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Literature

Learning materials include but are not limited to:

I Hastie, T., Tibshirani, R., and Friedman, J. (2009).
The Elements of Statistics Learning: Data Mining, Inference, and
Prediction (Second Edition).
Springer.

I Sections 10.{1, 4, 5, 9}.

I Slides of the lecture.

I Schapire, R. E. and Freund, Y. (2012).
Boosting: foundations and algorithms.
MIT Press.
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Binary supervised classification (reminder)

Notation:

I Given: for the random pair (X ,Y ) in Rd × {−1, 1} consisting of a
random observation X and its random binary label Y (class), a
sample of n i.i.d.: (x1, y1), ..., (xn, yn).

I Goal: predict the label of the new (unseen before) observation x .

I Method: construct a classification rule:

g : Rd → {−1, 1} , x 7→ g(x) ,

so g(x) is the prediction of the label for observation x .

I Criterion: of the performance of g is the error probability:

R(g) = P[g(X ) 6= Y ] = E[1
(
g(X ) 6= Y

)
] .

I The best solution: is to know the distribution of (X,Y):

g(x) = sign
(
2E[Y |X = x ]− 1 > 0

)
.
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The principle

The principle underlying the boosting:

I First boosting algorithm has been introduced by
Yoav Freund and Robert E. Schapire in 1996.

I Construct a family of rules (classifiers) and then aggregate them.

I Recursive process:
- the rule constructed on the kth step depends on the rule
constructed on step k − 1.

I Use classification error for both constructing the next rule and
weighting the current one when aggregating.
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The principle
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The principle

I Term boosting is used to describe the family of methods allowing
for construction of a precise rule based on weak learners.

I A classification rule g·(·) is called a weak learner if it performs
“slightly” better than a random guess:

∃ ε > 0 such that P[g·(X ) 6= Y ] =
1

2
− ε .

I Examples of weak learners:

- 1NN-classifier,

- classification tree of low depth (e.g. with 2 leaves only = a stump).
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AdaBoost (algorithm): Freund and Schapire (1997)
Constructing a committee (training)
Input:

I Training sample
(
(x1, y1), ..., (xn, yn)

)
⊂ Rd × {−1, 1}.

I Weak learner g·(·), number of iterations B.

1. Initialize weights wi = 1
n , i = 1, ..., n.

2. For k = 1, ...,B
2.1 Learn a weak learner gk(·) on Dn weighted by wi , i = 1, ..., n.
2.2 Calculate error rate:

ek =
n∑

i=1

wi1
(
gk(x i ) 6= yi

)
.

2.3 Calculate learner’s weight: αk = log 1−ek
ek

.

2.4 Readjust observations’ weights: wi = wie
αk1
(
gk (x i ) 6=yi

)
, i = 1, ..., n;

normalize to get
∑n

i=1 wi = 1.

Output: The committee gbst(·) = sign
(∑B

k=1 αkgk(·)
)

.

Weighted majority voting (classification)

gbst(x) = sign
( B∑
k=1

αkgk(x)
)
.
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AdaBoost: some comments

I The step of learning requires the weak learner to take into account
the weights wi , i = 1, ..., n of observations.

I If weights cannot be taken into account, the weak learner can be
trained on a subsample of Dn drawn (with replacement) with
probabilities wi , i = 1, ..., n.

I Observations’ weights wi , i = 1, ..., n are updated on each iteration:
- if the ith observation is well classified, then its weight is
unchanged,
- if the ith observation is wrongly classified, then its weight is
increased.

I Learner’s weight αk increases with performance of gk(·)
calculated on (weighted) Dn:
- αk increases with decreasing ek ;
- anyway, gk(·) should not be “too weak”: if ek >

1
2 then αk < 0.
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AdaBoost: some properties

I The error rate calculated for the training sample ek of the
learner gk is given by:

ek =

∑n
i=1 wi1

(
gk(x i ) 6= yi

)∑n
i=1 wi

.

I Denote εk the gain of gk w.r.t. a purely random classifier:

ek =
1

2
− εk .

I The empirical error (on training sample) is bounded by (Freund and
Schapire, 1999):

Ln(gbst) ≤ e−2
∑B

k=1 ε
2
k .

I Consequently, the empirical error (on the training sample)
decreases to 0 with increasing B.

