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Binary supervised classification (reminder)

Notation:

I Given: for the random pair (X ,Y ) in Rd × {−1, 1} consisting of a
random observation X and its random binary label Y (class), a
sample of n i.i.d.: (x1, y1), ..., (xn, yn).

I Goal: predict the label of the new (unseen before) observation x .

I Method: construct a classification rule:

g : Rd → {−1, 1} , x 7→ g(x) ,

so g(x) is the prediction of the label for observation x .

I Criterion: of the performance of g is the error probability:

R(g) = P[g(X ) 6= Y ] = E[1
(
g(X ) 6= Y

)
] .

I The best solution: is to know the distribution of (X,Y):

g(x) = sign
(
2E[Y |X = x ]− 1 > 0

)
.
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Glivenko-Cantelli theorem
Consider the classification rule for a new observation x given the weights
vector w :

g(x ,w) =

{
1 if wTx > 0 ,

−1 otherwise .

What can be said about the error probability, i.e. about the relationship
between

P
(
g(X ,w) 6= Y

)
=

∫
Rd

1
(
g(x ,w) 6= Y

)
dFX and

1

n

n∑
i=1

1
(
g(x i ,w) 6= yi

)
?

Let X1, ...,Xn be a random sample on R. The empirical distribution
function is defined as

Fn(t) =
1

n

∑
1(Xi ≤ t) .

Theorem (Glivenko-Cantelli)
If X1,X2, ... are i.i.d. random variables with distribution function F, then

‖Fn − F‖∞ = sup
x∈R
|Fn(x)− F (x)| a.s.−→ 0 .
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Uniform one-sided convergence
Under additional conditions, for g(x ,w) and a probability measure FX ,
for any ε > 0 it holds

P
{

sup
w

(
P
(
g(X ,w) 6= Y

)
︸ ︷︷ ︸

L
(
g(·,w)

)
− 1

n

n∑
i=1

1
(
g(Xi ,w) 6= Yi

)
︸ ︷︷ ︸

Lemp

(
g(·,w)

)
)
> ε
}
−→
n→∞

0 .

What can be said about the rate of convergence?

Regard finite set of classification rules g(x ,w k), k = 1, ...,N. The
restriction is naturally posed by the finite number of elements in the
training set.

P
{

sup
k∈{1,...,N}

(
L
(
g(·,w k)

)
− Lemp

(
g(·,w k)

) )
> ε
}

≤
N∑

k=1

P
{(

L
(
g(·,w k)

)
− Lemp

(
g(·,w k)

) )
> ε
}
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Uniform one-sided convergence

Theorem (Chernoff-Hoeffding, Bernoulli scheme)
If X1, ...,Xn are i.i.d. random variables taking values in {0, 1}, then for
any ε > 0 it holds

P
(

E[Xi ]−
1

n

n∑
i=1

Xi > ε
)
< e−2ε2n .

This allows for:

N∑
k=1

P
{(

L
(
g(·,w k)

)
− Lemp

(
g(·,w k)

) )
> ε
}

=
N∑

k=1

P
{(

P
(
g(X ,w k) 6= Y

)︸ ︷︷ ︸
E
[

1
(
g(X ,w k ) 6=Y

)] −
1

n

n∑
i=1

1
(
g(Xi ,w k) 6= Yi

) )
> ε
}

≤ Ne−2ε2n .
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Vapnik-Chervonenkis inequality
So:

P
{

sup
k∈{1,...,N}

(
L
(
g(·,w k)

)
− Lemp

(
g(·,w k)

) )
> ε
}
≤ Ne−2ε2n .

Let us fix this probability having chosen 0 < η ≤ 1, by that maintaining
reliability 1− η:

Ne−2ε2n = η or equivalently ε =

√
logN − log η

2n
.

This allows for the following result:

Theorem (Vapnik-Chervonenkis, 1974)
If from a set consisting of N classification rules a rule g(·,w) is chosen,
which delivers empirical risk Lemp

(
g(·,w)

)
, then with reliability 1− η one

can state that the error probability L
(
g(·,w)

)
is bounded from above as

follows

L
(
g(·,w)

)
≤ Lemp

(
g(·,w)

)
+

√
logN − log η

2n
.
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Particular case: linear rule

Let us try to estimate N for the linear classification rule.

The number Φ(d , n) of all possible separations of n points in Rd by a
hyperplane via the origin is computed as

Φ(d , n) =

{
2
∑d−1

l=0

(
n−1
l

)
if d ≤ n ,

2n otherwise .

