Classification tree, bagging, and random forest

Pavlo Mozharovskyi¹

(with contributions of Laurent Rouviere² and Valentin Patilea³)

¹LTCI, Télécom Paris, Institut Polytechnique de Paris ²Université Rennes 2 ³Ensai, CREST

Machine learning

Paris, March 12, 2022

Today

Classification tree Algorithm Tuning

Bagging Motivation Algorithm An example

Random forest

Algorithm Interpretation Consistency results

・ロ ・ ・ 日 ・ ・ ヨ ・ ・ ヨ ・ つ へ へ 2/64

Literature

Learning materials include but are not limited to:

- Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistics Learning: Data Mining, Inference, and Prediction (Second Edition). Springer.
 - Section 8.7.
 - Section 9.2.
 - Chapter 15.
- Slides of the lecture.
- Biau, Devroye, Lugosi (2008).
 Consistency of random forests and other averaging classifiers. Journal of Machine Learning Research, 9, 2015–2033.

Binary supervised classification (reminder)

Notation:

- ► Given: for the random pair (X, Y) in ℝ^d × {0,1} consisting of a random observation X and its random binary label Y (class), a sample of n i.i.d.: (x₁, y₁), ..., (x_n, y_n).
- **Goal:** predict the label of the new (unseen before) observation **x**.
- Method: construct a classification rule:

$$g : \mathbb{R}^{d} \rightarrow \left\{0,1\right\}, \, \mathbf{x} \mapsto g(\mathbf{x}),$$

so $g(\mathbf{x})$ is the prediction of the label for observation \mathbf{x} .

Criterion: of the performance of g is the **error probability**:

$$R(g) = \mathbb{P}[g(X) \neq Y] = \mathbb{E}[1(g(X) \neq Y)].$$

The best solution: is to know the distribution of (X,Y):

$$g(\mathbf{x}) = 1(\mathbb{E}[Y|X = \mathbf{x}] > 0.5)$$
.

Contents

Classification tree Algorithm Tuning

Bagging Motivation Algorithm An example

Random forest

Algorithm Interpretation Consistency results

・ロ ・ ・ 日 ・ ・ 三 ・ ・ 三 ・ つ へ ペ 5/64

Contents

Classification tree Algorithm Tuning

Bagging Motivation Algorithm An example

Random forest

Algorithm Interpretation Consistency results

• ロ ト • 日 ト • 三 ト • 三 ・ つ へ で 6/64

Growing a tree (training)

Input:

▶ Training sample $((\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)) = \mathcal{D}_n \in \mathbb{R}^d \times \{0, 1\}.$

◆□ ▶ < □ ▶ < ■ ▶ < ■ ▶ ■ ⑦ Q @ 7/64</p>

Growing a tree (training)

Input:

▶ Training sample $((\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)) = \mathcal{D}_n \in \mathbb{R}^d \times \{0, 1\}.$

◆□ ▶ < □ ▶ < ■ ▶ < ■ ▶ ■ ⑦ Q @ 7/64</p>

• Measure of impurity $Q^{(m)}(T)$ for node *m* of tree *T*.

Growing a tree (training)

- ▶ Training sample $((\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)) = \mathcal{D}_n \in \mathbb{R}^d \times \{0, 1\}.$
- Measure of impurity $Q^{(m)}(T)$ for node *m* of tree *T*.
- Stopping criteria $S^{(m)}(T)$ for node *m* of tree *T*.

Growing a tree (training)

Input:

- ▶ Training sample $((\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)) = \mathcal{D}_n \in \mathbb{R}^d \times \{0, 1\}.$
- Measure of impurity $Q^{(m)}(T)$ for node *m* of tree *T*.
- Stopping criteria $S^{(m)}(T)$ for node *m* of tree *T*.
- 1. Define the root node by the region $R^{(0)}$ containing the entire sample, set m = 0.

◆□ ▶ < □ ▶ < ■ ▶ < ■ ▶ ■ ⑦ Q @ 7/64</p>

Growing a tree (training)

- ▶ Training sample $((\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)) = \mathcal{D}_n \in \mathbb{R}^d \times \{0, 1\}.$
- Measure of impurity $Q^{(m)}(T)$ for node *m* of tree *T*.
- Stopping criteria $S^{(m)}(T)$ for node *m* of tree *T*.
- 1. Define the root node by the region $R^{(0)}$ containing the entire sample, set m = 0.
- 2. If $S^{(m)}(T)$ is fulfilled then stop for this node (e.g., a lower bound for the # of obs. in a node).

Growing a tree (training)

- ▶ Training sample $((\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)) = \mathcal{D}_n \in \mathbb{R}^d \times \{0, 1\}.$
- Measure of impurity $Q^{(m)}(T)$ for node *m* of tree *T*.
- Stopping criteria $S^{(m)}(T)$ for node *m* of tree *T*.
- 1. Define the root node by the region $R^{(0)}$ containing the entire sample, set m = 0.
- 2. If $S^{(m)}(T)$ is fulfilled then stop for this node (e.g., a lower bound for the # of obs. in a node).
- 3. Find a variable and a split (one-variable threshold) diving node region $R^{(m)}$ into two nodes with subregions $R^{(m_L)}$ and $R^{(m_R)}$ to minimize $Q^{(m)}(T)$.

Growing a tree (training)

- ▶ Training sample $((\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)) = \mathcal{D}_n \in \mathbb{R}^d \times \{0, 1\}.$
- Measure of impurity $Q^{(m)}(T)$ for node *m* of tree *T*.
- Stopping criteria $S^{(m)}(T)$ for node *m* of tree *T*.
- 1. Define the root node by the region $R^{(0)}$ containing the entire sample, set m = 0.
- 2. If $S^{(m)}(T)$ is fulfilled then stop for this node (e.g., a lower bound for the # of obs. in a node).
- 3. Find a variable and a split (one-variable threshold) diving node region $R^{(m)}$ into two nodes with subregions $R^{(m_L)}$ and $R^{(m_R)}$ to minimize $Q^{(m)}(T)$.
- 4. Repeat steps 2-3 for all leaves until global stopping.

Growing a tree (training)

Input:

- ▶ Training sample $((\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)) = \mathcal{D}_n \in \mathbb{R}^d \times \{0, 1\}.$
- Measure of impurity $Q^{(m)}(T)$ for node *m* of tree *T*.
- Stopping criteria $S^{(m)}(T)$ for node *m* of tree *T*.
- 1. Define the root node by the region $R^{(0)}$ containing the entire sample, set m = 0.
- 2. If $S^{(m)}(T)$ is fulfilled then stop for this node (e.g., a lower bound for the # of obs. in a node).
- 3. Find a variable and a split (one-variable threshold) diving node region $R^{(m)}$ into two nodes with subregions $R^{(m_L)}$ and $R^{(m_R)}$ to minimize $Q^{(m)}(T)$.
- 4. Repeat steps 2-3 for all leaves until global stopping.

Output: The tree T.

Classification tree – Descending the tree

• Descend the tree until a terminal node.

< □ > < □ > < □ > < Ξ > < Ξ > Ξ · ク Q (~ 8/64

Classification tree - Descending the tree

• Descend the tree until a terminal node.

In each node m, classify the observations by choosing the majority class.

◆□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ∧ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ <

Classification tree - Descending the tree

- Descend the tree until a terminal node.
- In each node m, classify the observations by choosing the majority class.
- That is, in node *m* classify the observations to class c(m):

$$c(m) = \underset{k \in \{0,1\}}{\operatorname{arg\,max}} \sum_{i \in R^{(m)}} I(y_i = k).$$

< □ > < □ > < □ > < Ξ > < Ξ > Ξ → ○ < ♡ < 0 / 8/64

<ロ > < 母 > < 臣 > < 臣 > 三 の < で 9/64

<ロ><日><日><日><日><日><日><日><日><日><10</td>

<ロ><日><日><日><日><日><日><日><日><日><日><10</td>

◆□ ▶ ◆ □ ▶ ◆ ■ ▶ ◆ ■ ◆ ○ へ ⁰/64

Let $n^{(m)} = \#\{\mathbf{x} \mid \mathbf{x} \in R^{(m)}\}$ be the number of observations in region $R^{(m)}$. Then the classification accuracy of node *m* classifying to class *k* is

$$\hat{p}_k^{(m)} = \frac{1}{n^{(m)}} \sum_{\mathbf{x}_i \in R^{(m)}} I(y_i = k).$$

◆□▶ ◆舂▶ ◆≧▶ ◆≧▶ ≧ ∽0へで 10/64

Let $n^{(m)} = \#\{\mathbf{x} \mid \mathbf{x} \in R^{(m)}\}$ be the number of observations in region $R^{(m)}$. Then the classification accuracy of node *m* classifying to class *k* is

$$\hat{p}_k^{(m)} = \frac{1}{n^{(m)}} \sum_{\mathbf{x}_i \in R^{(m)}} I(y_i = k).$$

Possible choices for Q (the measure of impurity):

Misclassification error:

$$Q^{(m)}(T) = rac{n^{(m_L)}}{n^{(m)}}(1-\hat{p}_{k(m_L)}^{(m_L)}) + rac{n^{(m_R)}}{n^{(m)}}(1-\hat{p}_{k(m_R)}^{(m_R)})\,,$$

◆□▶ ◆舂▶ ◆≧▶ ◆≧▶ ≧ ∽0へで 10/64

Let $n^{(m)} = \#\{\mathbf{x} \mid \mathbf{x} \in R^{(m)}\}$ be the number of observations in region $R^{(m)}$. Then the classification accuracy of node *m* classifying to class *k* is

$$\hat{p}_k^{(m)} = \frac{1}{n^{(m)}} \sum_{\mathbf{x}_i \in R^{(m)}} I(y_i = k).$$

