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Learning materials include but are not limited to:

» Hastie, T., Tibshirani, R., and Friedman, J. (2009).
The Elements of Statistics Learning: Data Mining, Inference, and
Prediction (Second Edition).
Springer.
> Sections 10.{1,4,5,9}.

» Slides of the lecture.

» Schapire, R. E. and Freund, Y. (2012).
Boosting: foundations and algorithms.
MIT Press.



Binary supervised classification (reminder)

Notation:

>

Given: for the random pair (X, Y) in RY x {—1,1} consisting of a
random observation X and its random binary label Y (class), a
sample of ni.i.d.: (x1,¥1), s (Xn, ¥n)-

Goal: predict the label of the new (unseen before) observation x.

Method: construct a classification rule:
g - Rd_> {_lal}a X’_>g(x)a

so g(x) is the prediction of the label for observation x.

Criterion: of the performance of g is the error probability:
R(g) = Plg(X) # Y] = E[1(g(X) # Y)].
The best solution: is to know the distribution of (X,Y):

g(x) = sign(2E[Y|X =x] —1>0).
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The principle

The principle underlying the boosting:

» First boosting algorithm has been introduced by
Yoav Freund and Robert E. Schapire in 1996.

» Construct a family of rules (classifiers) and then aggregate them.

» Recursive process:
- the rule constructed on the kth step depends on the rule
constructed on step k — 1.

» Use classification error for both constructing the next rule and
weighting the current one when aggregating.



The principle

Weighted sample
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The principle

» Term boosting is used to describe the family of methods allowing
for construction of a precise rule based on weak learners.

> A classification rule g.(-) is called a weak learner if it performs
“slightly” better than a random guess:

3 e > 0 such that P[g.(X) # Y] = % —€.

» Examples of weak learners:
- 1NN-classifier,

- classification tree of low depth (e.g. with 2 leaves only = a stump).



AdaBoost (algorithm): Freund and Schapire (1997)
Constructing a committee (training)
Input:
> Training sample ((x1,y1), ..., (Xn, yn)) C RY x {=1,1}.
> Weak learner g.(-), number of iterations B.
1. Initialize weights w; = % i=1
2. Fork=1,...B
2.1 Learn a weak learner gk(-) on D, weighted by w;, i =1,...,n.
2.2 Calculate error rate:

e = wil(g(xi) # yi) -

i=1

n.

g eeny

2.3 Calculate learner’s weight: ax = log 1;—:“

2.4 Readjust observations’ weights: w; = W,-eo‘*l(gk(x")#y"), i=1,..,nm
normalize to get 3!, w; = 1.

Output: The committee g?(-) = sign (Zle akgk(-)).

Weighted majority voting (classification)

g5t (x) = sign (i ozkgk(x)> .
k=1
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AdaBoost: some comments

» The step of learning requires the weak learner to take into account
the weights w;, i = 1, ..., n of observations.

> If weights cannot be taken into account, the weak learner can be
trained on a subsample of D, drawn (with replacement) with
probabilities w;, i =1, ..., n.

» Observations’ weights w;, i = 1, ..., n are updated on each iteration:
- if the ith observation is well classified, then its weight is
unchanged,

- if the ith observation is wrongly classified, then its weight is
increased.

> Learner's weight ay increases with performance of g(-)
calculated on (weighted) D,:
- «ay increases with decreasing eg;
- anyway, gk(-) should not be “too weak”: if ¢, > % then oy < 0.



AdaBoost: some properties

» The error rate calculated for the training sample ¢, of the
learner gy is given by:

iy wil (gr(xi) # vi)

e =

> .
i1 Wi
» Denote ¢, the gain of gx w.r.t. a purely random classifier:
1
ek = = — €k.
k=5 7 6

» The empirical error (on training sample) is bounded by (Freund and
Schapire, 1999):
Ln(gbst) < e 2 ik

» Consequently, the empirical error (on the training sample)
decreases to 0 with increasing B.