For d ≤ n, one can approximate it from above using:

Φ(d , n) ≤ 3
nd−1

(d − 1)!
≤ nd .

Plugging this into the Vapnik-Chervonenkis inequality gives:

L
(
g(·,w)

)
≤ Lemp

(
g(·,w)

)
+

√
d log n − log η

2n
.
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The principle

I The conservative upper bound of Vapnik and Chervonenkis is
very pessimistic, as even for a linear classification rule a very large
training data set is required to guarantee meaningfulness of the
achieved empirical risk.

I As an example, consider the case of two linearly separable training
classes. Even in this case, only little can be said about probability
of points from one class inside the other one.

I Sticking to this “trivial” case, the safest separating hyperplane
would be the one having maximal and equal margin to each of the
classes.

I Finding such a hyperplane in a systematic way constitutes the main
idea of the optimal margin hyperplane algorithm.
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Optimal margin hyperplane
I Let the training sample consist of n pairs

(x1, y1), (x2, y2), ..., (xn, yn) taking values in Rd × {−1, 1}.

I This set is said to be linearly separable if there exist a non-zero
vector ψ ∈ Rd and a scalar b ∈ R such that the n following
inequalities hold:

ψTx i + b ≥ 0 if yi = 1 ,

ψTx i + b ≤ 0 if yi = −1 .

I Instead of simply requiring separation (the parts “≥ 0” and “≤ 0” in
the above inequality) one can introduce margin M > 0, i.e., require
the distance between any two points stemming from different classes
— in projection onto ψ — be at least 2M.

I Involving the output (in this notation corresponding to the sign)
allows for rewriting the above (restricting) inequalities in the
following way:

yi (ψ
Tx i + b)

‖ψ‖
≥ M , i = 1, ..., n .
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Optimal margin hyperplane

I The objective of the training algorithm is then to find the parameter
vector ψ that maximizes M:

M∗ = maxM

subject to ‖ψ‖ = 1 ,

yi (ψ
Tx i + b) ≥ M , i = 1, ..., n .

I The (last) bound is attained for those patterns satisfying

min
i∈{1,...,n}

yi (ψ
Tx i + b) = M∗ .

I These patterns are called the support vectors of the decision
boundary.

I Thus, the problem of finding a hyperplane with maximum margin
can be seen as a minimax problem:

max
ψ∈Rd , ‖ψ‖=1

min
i∈{1,...,n}

yi (ψ
Tx i + b) .
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Optimal margin hyperplane
I Instead of fixing the norm of ψ, the product of the margin M and

the norm of ψ can be fixed, e.g. by:

M‖ψ‖ = 1 .

I Now, maximizing the margin M is equivalent to minimizing the
norm ‖ψ‖.

I Then the problem of finding a maximum margin separating
hyperplane, characterized by ψ, reduces to solving the following
quadratic optimization problem:

min
1

2
‖ψ‖2

subject to yi (ψ
Tx i + b) ≥ 1 , i = 1, ..., n .

I The maximum margin is:

M∗ =
1

‖ψ∗‖
.

I This approach is impractical:
- if the dimension d is large or infinite,
- because no information about support vectors is gained.
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Optimal margin hyperplane: Lagrangian

I Construct a Lagrangian:

L(ψ, b,Λ) =
1

2
ψTψ −

n∑
i=1

αi

(
yi (ψ

Tx i + b)− 1
)

with Λ = (α1, ..., αn)T being the vector of non-negative Lagrange
multipliers corresponding to the inequality constraints.

I The solution to the optimization problem is determined by the
saddle point of this Lagrangian in the (d + 1 + n)-dimensional space
of ψ, b, and Λ.

I The minimum should be taken w.r.t. the parameters ψ and b, the
maximum should be taken w.r.t. the Lagrange multipliers Λ.
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Optimal margin hyperplane: Lagrangian

I At the point of minimum (w.r.t. ψ and b) one obtains:

∂L(ψ, b,Λ)

∂ψ

∣∣∣
ψ=ψ∗

=
(
ψ∗ −

n∑
i=1

αiyix i

)
= 0 ,

∂L(ψ, b,Λ)

∂b

∣∣∣
b=b∗

=
n∑

i=1

yiαi = 0 .

I From the upper equality one can derive:

ψ∗ =
n∑

i=1

αiyix i .

I This means that the optimal hyperplane can be written as a linear
combination of training observations.