Possible choices for Q (the measure of impurity):

Misclassification error:

$$Q^{(m)}(T) = rac{n^{(m_L)}}{n^{(m)}}(1-\hat{p}^{(m_L)}_{k(m_L)}) + rac{n^{(m_R)}}{n^{(m)}}(1-\hat{p}^{(m_R)}_{k(m_R)})\,,$$

Gini index:

$$Q^{(m)}(T) = rac{n^{(m_L)}}{n^{(m)}} 2 \hat{p}_k^{(m_L)} (1 - \hat{p}_k^{(m_L)}) + rac{n^{(m_R)}}{n^{(m)}} 2 \hat{p}_k^{(m_R)} (1 - \hat{p}_k^{(m_R)}) \,,$$

◆□▶ ◆舂▶ ◆≧▶ ◆≧▶ ≧ ∽0へで 10/64

Let $n^{(m)} = \#\{\mathbf{x} \mid \mathbf{x} \in R^{(m)}\}$ be the number of observations in region $R^{(m)}$. Then the classification accuracy of node *m* classifying to class *k* is

$$\hat{p}_k^{(m)} = \frac{1}{n^{(m)}} \sum_{\mathbf{x}_i \in R^{(m)}} I(y_i = k).$$

Possible choices for Q (the measure of impurity):

Misclassification error:

$$Q^{(m)}(T) = rac{n^{(m_L)}}{n^{(m)}}(1-\hat{p}^{(m_L)}_{k(m_L)}) + rac{n^{(m_R)}}{n^{(m)}}(1-\hat{p}^{(m_R)}_{k(m_R)})\,,$$

Gini index:

$$Q^{(m)}(T) = rac{n^{(m_L)}}{n^{(m)}} 2 \hat{p}_k^{(m_L)} (1 - \hat{p}_k^{(m_L)}) + rac{n^{(m_R)}}{n^{(m)}} 2 \hat{p}_k^{(m_R)} (1 - \hat{p}_k^{(m_R)}) +$$

Cross-entropy (deviance):

$$Q^{(m)}(T) = - \left\{ \left(\frac{n^{(m_L)}}{n^{(m)}} \left(\hat{p}_k^{(m_L)} \log \hat{p}_k^{(m_L)} + (1 - \hat{p}_k^{(m_L)}) \log(1 - \hat{p}_k^{(m_L)}) \right) \right. \\ \left. + \frac{n^{(m_R)}}{n^{(m)}} \left(\hat{p}_k^{(m_R)} \log \hat{p}_{k_{-}}^{(m_R)} + (1 - \hat{p}_{k_{-}}^{(m_R)}) \log(1 - \hat{p}_{k_{-}}^{(m_R)}) \right) \right\}_{\mathbb{R}^{1/2}}$$

Maximizing the gain

Sometimes in the literature and in the textbooks, the minimization of Q^(m)(T) is presented under the equivalent for of the gain maximization

For instance, for the Gini index the gain is

$$2\hat{p}_{k}^{(m)}(1-\hat{p}_{k}^{(m)})-Q_{Gini}^{(m)}(T)$$

▶ For instance, for the deviance the gain is

$$\hat{p}_k^{(m)} \log \hat{p}_k^{(m)} + (1 - \hat{p}_k^{(m)}) \log(1 - \hat{p}_k^{(m)}) - Q_{deviance}^{(m)}(T)$$

< □ ▶ < **□** ▶ < Ξ ▶ < Ξ ▶ Ξ の Q ↔ 11/64

Iris, 'versicolor' vs 'virginica'

Minimum size of splittable node = 25

Minimum size of splittable node = 50

Minimum size of splittable node = 37

Minimum size of splittable node = 35

Minimum size of splittable node = 24

Minimum size of splittable node = 21

Minimum size of splittable node = 13

Minimum size of splittable node = 8

Minimum size of splittable node = 4

Minimum size of splittable node = 2

Contents

Classification tree Algorithm Tuning

Bagging Motivation Algorithm An example

Random forest

Algorithm Interpretation Consistency results

◆□ → ◆□ → ◆ Ξ → ▲ Ξ → ● ● ○ へ ○ 15/64

► A possible (and wide-spread) choice for the stopping criteria S is to restrict the number of points in region R^(m) to be split to some constant n_{min}:

$$S^{(m)}(T) = I(n^{(m)} < n_{min}).$$

► A possible (and wide-spread) choice for the stopping criteria S is to restrict the number of points in region R^(m) to be split to some constant n_{min}:

$$S^{(m)}(T) = I(n^{(m)} < n_{min}).$$

・ロ · ・ 日 · ・ ミ · ・ ミ · ・ ミ · の へ · 16/64

- Often the classification tree is constructed in two stages:
 - 1. n_{min} is set very small and the tree is grown to T_0 .

A possible (and wide-spread) choice for the stopping criteria S is to restrict the number of points in region R^(m) to be split to some constant n_{min}:

$$S^{(m)}(T) = I(n^{(m)} < n_{min}).$$

Often the classification tree is constructed in two stages:

- 1. n_{min} is set very small and the tree is grown to T_0 .
- Pruning of tree (*i.e.*, collapsing any number of its non-terminal nodes) is conducted based on some parameter α, which consists in choosing a subtree T ⊂ T₀ that minimizes a cost-complexity criterion, *e.g.*

$$C_{\alpha}(T) = \sum_{m=1}^{\#T} n^{(m)} Q^{(m)}(T) + \alpha \# T ,$$

where #T stands for the number of nodes in the tree.

► A possible (and wide-spread) choice for the stopping criteria S is to restrict the number of points in region R^(m) to be split to some constant n_{min}:

$$S^{(m)}(T) = I(n^{(m)} < n_{min}).$$

Often the classification tree is constructed in two stages:

- 1. n_{min} is set very small and the tree is grown to T_0 .
- Pruning of tree (*i.e.*, collapsing any number of its non-terminal nodes) is conducted based on some parameter α, which consists in choosing a subtree T ⊂ T₀ that minimizes a cost-complexity criterion, *e.g.*

$$C_{\alpha}(T) = \sum_{m=1}^{\#T} n^{(m)} Q^{(m)}(T) + \alpha \# T ,$$

where #T stands for the number of nodes in the tree.

For each α , it can shown that there is a unique smallest subtree T_{α} that minimizes $C_{\alpha}(T)$.

Pruning parameter α is chosen by the means of cross-validation.

► To handle *predictors with unordered values* when the outcome is of 0-1 type, one can simply order the predictor classes according to the proportion falling in outcome class 1.

- ▶ To handle *predictors with unordered values* when the outcome is of 0-1 type, one can simply order the predictor classes according to the proportion falling in outcome class 1.
- ► To handle *missing predictor values* there are two recommended approaches
 - if the predictor is categorical, create a new category 'missing';
 - a more general approach is the construction of surrogate variables (see Hastie *et al.* (2009, section 9.2) for the details).

- ► To handle *predictors with unordered values* when the outcome is of 0-1 type, one can simply order the predictor classes according to the proportion falling in outcome class 1.
- ► To handle *missing predictor values* there are two recommended approaches
 - if the predictor is categorical, create a new category 'missing';
 - a more general approach is the construction of surrogate variables (see Hastie *et al.* (2009, section 9.2) for the details).
- The key advantage of the classification tree is its interpretability, as the feature space partition is fully described by a single tree.

- ▶ To handle *predictors with unordered values* when the outcome is of 0-1 type, one can simply order the predictor classes according to the proportion falling in outcome class 1.
- ► To handle *missing predictor values* there are two recommended approaches
 - if the predictor is categorical, create a new category 'missing';
 - a more general approach is the construction of surrogate variables (see Hastie *et al.* (2009, section 9.2) for the details).
- The key advantage of the classification tree is its interpretability, as the feature space partition is fully described by a single tree.
- Some disadvantage are the *instability* (trees have high variance, a small change in the data can result in a quite different series of splits

 see bagging for a solution) and the *difficulty in capturing additive structures*.

Contents

Classification tree Algorithm Tuning

Bagging Motivation Algorithm An example

Random forest

Algorithm Interpretation Consistency results

◆□ → ◆□ → ◆ Ξ → ▲ Ξ → ● ● ⑦ Q ℃ 18/64

Contents

Classification tree Algorithm Tuning

Bagging Motivation

Algorithm An example

Random forest

Algorithm Interpretation Consistency results

◆□ → ◆□ → ◆ Ξ → ▲ Ξ → ● ● ○ へ ○ 19/64

The "Wisdom of Crowds" (Surowiecki, 2004): The collective knowledge of a diverse and independent body of people typically exceeds the knowledge of any single individual, and can be harnessed by voting.

・ロト <
つ ト <
三 ト <
三 ト <
三 ト う へ
の 20/64
</p>

- The "Wisdom of Crowds" (Surowiecki, 2004): The collective knowledge of a diverse and independent body of people typically exceeds the knowledge of any single individual, and can be harnessed by voting.
- Bagging implements this way of thinking standing for a range of methods following the general idea introduced by Léo Breiman (1996).

・ロ ・ ・ 日 ・ ・ ミ ・ ・ ミ ・ ク へ や 20/64

- The "Wisdom of Crowds" (Surowiecki, 2004): The collective knowledge of a diverse and independent body of people typically exceeds the knowledge of any single individual, and can be harnessed by voting.
- Bagging implements this way of thinking standing for a range of methods following the general idea introduced by Léo Breiman (1996).

