Classification tree, bagging, and random forest

Pavlo Mozharovskyi'
(with contributions of Laurent Rouviere? and Valentin Patilea®)

LLTCI, Télécom Paris, Institut Polytechnique de Paris
2Université Rennes 2
3Ensai, CREST

Machine learning

Paris, March 12, 2022



Today

Classification tree
Algorithm
Tuning

Bagging
Motivation
Algorithm
An example

Random forest
Algorithm
Interpretation
Consistency results



Literature

Learning materials include but are not limited to:

» Hastie, T., Tibshirani, R., and Friedman, J. (2009).
The Elements of Statistics Learning: Data Mining, Inference, and
Prediction (Second Edition).
Springer.
» Section 8.7.
» Section 9.2.
» Chapter 15.

» Slides of the lecture.

» Biau, Devroye, Lugosi (2008).
Consistency of random forests and other averaging classifiers.
Journal of Machine Learning Research, 9, 2015-2033.



Binary supervised classification (reminder)

Notation:

>

Given: for the random pair (X, Y) in R x {0,1} consisting of a
random observation X and its random binary label Y (class), a
sample of ni.i.d.: (x1,¥1), s (Xn, Yn)-

Goal: predict the label of the new (unseen before) observation x.

Method: construct a classification rule:
g :RY={0,1}, x> g(x),

so g(x) is the prediction of the label for observation x.

Criterion: of the performance of g is the error probability:
R(g) = Plg(X) # Y] = E[1(g(X) # Y)].
The best solution: is to know the distribution of (X,Y):

g(x) = 1(E[Y|X =x] > 0.5).



Contents

Classification tree
Algorithm
Tuning



Contents

Classification tree
Algorithm



Classification tree (algorithm)

Growing a tree (training)

Input:
» Training sample ((xl,yl), ey (x,,,y,,)) =D, € RY x {0,1}.



Classification tree (algorithm)
Growing a tree (training)
Input:

» Training sample ((xl,yl), ey (xn,y,,)) =D, € RY x {0,1}.
» Measure of impurity @™ (T) for node m of tree T.



Classification tree (algorithm)

Growing a tree (training)

Input:
» Training sample ((xl,yl), ey (xn,y,,)) =D, € RY x {0,1}.
» Measure of impurity @™ (T) for node m of tree T.
» Stopping criteria S(™(T) for node m of tree T.



Classification tree (algorithm)

Growing a tree (training)

Input:
» Training sample ((xl,yl), ey (xn,y,,)) =D, € RY x {0,1}.
» Measure of impurity @™ (T) for node m of tree T.
» Stopping criteria S(™(T) for node m of tree T.

1. Define the root node by the region R(®) containing the entire
sample, set m = 0.



Classification tree (algorithm)

Growing a tree (training)

Input:
» Training sample ((xl,yl), ey (xn,y,,)) =D, € RY x {0,1}.
» Measure of impurity @™ (T) for node m of tree T.
» Stopping criteria S(™(T) for node m of tree T.

1. Define the root node by the region R(®) containing the entire
sample, set m = 0.

2. If S(M(T) is fulfilled then stop for this node (e.g., a lower bound for
the # of obs. in a node).



Classification tree (algorithm)

Growing a tree (training)

Input:
» Training sample ((xl,yl), ey (xn,y,,)) =D, € RY x {0,1}.
» Measure of impurity @™ (T) for node m of tree T.
» Stopping criteria S(™(T) for node m of tree T.

1. Define the root node by the region R(®) containing the entire
sample, set m = 0.

2. If S(M(T) is fulfilled then stop for this node (e.g., a lower bound for
the # of obs. in a node).

3. Find a variable and a split (one-variable threshold) diving node

region R(™ into two nodes with subregions R(™) and R("#) to
minimize Q(™(T).



Classification tree (algorithm)

Growing a tree (training)

Input:

>

>

Training sample ((xl,yl), ey (xn,y,,)) =D, € RY x {0,1}.
Measure of impurity Q(™)(T) for node m of tree T.

» Stopping criteria S(™(T) for node m of tree T.

. Define the root node by the region R(®) containing the entire

sample, set m = 0.

If S(™M(T) is fulfilled then stop for this node (e.g., a lower bound for
the # of obs. in a node).

Find a variable and a split (one-variable threshold) diving node
region R(™ into two nodes with subregions R(™) and R("#) to
minimize Q(™(T).

Repeat steps 2-3 for all leaves until global stopping.