» Thus, if B is (too) large, AdaBoost tends to overfit the sample.



AdaBoost (Iris data,

“setosa” vs. “versicolor”)

Iris, 'setosa’ vs 'versicolor'
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AdaBoost (Iris data, “setosa” vs. “versicolor")

Sepal width

4.5

AdaBoost for Iris data, maxdepth=1,B =1
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AdaBoost (Iris data, “setosa” vs. “versicolor")

AdaBoost for Iris data, maxdepth =1, B = 10
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AdaBoost (Iris data, “setosa” vs. “versicolor")

AdaBoost for Iris data, maxdepth = 1, B = 50
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AdaBoost (Iris data, “setosa” vs. “versicolor")

AdaBoost for Iris data, maxdepth = 1, B = 100
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AdaBoost (Iris data, “setosa” vs. “versicolor")

AdaBoost for Iris data, maxdepth = 1, B = 500
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AdaBoost (Iris data, “versicolor” vs. "virginica")

Iris, 'versicolor' vs 'virginica'

.
.
g,
. L
. .
. .o o .
= . .
2 .. e oo o .
2 oo PR . . .
» . o« e .o
. L . .
. . .
. .
. .
. .
o |
N
T T T T T T T
5.0 55 6.0 6.5 7.0 75 8.0

Sepal length



AdaBoost (Iris data, “versicolor” vs. “virginica”)

AdaBoost for Iris data, maxdepth = 2, B = 500
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AdaBoost (Iris data, “versicolor” vs. “virginica”)

AdaBoost for Iris data, maxdepth = 3, B = 500
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AdaBoost (Iris data, “versicolor” vs. “virginica”)

AdaBoost for Iris data, maxdepth = 4, B = 500
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AdaBoost (Iris data, “versicolor” vs. “virginica”)

Sepal width

AdaBoost for Iris data, maxdepth = 5, B = 500
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AdaBoost (normal location-scale alternative)
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AdaBoost (normal location-scale alternative)

AdaBoost for Normal2 data, maxdepth = 1, B = 500
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AdaBoost (normal location-scale alternative)

AdaBoost for Normal2 data, maxdepth = 2, B = 500
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AdaBoost (normal location-scale alternative)

X2

AdaBoost for Normal2 data, maxdepth = 3, B = 500
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AdaBoost (normal location-scale alternative)

AdaBoost for Normal2 data, maxdepth = 4, B = 500
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AdaBoost (normal location-scale alternative)

AdaBoost for Normal2 data, maxdepth = 5, B = 500
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Minimization of the empirical risk

» Regard a random pair (X, Y) taking values in RY x {—1,1}.

» Consider a class of classification rules G:
- one attempts to find the best rule in G.

» Try: Choose the rule which minimizes a loss function, for example:

L(g) = P[g(X) # Y].

» Problem: As we cannot calculate P, we cannot calculate L(g) as
well.

» ldea: Choose a rule that minimizes the empirical version (i.e. on the
training sample) of the loss function — the empirical risk:

n

Lo(g) =~ > 1(8(xi) # vi).

i=1



Minimization of the empirical risk

L(g) - L(g")=L(g) — g'gfg L(g)+ g'gfg L(g) — L(g") -

/

» These two terms (usually) vary in inverse sense.

19/41



Risk convexification

v

Problem: The function
G—>R, g— - Zl (x; ;éy,

is (usually) difficult to minimize.

Idea: Find another loss function ¢ : R x R — R such that

1 n
G >R, gHE;a (x

is “easy” to minimize, e.g. a differentiable one.
This is even more the case if the function u +— £(u, v) is convex.

The loss function £(g(x),y) should measure the difference
between the value to be predicted y € {—1,1} and g(x).

Thus ¢(g(x),y) should take:
- large values if yg(x) <0,
- small values if yg(x) > 0.



Loss functions

Loss

Loss functions

-15

-1.0

-0.5
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yg()

— Misclassification:

((g(x),y) = 1(yg(x) <0).

