Boosting algorithms

Pavlo Mozharovskyi¹

(with contributions of Laurent Rouviere² and Valentin Patilea³)

¹LTCI, Télécom Paris, Institut Polytechnique de Paris ²Université Rennes 2 ³Ensai, CREST

Machine learning

Paris, March 12, 2022

Today

AdaBoost

Idea and the algorithm Properties and examples

Justification and generalization

Minimization of the empirical risk Gradient boosting Tree-based gradient boosting LogitBoost

Literature

Learning materials include but are not limited to:

- Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistics Learning: Data Mining, Inference, and Prediction (Second Edition). Springer.
 - ▶ Sections 10.{1,4,5,9}.
- Slides of the lecture.
- Schapire, R. E. and Freund, Y. (2012). Boosting: foundations and algorithms. MIT Press.

Binary supervised classification (reminder)

Notation:

- ► Given: for the random pair (X, Y) in R^d × {-1,1} consisting of a random observation X and its random binary label Y (class), a sample of n i.i.d.: (x₁, y₁), ..., (x_n, y_n).
- **Goal:** predict the label of the new (unseen before) observation *x*.
- Method: construct a classification rule:

$$g : \mathbb{R}^d \to \{-1,1\}, \mathbf{x} \mapsto g(\mathbf{x}),$$

so $g(\mathbf{x})$ is the prediction of the label for observation \mathbf{x} .

Criterion: of the performance of g is the **error probability**:

$$R(g) = \mathbb{P}[g(X) \neq Y] = \mathbb{E}[\mathbb{1}(g(X) \neq Y)].$$

The best solution: is to know the distribution of (X,Y):

$$g(\mathbf{x}) = \operatorname{sign} \left(2\mathbb{E}[Y|X = \mathbf{x}] - 1 > 0 \right).$$

Contents

AdaBoost

Idea and the algorithm Properties and examples

Justification and generalization

Minimization of the empirical risk Gradient boosting Tree-based gradient boosting LogitBoost

Contents

AdaBoost

Idea and the algorithm

Properties and examples

Justification and generalization

Minimization of the empirical risk Gradient boosting Tree-based gradient boosting LogitBoost

The principle

The principle underlying the boosting:

- **First** boosting algorithm has been introduced by Yoav Freund and Robert E. Schapire in 1996.
- Construct a **family of rules** (classifiers) and then aggregate them.

Recursive process:

- the rule constructed on the kth step depends on the rule constructed on step k - 1.

Use classification error for both constructing the next rule and weighting the current one when aggregating.

The principle

The principle

- Term **boosting** is used to describe the family of methods allowing for construction of a precise rule based on weak learners.
- ► A classification rule g.(·) is called a weak learner if it performs "slightly" better than a random guess:

$$\exists \epsilon > 0 \text{ such that } \mathbb{P}[g_{\cdot}(X) \neq Y] = \frac{1}{2} - \epsilon.$$

Examples of weak learners:

- 1NN-classifier,

- classification tree of low depth (e.g. with 2 leaves only = a stump).

AdaBoost (algorithm): Freund and Schapire (1997) Constructing a committee (training)

Input:

- ▶ Training sample $((\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)) \subset \mathbb{R}^d \times \{-1, 1\}.$
- Weak learner $g(\cdot)$, number of iterations B.
- 1. Initialize weights $w_i = \frac{1}{n}$, i = 1, ..., n.
- 2. For k = 1, ..., B
 - 2.1 Learn a weak learner $g_k(\cdot)$ on \mathcal{D}_n weighted by w_i , i = 1, ..., n.
 - 2.2 Calculate error rate:

$$e_k = \sum_{i=1}^n w_i \mathbb{1}(g_k(\mathbf{x}_i) \neq y_i).$$

- 2.3 Calculate learner's weight: $\alpha_k = \log \frac{1-e_k}{e_k}$.
- 2.4 Readjust observations' weights: $w_i = w_i e^{\alpha_k \mathbb{1}(g_k(\mathbf{x}_i) \neq y_i)}$, i = 1, ..., n; normalize to get $\sum_{i=1}^n w_i = 1$.

Output: The committee $g^{bst}(\cdot) = sign\left(\sum_{k=1}^{B} \alpha_k g_k(\cdot)\right)$.

