplane (training)
Input: Training sample ((xl,yl), ceny (x,,,yn)) CRYx {~1,1}.
1. Solve the constraint quadratic optimization problem to obtain
N = (af,...a5)T:
T 1.7
max A'1-— EA DA

subject to ATY =0,
A>0.

2. Taking any two support vectors from opposite classes

xa€{x;:yi=1,af >0} and xg € {x; : yi=—1, af >0},
calculate the threshold:

Zyl x] xa+x] xg).

Output: The classifier: g(x) = sign (27:1 yiaix]x + b*).
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Optimal margin classifier: some comments

>

The training phase is reduced to solving a problem of quadratic
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Optimal margin classifier: some comments

>

But:

The training phase is reduced to solving a problem of quadratic
optimization, which is usually computationally tractable.

The time of the training algorithm depends on dimension d only
when calculating the matrix of quadratic coefficients D, the
dimension of the original space is irrelevant for the optimization
time.

As only the support vectors are relevant, only these should be
stored for the classification rule.

The problem can be solved iteratively by chunks, as in each

(previous) chunk only support vectors are important (for further
chunks).

Linear classification rule has poor approximation performance.

Misclassification is not allowed.
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Convolution of the inner product

» The algorithm described above constructs a hyperplane (defining by
that linear classification rule) in the input space RY.

» Idea: To increase the approximation power of the classification rule
but keep its algorithmic linearity, one maps the input space to a
feature space, i.e. transforms the d-dimensional input vector x into
a D-dimensional feature space through a choice of a D-dimensional
vector function ¢:

¢ R RP.

» Then, a D-dimensional linear separator (1, b) € RP x R is
constructed for the set of transformed vectors:

d(x;) = (61(xi), d2(xi), ., o (x;)) €RP, i=1,....n.

» Note: RP can be of infinite dimension.
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Convolution of the inner product

>

The classification of an unknown vector x is done by first
transforming it into the feature space

x = ¢(x)

and then classifying the featured vector with

g(x) = sign (¢*T¢(x) + b*).

According to the properties of the classifier, it can be written as a
linear combination of the support vectors (in the feature space):

P = ZYIOZTQS(XI) :

i=1

The linearity of the inner product implies that the classifier g(x)
only depends on the inner products:

g(x) = sign (¥ $(x) + b) = sign(D_ e o(xi) T p(x) + b") .

i=1

The quadratic problem depends only inner products as well.
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» Consider the general form of the inner product in a Hilbert space:
o(u)  P(v) = K(u,v).

» According to Hilbert-Schmidt Theory any symmetric function
K(u, v), with K(u, v) € Ly, can be expanded in the form:

K(u,v) =D Ndj(u)g(v)
j=1

with A; € R and ¢; being eigenvalues and eigenfunctions of the
integral operator defined by the kernel K(u,v), i.e.

/K(u, V) () du = Aoy (v)

» A sufficient condition to ensure that K(u, v) defines an inner
product in the feature space is that all the eigenvalues \; are
positive.
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» According to Mercer's theorem, for \;s to be positive, it is necessary
and sufficient that

//K(u, v)h(u)h(v)dudv >0
holds for all h such that

/hZ(u)du < 00.

» Thus, functions that satisfy the Mercer’s theorem can be used
as inner products in the feature space.

Examples of such functions:
» Gaussian kernel = potential function = radial basis function:

_Ju—v)?

K(u,v)=¢e 27 = e Mlu—vl®

» Polynomial kernel:

K(u,v) = (u"v+1)%.
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Convolution of the inner product

» Using different kernel functions K(u, v) as inner products (with
different parameters, e.g., o, 7, ) one can construct different
learning machines with arbitrary types of decision surfaces.

» To find the optimal coefficient vector A* = (af, ..., ), threshold
b*, and support vectors x;s, one follows the same solution scheme as
for the original optimal margin classifier by solving the quadratic
optimization problem.

» The only difference consists in using the matrix D with entries:

Dy = yiiK(xi,xj), iy =1,0m,

» The decision rule has then form:
n
g(x) = Zy;a?‘K(x,x;) + b*.
i=1

where one can only restrict to support vectors x; and their
coefficients o > 0.
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The kernel trick allows to “ignore” the transform on the
algorithmic level.

Consider the case where the training data cannot be separated
without error.

In this case one may want to separate the training set with a
minimal number of errors.

> Let us introduce non-negative variables §; >0, i =1,...,n.

We can then minimize the functional
n
> ¢
i=1
for some small ¢ > 0 subject to constraints

vi(pTxi+b)>1-¢, i=1,..n,
£i>07 i:1,...,n.