Classification tree (algorithm)

Growing a tree (training)

Input:

>

>

Training sample ((xl,yl), ey (xn,y,,)) =D, € RY x {0,1}.
Measure of impurity Q(™)(T) for node m of tree T.

» Stopping criteria S(™(T) for node m of tree T.

. Define the root node by the region R(®) containing the entire

sample, set m = 0.

If S(™M(T) is fulfilled then stop for this node (e.g., a lower bound for
the # of obs. in a node).

Find a variable and a split (one-variable threshold) diving node
region R(™ into two nodes with subregions R(™) and R("#) to
minimize Q(™(T).

Repeat steps 2-3 for all leaves until global stopping.

Output: The tree T.



Classification tree — Descending the tree

» Descend the tree until a terminal node.



Classification tree — Descending the tree

» Descend the tree until a terminal node.

> In each node m, classify the observations by choosing the
majority class.



Classification tree — Descending the tree

» Descend the tree until a terminal node.

> In each node m, classify the observations by choosing the
majority class.

» That is, in node m classify the observations to class c(m):

c(m) = argmax Z I{y; = k).

ke{0,1} ieR(m



Classification tree (illustration)

XA
e® %06 * 4 L
e o %9 ° ° °
°

e © o o ° b
° °

00. ¢ %o e ® ©

° ° °
° ° o © °
o © .. «®* L, °

°
° ° ¢ 0..0




Classification tree (illustration)

XA
%% e ° o L,°
o o ®o ° ° °
°
e ©|0o o © b
° °
00. ¢ %o e ® ©
° ° °
° ° o © °
o © .. «®* L, °
°
° ° ¢ 0..0
Sy >



Classification tree (illustration)

XA
e’®e ° o L,
e o %o ° ° °
°
e ©|o o ° ®
° °
o.. ¢ G e ©® ©
° ° °
[ ] [ ] .. Y
o © .. .o.o
°
° ° ° 0..0
Sy >



Classification tree (illustration)

XA
e’®e ° o L,
e o %o ° °
® < Sz
e ©|o o ° ®
° °
e o
o.. ® e ©® ©
° ° °
[ ] .. .. Y
o © ° o ©® .o
°
°
° ° ® o ®e
Sy >



Classification tree (illustration)

XA
e’®e ° o L,
e o %o ° °
® < Sz
e ©|o o ° ®
° °
e o
o.. ® e ©® ©
° ° °
[ ] .. .. Y
o © ° o ©® .o
°
°
° ° ® o ®e
Sy >



Classification tree (illustration)

XA
e’®e ° o L,
e o %o ° °
® < Sz
e oo o |® ®
° °
o 0
o.. e ©® ©
° ° °
[ ] [ ] .. Y
o © ® ° °
° ° °
°
°
° ° ° o ®e >
S1 Ss3 X



Classification tree (illustration)

XA
e’®e ° o L,
e o %o ° °
® < Sz
e ©|o o |°® ®
° °
o 0
o.. e ©® ©
° ° °
[ ] [ ] .. Y
o © ® ° °
° ° °
°
°
° ° ® o ®e >
S1 Ss3 X



Classification tree (illustration)

XoA
e’®e ° o L,
e o %o ° °
® < Sz
e ©|o o |°® ®
° °
o 0
o.. e ©® ©
° ° °
[ ] .. .. .S
o © C .0.04
°
°
° ° ® o ®e >
S1 Ss3 X



Classification tree (illustration)

XoA
e’®e ° o L,
e o %o ° °
® = Sz
e oo o |® C
° °
o 0
o.. e ©® ©
° ° °
[ ] .. .. .S
o © C .0.04
°
°
° ° °f o ®e >
S1 Ss3 X



Classification tree: choice of impurity measure

Let n(™ = #{x|x € R(™} be the number of observations in region
R(™ Then the classification accuracy of node m classifying to class k is

(m 1
A = > Iyi=k).

n(m)
X,‘ER('")



Classification tree: choice of impurity measure

Let n(™ = #{x|x € R(™} be the number of observations in region
R(™ Then the classification accuracy of node m classifying to class k is

sm _ L _
P’ = Z I(yi = k).
X,‘ER('")
Possible choices for Q (the measure of impurity):

» Misclassification error:

Q(m)(T) _ n(mL) n(mR) ( )

A(mg) A(m
(1 - pk(nL,L)) + n(m) (1 - pk(mRR))a

n(m)



Classification tree: choice of impurity measure

Let n(™ = #{x|x € R(™} be the number of observations in region
R(™ Then the classification accuracy of node m classifying to class k is

s(m) _ L o
P’ = > Iyi=k).
x;ER(m)