Bagging is a shortcut for **B**ootstrap **Agg**regating.

- The "Wisdom of Crowds" (Surowiecki, 2004): The collective knowledge of a diverse and independent body of people typically exceeds the knowledge of any single individual, and can be harnessed by voting.
- Bagging implements this way of thinking standing for a range of methods following the general idea introduced by Léo Breiman (1996).
- **Bagging** is a shortcut for **B**ootstrap **Agg**regating.
- The main idea is to construct a single estimator that consists of a number of basic classifiers (weak learners) (taught on a bootstrapped samples) aggregated by averaging (voting).

Consider the standard regression setting

$$Y = g(X) + \epsilon.$$

Consider the standard regression setting

$$Y = g(X) + \epsilon.$$

The single bagged estimator

$$\hat{g}_B(\mathsf{x}) = rac{1}{B}\sum_{k=1}^B g_k(\mathsf{x})$$

is the estimator of g obtained by aggregating estimators $g_1, ..., g_B$.

Consider the standard regression setting

$$Y = g(X) + \epsilon.$$

The single bagged estimator

$$\hat{g}_B(\mathbf{x}) = rac{1}{B}\sum_{k=1}^B g_k(\mathbf{x})$$

is the estimator of g obtained by aggregating estimators $g_1, ..., g_B$.

4 ロ ト 4 日 ト 4 王 ト 4 王 ト 王 ク 9 9 21/64

•
$$g_k(\mathbf{x}) = g_k(\mathbf{x}; (X_1, Y_1), ..., (X_n, Y_n))$$
 as well as
 $\hat{g}_B(\mathbf{x}) = \hat{g}_B(\mathbf{x}; (X_1, Y_1), ..., (X_n, Y_n))$ are random variables.

Consider the standard regression setting

$$Y = g(X) + \epsilon.$$

The single bagged estimator

$$\hat{g}_B(\mathbf{x}) = rac{1}{B}\sum_{k=1}^B g_k(\mathbf{x})$$

is the estimator of g obtained by aggregating estimators $g_1, ..., g_B$.

•
$$g_k(\mathbf{x}) = g_k(\mathbf{x}; (X_1, Y_1), ..., (X_n, Y_n))$$
 as well as
 $\hat{g}_B(\mathbf{x}) = \hat{g}_B(\mathbf{x}; (X_1, Y_1), ..., (X_n, Y_n))$ are random variables

► One can measure the improvement of aggregating by comparing performance of ĝ_B(x) and those of g_k(x), k = 1, ..., B in terms of bias and variance.

▶ Assumption (unfeasible): Random variables *g*₁,...,*g*_B are i.i.d.

▶ Assumption (unfeasible): Random variables g₁,..., g_B are i.i.d.

Bias:

$$\mathbb{E}[\hat{g}_B(\mathbf{x})] = \mathbb{E}[g_k(\mathbf{x})]$$
 .

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q @ 22/64

▶ Assumption (unfeasible): Random variables g₁,..., g_B are i.i.d.

Bias:

$$\mathbb{E}[\hat{g}_B(\mathbf{x})] = \mathbb{E}[g_k(\mathbf{x})].$$

< □ ▶ < **□** ▶ < Ξ ▶ < Ξ ▶ Ξ の Q @ 22/64

Conclusion Aggregation does not modify the bias.

▶ Assumption (unfeasible): Random variables g₁,..., g_B are i.i.d.

Bias:

$$\mathbb{E}[\hat{g}_B(\mathbf{x})] = \mathbb{E}[g_k(\mathbf{x})].$$

Conclusion

Aggregation does not modify the bias.

Variance:

$$\mathbb{V}[\hat{g}_B(\mathbf{x})] = rac{1}{B} \mathbb{V}[g_k(\mathbf{x})] \, .$$

< □ ▶ < **□** ▶ < Ξ ▶ < Ξ ▶ Ξ の Q @ 22/64

▶ Assumption (unfeasible): Random variables $g_1, ..., g_B$ are i.i.d.

Bias:

$$\mathbb{E}[\hat{g}_B(\mathbf{x})] = \mathbb{E}[g_k(\mathbf{x})].$$

Conclusion

Aggregation does not modify the bias.

Variance:

$$\mathbb{V}[\hat{g}_B(\mathbf{x})] = rac{1}{B} \mathbb{V}[g_k(\mathbf{x})].$$

Conclusion

Aggregation reduces the variance (the conclusion here is obtained under the unfeasible assumption of i.i.d. property of $g_1, ..., g_B$).

Motivation (classification)

• Let $g_1, ..., g_B$ be an ensemble of **basic classifiers**.
- Let $g_1, ..., g_B$ be an ensemble of **basic classifiers**.
- ► Assumption: Each basic classifier has an independent error e < 0.5 for predicting the correct decision y = 1 for some value x:</p>

$$\begin{split} & \mathbb{P}\big(g_k(\mathbf{x}) \neq 1\big) = \epsilon < 0.5 \quad \text{for} \quad k = 1, ..., B \,, \\ & g_1(\mathbf{x}), ..., g_B(\mathbf{x}) \quad \text{are still assumed } \mathbf{i.i.d} \,. \end{split}$$

<ロ > < 回 > < 画 > < 三 > < 三 > 三 の < で 23/64

- Let $g_1, ..., g_B$ be an ensemble of **basic classifiers**.
- ► Assumption: Each basic classifier has an independent error *ϵ* < 0.5 for predicting the correct decision *y* = 1 for some value **x**:

$$\mathbb{P}ig(g_k(\mathbf{x})
eq 1ig) = \epsilon < 0.5 \quad ext{for} \quad k = 1, ..., B,$$

 $g_1(\mathbf{x}), ..., g_B(\mathbf{x}) \quad ext{are still assumed } \mathbf{i.i.d}.$

Further, let the aggregated classifier be

$$g^{agg}(\mathbf{x}) = 1\Big(rac{1}{B}\sum_k g_k(\mathbf{x}) > 0.5\Big)$$
 .

・ロ · ・ 日 · ・ ミ · ・ ミ · ・ ミ · ク へ ? 23/64

- Let $g_1, ..., g_B$ be an ensemble of **basic classifiers**.
- ► Assumption: Each basic classifier has an independent error *ϵ* < 0.5 for predicting the correct decision *y* = 1 for some value **x**:

$$\begin{split} \mathbb{P}\big(g_k(\mathbf{x}) \neq 1\big) &= \epsilon < 0.5 \quad \text{for} \quad k = 1, ..., B \,, \\ g_1(\mathbf{x}), ..., g_B(\mathbf{x}) \quad \text{are still assumed } \mathbf{i.i.d} \,. \end{split}$$

Further, let the aggregated classifier be

$$g^{agg}(\mathbf{x}) = 1\left(\frac{1}{B}\sum_{k}g_{k}(\mathbf{x}) > 0.5\right).$$

• Then $\sum_{k} g_{k}(\mathbf{x})$ will have binomial distribution

$$\sum_{k} g_k(\mathbf{x}) \sim Bin(B, 1-\epsilon)$$

< □ ▶ < **□** ▶ < Ξ ▶ < Ξ ▶ Ξ の Q (_{23/64})

- Let $g_1, ..., g_B$ be an ensemble of **basic classifiers**.
- ► Assumption: Each basic classifier has an independent error e < 0.5 for predicting the correct decision y = 1 for some value x:</p>

$$\begin{split} \mathbb{P}\big(g_k(\mathbf{x}) \neq 1\big) &= \epsilon < 0.5 \quad \text{for} \quad k = 1, ..., B \,, \\ g_1(\mathbf{x}), ..., g_B(\mathbf{x}) \quad \text{are still assumed } \mathbf{i.i.d} \,. \end{split}$$

Further, let the aggregated classifier be

$$g^{\mathrm{agg}}(\mathbf{x}) = 1 \Big(rac{1}{B} \sum_{k} g_k(\mathbf{x}) > 0.5 \Big) \,.$$

• Then $\sum_{k} g_{k}(\mathbf{x})$ will have binomial distribution

$$\sum_{k} g_k(\mathbf{x}) \sim Bin(B, 1-\epsilon)$$

and classification error of \mathbf{x} will decrease with increasing B:

$$\mathbb{P}(g^{agg}(\mathbf{x}) \neq 1) = \sum_{k=1}^{B/2} \binom{B}{k} (1-\epsilon)^k \epsilon^{B-k} \xrightarrow[B \to \infty]{}$$

■ ► ■ • • • • • • _{23/64}

- Let $g_1, ..., g_B$ be an ensemble of **basic classifiers**.
- ► Assumption: Each basic classifier has an independent error e < 0.5 for predicting the correct decision y = 1 for some value x:</p>

$$\begin{split} \mathbb{P}\big(g_k(\mathbf{x}) \neq 1\big) &= \epsilon < 0.5 \quad \text{for} \quad k = 1, ..., B \,, \\ g_1(\mathbf{x}), ..., g_B(\mathbf{x}) \quad \text{are still assumed } \mathbf{i.i.d} \,. \end{split}$$

Further, let the aggregated classifier be

$$g^{\mathrm{agg}}(\mathbf{x}) = 1 \Big(rac{1}{B} \sum_{k} g_k(\mathbf{x}) > 0.5 \Big) \,.$$

• Then $\sum_{k} g_{k}(\mathbf{x})$ will have binomial distribution

$$\sum_{k} g_{k}(\mathbf{x}) \sim Bin(B, 1-\epsilon)$$

and classification error of \mathbf{x} will decrease with increasing B:

$$\mathbb{P}(g^{\operatorname{agg}}(\mathbf{x}) \neq 1) = \sum_{k=1}^{B/2} \binom{B}{k} (1-\epsilon)^k \epsilon^{B-k} \xrightarrow[B \to \infty]{} 0.$$