I Only training observations x i with (strictly) positive Lagrange
multipliers (i.e. with αi > 0) have an efficient contribution to the
sum — the support vectors.
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Optimal margin hyperplane: Lagrangian
I Substitution of the minimum conditions into the Lagrangian yields

the following optimization problem:

maxW (Λ) =
n∑

i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjxT
i x j

subject to
n∑

i=1

αiyi = 0 ,

αi ≥ 0 , i = 1, ..., n .

I Usually it is written in the matrix form:

maxW (Λ) =ΛT1− 1

2
ΛTDΛ

subject to ΛTY = 0 ,

Λ ≥ 0

with D being a (n × n)-dimensional matrix with entries
Dij = yiyjxT

i x j , Y = (y1, ..., yn)T , and 0 and 1 standing for
n-dimensional vectors of zeros and ones.
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Optimal margin hyperplane: classification
I After the optimal pair (ψ∗, b∗) is obtained, classification of an

observation x ∈ Rd reduces to determining its position in the
projection onto ψ∗:

g(x) = sign(ψ∗
Tx + b∗)

= sign
( n∑

i=1

yiα
∗
i x

T
i x + b∗

)
.

I From this it becomes clear how to calculate b∗: it should position
the separating hyperplane exactly in the middle between two support
vectors from different classes, in the projection onto ψ∗:

b∗ = −1

2

(
ψ∗

TxA +ψ∗
TxB

)
= −1

2

n∑
i=1

yiα
∗
i (xT

i xA + xT
i xB) .

with xA ∈ {x i : yi = 1 , α∗i > 0, i = 1, ..., n} and
xB ∈ {x i : yi = −1 , α∗i > 0, i = 1, ..., n}.

I Only support vectors influence the classification rule.
(Analogy with a mine field on the front line between two enemies.)
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Optimal margin classifier (algorithm)
Finding the optimal margin hyperplane (training)

Input: Training sample
(
(x1, y1), ..., (xn, yn)

)
⊂ Rd × {−1, 1}.

1. Solve the constraint quadratic optimization problem to obtain
Λ∗ = (α∗1 , ..., α

∗
n)T :

max ΛT1− 1

2
ΛTDΛ

subject to ΛTY = 0 ,

Λ ≥ 0 .

2. Taking any two support vectors from opposite classes
xA ∈ {x i : yi = 1 , α∗i > 0} and xB ∈ {x i : yi = −1 , α∗i > 0},
calculate the threshold:

b∗ = −1

2

n∑
i=1

yiα
∗
i (xT

i xA + xT
i xB) .

Output: The classifier: g(x) = sign
(∑n

i=1 yiα
∗
i x

T
i x + b∗

)
.
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Optimal margin classifier: some comments

I The training phase is reduced to solving a problem of quadratic
optimization, which is usually computationally tractable.

I The time of the training algorithm depends on dimension d only
when calculating the matrix of quadratic coefficients D, the
dimension of the original space is irrelevant for the optimization
time.

I As only the support vectors are relevant, only these should be
stored for the classification rule.

I The problem can be solved iteratively by chunks, as in each
(previous) chunk only support vectors are important (for further
chunks).

But:

I Linear classification rule has poor approximation performance.

I Misclassification is not allowed.
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Convolution of the inner product

I The algorithm described above constructs a hyperplane (defining by
that linear classification rule) in the input space Rd .

I Idea: To increase the approximation power of the classification rule
but keep its algorithmic linearity, one maps the input space to a
feature space, i.e. transforms the d-dimensional input vector x into
a D-dimensional feature space through a choice of a D-dimensional
vector function φ:

φ : Rd → RD .

I Then, a D-dimensional linear separator (ψ, b) ∈ RD × R is
constructed for the set of transformed vectors:

φ(x i ) =
(
φ1(x i ), φ2(x i ), ..., φD(x i )

)
∈ RD , i = 1, ..., n .

I Note: RD can be of infinite dimension.
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Convolution of the inner product
I The classification of an unknown vector x is done by first

transforming it into the feature space

x 7→ φ(x) ,

and then classifying the featured vector with

g(x) = sign
(
ψ∗

T
φ(x) + b∗

)
.

I According to the properties of the classifier, it can be written as a
linear combination of the support vectors (in the feature space):

ψ∗ =
n∑

i=1

yiα
∗
i φ(x i ) .

I The linearity of the inner product implies that the classifier g(x)
only depends on the inner products:

g(x) = sign
(
ψ∗

T
φ(x) + b∗

)
= sign

( n∑
i=1

yiα
∗
i φ(x i )

Tφ(x) + b∗
)
.