I Thus, if B is (too) large, AdaBoost tends to overfit the sample.



14/41

AdaBoost (Iris data, “setosa” vs. “versicolor”)
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AdaBoost (Iris data, “setosa” vs. “versicolor”)
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AdaBoost (Iris data, “setosa” vs. “versicolor”)
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AdaBoost (Iris data, “setosa” vs. “versicolor”)
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AdaBoost (Iris data, “setosa” vs. “versicolor”)
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AdaBoost (Iris data, “setosa” vs. “versicolor”)
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AdaBoost (Iris data, “versicolor” vs. “virginica”)
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AdaBoost (Iris data, “versicolor” vs. “virginica”)
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AdaBoost (Iris data, “versicolor” vs. “virginica”)
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AdaBoost (Iris data, “versicolor” vs. “virginica”)
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AdaBoost (Iris data, “versicolor” vs. “virginica”)
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AdaBoost (normal location-scale alternative)
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AdaBoost (normal location-scale alternative)
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AdaBoost for Normal2 data, maxdepth = 1, B = 500
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AdaBoost (normal location-scale alternative)
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AdaBoost for Normal2 data, maxdepth = 2, B = 500
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AdaBoost (normal location-scale alternative)
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AdaBoost for Normal2 data, maxdepth = 3, B = 500
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AdaBoost (normal location-scale alternative)
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AdaBoost for Normal2 data, maxdepth = 4, B = 500
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AdaBoost (normal location-scale alternative)
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AdaBoost for Normal2 data, maxdepth = 5, B = 500
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Minimization of the empirical risk

I Regard a random pair (X ,Y ) taking values in Rd × {−1, 1}.

I Consider a class of classification rules G:
- one attempts to find the best rule in G.

I Try: Choose the rule which minimizes a loss function, for example:

L(g) = P
[
g(X ) 6= Y

]
.

I Problem: As we cannot calculate P, we cannot calculate L(g) as
well.

I Idea: Choose a rule that minimizes the empirical version (i.e. on the
training sample) of the loss function — the empirical risk:

Ln(g) =
1

n

n∑
i=1

1
(
g(x i ) 6= yi

)
.
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Minimization of the empirical risk

 g ^

 g*

 

G

L(ĝ)− L(g∗) = L(ĝ)− inf
g∈G

L(g)︸ ︷︷ ︸+ inf
g∈G

L(g)− L(g∗)︸ ︷︷ ︸ .
I These two terms (usually) vary in inverse sense.
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Risk convexification

I Problem: The function

G → R , g 7→ 1

n

n∑
i=1

1
(
g(x i ) 6= yi

)
is (usually) difficult to minimize.

I Idea: Find another loss function ` : R× R→ R such that

G → R , g 7→ 1

n

n∑
i=1

`
(
g(x i ), yi

)
is “easy” to minimize, e.g. a differentiable one.

I This is even more the case if the function u 7→ `(u, v) is convex.

I The loss function `
(
g(x), y

)
should measure the difference

between the value to be predicted y ∈ {−1, 1} and g(x).

I Thus `
(
g(x), y

)
should take:

- large values if yg(x) < 0,
- small values if yg(x) > 0.
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Loss functions

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0
1

2
3

4

Loss functions

yg(x)

Lo
ss

— Misclassification:

`
(
g(x), y

)
= 1

(
yg(x) < 0

)
.

— Exponential:

`
(
g(x), y

)
= e−yg(x) .

— Binomial log-likelihood:

`
(
g(x), y

)
= − log(1+e−2yg(x)) .

— Squared error:

`
(
g(x), y

)
=
(
1− yg(x)

)2
.
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Summary

I For:
- a random pair (X ,Y ) taking values in Rd × {−1, 1},
- a loss function ` : R× R→ R
one seeks a classifier close to:

g∗ = argmin
g

E[`(g(X ),Y )] .

I Strategy: Given a training sample (x1, y1), (x2, y2), ..., (xn, yn) of
(X ,Y ), one minimizes the empirical version of E[`(g(X ),Y )]:

1

n

n∑
i=1

`
(
g(x i ), yi

)
.

I Recursive approach: Approximate g∗ by ĝ(·) =
∑B

k=1 gk(·), where
gk(·)s are constructed recursively.