— Exponential:

E(g(x)7y) — o v&x)

— Binomial log-likelihood:

ﬁ(g(x), }/) =— Iog(1+e—2yg(X)) )

— Squared error:

0(g(x),y) = (1 - yg(x))*.



Summary

» For:
- a random pair (X, Y) taking values in RY x {—1,1},
- aloss function £ : RxR —R
one seeks a classifier close to:

g = arg;nin Ele(g(X), Y)I.

» Strategy: Given a training sample (x1, y1), (x2,¥2), ..., (Xn, ¥n) Of
(X, Y), one minimizes the empirical version of E[¢(g(X), Y)]:

% Zg(g(xi)ﬁ/i) .
i=1

> Recursive approach: Approximate g* by g(-) = Zle g« (+), where
g« (+)s are constructed recursively.

» Method: Numerical optimization, e.g., gradient descent.
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Functional gradient descent (FGD)
> Let 8k = (gk(xl)vgk(x2)v"'7gk(xn))' and

J(gy) = %Zf(gk("f)vyf)-

» The gradient descent algorithm can be expressed by the recursive
formula:
gr =8k 1~ V(8K 1)

with A > 0 being the step size of the gradient descent.
Such an approach possesses certain disadvantages:

» The regularity of the estimated function is not taken into account:
- if x;j is close to x; then g(x;) is close to g(x;).

» The estimator is calculated at the points of the training sample only
X1,y Xp.



Gradient boost (algorithm): Friedman (2001)

Constructing a classifier (training)
Input:
» Training sample ((xl,yl),...,(x,,,y,,)) CRYx {-1,1}.
» Weak learner g.(+).
» Number of iterations B.
» Regularization parameter A € (0, 1].
1. Initialization: go(-) = argmin.cg 1 37, £(c, yi).
2. Fork=1,...,B

2.1 Calculate the negative gradient —%é(g(x;),y;) and evaluate it at

points gk—1(xi):

Vi = —

£(g(xi), vi) . i=1,..n.

g(xi)=gk—1(x;)

0
Jg(xi)

2.2 Learn a weak learner hi(-) on (x1, v1), (x2, v2), ..., (Xn, Va).
2.3 Update the classifier: gi(-) = gx—1(-) + Ah(:).

Output: The classification rule 2(-) = g«(-).



Gradient boost: some comments

» The output of g(-) is a real number. To predict the class label one
should use the “sign” operator:

y = sign (g(x)) .

» The algorithm (almost) coincides with AdaBoost for:
1(gx),y) = e,
-A=1
» The choice of the regularization parameter )\ is connected to the

number of iterations B.
It “controls” the speed of minimization of function

% > t(g(xi).yi) -
i=1

> Larger values of \ correspond to smaller values of B, and vice versa.
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Weak learners

» For Gradient boost, as well as for AdaBoost, the classification rule
used in the algorithm should be weak (slightly better than the
purely random choice).

» Boosting a non-weak classification rule usually delivers poor
performance increase.

> It is recommended to use a classification rule with high bias but
small variance (boosting allows to reduce bias and not variance).

» Often tree is used as a weak learner. For high bias one usually
chooses trees with a few leaves only (i.e., of low depth).

» In numerous implementations of boosting regression trees are used.



Reminder: classification tree
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Regression tree

> Regression tree is grown in a (very) similar to the classification
tree manner with slight changes:

» Suppose that a partition into M regions Ry, Ry, ..., Ry is given.

» The response is then modeled as a constant c,, in each region:
M
F(x)=> cml(x € Rm).
m=1

» Adopt sum of squares as impurity measure:

(mr)
(m(T) = } : _ea 2, n E: EPYRY
Q™ (T) - n(m) (yl CmL) + 1n(m) (yl CmR) .

X;€Rm, x;i€R

mR
» One can check that the optimal choice of ¢, for region R, is the
average over R,
. 1
Cm = (m) Z Yis
X;€Rm

with n(m being the number of observations x; € D, in region R,.