Theorem (Chernoff-Hoeffding, Bernoulli scheme)

If $X_1, ..., X_n$ are i.i.d. random variables taking values in $\{0, 1\}$, then for any $\eta > 0$ it holds

$$\mathbb{P}\Big(\mathbb{E}[X_i] - \frac{1}{n}\sum_{i=1}^n X_i > \eta\Big) < \exp(-2\eta^2 n).$$

Theorem (Chernoff-Hoeffding, Bernoulli scheme)

If $X_1, ..., X_n$ are i.i.d. random variables taking values in $\{0, 1\}$, then for any $\eta > 0$ it holds

$$\mathbb{P}\Big(\mathbb{E}[X_i] - \frac{1}{n}\sum_{i=1}^n X_i > \eta\Big) < \exp(-2\eta^2 n).$$

One can express classification error as

$$\mathbb{P}ig(g^{ extsf{agg}}(\mathsf{x})
eq 1ig) = \mathbb{P}ig(rac{1}{B}\sum_{k=1}^B g_k(\mathsf{x}) < 0.5ig)\,.$$

Theorem (Chernoff-Hoeffding, Bernoulli scheme)

If $X_1, ..., X_n$ are i.i.d. random variables taking values in $\{0, 1\}$, then for any $\eta > 0$ it holds

$$\mathbb{P}\Big(\mathbb{E}[X_i] - \frac{1}{n}\sum_{i=1}^n X_i > \eta\Big) < \exp(-2\eta^2 n).$$

One can express classification error as

$$\mathbb{P}ig(g^{\mathsf{agg}}(\mathsf{x})
eq 1ig) = \mathbb{P}ig(rac{1}{B}\sum_{k=1}^B g_k(\mathsf{x}) < 0.5ig).$$

By a sequence of simple transformations we obtain

$$\underbrace{(1-\epsilon)}_{\mathbb{E}[g_1(\mathsf{x})]} - rac{1}{B}\sum_{k=1}^B g_k(\mathsf{x}) > 0.5 - \epsilon \,.$$

・ロ · ・ (日 · ・ ミ · ・ ミ · ・ ミ · の へ (? 24/64)

Theorem (Chernoff-Hoeffding, Bernoulli scheme)

If $X_1, ..., X_n$ are i.i.d. random variables taking values in $\{0, 1\}$, then for any $\eta > 0$ it holds

$$\mathbb{P}\Big(\mathbb{E}[X_i] - \frac{1}{n}\sum_{i=1}^n X_i > \eta\Big) < \exp(-2\eta^2 n).$$

One can express classification error as

$$\mathbb{P}ig(g^{agg}(\mathbf{x})
eq 1ig) = \mathbb{P}ig(rac{1}{B}\sum_{k=1}^B g_k(\mathbf{x}) < 0.5ig).$$

By a sequence of simple transformations we obtain

$$\underbrace{(1-\epsilon)}_{\mathbb{E}[g_1(\mathsf{x})]} - \frac{1}{B} \sum_{k=1}^{B} g_k(\mathsf{x}) > 0.5 - \epsilon \,.$$

Applying the Chernoff-Hoeffding inequality gives

$$\mathbb{P}(g^{agg}(\mathbf{x}) \neq 1) < \exp\left(-\frac{1}{2}B(1-2\epsilon)^2\right).$$

► The derivations from above exploit the assumption that random variables g₁(x),...,g_B(x) are independent and identically distributed.

- ► The derivations from above exploit the assumption that random variables g₁(x), ..., g_B(x) are independent and identically distributed.
- ► As the classifiers g₁, ..., g_B are constructed using the same training sample D_n, the assumption of independence is not really credible.

・ロト < 日 > < 三 > < 三 > 三 の へ ? 25/64

- ► The derivations from above exploit the assumption that random variables g₁(x), ..., g_B(x) are independent and identically distributed.
- ► As the classifiers g₁,..., g_B are constructed using the same training sample D_n, the assumption of independence is not really credible.
- Remark: If the variables g₁,..., g_B identically distributed with variance σ², but not necessarily independent, with positive pairwise correlation ρ, then

$$\mathbb{V}\left[\frac{1}{B}\sum_{k=1}^{B}g_{k}\right] =$$

- ► The derivations from above exploit the assumption that random variables g₁(x), ..., g_B(x) are independent and identically distributed.
- ► As the classifiers g₁, ..., g_B are constructed using the same training sample D_n, the assumption of independence is not really credible.
- Remark: If the variables g₁,..., g_B identically distributed with variance σ², but not necessarily independent, with positive pairwise correlation ρ, then

$$\mathbb{V}\left[\frac{1}{B}\sum_{k=1}^{B}g_{k}\right] = \rho\sigma^{2} + \frac{1-\rho}{B}\sigma^{2}.$$

< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ E のQ (~ 25/64

- ► The derivations from above exploit the assumption that random variables g₁(x), ..., g_B(x) are independent and identically distributed.
- ► As the classifiers g₁,..., g_B are constructed using the same training sample D_n, the assumption of independence is not really credible.
- Remark: If the variables g₁,..., g_B identically distributed with variance σ², but not necessarily independent, with positive pairwise correlation ρ, then

$$\mathbb{V}\left[\frac{1}{B}\sum_{k=1}^{B}g_{k}\right] = \rho\sigma^{2} + \frac{1-\rho}{B}\sigma^{2}.$$

► The idea is thus to introduce a source of randomness into the sample used to train each single classifier g_k, k = 1, ..., B to render the pairwise correlation of the g_k's as small as possible.

- ► The derivations from above exploit the assumption that random variables g₁(x), ..., g_B(x) are independent and identically distributed.
- ► As the classifiers g₁,..., g_B are constructed using the same training sample D_n, the assumption of independence is not really credible.
- Remark: If the variables g₁,..., g_B identically distributed with variance σ², but not necessarily independent, with positive pairwise correlation ρ, then

$$\mathbb{V}\left[\frac{1}{B}\sum_{k=1}^{B}g_{k}\right] = \rho\sigma^{2} + \frac{1-\rho}{B}\sigma^{2}.$$

- ► The idea is thus to introduce a source of randomness into the sample used to train each single classifier g_k, k = 1, ..., B to render the pairwise correlation of the g_k's as small as possible.
- Resort to the idea of the **bootstrap**.

Contents

Classification tree Algorithm Tuning

Bagging Motivation Algorithm An example

Random forest

Algorithm Interpretation Consistency results

◆□ → ◆□ → ▲ Ξ → ▲ Ξ → ● Ξ → ○ Q ↔ 26/64

Training Input:

• Training sample $((\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)) = \mathcal{D}_n \in \mathbb{R}^d \times \{0, 1\}.$

Training

Input:

- ▶ Training sample $((\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)) = \mathcal{D}_n \in \mathbb{R}^d \times \{0, 1\}.$
- Basic classifier $g(\cdot)$.

Training

Input:

- ▶ Training sample $((\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)) = \mathcal{D}_n \in \mathbb{R}^d \times \{0, 1\}.$
- Basic classifier $g(\cdot)$.
- Number of estimators to aggregate *B*.

Training

Input:

▶ Training sample $((\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)) = \mathcal{D}_n \in \mathbb{R}^d \times \{0, 1\}.$

・ロ · ・ (日 · ・ ミ · ・ ミ · ・ ミ · の へ C^{*} 27/64

- ▶ Basic classifier g(·).
- Number of estimators to aggregate *B*.

For k = 1, ..., B

Training

Input:

▶ Training sample $((\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)) = \mathcal{D}_n \in \mathbb{R}^d \times \{0, 1\}.$

・ロ · ・ (日 · ・ ミ · ・ ミ · ・ ミ · の へ C^{*} 27/64

- ▶ Basic classifier g(·).
- Number of estimators to aggregate *B*.

For k = 1, ..., B

1. Draw a sample $\mathcal{D}_{n,k}^*$ from \mathcal{D}_n using bootstrap.

Training

Input:

▶ Training sample $((\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)) = \mathcal{D}_n \in \mathbb{R}^d \times \{0, 1\}.$

・ロ · ・ (日 · ・ ミ · ・ ミ · ・ ミ · の へ C^{*} 27/64

- ▶ Basic classifier g(·).
- Number of estimators to aggregate *B*.

For k = 1, ..., B

- 1. Draw a sample $\mathcal{D}_{n,k}^*$ from \mathcal{D}_n using bootstrap.
- 2. Learn g_k^* on $\mathcal{D}_{n,k}^*$.

Training

Input:

- ▶ Training sample $((\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)) = \mathcal{D}_n \in \mathbb{R}^d \times \{0, 1\}.$
- ▶ Basic classifier g(·).
- Number of estimators to aggregate *B*.

For k = 1, ..., B

- 1. Draw a sample $\mathcal{D}_{n,k}^*$ from \mathcal{D}_n using bootstrap.
- 2. Learn g_k^* on $\mathcal{D}_{n,k}^*$.

Output: The aggregated classifier $g^{agg}(\cdot) = 1\left(\frac{1}{B}\sum_{k=1}^{B}g_{k}^{*}(\cdot) > 0.5\right)$.

・ロ · ・ (日 · ・ ミ · ・ ミ · ・ ミ · の へ C^{*} 27/64

Training

Input:

- ▶ Training sample $((\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)) = \mathcal{D}_n \in \mathbb{R}^d \times \{0, 1\}.$
- ▶ Basic classifier g(·).
- Number of estimators to aggregate *B*.