Weighted majority voting (classification)

$$g^{bst}(\mathbf{x}) = \operatorname{sign}\left(\sum_{k=1}^{B} \alpha_k g_k(\mathbf{x})\right).$$

Contents

AdaBoost

Idea and the algorithm Properties and examples

Justification and generalization

Minimization of the empirical risk Gradient boosting Tree-based gradient boosting LogitBoost

AdaBoost: some comments

- ► The step of learning requires the weak learner to take into account the weights w_i, i = 1, ..., n of observations.
- ► If weights cannot be taken into account, the weak learner can be trained on a subsample of D_n drawn (with replacement) with probabilities w_i, i = 1,..., n.
- Observations' weights w_i, i = 1, ..., n are updated on each iteration:
 if the *i*th observation is well classified, then its weight is unchanged,

- if the *i*th observation is **wrongly classified**, then its weight is increased.

- ▶ Learner's weight α_k increases with performance of g_k(·) calculated on (weighted) D_n:
 - α_k increases with decreasing e_k ;
 - anyway, $g_k(\cdot)$ should not be "too weak": if $e_k > \frac{1}{2}$ then $\alpha_k < 0$.

AdaBoost: some properties

► The error rate calculated for the training sample e_k of the learner g_k is given by:

$$e_k = \frac{\sum_{i=1}^n w_i \mathbb{1}(g_k(\boldsymbol{x}_i) \neq y_i)}{\sum_{i=1}^n w_i}$$

• Denote ϵ_k the gain of g_k w.r.t. a purely random classifier:

$$e_k = rac{1}{2} - \epsilon_k$$
 .

The empirical error (on training sample) is bounded by (Freund and Schapire, 1999):

$$L_n(g^{bst}) \leq e^{-2\sum_{k=1}^B \epsilon_k^2}$$
.

- Consequently, the empirical error (on the training sample) decreases to 0 with increasing B.
- ▶ Thus, if *B* is (too) large, AdaBoost tends to overfit the sample.

Iris, 'setosa' vs 'versicolor'

AdaBoost for Iris data, maxdepth = 1, B = 1

AdaBoost for Iris data, maxdepth = 1, B = 10

AdaBoost for Iris data, maxdepth = 1, B = 50

AdaBoost for Iris data, maxdepth = 1, B = 100

AdaBoost for Iris data, maxdepth = 1, B = 500

Location-scale alternative (Normal2)

AdaBoost for Normal2 data, maxdepth = 1, B = 500

AdaBoost for Normal2 data, maxdepth = 2, B = 500

AdaBoost for Normal2 data, maxdepth = 3, B = 500

AdaBoost for Normal2 data, maxdepth = 4, B = 500

AdaBoost for Normal2 data, maxdepth = 5, B = 500

Contents

AdaBoost

Idea and the algorithm Properties and examples

Justification and generalization

Minimization of the empirical risk Gradient boosting Tree-based gradient boosting LogitBoost

Contents

AdaBoost

Idea and the algorithm Properties and examples

Justification and generalization

Minimization of the empirical risk

Gradient boosting Tree-based gradient boosting LogitBoost

Minimization of the empirical risk

- Regard a random pair (X, Y) taking values in $\mathbb{R}^d \times \{-1, 1\}$.
- Consider a class of classification rules G:
 one attempts to find the best rule in G.
- **Try:** Choose the rule which minimizes a loss function, for example:

$$L(g) = \mathbb{P}[g(X) \neq Y].$$

- ▶ **Problem:** As we cannot calculate \mathbb{P} , we cannot calculate L(g) as well.
- Idea: Choose a rule that minimizes the empirical version (*i.e.* on the training sample) of the loss function the empirical risk:

$$L_n(g) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(g(\mathbf{x}_i) \neq y_i).$$

Minimization of the empirical risk

These two terms (usually) vary in inverse sense.

Risk convexification

Problem: The function

$$\mathcal{G} \to \mathbb{R}, \quad g \mapsto \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}(g(\mathbf{x}_i) \neq y_i)$$

is (usually) difficult to minimize.

▶ Idea: Find another loss function ℓ : $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$ such that

$$\mathcal{G} o \mathbb{R}, \quad g \mapsto rac{1}{n} \sum_{i=1}^n \ellig(oldsymbol{x}_i), oldsymbol{y}_i ig)$$

is "easy" to minimize, e.g. a differentiable one.

- ▶ This is even more the case if the function $u \mapsto \ell(u, v)$ is **convex**.
- ► The loss function l(g(x), y) should measure the difference between the value to be predicted y ∈ {-1,1} and g(x).
- Thus $\ell(g(\mathbf{x}), y)$ should take:
 - large values if yg(x) < 0,
 - small values if yg(x) > 0.