For sufficiently small o the minimized functional describes the
number of errors on the training set.
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> In the minimum, strictly positive §;; >0, j = 1, ..., k will identify the
minimal subset of training errors:

(Xip)/il), (xi27y/2)7 SE) (Xika}/ik)-
> After these data are excluded, one can separate the remaining part
of the training set without errors using the usual optimal separating
hyperplane.
» Formally this can be expressed as:

min 217+ CF(;&:-’)

subject to  y;(¢ x;+b) >1—¢;, i=1,..,n,
f,'>0, i:l,...,n.

with F(u) being a monotonic convex function and C being a
positive constant.

» For sufficiently large C and sufficiently small o, the pair (¢, b*)
minimizing this functional will determine the hyperplane
minimizing the number of errors and separating the rest with
maximum margin.



Soft margin classifier

» However, the problem of finding a hyperplane minimizing number of
errors is NP-complete.



Soft margin classifier

» However, the problem of finding a hyperplane minimizing number of
errors is NP-complete.

» For the reasons of computational tractability, we consider the (most
commonly used) case:

F(u)=u,

c=1,

and choose appropriate value for the regularizing constant C.



Soft margin classifier

» However, the problem of finding a hyperplane minimizing number of
errors is NP-complete.

» For the reasons of computational tractability, we consider the (most
commonly used) case:

F(u)=u,

c=1,
and choose appropriate value for the regularizing constant C.

» The problem then becomes:

. 1 -
min §H¢||2+CZ§:‘
i=1

subject to y;(t/)Tx,-—i—b) >1-¢&, i=1,...,n,
f,'>07 i:1,...,n.
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» The corresponding Lagrangian is:

n n

L5, & A7) = ST C D 6D i (v xitb)-148) - 1
i=1

i=1 i=1

with A = (aq,...,,)T and r = (r1,...,r,)" being the vectors of
non-negative Lagrange multipliers corresponding to the two groups
of inequality constraints.

» The solution to the optimization problem is determined by the
saddle point of this Lagrangian in the
(d + 1+ n+ n+ n)-dimensional space of ¥, b, &, A, and r.

» The minimum should be taken w.r.t. the parameters v, b, and &,
the maximum should be taken w.r.t. the Lagrange multipliers A
and r.
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> At the point of minimum (w.r.t. ¢, b, and &) one obtains:

aL(¢7b7£7A’r) _ * - vaX: | =
T ey = (¥ D) =0,
L, b &N
55y =279 = 0

=C—-a;—r=0, i=1,..,n.

0¢; ‘5,-:5,.*
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> At the point of minimum (w.r.t. ¢, b, and &) one obtains:

W’ww* - (W B Za;ym-) =0

OL(, b, &N, r
T‘b b* Zy,oz, =0,

aL(¢7 b7 67 ,\7 r) ‘
0¢; Ei=¢7

» This leads to the following quadratic problem:

max W(N) Za, 222@ QYiYiX; xj

i=1 j=1

subject to Z iy =0,

0<a;<C, i=1,..,n.

:C—O[,'—I‘,':O, f:1,...



Support vector machine (SVM)
» The training phase:
max A1 - %I\TDI\
subjectto  ATY =0,
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with Y = (y1,...,¥a)", 0 and 1 standing for n-dimensional vectors
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a (n x n)-dimensional matrix with entries
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where K(u, v) is a properly chosen kernel function.

The result is the optimal vector A* = (af, ...,a})T.



Support vector machine (SVM)
» The training phase:
max A1 - %I\TDI\
subjectto  ATY =0,

0<ALC(l,

with Y = (y1,...,¥a)", 0 and 1 standing for n-dimensional vectors
of zeros and ones, C being a properly chosen constant, and D being
a (n x n)-dimensional matrix with entries

D = yiyiK(xi ), ij =1wm,

where K(u, v) is a properly chosen kernel function.
The result is the optimal vector A* = (af, ...,a})T.

Then, taking any two support vectors x;, and x;, from opposite
classes, i.e. with is € argmax;. , ; .- S viafK(xj, x;) and

ig € argmin;. __; 450 Sor . viafK(xj, x;), calculate threshold:

1 n
b"=—3 > viaf (K(xi, xi,) + K(xi, i) -
i=1
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Implementing SVM

When implementing and applying SVM, its parameters have to be
chosen:

» kernel function,
» kernel parameter,

» regularization constant (=box constraint).

In practice, these parameters are usually chosen by cross-validation. This
process is called tuning of the SVM. The SVM possesses certain degree
of insensitivity w.r.t. parameters, which can be limited depending on the
application of interest.

For R-software, SVM is implemented in such packages as, e.g.,
e1071, kernlab, klaR, svmpath.
For an overview, see, e.g.:

» Karatzoglou, A., Meyer, D., and Hornik, K. (2006).
Support vector machines in R.
Journal of Statistical Software, 15(9).
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