For k = 1, ..., B

1. Draw a sample $\mathcal{D}_{n,k}^*$ from \mathcal{D}_n using bootstrap.

2. Learn
$$g_k^*$$
 on $\mathcal{D}_{n,k}^*$.

Output: The aggregated classifier $g^{agg}(\cdot) = 1\left(\frac{1}{B}\sum_{k=1}^{B}g_{k}^{*}(\cdot) > 0.5\right)$.

Classification

Classify the new observation x as

$$g^{\mathsf{agg}}(\mathbf{x}) = 1 \Big(rac{1}{B} \sum_{k=1}^{B} g^*_k(\mathbf{x}) > 0.5 \Big) \,.$$

・ロ · ・ (日 · ・ ミ · ・ ミ · ・ ミ · の へ C^{*} 27/64

 Bootstrap is a technique based on random sampling, which allows for estimating the sampling distribution of almost any statistics.

- Bootstrap is a technique based on random sampling, which allows for estimating the sampling distribution of almost any statistics.
- Bootstrap drawings are represented by B random variables θ_k, k = 1, ..., B.

- Bootstrap is a technique based on random sampling, which allows for estimating the sampling distribution of almost any statistics.
- Bootstrap drawings are represented by B random variables θ_k, k = 1, ..., B.
- In general for the sample consisting of *n* observations, two techniques are used to draw bootstrap samples:
 - draw (choose randomly) n observations with replacements,

- Bootstrap is a technique based on random sampling, which allows for estimating the sampling distribution of almost any statistics.
- Bootstrap drawings are represented by B random variables θ_k, k = 1, ..., B.
- In general for the sample consisting of *n* observations, two techniques are used to draw bootstrap samples:
 - draw (choose randomly) n observations with replacements,
 - draw (choose randomly) *l* < *n* observations without replacement.

- Bootstrap is a technique based on random sampling, which allows for estimating the sampling distribution of almost any statistics.
- Bootstrap drawings are represented by B random variables θ_k, k = 1, ..., B.
- In general for the sample consisting of n observations, two techniques are used to draw bootstrap samples:
 - draw (choose randomly) n observations with replacements,
 - draw (choose randomly) *l* < *n* observations without replacement.
- Thus aggregated classifiers contain two sources of randomness:

- Bootstrap is a technique based on random sampling, which allows for estimating the sampling distribution of almost any statistics.
- Bootstrap drawings are represented by B random variables θ_k, k = 1, ..., B.
- In general for the sample consisting of n observations, two techniques are used to draw bootstrap samples:
 - draw (choose randomly) n observations with replacements,
 - draw (choose randomly) *l* < *n* observations without replacement.
- Thus aggregated classifiers contain two sources of randomness:
 - due to the \mathcal{D}_n being a random draw from distribution of (X, Y),

- Bootstrap is a technique based on random sampling, which allows for estimating the sampling distribution of almost any statistics.
- Bootstrap drawings are represented by B random variables θ_k, k = 1, ..., B.
- In general for the sample consisting of n observations, two techniques are used to draw bootstrap samples:
 - draw (choose randomly) n observations with replacements,
 - draw (choose randomly) *l* < *n* observations without replacement.
- Thus aggregated classifiers contain two sources of randomness:
 - due to the \mathcal{D}_n being a random draw from distribution of (X, Y),
 - due to the bootstrap drawing.

- There are two choices to be done:
 - ▶ base classifier g(·),
 - **number of** bootstrap **iterations** *B*.

- There are two choices to be done:
 - base classifier g(·),
 - number of bootstrap iterations *B*.
- Under suitable conditions, given the original sample \mathcal{D}_n , by the law of large numbers we have, almost surely

$$\lim_{B\to\infty} g^{agg}(\mathbf{x}) = \lim_{B\to\infty} 1\left(\frac{1}{B}\sum_{k=1}^{B} g_k^*(\mathbf{x}) > 0.5\right)$$

・ロト <
日 > <
ヨ > <
ヨ >
・
ヨ の へ ? 29/64

- There are two choices to be done:
 - base classifier g(·),
 - number of bootstrap iterations *B*.
- Under suitable conditions, given the original sample \mathcal{D}_n , by the law of large numbers we have, almost surely

$$\lim_{B \to \infty} g^{agg}(\mathbf{x}) = \lim_{B \to \infty} 1\left(\frac{1}{B} \sum_{k=1}^{B} g_k^*(\mathbf{x}) > 0.5\right)$$
$$= 1\left(\lim_{B \to \infty} \frac{1}{B} \sum_{k=1}^{B} g_k^*(\mathbf{x}) > 0.5\right)$$

・ロト <
日 > <
ヨ > <
ヨ >
・
ヨ の へ ? 29/64

- There are two choices to be done:
 - base classifier g(·),
 - **number of** bootstrap **iterations** *B*.
- ► Under suitable conditions, given the original sample D_n, by the law of large numbers we have, almost surely

$$\lim_{B \to \infty} g^{agg}(\mathbf{x}) = \lim_{B \to \infty} 1\left(\frac{1}{B}\sum_{k=1}^{B} g_k^*(\mathbf{x}) > 0.5\right)$$
$$= 1\left(\lim_{B \to \infty} \frac{1}{B}\sum_{k=1}^{B} g_k^*(\mathbf{x}) > 0.5\right)$$
$$= 1\left(\mathbb{E}^*[g_k^*(\mathbf{x}) \mid \mathcal{D}_n] > 0.5\right).$$

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ ⑦ Q @ 29/64

- There are two choices to be done:
 - base classifier g(·),
 - number of bootstrap iterations *B*.
- ► Under suitable conditions, given the original sample D_n, by the law of large numbers we have, almost surely

$$\begin{split} \lim_{B \to \infty} g^{agg}(\mathbf{x}) &= \lim_{B \to \infty} \mathbb{1} \Big(\frac{1}{B} \sum_{k=1}^{B} g_k^*(\mathbf{x}) > 0.5 \Big) \\ &= \mathbb{1} \Big(\lim_{B \to \infty} \frac{1}{B} \sum_{k=1}^{B} g_k^*(\mathbf{x}) > 0.5 \Big) \\ &= \mathbb{1} \big(\mathbb{E}^* [g_k^*(\mathbf{x}) \mid \mathcal{D}_n] > 0.5 \big) \,. \end{split}$$

So g^{agg}(x) stabilizes with increasing B converging to the bagging estimator 1(ℝ*[g^{*}_k(x) | D_n] > 0.5).
Choice of the parameters

- There are two choices to be done:
 - base classifier g(·),
 - number of bootstrap iterations B.
- ► Under suitable conditions, given the original sample D_n , by the law of large numbers we have, almost surely

$$\begin{split} \lim_{B \to \infty} g^{agg}(\mathbf{x}) &= \lim_{B \to \infty} \mathbb{1} \Big(\frac{1}{B} \sum_{k=1}^{B} g_k^*(\mathbf{x}) > 0.5 \Big) \\ &= \mathbb{1} \Big(\lim_{B \to \infty} \frac{1}{B} \sum_{k=1}^{B} g_k^*(\mathbf{x}) > 0.5 \Big) \\ &= \mathbb{1} \big(\mathbb{E}^* [g_k^*(\mathbf{x}) \mid \mathcal{D}_n] > 0.5 \big) \,. \end{split}$$

- So g^{agg}(x) stabilizes with increasing B converging to the bagging estimator 1(ℝ*[g^{*}_k(x) | D_n] > 0.5).
- ► Thus, B should be chosen as large as possible, regarding computational capabilities.

Iris, 'setosa' vs 'versicolor'

Iris, 'setosa' vs 'versicolor', CART

Iris, 'setosa' vs 'versicolor', bagged CART (B = 10)

Iris, 'setosa' vs 'versicolor', bagged CART (B = 100)

Iris, 'setosa' vs 'versicolor', bagged CART (B = 1000)

 Bagging a good classifier can make it better, bagging a bad classifier can make it worse.

- Bagging a good classifier can make it better, bagging a bad classifier can make it worse.
- Significant improvement by bagging is not expected on large data sets because there bootstrap samples are very similar. Subsampling is expected to improve things.

・ロト <
つ ト <
三 ト <
三 ト <
三 ・ う へ や 33/64
</p>

- Bagging a good classifier can make it better, bagging a bad classifier can make it worse.
- Significant improvement by bagging is not expected on large data sets because there bootstrap samples are very similar. Subsampling is expected to improve things.
- Bagging could be improved by using a robust location estimator instead a mean over the *B* bootstrapped classifiers. Taking the median yields the so-called *bragging* (Buhlmann, 2003). Trimmed means is another option.

・ロト <
つ ト <
三 ト <
三 ト <
三 ・ う へ や 33/64
</p>

- Bagging a good classifier can make it better, bagging a bad classifier can make it worse.
- Significant improvement by bagging is not expected on large data sets because there bootstrap samples are very similar. Subsampling is expected to improve things.
- Bagging could be improved by using a robust location estimator instead a mean over the *B* bootstrapped classifiers. Taking the median yields the so-called *bragging* (Buhlmann, 2003). Trimmed means is another option.
- Bagging reduces interpretability of the classifier because any simple structure in the model is lost.