Loss functions

- Misclassification: $\ell(g(\boldsymbol{x}), y) = \mathbb{1}(yg(\boldsymbol{x}) < 0).$

Exponential:
$$\ell(g(\mathbf{x}), y) = e^{-yg(\mathbf{x})}.$$

- Binomial log-likelihood: $\ell(g(\mathbf{x}), y) = -\log(1+e^{-2yg(\mathbf{x})}).$

- Squared error:
$$\ell(g(\mathbf{x}), y) = (1 - yg(\mathbf{x}))^2$$
.

Summary

► For:

- a random pair (X,Y) taking values in $\mathbb{R}^d imes\{-1,1\}$,

- a loss function ℓ : $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$ one seeks a classifier close to:

$$g^* = \operatorname*{arg\,min}_{g} \mathbb{E}[\ell(g(X), Y)].$$

Strategy: Given a training sample (x₁, y₁), (x₂, y₂), ..., (xn, yn) of (X, Y), one minimizes the empirical version of E[ℓ(g(X), Y)]:

$$\frac{1}{n}\sum_{i=1}^n \ell(g(\boldsymbol{x}_i), y_i).$$

• **Recursive approach:** Approximate g^* by $\hat{g}(\cdot) = \sum_{k=1}^{B} g_k(\cdot)$, where $g_k(\cdot)$ s are constructed recursively.

▶ Method: Numerical optimization, e.g., gradient descent.

Contents

AdaBoost

Idea and the algorithm Properties and examples

Justification and generalization

Minimization of the empirical risk Gradient boosting

Tree-based gradient boosting LogitBoost Functional gradient descent (FGD)

► Let
$$\boldsymbol{g}_k = (g_k(\boldsymbol{x}_1), g_k(\boldsymbol{x}_2), ..., g_k(\boldsymbol{x}_n))$$
, and
$$J(\boldsymbol{g}_k) = \frac{1}{n} \sum_{i=1}^n \ell(g_k(\boldsymbol{x}_i), y_i)$$

The gradient descent algorithm can be expressed by the recursive formula:

$$\boldsymbol{g}_{k} = \boldsymbol{g}_{k-1} - \lambda \nabla J(\boldsymbol{g}_{k-1})$$

٠

with $\lambda > 0$ being the step size of the gradient descent.

Such an approach possesses certain disadvantages:

- ► The regularity of the estimated function is not taken into account: - if x_i is close to x_j then $\hat{g}(x_i)$ is close to $\hat{g}(x_j)$.
- ► The estimator is calculated at the points of the training sample only x₁,..., x_n.

Gradient boost (algorithm): Friedman (2001)

Constructing a classifier (training) Input:

- ▶ Training sample $((\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)) \subset \mathbb{R}^d \times \{-1, 1\}.$
- Weak learner $g_{\cdot}(\cdot)$.
- Number of iterations B.
- Regularization parameter $\lambda \in (0, 1]$.
- 1. Initialization: $g_0(\cdot) = \arg\min_{c \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^n \ell(c, y_i).$
- 2. For k = 1, ..., B
 - 2.1 Calculate the negative gradient $-\frac{\partial}{\partial g(\mathbf{x}_i)}\ell(g(\mathbf{x}_i), y_i)$ and evaluate it at points $g_{k-1}(\mathbf{x}_i)$:

$$\mathbf{v}_i = -rac{\partial}{\partial g(\mathbf{x}_i)}\ell(g(\mathbf{x}_i), y_i) \bigg|_{g(\mathbf{x}_i)=g_{k-1}(\mathbf{x}_i)}, \quad i=1,...,n.$$

- 2.2 Learn a weak learner $h_k(\cdot)$ on $(x_1, v_1), (x_2, v_2), ..., (x_n, v_n)$.
- 2.3 Update the classifier: $g_k(\cdot) = g_{k-1}(\cdot) + \lambda h_k(\cdot)$.

Output: The classification rule $\hat{g}(\cdot) = g_k(\cdot)$.

Gradient boost: some comments

► The output of ĝ(·) is a real number. To predict the class label one should use the "sign" operator:

$$\hat{y} = \operatorname{sign}(\hat{g}(\boldsymbol{x}))$$
.

- The algorithm (almost) coincides with AdaBoost for:
 ℓ(g(x), y) = e^{-yg(x)},
 λ = 1.
- The choice of the regularization parameter λ is connected to the number of iterations B.