Possible choices for Q (the measure of impurity):
» Misclassification error:

(my) (mg)
(m) _n _ a(my) n _ almg)
QUT) =~y (U= Bumy) + iy (1= Pgome))»

» Gini index:
(mr)

m, ) R
(m) T) = 2A(mL) 1— A(mi) n 2'\(”7!?) 1— A(mR)
Q'™(T) (m) ( br )+ (m) b " ( br ")




Classification tree: choice of impurity measure

Let n(™ = #{x|x € R(™} be the number of observations in region
R(™ Then the classification accuracy of node m classifying to class k is

s(m) _ L o
P’ = > Iyi=k).
x;ER(m)

Possible choices for Q (the measure of impurity):
» Misclassification error:

(my) (mg)
(m) _n _ a(my) n _ almg)
QUT) =~y (U= Bumy) + iy (1= Pgome))»

» Gini index:
(mr)

) R
(m) T) = 2A(mL) 1— A(mi) n 2'\(”7!?) 1— A(mR)
Q'™(T) (m) ( br )+ (m) b " ( br ")

» Cross-entropy (deviance):
m n(mL) mp Almp AmL mp
QT =~ { (B (A g ™+ (1= 4™ og(1 5™

n(mR)

(m) (Px 5\ )Iog 5™ (1 — A('”R))Iog(l P(mR)))} .



Maximizing the gain

» Sometimes in the literature and in the textbooks, the minimization
of Q(”’)(T) is presented under the equivalent for of the gain
maximization

» For instance, for the Gini index the gain is

25" (1 = B™) — QEi(T)
» For instance, for the deviance the gain is

('77) |Og p(m) (1 - ﬁlgm)) |Og( pk ) - Qdev:ance( )



Classification tree: iris data

Sepal width

35

3.0

25

2.0

Iris, 'versicolor' vs 'virginica'

e oo
° °
L) oo o0
. e o
o e LI )
L] ® 0o 0 00
LI o000 o0 °
e o o e
L] L] o
e e ° o
°
L ] L] L ]
e o
[ ]
T T T T T T T
5.0 55 6.0 6.5 7.0 7.5 8.0

Sepal length



Classification tree: iris data

Minimum size of splittable node = 25

0

Sepal.Lengty$=6.15
Sepal.Lengths 6.15

Sepal.Length*=7.05
Sepal.Lengthg 7.05

Sepal. Widips=2.4

epal.Length< 6.9
[ 222 ] epal.Length>=6.9



Classification tree: iris data

Minimum size of splittable node = 50

Sepal width

5.0 55 6.0

6.5 7.0 7.5 8.0

Sepal length

«O)>» «F»r «

it

v

a
i
v

DA 14764



Classification tree: iris data

Minimum size of splittable node = 37

Sepal width

5.0 55 6.0

6.5 7.0 7.5 8.0

Sepal length

«O)>» «F»r «

it

v

a
i
v

DA 14764



Classification tree: iris data

Minimum size of splittable node = 35

Sepal width

5.0 55

6.0 6.5 7.0 7.5 8.0

Sepal length

«O)>» «F»r «

it

v

a
i
v

DA 14764



Classification tree: iris data

Minimum size of splittable node = 24

. .
.
.
S
=] . DY
=
g .
) . .
(7]
.
T T
5.0 55 6.0 6.5 7.0 7.5 8.0
Sepal length
= & = = =