Contents

Classification tree Algorithm Tuning

Bagging Motivation Algorithm An example

Random forest

Algorithm Interpretation Consistency results

◆□ → ◆□ → ◆ = → ◆ = → ○ へ ○ 34/64

Normal2 data generation

- Generate independent copies of a bivariate normal vector:
 - for Y = 0 mean (0, 0) and

$$\Sigma = \begin{pmatrix} 1 & 1 \\ 1 & 4 \end{pmatrix}$$

• for Y = 1 mean (0, 0) and the variance is equal to 4Σ

Normal2 data

Normal2 (location-scale alternative, training)

x1

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ ⑦ Q @ 36/64

Normal2 data

Normal2 (location-scale alternative, test)

x1

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ Q (? 37/64

Bagging LDA: Normal2 data

Bagging the LDA classifier on the Normal2 data set

Bagging the CART (min split = 1) on the Normal2 data set

Bagging the CART (min split = 5) on the Normal2 data set

Bagging the CART (min split = 10) on the Normal2 data set

Bagging the CART (min split = 25) on the Normal2 data set

Contents

Classification tree Algorithm Tuning

Bagging Motivation Algorithm An example

Random forest

Algorithm Interpretation Consistency results

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ の Q @ 43/64

Contents

Classification tree Algorithm Tuning

Bagging Motivation Algorithm An example

Random forest Algorithm

Interpretation Consistency results

◆□ → ◆□ → ▲ Ξ → ▲ Ξ → ● Ξ → ○ Q ↔ 44/64

Random forest is a collection of trees.

- Random forest is a **collection of trees**.
- Random forests have been introduced by Léo Breiman in the early 2000s. The following web-page is dedicated to random forests: http://www.stat.berkeley.edu/~breiman/RandomForests/

- Random forest is a **collection of trees**.
- Random forests have been introduced by Léo Breiman in the early 2000s. The following web-page is dedicated to random forests: http://www.stat.berkeley.edu/~breiman/RandomForests/
- Random forests can be seen as a modified version of bagging as they also aggregate trees taught on the bootstrap samples.

- Random forest is a **collection of trees**.
- Random forests have been introduced by Léo Breiman in the early 2000s. The following web-page is dedicated to random forests: http://www.stat.berkeley.edu/~breiman/RandomForests/
- Random forests can be seen as a modified version of bagging as they also aggregate trees taught on the bootstrap samples.
- However, random forests introduce a substantial modification of bagging that builds a large collection of *de-correlated* trees.

- Random forest is a collection of trees.
- Random forests have been introduced by Léo Breiman in the early 2000s. The following web-page is dedicated to random forests: http://www.stat.berkeley.edu/~breiman/RandomForests/
- Random forests can be seen as a modified version of bagging as they also aggregate trees taught on the bootstrap samples.
- However, random forests introduce a substantial modification of bagging that builds a large collection of *de-correlated* trees.
- Let T_k(**x**), k = 1,..., B be tree-similar classifiers (T_k : ℝ^d → {0,1}). The random forest classifier assigns new observation **x** by aggregating these:

$$T^{RF}(\mathbf{x}) = 1\left(\frac{1}{B}\sum_{k=1}^{B}T_{k}(\mathbf{x}) > 0.5\right).$$

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ・ ⑦ Q @ 45/64

To reduce correlation between trees, Breiman proposes

- ▶ first, randomly select *m* variables out of all *d* variables,
- next, pick the best variable/split-point among the m.

▶ Training sample $((\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)) = \mathcal{D}_n \in \mathbb{R}^d \times \{0, 1\}.$

Input:

- ▶ Training sample $((\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)) = \mathcal{D}_n \in \mathbb{R}^d \times \{0, 1\}.$
- Number of trees B; minimum number of observations for a node to be split n_{min}; impurity criterion Q.

Input:

- Training sample $((\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)) = \mathcal{D}_n \in \mathbb{R}^d \times \{0, 1\}.$
- Number of trees B; minimum number of observations for a node to be split n_{min}; impurity criterion Q.

• number of variables to use when splitting $m \in \{1, ..., d\}$.

Input:

- ▶ Training sample $((\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)) = \mathcal{D}_n \in \mathbb{R}^d \times \{0, 1\}.$
- Number of trees B; minimum number of observations for a node to be split n_{min}; impurity criterion Q.

• number of variables to use when splitting $m \in \{1, ..., d\}$.

For k = 1, ..., B

Input:

- ▶ Training sample $((\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)) = \mathcal{D}_n \in \mathbb{R}^d \times \{0, 1\}.$
- Number of trees B; minimum number of observations for a node to be split n_{min}; impurity criterion Q.

• number of variables to use when splitting $m \in \{1, ..., d\}$.

For k = 1, ..., B

1. Draw a sample $\mathcal{D}_{n,k}^*$ from \mathcal{D}_n using bootstrap.

Random forests (algorithm)

Training Input:

- ▶ Training sample $((\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)) = \mathcal{D}_n \in \mathbb{R}^d \times \{0, 1\}.$
- Number of trees B; minimum number of observations for a node to be split n_{min}; impurity criterion Q.
- number of variables to use when splitting $m \in \{1, ..., d\}$.

For k = 1, ..., B

- 1. Draw a sample $\mathcal{D}_{n,k}^*$ from \mathcal{D}_n using bootstrap.
- 2. Learn the classification tree T_k^* on $\mathcal{D}_{n,k}^*$; each time when splitting a node, search optimal variable among *m* variables randomly chosen out of all *d* variables.

Random forests (algorithm)

Training Input:

- ▶ Training sample $((\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)) = \mathcal{D}_n \in \mathbb{R}^d \times \{0, 1\}.$
- ► Number of trees B; minimum number of observations for a node to be split n_{min}; impurity criterion Q.
- number of variables to use when splitting $m \in \{1, ..., d\}$.

For k = 1, ..., B

- 1. Draw a sample $\mathcal{D}_{n,k}^*$ from \mathcal{D}_n using bootstrap.
- 2. Learn the classification tree T_k^* on $\mathcal{D}_{n,k}^*$; each time when splitting a node, search optimal variable among *m* variables randomly chosen out of all *d* variables.

Output: The aggregated classifier $T^{RF}(\cdot) = 1\left(\frac{1}{B}\sum_{k=1}^{B}T_{k}^{*}(\cdot) > 0.5\right)$.

Random forests (algorithm)

Training Input:

- ▶ Training sample $((\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)) = \mathcal{D}_n \in \mathbb{R}^d \times \{0, 1\}.$
- Number of trees B; minimum number of observations for a node to be split n_{min}; impurity criterion Q.
- number of variables to use when splitting $m \in \{1, ..., d\}$.

For k = 1, ..., B

- 1. Draw a sample $\mathcal{D}_{n,k}^*$ from \mathcal{D}_n using bootstrap.
- 2. Learn the classification tree T_k^* on $\mathcal{D}_{n,k}^*$; each time when splitting a node, search optimal variable among *m* variables randomly chosen out of all *d* variables.

Output: The aggregated classifier $T^{RF}(\cdot) = 1\left(\frac{1}{B}\sum_{k=1}^{B}T_{k}^{*}(\cdot) > 0.5\right)$.

Classification

Classify the new observation x as

$$T^{RF}(\mathbf{x}) = 1\left(\frac{1}{B}\sum_{k=1}^{B}T_{k}^{*}(\mathbf{x}) > 0.5\right).$$
Spam data

- See Hastie et al. (2009, ch.1)
- A standard data set consisting of information from 4601 email messages
- The purpose is to predict if the email message is a spam or not
- ▶ For all 4601 email messages, the following information is available
 - the true outcome (email type) email or spam is available
 - the relative frequencies of 57 of the most commonly occurring words and punctuation marks in the email message.

・ロト < 日 > < 三 > < 三 > 三 の へ で 48/64

Random forests: spam data

Random forest (m = 7) on the spam data set

> There are two introduced sources of randomness:

- > There are two introduced sources of randomness:
 - B bootstrap samples,

- > There are two introduced sources of randomness:
 - B bootstrap samples,
 - *m* variables randomly chosen out of *d* when splitting each tree node.

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の Q (> 50/64

- > There are two introduced sources of randomness:
 - B bootstrap samples,
 - *m* variables randomly chosen out of *d* when splitting each tree node.

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ ⑦ < ♡ _{50/64}

The method is simple, implementations are available in numerous software, e.g. R-package randomForest.

- > There are two introduced sources of randomness:
 - B bootstrap samples,
 - *m* variables randomly chosen out of *d* when splitting each tree node.
- The method is simple, implementations are available in numerous software, e.g. R-package randomForest.
- The classifier is known for relatively high speed of training and classification.

- > There are two introduced sources of randomness:
 - B bootstrap samples,
 - *m* variables randomly chosen out of *d* when splitting each tree node.
- The method is simple, implementations are available in numerous software, e.g. R-package randomForest.
- The classifier is known for relatively high speed of training and classification.
- The classifier is known for its relatively precise prediction on complex data, *i.e.* those including many variables, missing entries, *etc.*

- > There are two introduced sources of randomness:
 - B bootstrap samples,
 - *m* variables randomly chosen out of *d* when splitting each tree node.
- The method is simple, implementations are available in numerous software, e.g. R-package randomForest.
- The classifier is known for relatively high speed of training and classification.
- The classifier is known for its relatively precise prediction on complex data, *i.e.* those including many variables, missing entries, *etc.*
- Classifier has limited sensibility w.r.t. to the choice of parameters: B, m, n_{min}.

> Parameter *m* is related to the **dependence between** single **trees**.

> Parameter *m* is related to the **dependence between** single **trees**.