I Method: Numerical optimization, e.g., gradient descent.
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Functional gradient descent (FGD)

I Let g k =
(
gk(x1), gk(x2), ..., gk(xn)

)
, and

J(g k) =
1

n

n∑
i=1

`
(
gk(x i ), yi

)
.

I The gradient descent algorithm can be expressed by the recursive
formula:

g k = g k−1 − λ∇J(g k−1)

with λ > 0 being the step size of the gradient descent.

Such an approach possesses certain disadvantages:

I The regularity of the estimated function is not taken into account:
- if x i is close to x j then ĝ(x i ) is close to ĝ(x j).

I The estimator is calculated at the points of the training sample only
x1, ..., xn.
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Gradient boost (algorithm): Friedman (2001)

Constructing a classifier (training)
Input:

I Training sample
(
(x1, y1), ..., (xn, yn)

)
⊂ Rd × {−1, 1}.

I Weak learner g·(·).

I Number of iterations B.

I Regularization parameter λ ∈ (0, 1].

1. Initialization: g0(·) = argminc∈R
1
n

∑n
i=1 `

(
c , yi

)
.

2. For k = 1, ...,B

2.1 Calculate the negative gradient − ∂
∂g(x i )

`
(
g(x i ), yi

)
and evaluate it at

points gk−1(x i ):

vi = − ∂

∂g(x i )
`
(
g(x i ), yi

)∣∣∣∣∣
g(x i )=gk−1(x i )

, i = 1, ..., n .

2.2 Learn a weak learner hk(·) on (x1, v1), (x2, v2), ..., (xn, vn).
2.3 Update the classifier: gk(·) = gk−1(·) + λhk(·).

Output: The classification rule ĝ(·) = gk(·).
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Gradient boost: some comments

I The output of ĝ(·) is a real number. To predict the class label one
should use the “sign” operator:

ŷ = sign
(
ĝ(x)

)
.

I The algorithm (almost) coincides with AdaBoost for:
- `
(
g(x), y

)
= e−yg(x),

- λ = 1.

I The choice of the regularization parameter λ is connected to the
number of iterations B.
It “controls” the speed of minimization of function

1

n

n∑
i=1

`
(
g(x i ), yi

)
.

I Larger values of λ correspond to smaller values of B, and vice versa.
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Weak learners

I For Gradient boost, as well as for AdaBoost, the classification rule
used in the algorithm should be weak (slightly better than the
purely random choice).

I Boosting a non-weak classification rule usually delivers poor
performance increase.

I It is recommended to use a classification rule with high bias but
small variance (boosting allows to reduce bias and not variance).

I Often tree is used as a weak learner. For high bias one usually
chooses trees with a few leaves only (i.e., of low depth).

I In numerous implementations of boosting regression trees are used.
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Reminder: classification tree

s 1

s 2

s 3

s 4

x  1

x  2

x < s 2 2

x < s 1 1 x ≥ s 1 1

x ≥ s 2 2

x < s 3 1 x ≥ s 3 1

x < s 4 2 x ≥ s 4 2
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Regression tree

I Regression tree is grown in a (very) similar to the classification
tree manner with slight changes:

I Suppose that a partition into M regions R1,R2, ...,RM is given.

I The response is then modeled as a constant cm in each region:

f (x) =
M∑

m=1

cm1(x ∈ Rm) .

I Adopt sum of squares as impurity measure:

Q(m)(T ) =
n(mL)

n(m)

∑
x i∈RmL

(yi − ĉmL
)2 +

n(mR )

n(m)

∑
x i∈RmR

(yi − ĉmR
)2 .

I One can check that the optimal choice of ĉm for region Rm is the
average over Rm:

ĉm =
1

n(m)

∑
x i∈Rm

yi ,

with n(m) being the number of observations x i ∈ Dn in region Rm.
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Regression tree (illustration)
Function surface
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Regression tree (illustration)
Sample points
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Regression tree (illustration)
Regression tree surface, maxdepth = 1
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Regression tree (illustration)
Regression tree surface, maxdepth = 2
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Regression tree (illustration)
Regression tree surface, maxdepth = 3
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Regression tree (illustration)
Regression tree surface, maxdepth = 4
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Regression tree (illustration)
Random forest surface, B = 10
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Regression tree (illustration)
Random forest surface, B = 50
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Regression tree (illustration)
Random forest surface, B = 100
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Regression tree (illustration)
Random forest surface, B = 500
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Boosting regression trees in R

I Function gbm of R-package gbm by Ridgeway (2006).