I The quadratic problem depends only inner products as well.
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Convolution of the inner product
I Consider the general form of the inner product in a Hilbert space:

φ(u)Tφ(v) = K (u, v) .

I According to Hilbert-Schmidt Theory any symmetric function
K (u, v), with K (u, v) ∈ L2, can be expanded in the form:

K (u, v) =
∞∑
j=1

λjφj(u)φj(v)

with λi ∈ R and φi being eigenvalues and eigenfunctions of the
integral operator defined by the kernel K (u, v), i.e.∫

K (u, v)φj(u)du = λjφj(v) .

I A sufficient condition to ensure that K (u, v) defines an inner
product in the feature space is that all the eigenvalues λi are
positive.
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Convolution of the inner product
I According to Mercer’s theorem, for λi s to be positive, it is necessary

and sufficient that∫ ∫
K (u, v)h(u)h(v)dudv > 0

holds for all h such that ∫
h2(u)du <∞ .

I Thus, functions that satisfy the Mercer’s theorem can be used
as inner products in the feature space.

Examples of such functions:

I Gaussian kernel = potential function = radial basis function:

K (u, v) = e−
‖u−v‖2

2σ2 = e−γ‖u−v‖2

.

I Polynomial kernel:

K (u, v) = (uTv + 1)β .
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Convolution of the inner product
I Using different kernel functions K (u, v) as inner products (with

different parameters, e.g., σ, γ, β) one can construct different
learning machines with arbitrary types of decision surfaces.

I To find the optimal coefficient vector Λ∗ = (α∗1 , ..., α
∗
n), threshold

b∗, and support vectors x i s, one follows the same solution scheme as
for the original optimal margin classifier by solving the quadratic
optimization problem.

I The only difference consists in using the matrix D with entries:

Dij = yiyjK (x i , x j) , i , j = 1, ..., n .

I The decision rule has then form:

g(x) =
n∑

i=1

yiα
∗
i K (x , x i ) + b∗ .

where one can only restrict to support vectors x i and their
coefficients α∗i > 0.
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Soft margin classifier
I The kernel trick allows to “ignore” the transform on the

algorithmic level.

I Consider the case where the training data cannot be separated
without error.

I In this case one may want to separate the training set with a
minimal number of errors.

I Let us introduce non-negative variables ξi ≥ 0, i = 1, ..., n.

I We can then minimize the functional

n∑
i=1

ξσi

for some small σ > 0 subject to constraints

yi (ψ
Tx i + b) ≥ 1− ξi , i = 1, ..., n ,

ξi ≥ 0 , i = 1, ..., n .

I For sufficiently small σ the minimized functional describes the
number of errors on the training set.
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Soft margin classifier
I In the minimum, strictly positive ξij > 0, j = 1, ..., k will identify the

minimal subset of training errors:

(x i1 , yi1 ), (x i2 , yi2 ), ..., (x ik , yik ) .

I After these data are excluded, one can separate the remaining part
of the training set without errors using the usual optimal separating
hyperplane.

I Formally this can be expressed as:

min
1

2
‖ψ‖2 + CF

( n∑
i=1

ξσi

)
subject to yi (ψ

Tx i + b) ≥ 1− ξi , i = 1, ..., n ,

ξi ≥ 0 , i = 1, ..., n .

with F (u) being a monotonic convex function and C being a
positive constant.

I For sufficiently large C and sufficiently small σ, the pair (ψ∗, b∗)
minimizing this functional will determine the hyperplane
minimizing the number of errors and separating the rest with
maximum margin.
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Soft margin classifier

I However, the problem of finding a hyperplane minimizing number of
errors is NP-complete.

I For the reasons of computational tractability, we consider the (most
commonly used) case:

F (u) = u ,

σ = 1 ,

and choose appropriate value for the regularizing constant C .

I The problem then becomes:

min
1

2
‖ψ‖2 + C

n∑
i=1

ξi

subject to yi (ψ
Tx i + b) ≥ 1− ξi , i = 1, ..., n ,

ξi ≥ 0 , i = 1, ..., n .
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Soft margin classifier

I The corresponding Lagrangian is:

L(ψ, b, ξ,Λ, r) =
1

2
ψTψ+C

n∑
i=1

ξi−
n∑

i=1

αi

(
yi (ψ

Tx i+b)−1+ξi
)
−

n∑
i=1

riξi

with Λ = (α1, ..., αn)T and r = (r1, ..., rn)T being the vectors of
non-negative Lagrange multipliers corresponding to the two groups
of inequality constraints.