► The **lower** is *m*:

- > Parameter *m* is related to the **dependence between** single **trees**.
- ► The **lower** is *m*:
 - to larger extent the variables at which to split each node are chosen randomly, thus the more different are single trees,

< □ > < □ > < ■ > < Ξ > < Ξ > Ξ · ク Q ~ 51/64

thus the more independent are single trees,

- > Parameter *m* is related to the **dependence between** single **trees**.
- ▶ The **lower** is *m*:
 - to larger extent the variables at which to split each node are chosen randomly, thus the more different are single trees, thus the more independent are single trees,

・ロト <
つ ト <
三 ト <
三 ト <
三 ト う へ や 51/64
</p>

the lower is the prediction accuracy of each single tree, and thus of the entire forest as well.

- > Parameter *m* is related to the **dependence between** single **trees**.
- ▶ The **lower** is *m*:
 - to larger extent the variables at which to split each node are chosen randomly, thus the more different are single trees, thus the more independent are single trees,

- the lower is the prediction accuracy of each single tree, and thus of the entire forest as well.
- ▶ The **higher** is *m*: vice versa.

- > Parameter *m* is related to the **dependence between** single **trees**.
- ▶ The **lower** is *m*:
 - to larger extent the variables at which to split each node are chosen randomly, thus the more different are single trees, thus the more independent are single trees,
 - the lower is the prediction accuracy of each single tree, and thus of the entire forest as well.
- ▶ The **higher** is *m*: vice versa.
- ► It is recommended to check the performance of the random forests for **different choices of** *m*.

・ロト <
つ ト <
三 ト <
三 ト <
三 ト う へ や 51/64
</p>

- > Parameter *m* is related to the **dependence between** single **trees**.
- ▶ The **lower** is *m*:
 - to larger extent the variables at which to split each node are chosen randomly, thus the more different are single trees, thus the more independent are single trees,
 - the lower is the prediction accuracy of each single tree, and thus of the entire forest as well.
- ▶ The **higher** is *m*: vice versa.
- ► It is recommended to check the performance of the random forests for **different choices of** *m*.
- ▶ The inventors recommend $m = \lfloor \sqrt{d} \rfloor$ (the default value in R-package randomForest).

Random forests: spam data

Random forest on the spam data set

Number of trees

Contents

Classification tree Algorithm Tuning

Bagging Motivation Algorithm An example

Random forest

Algorithm Interpretation Consistency result

◆□ → ◆□ → ▲ Ξ → ▲ Ξ → ● ● ○ へ ○ 53/64

It is desirable to measure the performance of the random forests, as of any other classification technique, in terms of the error probability:

$$R(T^{RF}) = \mathbb{P}(T^{RF}(X) \neq Y).$$

It is desirable to measure the performance of the random forests, as of any other classification technique, in terms of the error probability:

$$R(T^{RF}) = \mathbb{P}(T^{RF}(X) \neq Y).$$

► As usual, the error can be measured:

It is desirable to measure the performance of the random forests, as of any other classification technique, in terms of the error probability:

$$R(T^{RF}) = \mathbb{P}(T^{RF}(X) \neq Y).$$

- As usual, the error can be measured:
 - For a probability distribution: by a simulation study, *i.e.* train T^{RF} and measure its classification error for a number of simulated data sets.

It is desirable to measure the performance of the random forests, as of any other classification technique, in terms of the error probability:

$$R(T^{RF}) = \mathbb{P}(T^{RF}(X) \neq Y).$$

As usual, the error can be measured:

- For a probability distribution: by a simulation study, *i.e.* train T^{RF} and measure its classification error for a number of simulated data sets.
- For given data: by splitting data into training and test subsets, by iterating this splitting if data are small, or by cross-validation.

It is desirable to measure the performance of the random forests, as of any other classification technique, in terms of the error probability:

$$R(T^{RF}) = \mathbb{P}(T^{RF}(X) \neq Y).$$

As usual, the error can be measured:

- For a probability distribution: by a simulation study, *i.e.* train T^{RF} and measure its classification error for a number of simulated data sets.
- For given data: by splitting data into training and test subsets, by iterating this splitting if data are small, or by cross-validation.
- Random forests offer an additional possibility to directly estimate classification error exploiting the **out-of-bag (OOB)** principle.

It is desirable to measure the performance of the random forests, as of any other classification technique, in terms of the error probability:

$$R(T^{RF}) = \mathbb{P}(T^{RF}(X) \neq Y).$$

As usual, the error can be measured:

- For a probability distribution: by a simulation study, *i.e.* train T^{RF} and measure its classification error for a number of simulated data sets.
- For given data: by splitting data into training and test subsets, by iterating this splitting if data are small, or by cross-validation.
- Random forests offer an additional possibility to directly estimate classification error exploiting the **out-of-bag (OOB)** principle.
- ► The same idea can be extended from sample points to variables allowing to measure **variable importance**.

Out-of-bag error

► For each pair (x_i, y_i) from D_n, let I_i be the set of indices of trees whose bootstrap samples D^{*}_n do not contain this observation.

Out-of-bag error

- ► For each pair (x_i, y_i) from D_n, let I_i be the set of indices of trees whose bootstrap samples D^{*}_n do not contain this observation.
- ▶ By these trees, observation **x**_i is then classified as

$$\hat{y}_i = \frac{1}{\#I_i} \sum_{k \in I_i} T_k^*(\mathbf{x}_i).$$

<□ ▶ < @ ▶ < E ▶ < E ▶ E ∽ Q @ 55/64

Out-of-bag error

- For each pair (x_i, y_i) from D_n, let I_i be the set of indices of trees whose bootstrap samples Dⁿ_n do not contain this observation.
- By these trees, observation x_i is then classified as

$$\hat{y}_i = \frac{1}{\#I_i} \sum_{k \in I_i} T_k^*(\mathbf{x}_i) \,.$$

Averaging over all observations x_i, i = 1, ..., n from D_n gives the out-of-bag estimate of the error rate:

$$R_{OOB} = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1} \left(\hat{y}_i \neq y_i \right).$$

Random forests: spam data

Random forest (m = 7) on the spam data set

Number of trees

Random forests: spam data

Random forest (m = 1) on the spam data set

Number of trees

For a bootstrap sample D^{*}_{n,k}, let D^{*−}_{n,k} be the subset of training sample not contained in D^{*}_{n,k}, *i.e.* it holds D^{*}_{n,k} ∪ D^{*−}_{n,k} = D_n and D^{*}_{n,k} ∩ D^{*−}_{n,k} = Ø.

- For a bootstrap sample D^{*}_{n,k}, let D^{*-}_{n,k} be the subset of training sample not contained in D^{*}_{n,k}, *i.e.* it holds D^{*}_{n,k} ∪ D^{*-}_{n,k} = D_n and D^{*}_{n,k} ∩ D^{*-}_{n,k} = Ø.
- ▶ Then, let $R_{OOB(k)}$ be the classification error estimated on $\mathcal{D}_{n,k}^{*-}$:

$$R_{OOB(k)} = \frac{1}{\# \mathcal{D}_{n,k}^{*-}} \sum_{\mathbf{x} \in \mathcal{D}_{n,k}^{*-}} \mathbf{1} \left(T_k^*(\mathbf{x}) \neq y_i \right).$$

- ▶ For a bootstrap sample $\mathcal{D}_{n,k}^*$, let $\mathcal{D}_{n,k}^{*-}$ be the subset of training sample not contained in $\mathcal{D}_{n,k}^*$, *i.e.* it holds $\mathcal{D}_{n,k}^* \cup \mathcal{D}_{n,k}^{*-} = \mathcal{D}_n$ and $\mathcal{D}_{n,k}^* \cap \mathcal{D}_{n,k}^{*-} = \emptyset$.
- ▶ Then, let $R_{OOB(k)}$ be the classification error estimated on $\mathcal{D}_{n,k}^{*-}$:

$$R_{OOB(k)} = \frac{1}{\# \mathcal{D}_{n,k}^{*-}} \sum_{\mathbf{x} \in \mathcal{D}_{n,k}^{*-}} \mathbf{1} \left(T_k^*(\mathbf{x}) \neq y_i \right).$$

Further, let D^{*−}_{n,k}(j) be the same subset D^{*−}_{n,k} where the values of variable j ∈ {1, ..., d} have been randomly perturbed, and measure the error from above on this perturbed subset:

$$R_{OOB(k,j)} = \frac{1}{\# \mathcal{D}_{n,k}^{*-}(j)} \sum_{\mathbf{x} \in \mathcal{D}_{n,k}^{*-}(j)} \mathbb{1} (T_k^*(\mathbf{x}) \neq y_i).$$

- ▶ For a bootstrap sample $\mathcal{D}_{n,k}^*$, let $\mathcal{D}_{n,k}^{*-}$ be the subset of training sample not contained in $\mathcal{D}_{n,k}^*$, *i.e.* it holds $\mathcal{D}_{n,k}^* \cup \mathcal{D}_{n,k}^{*-} = \mathcal{D}_n$ and $\mathcal{D}_{n,k}^* \cap \mathcal{D}_{n,k}^{*-} = \emptyset$.
- ▶ Then, let $R_{OOB(k)}$ be the classification error estimated on $\mathcal{D}_{n,k}^{*-}$:

$$R_{OOB(k)} = \frac{1}{\# \mathcal{D}_{n,k}^{*-}} \sum_{\mathbf{x} \in \mathcal{D}_{n,k}^{*-}} \mathbb{1}(T_k^*(\mathbf{x}) \neq y_i).$$

Further, let D^{*−}_{n,k}(j) be the same subset D^{*−}_{n,k} where the values of variable j ∈ {1, ..., d} have been randomly perturbed, and measure the error from above on this perturbed subset:

$$R_{OOB(k,j)} = \frac{1}{\# \mathcal{D}_{n,k}^{*-}(j)} \sum_{\mathbf{x} \in \mathcal{D}_{n,k}^{*-}(j)} \mathbb{1} \left(T_k^*(\mathbf{x}) \neq y_i \right).$$

The importance of variable j can thus be measured (by averaging over all B trees) as:

$$Imp(X_j) = \frac{1}{B} \sum_{k=1}^{B} (R_{OOB(k,j)} - R_{OOB(k)}).$$

Random forests: importance of the variables using the Gini index decrease

Random forest (m = 7, B = 500) on the spam data set

Index

Contents

Classification tree Algorithm Tuning

Bagging Motivation Algorithm An example

Random forest

Algorithm Interpretation Consistency results

Consistency of the purely random forest classifier

Define the **purely random tree classifier** T^{pr} as follows:
Define the **purely random tree classifier** T^{pr} as follows:

• The support of X (and thus the root node of T^{pr}) is $[0,1]^d$.