Input parameters (arguments):

I loss function ` (distribution),

I number of iterations B (n.trees),

I depth of the grown three K (interaction.depth),

I regularization parameter λ (shrinkage).
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FGD-trees (algorithm): Friedman (2001), Ridgeway (2006)
Constructing a classifier (training)
Input: Training sample

(
(x1, y1), ..., (xn, yn)

)
⊂ Rd × {−1, 1}.

1. Initialization: g0(·) = argminc∈R
1
n

∑n
i=1 `

(
c , yi

)
.

2. For k = 1, ...,B

2.1 Calculate the negative gradient − ∂
∂g(x i )

`
(
g(x i ), yi

)
and evaluate it at

points gk−1(x i ):

vi = − ∂

∂g(x i )
`
(
g(x i ), yi

)∣∣∣∣∣
g(x i )=gk−1(x i )

, i = 1, ..., n .

2.2 Grow the regression tree of maximal depth K based on the sample

(x1, v1), (x2, v2), ..., (xn, vn) .

2.3 For each leaf m = 1, ...,M calculate the optimal prediction:

ρm = argmin
ρ∈R

∑
x i∈Rm

`
(
gk−1(x i ) + ρ, yi

)
.

2.4 Update the classifier: gk(x) = gk−1(x) + λρm(x) with m(x) being a
leaf containing x .

Output: The classification rule ĝ(x) = gk(x).
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Connection to AdaBoost
I One can show (Hastie, Tibshirani, Friedman, 2000) that the

AdaBoost algorithm is a gradient descent method for minimizing

E
[
`
(
g(X ),Y

)]
.

with `
(
g(x), y

)
= e−yg(x).

I Thus the output ĝ(x) is an estimator of

g∗(x) =
1

2
log

P[Y = 1|X = x ]

P[Y = −1|X = x ]
.

I Hence:

P[Y = 1|X = x ] =
eg

∗(x)

e−g∗(x) + eg∗(x)
,

P[Y = −1|X = x ] =
e−g

∗(x)

e−g∗(x) + eg∗(x)
.

I The gradient descent algorithm can be applied to further loss
functions.
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LogitBoost

I Suppose (here) that Y takes values from {0, 1}.

I The conditional random variable Y |X = x follows the Bernoulli
distribution with parameter p(x) = P[Y = 1|X = x ], and its
likelihood as a function of p(x) for an observation (x , y) can be
written as:

p(x)y
(
1− p(x)

)1−y
.

I The logistic regression model assumes:

p(x) =
1

1 + e−(β0+βT x)
=

eβ0+βT x

1 + eβ0+βT x
,

where (β0, β
T )T is estimated by maximizing the likelihood.

I One can use the functional gradient descent method to overcome
the linearity assumption on parameters of (1, xT )T in p(x).
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LogitBoost

I One can rewrite:

p(x) =
1

1 + e−2f (x)
=

ef (x)

1 + ef (x)

with f : Rd → R being an unknown function.

I As it is done in logistic regression, one can estimate f (x) based on
the likelihood.

I Choice of the loss function: the negative log-likelihood (which will
be minimized):

−
(
y log p(x) + (1− y) log

(
1− p(x)

))
= log(1 + e−2ỹ f (x))

with ỹ = 2y − 1 ∈ {−1, 1}.

I One can simply verify convexity of:

v 7→ log(1 + e−2ỹv ) .
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LogitBoost

I The functional gradient descent algorithm applied to the loss
function:

` : R× {−1, 1} → R(
f (x), ỹ

)
7→ log(1 + e−2ỹ f (x))

is called LogitBoost.

I For this loss function, the function E
[
`
(
f (X ),Y

)]
is minimized at:

f ∗(x) =
1

2
log

P[Y = 1|X = x ]

P[Y = −1|X = x ]
.

I Thus, AdaBoost and LogitBoost provide an estimator of the same
quantity.
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Performance validation, spam data (AdaBoost, FGD)
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Performance validation, spam data (LogitBoost, FGD)

0 100 200 300 400 500

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Iteration

B
er

no
ul

li 
de

vi
an

ce



40/41

Thank you for your attention!

Thank you for your attention!
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