It "controls" the speed of minimization of function

$$\frac{1}{n}\sum_{i=1}^n \ell(g(\boldsymbol{x}_i), y_i).$$

• Larger values of λ correspond to smaller values of B, and vice versa.

Contents

AdaBoost

Idea and the algorithm Properties and examples

Justification and generalization

Minimization of the empirical risk Gradient boosting Tree-based gradient boosting LogitBoost

Weak learners

- For Gradient boost, as well as for AdaBoost, the classification rule used in the algorithm should be weak (slightly better than the purely random choice).
- Boosting a non-weak classification rule usually delivers poor performance increase.
- It is recommended to use a classification rule with high bias but small variance (boosting allows to reduce bias and not variance).
- Often tree is used as a weak learner. For high bias one usually chooses trees with a few leaves only (*i.e.*, of low depth).
- In numerous implementations of boosting regression trees are used.

Reminder: classification tree

Regression tree

- Regression tree is grown in a (very) similar to the classification tree manner with slight changes:
- Suppose that a partition into M regions $R_1, R_2, ..., R_M$ is given.
- ▶ The **response is** then modeled as **a constant** c_m **in each region**:

$$f(\boldsymbol{x}) = \sum_{m=1}^{M} c_m \mathbb{1}(\boldsymbol{x} \in R_m).$$

Adopt sum of squares as impurity measure:

$$Q^{(m)}(T) = rac{n^{(m_L)}}{n^{(m)}} \sum_{m{x}_i \in R_{m_L}} (y_i - \hat{c}_{m_L})^2 + rac{n^{(m_R)}}{n^{(m)}} \sum_{m{x}_i \in R_{m_R}} (y_i - \hat{c}_{m_R})^2 \,.$$

One can check that the optimal choice of ĉ_m for region R_m is the average over R_m:

$$\hat{c}_m = \frac{1}{n^{(m)}} \sum_{\mathbf{x}_i \in R_m} y_i \,,$$

with $n^{(m)}$ being the number of observations $\mathbf{x}_i \in \mathcal{D}_n$ in region R_m .

Function surface

Sample points

Random forest surface, B = 10

Random forest surface, B = 50

Random forest surface, B = 100

Random forest surface, B = 500

Boosting regression trees in R

▶ Function gbm of R-package gbm by Ridgeway (2006).

Input parameters (arguments):

▶ loss function ℓ (distribution),

number of iterations B (n.trees),

depth of the grown three K (interaction.depth),

• regularization parameter λ (shrinkage).

FGD-trees (algorithm): Friedman (2001), Ridgeway (2006) Constructing a classifier (training)

Input: Training sample $((\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)) \subset \mathbb{R}^d \times \{-1, 1\}.$

- 1. Initialization: $g_0(\cdot) = \arg \min_{c \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^n \ell(c, y_i)$.
- 2. For k = 1, ..., B
 - 2.1 Calculate the negative gradient $-\frac{\partial}{\partial g(\mathbf{x}_i)}\ell(g(\mathbf{x}_i), y_i)$ and evaluate it at points $g_{k-1}(\mathbf{x}_i)$:

$$\mathbf{v}_i = -rac{\partial}{\partial g(\mathbf{x}_i)} \ell(g(\mathbf{x}_i), y_i) \bigg|_{g(\mathbf{x}_i) = g_{k-1}(\mathbf{x}_i)}, \quad i = 1, ..., n.$$

2.2 Grow the regression tree of maximal depth K based on the sample

 $(x_1, v_1), (x_2, v_2), ..., (x_n, v_n).$

2.3 For each leaf m = 1, ..., M calculate the optimal prediction:

$$\rho_m = \operatorname*{arg\,min}_{\rho \in \mathbb{R}} \sum_{\mathbf{x}_i \in R_m} \ell(\mathbf{g}_{k-1}(\mathbf{x}_i) + \rho, y_i).$$

2.4 Update the classifier: $g_k(x) = g_{k-1}(x) + \lambda \rho_{m(x)}$ with m(x) being a leaf containing x.

Output: The classification rule $\hat{g}(\mathbf{x}) = g_k(\mathbf{x})$.

Contents

AdaBoost

Idea and the algorithm Properties and examples

Justification and generalization

Minimization of the empirical risk Gradient boosting Tree-based gradient boosting LogitBoost

Connection to AdaBoost

 One can show (Hastie, Tibshirani, Friedman, 2000) that the AdaBoost algorithm is a gradient descent method for minimizing

 $\mathbb{E}[\ell(g(X), Y)].$

with $\ell(g(\mathbf{x}), y) = e^{-yg(\mathbf{x})}$.