DA 14764



Classification tree: iris data

Minimum size of splittable node = 21

Sepal width

5.0 55

6.0 6.5 7.0 7.5 8.0

Sepal length

«O)>» «F»r «

it

v

a
i
v

DA 14764



Classification tree: iris data

Minimum size of splittable node = 16

Sepal width

5.0 55 6.0

6.5 7.0 7.5 8.0

Sepal length

«O)>» «F»r «

it

v

a
i
v

DA 14764



Classification tree: iris data

Minimum size of splittable node = 13

Sepal width

5.0 55 6.0

6.5 7.0 7.5 8.0

Sepal length

«O)>» «F»r «

it

v

a
i
v

DA 14764



Classification tree: iris data

Minimum size of splittable node = 12

Sepal width

5.0 55 6.0

6.5 7.0 7.5 8.0

Sepal length

«O)>» «F»r «

it

v

a
i
v

DA 14764



Classification tree: iris data

Minimum size of splittable node = 9

Sepal width

5.0 55 6.0

6.5 7.0 7.5 8.0

Sepal length

«O)>» «F»r «

it

v

a
i
v

DA 14764



Classification tree: iris data

Minimum size of splittable node = 8

Sepal width

5.0 55 6.0

6.5 7.0 7.5 8.0

Sepal length

«O)>» «F»r «

it

v

a
i
v

DA 14764



Classification tree: iris data

Minimum size of splittable node = 6

Sepal width

5.0 55 6.0

6.5 7.0 7.5 8.0

Sepal length

«O)>» «F»r «

it

v

a
i
v

DA 14764



Classification tree: iris data

Minimum size of splittable node = 5

Sepal width

5.0 55 6.0

6.5 7.0 7.5 8.0

Sepal length

«O)>» «F»r «

it

v

a
i
v

DA 14764



Classification tree: iris data

Minimum size of splittable node = 4

Sepal width

5.0 55 6.0

6.5 7.0 7.5 8.0

Sepal length

«O)>» «F»r «

it

v

a
i
v

DA 14764



Classification tree: iris data

Minimum size of splittable node = 2

Sepal width

5.0 55 6.0

6.5 7.0 7.5 8.0

Sepal length

«O)>» «F»r «

it

v

a
i
v

DA 14764



Contents

Classification tree

Tuning



Classification tree: tuning and properties

» A possible (and wide-spread) choice for the stopping criteria S is to
restrict the number of points in region R(™ to be split to some
constant npyjn:

SM(T) = 1(n"™ < npip) -



Classification tree: tuning and properties

» A possible (and wide-spread) choice for the stopping criteria S is to
restrict the number of points in region R(™ to be split to some
constant Ny

ST = 1(n'™ < npin) -

» Often the classification tree is constructed in two stages:
1. nmin is set very small and the tree is grown to Ty.



Classification tree: tuning and properties

» A possible (and wide-spread) choice for the stopping criteria S is to
restrict the number of points in region R(™ to be split to some

constant ngin:
S(TY = 1(n'™ < npin) -

» Often the classification tree is constructed in two stages:

1. nmin is set very small and the tree is grown to Ty.

2. Pruning of tree (i.e., collapsing any number of its non-terminal
nodes) is conducted based on some parameter «, which consists in
choosing a subtree T C Ty that minimizes a cost-complexity
criterion, e.g.

Zn("“ M(T) + a#T,

where # T stands for the number of nodes in the tree.



Classification tree: tuning and properties

» A possible (and wide-spread) choice for the stopping criteria S is to
restrict the number of points in region R(™ to be split to some

constant ngin:
S(TY = 1(n'™ < npin) -

» Often the classification tree is constructed in two stages:

1. nmin is set very small and the tree is grown to Ty.

2. Pruning of tree (i.e., collapsing any number of its non-terminal
nodes) is conducted based on some parameter «, which consists in
choosing a subtree T C Ty that minimizes a cost-complexity
criterion, e.g.

Zn("“ M(T) + a#T,

where # T stands for the number of nodes in the tree.

For each a, it can shown that there is a unique smallest subtree T,
that minimizes Co(T).

Pruning parameter « is chosen by the means of cross-validation.



Some more comments

» To handle predictors with unordered values when the outcome is of

0-1 type, one can simply order the predictor classes according to the
proportion falling in outcome class 1.



Some more comments

» To handle predictors with unordered values when the outcome is of
0-1 type, one can simply order the predictor classes according to the
proportion falling in outcome class 1.

» To handle missing predictor values there are two recommended
approaches
> if the predictor is categorical, create a new category 'missing’;
> a more general approach is the construction of surrogate variables
(see Hastie et al. (2009, section 9.2) for the details).



Some more comments

» To handle predictors with unordered values when the outcome is of
0-1 type, one can simply order the predictor classes according to the
proportion falling in outcome class 1.

» To handle missing predictor values there are two recommended
approaches
> if the predictor is categorical, create a new category 'missing’;
> a more general approach is the construction of surrogate variables
(see Hastie et al. (2009, section 9.2) for the details).

> The key advantage of the classification tree is its interpretability,
as the feature space partition is fully described by a single tree.



Some more comments

» To handle predictors with unordered values when the outcome is of
0-1 type, one can simply order the predictor classes according to the
proportion falling in outcome class 1.

» To handle missing predictor values there are two recommended
approaches
> if the predictor is categorical, create a new category 'missing’;
> a more general approach is the construction of surrogate variables
(see Hastie et al. (2009, section 9.2) for the details).

> The key advantage of the classification tree is its interpretability,
as the feature space partition is fully described by a single tree.

» Some disadvantage are the instability (trees have high variance, a
small change in the data can result in a quite different series of splits
— see bagging for a solution) and the difficulty in capturing additive
structures.