I The solution to the optimization problem is determined by the
saddle point of this Lagrangian in the
(d + 1 + n + n + n)-dimensional space of ψ, b, ξ, Λ, and r .

I The minimum should be taken w.r.t. the parameters ψ, b, and ξ,
the maximum should be taken w.r.t. the Lagrange multipliers Λ
and r .
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Soft margin classifier
I At the point of minimum (w.r.t. ψ, b, and ξ) one obtains:

∂L(ψ, b, ξ,Λ, r)

∂ψ

∣∣∣
ψ=ψ∗

=
(
ψ∗ −

n∑
i=1

αiyix i

)
= 0 ,

∂L(ψ, b, ξ,Λ, r)

∂b

∣∣∣
b=b∗

=
n∑

i=1

yiαi = 0 ,

∂L(ψ, b, ξ,Λ, r)

∂ξi

∣∣∣
ξi=ξ∗i

= C − αi − ri = 0 , i = 1, ..., n .

I This leads to the following quadratic problem:

maxW (Λ) =
n∑

i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjxT
i x j

subject to
n∑

i=1

αiyi = 0 ,

0 ≤ αi ≤ C , i = 1, ..., n .
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Support vector machine (SVM)

I The training phase:

max ΛT1− 1

2
ΛTDΛ

subject to ΛTY = 0 ,

0 ≤ Λ ≤ C1 ,

with Y = (y1, ..., yn)T , 0 and 1 standing for n-dimensional vectors
of zeros and ones, C being a properly chosen constant, and D being
a (n × n)-dimensional matrix with entries

Dij = yiyjK (x i , x j) , i , j = 1, ..., n ,

where K (u, v) is a properly chosen kernel function.
The result is the optimal vector Λ∗ = (α∗1 , ..., α

∗
n)T .

Then, taking any two support vectors x iA and x iB from opposite
classes, i.e. with iA ∈ argmaxj : yj=1,α∗j >0

∑n
i=1 yiα

∗
i K (x j , x i ) and

iB ∈ argminj : yj=−1,α∗j >0

∑n
i=1 yiα

∗
i K (x j , x i ), calculate threshold:

b∗ = −1

2

n∑
i=1

yiα
∗
i

(
K (x i , x iA) + K (x i , x iB )

)
.



Support vector machine (SVM)

I The training phase:

max ΛT1− 1

2
ΛTDΛ

subject to ΛTY = 0 ,

0 ≤ Λ ≤ C1 ,

with Y = (y1, ..., yn)T , 0 and 1 standing for n-dimensional vectors
of zeros and ones, C being a properly chosen constant, and D being
a (n × n)-dimensional matrix with entries

Dij = yiyjK (x i , x j) , i , j = 1, ..., n ,

where K (u, v) is a properly chosen kernel function.
The result is the optimal vector Λ∗ = (α∗1 , ..., α

∗
n)T .

Then, taking any two support vectors x iA and x iB from opposite
classes, i.e. with iA ∈ argmaxj : yj=1,α∗j >0

∑n
i=1 yiα

∗
i K (x j , x i ) and

iB ∈ argminj : yj=−1,α∗j >0

∑n
i=1 yiα

∗
i K (x j , x i ), calculate threshold:

b∗ = −1

2

n∑
i=1

yiα
∗
i

(
K (x i , x iA) + K (x i , x iB )

)
.



Normal location alternative
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Location alternative (Normal1)
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SVM: normal location alternative
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Normal location-scale alternative
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SVM: normal location-scale alternative
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SVM (linear kernel) for Normal2 data
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SVM: normal location-scale alternative
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SVM (radial kernel) for Normal2 data
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Implementing SVM

When implementing and applying SVM, its parameters have to be
chosen:

I kernel function,

I kernel parameter,

I regularization constant (=box constraint).

In practice, these parameters are usually chosen by cross-validation. This
process is called tuning of the SVM. The SVM possesses certain degree
of insensitivity w.r.t. parameters, which can be limited depending on the
application of interest.

For R-software, SVM is implemented in such packages as, e.g.,
e1071, kernlab, klaR, svmpath.
For an overview, see, e.g.:

I Karatzoglou, A., Meyer, D., and Hornik, K. (2006).
Support vector machines in R.
Journal of Statistical Software, 15(9).
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Thank you for your attention!

Thank you for your attention!
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