Define the **purely random tree classifier** T^{pr} as follows:

- The support of X (and thus the root node of T^{pr}) is $[0,1]^d$.
- At each step, the leaf is chosen uniformly at random among all existing leaves.

Define the **purely random tree classifier** T^{pr} as follows:

- The support of X (and thus the root node of T^{pr}) is $[0,1]^d$.
- At each step, the leaf is chosen uniformly at random among all existing leaves.
- ▶ At each node, the split variable *j* is chosen uniformly at random among 1, ..., *d*.

・ロト < 回 ト < 王 ト < 王 ト 三 の < で 60/64
</p>

Define the **purely random tree classifier** T^{pr} as follows:

- The support of X (and thus the root node of T^{pr}) is $[0,1]^d$.
- At each step, the leaf is chosen uniformly at random among all existing leaves.
- ► At each node, the split variable *j* is chosen uniformly at random among 1, ..., *d*.
- The selected cell is split at a random location, chosen according to a uniform random variable on the length of the chosen side of the selected cell.

・ロト <
つ ト <
三 ト <
三 ト <
三 ト <
こ ト <
の へ 60/64
</p>

Define the **purely random tree classifier** T^{pr} as follows:

- The support of X (and thus the root node of T^{pr}) is $[0,1]^d$.
- At each step, the leaf is chosen uniformly at random among all existing leaves.
- ► At each node, the split variable *j* is chosen uniformly at random among 1, ..., *d*.
- The selected cell is split at a random location, chosen according to a uniform random variable on the length of the chosen side of the selected cell.
- The procedure is repeated k times where $k \ge 1$ is fixed in advance.

・ロト <
つ ト <
三 ト <
三 ト <
三 ト <
こ ト <
の へ 60/64
</p>

Define the **purely random tree classifier** T^{pr} as follows:

- The support of X (and thus the root node of T^{pr}) is $[0,1]^d$.
- At each step, the leaf is chosen uniformly at random among all existing leaves.
- ▶ At each node, the split variable *j* is chosen uniformly at random among 1, ..., *d*.
- The selected cell is split at a random location, chosen according to a uniform random variable on the length of the chosen side of the selected cell.
- The procedure is repeated k times where $k \ge 1$ is fixed in advance.
- The only data driven element is the class label of the leaf, chosen due to the majority of the observations contained in it.

・ロト <
つ ト <
三 ト <
三 ト <
三 ト <
こ ト <
の へ 60/64
</p>

Define the **purely random tree classifier** T^{pr} as follows:

- The support of X (and thus the root node of T^{pr}) is $[0,1]^d$.
- At each step, the leaf is chosen uniformly at random among all existing leaves.
- ► At each node, the split variable *j* is chosen uniformly at random among 1, ..., *d*.
- The selected cell is split at a random location, chosen according to a uniform random variable on the length of the chosen side of the selected cell.
- The procedure is repeated k times where $k \ge 1$ is fixed in advance.
- The only data driven element is the class label of the leaf, chosen due to the majority of the observations contained in it.

Theorem (Biau, Devroye, Lugosi, 2008; Th. 1)

Assume that the distribution of X is supported on $[0,1]^d$. Then the purely random forest classifier $T_B^{prRF} = 1(\frac{1}{B}\sum_{k=1}^{B}T^{pr}(\cdot, \mathcal{D}_n))$ (as well as $\lim_{B\to\infty} T_B^{prRF}$) is consistent whenever $k\to\infty$ and $k/n\to 0$ as $k\to\infty$.

Define the scale-invariant random tree classifier T^{si} as follows:

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ → ○ ◆ ○ 61/64

Define the scale-invariant random tree classifier T^{si} as follows:

• Take the **purely random tree classifier**.

< □ ▶ < 酉 ▶ < ☰ ▶ < ☰ ▶ ≡ の Q (> 61/64

Define the scale-invariant random tree classifier T^{si} as follows:

- Take the **purely random tree classifier**.
- Let the root node be the entire space \mathbb{R}^d .

Define the scale-invariant random tree classifier T^{si} as follows:

> Take the **purely random tree classifier**.

- Let the root node be the entire space \mathbb{R}^d .
- ▶ Define the node-cutting procedure as follows: if the cell (node) *m* contains *n_m* points x₁,..., x_{n_m}, then the random index *I* is chosen uniformly from the set {0, 1, ..., *n_m*}, and the cut is performed in the chosen variable between the points x_I and x_{I+1}.

4 ロ ト 4 日 ト 4 王 ト 4 王 ト 王 の 9 9 61/64

Define the scale-invariant random tree classifier T^{si} as follows:

• Take the **purely random tree classifier**.

- Let the root node be the entire space \mathbb{R}^d .
- Define the node-cutting procedure as follows: if the cell (node) *m* contains n_m points x₁,..., x_{n_m}, then the random index *I* is chosen uniformly from the set {0, 1, ..., n_m}, and the cut is performed in the chosen variable between the points x_I and x_{I+1}.

Theorem (Biau, Devroye, Lugosi, 2008)

Assume that the distribution of X has non-atomic marginals in \mathbb{R}^d . Then the scale-invariant random forest classifier $T_B^{siRF} = 1(\frac{1}{B}\sum_{k=1}^B T^{si}(\cdot, \mathcal{D}_n))$ (as well as $\lim_{B\to\infty} T_B^{siRF}$) is consistent whenever $k \to \infty$ and $\frac{k}{n} \to 0$ as $k \to \infty$.

Consistency of bagging

Remind:

► Bagging classifier:

$$g^{ extsf{agg}}_{B}({f x}) = 1 \Big(rac{1}{B} \sum_{k=1}^{B} g^{*}_{k}({f x}) > 0.5 \Big) \,.$$

<□ ▶ < □ ▶ < 三 ▶ < 三 ▶ < 三 ♪ ○ < ○ 62/64

Consistency of bagging

Remind:

Bagging classifier:

$$g_B^{agg}(\mathbf{x}) = 1 \Big(rac{1}{B} \sum_{k=1}^B g_k^*(\mathbf{x}) > 0.5 \Big) \,.$$

Averaged classifier (the limit of the bagging classifier):

$$\lim_{B\to\infty} g_B^{\text{agg}}(\mathbf{x}) = \mathbb{1}\big(\mathbb{E}^*[g_k^*(\mathbf{x}) \mid \mathcal{D}_n) > 0.5]\big)\,.$$

with θ being a random variable delivering a bootstrap sample of size $Bin(n, q_n)$ (without replacement), and $q_n \in [0, 1]$.

・ロト <
つ ト <
三 ト <
三 ト <
三 ト う へ
や 62/64
</p>

Consistency of bagging

Remind:

Bagging classifier:

$$g_B^{agg}(\mathbf{x}) = 1 \Big(rac{1}{B} \sum_{k=1}^B g_k^*(\mathbf{x}) > 0.5 \Big) \, .$$

• Averaged classifier (the limit of the bagging classifier):

$$\lim_{B\to\infty} g_B^{\text{agg}}(\mathbf{x}) = \mathbb{1}\big(\mathbb{E}^*[g_k^*(\mathbf{x}) \mid \mathcal{D}_n) > 0.5]\big)\,.$$

with θ being a random variable delivering a bootstrap sample of size $Bin(n, q_n)$ (without replacement), and $q_n \in [0, 1]$.

Theorem (Biau, Devroye, Lugosi, 2008; Th. 6) Assume that the classifier g is consistent for a certain distribution (X, Y). Then the bagging classifier g_B^{agg} and its limit $1(\mathbb{E}[g_k^*(\mathbf{x}) | \mathcal{D}_n)] > 0.5)$ are also consistent if $nq_n \to \infty$ as $n \to \infty$.

Thank you for your attention!

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q (~ 63/64)

And some more references

- Biau, G., Devroye, L., and Lugosi, G. (2008). Consistency of random forests and other averaging classifiers. *Journal of Machine Learning Research*, 9, 2015–2033.
- Breiman, L. (1996). Bagging predictors. *Machine Learning*, 24, 123–140.
- Breiman, L. (2001). Random forests. *Machine Learning*, 45, 5–32.
- Buhlmann, P. (2003). Bagging, subbagging and bragging for improving some prediction algorithms. *Recent Advances and Trends in Nonparametric Statistics*. Akritas, M.G. and Politis, D.N. (Eds.). Elsevier, pp. 9–34.
- Györfi, L., Kohler, M., Krzyżak, A., Walk, H. (2002) A distribution-free theory of nonparametric regression Springer.
- Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistics Learning: Data Mining, Inference, and Prediction (Second Edition). Springer.
- Stone, C.J. (1977). Consistent nonparametric regression. The Annals of Statistics, 55(4), 595–645.
- Zhou, Z.-H. (2012). Ensemble Methods: Foundations and Algorithms. CRC Press.