Function surface

Regression tree (illustration)
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Regression tree (illustration)

Sample points




Regression tree (illustration)










Regression tree (illustration)




Regression

tree (illustration)
Random forest surface, B = 10
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Regression tree (illustration)

Random forest surface, B = 50




Regression

tree (illustration)

Random forest surface, B = 100
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Regression tree (illustration)

Random forest surface, B = 500




Boosting regression trees in R
» Function gbm of R-package gbm by Ridgeway (2006).

Input parameters (arguments):

v

loss function ¢ (distribution),

v

number of iterations B (n.trees),

v

depth of the grown three K (interaction.depth),

v

regularization parameter A (shrinkage).



FGD-trees (algorithm): Friedman (2001), Ridgeway (2006)
Constructing a classifier (training)
Input: Training sample ((x1,y1), ..., (X, ¥n)) C RY x {—1,1}.
1. Initialization: go(-) = argmin g 2 37 €(c,yi).
2. Fork=1,...B
2.1 Calculate the negative gradient —%é(g(x;),yf) and evaluate it at
points gk—1(x;):

0 -
Vif*me(g(xi):yi) , i=1,...,n.

g(xi)=gk—1(x;)

2.2 Grow the regression tree of maximal depth K based on the sample

(X17 V1)7 (X27 V2)7 () (X"7 Vn) .
2.3 For each leaf m =1, ..., M calculate the optimal prediction:
Pm = arg min Z C(ge—1(xi) + p, yi) -
PER X;€Rm

2.4 Update the classifier: gi(x) = gk—1(x) + Apm(x) with m(x) being a
leaf containing x.

Output: The classification rule g(x) = gk(x).
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Connection to AdaBoost

» One can show (Hastie, Tibshirani, Friedman, 2000) that the
AdaBoost algorithm is a gradient descent method for minimizing

E[E(g(X), Y)] .

with £(g(x),y) = e 8,
» Thus the output g(x) is an estimator of
*(X)_l o P[Y =1|X = x]
E ) =8 Bly = C1x =«

» Hence:

eg ()
P[Y = l‘X = X] = —e—g*(X) + eg*(X)

e_g*(x)

)

PIY =-1X=x= 5 em:

» The gradient descent algorithm can be applied to further loss
functions.



LogitBoost

» Suppose (here) that Y takes values from {0,1}.

» The conditional random variable Y|X = x follows the Bernoulli
distribution with parameter p(x) = P[Y = 1|X = x], and its
likelihood as a function of p(x) for an observation (x, y) can be

written as: .
p(x) (1~ p(x))" .

» The logistic regression model assumes:

1 eBo+BTx
p(X) = — T Ty 0
1+ e—(Bo+B7x) 1+ eBfotB'x

where (B0, 37)7 is estimated by maximizing the likelihood.

» One can use the functional gradient descent method to overcome
the linearity assumption on parameters of (1,x")" in p(x).



LogitBoost

» One can rewrite:
1 ef (%)
T 14 e 20 14 ef®)

p(x)

with f : RY — R being an unknown function.

» As it is done in logistic regression, one can estimate f(x) based on
the likelihood.

» Choice of the loss function: the negative log-likelihood (which will
be minimized):

—(y log p(x) + (1 — y) log(1 — p(x))) = log(1 + e~ ()
with y =2y —1 € {-1,1}.
> One can simply verify convexity of:

v i log(l+e 2.,



LogitBoost

» The functional gradient descent algorithm applied to the loss
function:

¢:Rx{-1,1} =R
(f(x),y) — log(1 + e_25’f(x))

is called LogitBoost.

> For this loss function, the function E[¢(f(X), Y)] is minimized at:

g PLY =1X =]
) =3 lee py = —1x =«

» Thus, AdaBoost and LogitBoost provide an estimator of the same
quantity.



Performance validation, spam data (AdaBoost, FGD)
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Performance validation, spam data (LogitBoost, FGD)
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Thank you for your attention!

Thank you for your attention!
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