ſ

• Thus the output $\hat{g}(\mathbf{x})$ is an estimator of

$$g^*(\mathbf{x}) = \frac{1}{2} \log \frac{\mathbb{P}[Y=1|X=\mathbf{x}]}{\mathbb{P}[Y=-1|X=\mathbf{x}]}$$

Hence:

$$\mathbb{P}[Y = 1 | X = \mathbf{x}] = \frac{e^{g^*(\mathbf{x})}}{e^{-g^*(\mathbf{x})} + e^{g^*(\mathbf{x})}},$$
$$\mathbb{P}[Y = -1 | X = \mathbf{x}] = \frac{e^{-g^*(\mathbf{x})}}{e^{-g^*(\mathbf{x})} + e^{g^*(\mathbf{x})}}.$$

The gradient descent algorithm can be applied to further loss functions.

LogitBoost

- ▶ Suppose (here) that *Y* takes values from {0,1}.
- ► The conditional random variable Y|X = x follows the Bernoulli distribution with parameter p(x) = P[Y = 1|X = x], and its likelihood as a function of p(x) for an observation (x, y) can be written as:

$$p(\mathbf{x})^{y}(1-p(\mathbf{x}))^{1-y}$$
.

► The logistic regression model assumes:

$$p(\mathbf{x}) = \frac{1}{1 + e^{-(\beta_0 + \boldsymbol{\beta}^{\mathsf{T}} \mathbf{x})}} = \frac{e^{\beta_0 + \boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}}}{1 + e^{\beta_0 + \boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}}},$$

where $(\beta_0, \beta^T)^T$ is estimated by maximizing the likelihood.

One can use the functional gradient descent method to overcome the linearity assumption on parameters of (1, x^T)^T in p(x).

LogitBoost

One can rewrite:

$$p(\mathbf{x}) = rac{1}{1 + e^{-2f(\mathbf{x})}} = rac{e^{f(\mathbf{x})}}{1 + e^{f(\mathbf{x})}}$$

with $f : \mathbb{R}^d \to \mathbb{R}$ being an unknown function.

- As it is done in logistic regression, one can estimate f(x) based on the likelihood.
- Choice of the loss function: the negative log-likelihood (which will be minimized):

$$-\Big(y\log p(\boldsymbol{x}) + (1-y)\log(1-p(\boldsymbol{x}))\Big) = \log(1+e^{-2 ilde{y}f(\boldsymbol{x})})$$

with $\tilde{y} = 2y - 1 \in \{-1, 1\}.$

One can simply verify convexity of:

$$v\mapsto \log(1+e^{-2\widetilde{y}v})$$
.

LogitBoost

The functional gradient descent algorithm applied to the loss function:

$$egin{aligned} \ell \, : \, \mathbb{R} imes \{-1,1\} &
ightarrow \mathbb{R} \ & ig(f(m{x}), ilde{y}ig) \mapsto \log(1+e^{-2 ilde{y}f(m{x})}ig) \end{aligned}$$

is called LogitBoost.

▶ For this loss function, the function $\mathbb{E}[\ell(f(X), Y)]$ is minimized at:

$$f^*(\mathbf{x}) = \frac{1}{2} \log \frac{\mathbb{P}[Y=1|X=\mathbf{x}]}{\mathbb{P}[Y=-1|X=\mathbf{x}]}$$

 Thus, AdaBoost and LogitBoost provide an estimator of the same quantity.

Performance validation, spam data (AdaBoost, FGD)

Performance validation, spam data (LogitBoost, FGD)

Thank you for your attention!

Thank you for your attention!

And some references

 Bühlmann, P. and Hothorn, T. (2007).
 Boosting algorithms: Regularization, prediction and model fitting. Statistical Science, 22, 477–505.

 Friedman, J. H. (2001).
 Greedy function approximation: A gradient boosting machine. The Annals of Statistics, 29, 1189–1232.

Friedman, J., Hastie, T., and Tibshirani, R. (2000).
 Additive logistic regression: A statistical view of boosting.
 The Annals of Statistics, 28, 337–407.

 Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistics Learning: Data Mining, Inference, and Prediction (Second Edition). Springer.

 Schapire, R. E. and Freund, Y. (2012). Boosting: foundations and algorithms. MIT Press.