Contents

Bagging
Motivation
Algorithm
An example



Contents

Bagging
Motivation



The key idea

» The “Wisdom of Crowds" (Surowiecki, 2004): The collective
knowledge of a diverse and independent body of people typically
exceeds the knowledge of any single individual, and can be harnessed
by voting.



The key idea

» The “Wisdom of Crowds" (Surowiecki, 2004): The collective
knowledge of a diverse and independent body of people typically

exceeds the knowledge of any single individual, and can be harnessed
by voting.

» Bagging implements this way of thinking standing for a range of

methods following the general idea introduced by Léo Breiman
(1996).



The key idea

» The “Wisdom of Crowds" (Surowiecki, 2004): The collective
knowledge of a diverse and independent body of people typically
exceeds the knowledge of any single individual, and can be harnessed
by voting.

» Bagging implements this way of thinking standing for a range of
methods following the general idea introduced by Léo Breiman
(1996).

» Bagging is a shortcut for Bootstrap Aggregating.



The key idea

» The “Wisdom of Crowds" (Surowiecki, 2004): The collective
knowledge of a diverse and independent body of people typically
exceeds the knowledge of any single individual, and can be harnessed
by voting.

» Bagging implements this way of thinking standing for a range of
methods following the general idea introduced by Léo Breiman
(1996).

» Bagging is a shortcut for Bootstrap Aggregating.

» The main idea is to construct a single estimator that consists of a
number of basic classifiers (weak learners) (taught on a
bootstrapped samples) aggregated by averaging (voting).



Motivation (regression)

» Consider the standard regression setting

Y =g(X)+e



Motivation (regression)

» Consider the standard regression setting

Y =g(X)+e

» The single bagged estimator

1 B
gs(x) =35 > ()

k=1

is the estimator of g obtained by aggregating estimators g, ...

1 8B-



Motivation (regression)

» Consider the standard regression setting

Y =g(X)+e

» The single bagged estimator

k=1

is the estimator of g obtained by aggregating estimators gi, ..., g5.

> gu(x) = ge(x; (X2, Y1), s (Xny Vo)) 25 well as

P

gs(x) = 8s(x; (X1, Y1), .-, (Xn, Ya)) are random variables.



Motivation (regression)
» Consider the standard regression setting

Y=g(X)+e
» The single bagged estimator

1 B
gs(x) =35 > ()

k=1

is the estimator of g obtained by aggregating estimators gi, ..., g5.

v
&
—~

X
~—

I

gk(x; (X1, Y1), ..., (Xn, Ya)) as well as
&s(x; (X1, Y1), ..., (X4, Ys)) are random variables.

&
~—~~
X
SN—r
I

» One can measure the improvement of aggregating by comparing

performance of gg(x) and those of gi(x), k =1, ..., B in terms of
bias and variance.



Bias and variance (regression)

» Assumption (unfeasible): Random variables gy, ..., gg are i.i.d.



Bias and variance (regression)

» Assumption (unfeasible): Random variables gy, ..., gg are i.i.d.

» Bias:
E[gs(x)] = E[gk(x)] -



Bias and variance (regression)

» Assumption (unfeasible): Random variables gy, ..., gg are i.i.d.

» Bias:
E[gs(x)] = E[gk(x)] -

Conclusion
Aggregation does not modify the bias.



Bias and variance (regression)

» Assumption (unfeasible): Random variables gy, ..., gg are i.i.d.

» Bias:
E[gs(x)] = E[gk(x)] -

Conclusion
Aggregation does not modify the bias.

» Variance: 1
Vigs(x)] = EV[gk(x)] :



Bias and variance (regression)

» Assumption (unfeasible): Random variables gy, ..., gg are i.i.d.

» Bias:
E[gs(x)] = E[gk(x)] -

Conclusion
Aggregation does not modify the bias.

» Variance: 1
Vigs(x)] = EV[gk(x)] :

Conclusion
Aggregation reduces the variance
(the conclusion here is obtained under the unfeasible assumption of i.i.d.

property of g1, ..., 88).



Motivation (classification)

> Let g1, ..., g5 be an ensemble of basic classifiers.



Motivation (classification)

> Let g1, ..., g5 be an ensemble of basic classifiers.
» Assumption: Each basic classifier has an independent error € < 0.5
for predicting the correct decision y = 1 for some value x:

]P’(gk(x) + l) =e<05 for k=1,...B,
gi1(x),...,ge(x) are still assumed i.i.d.



Motivation (classification)

> Let g1, ..., g5 be an ensemble of basic classifiers.
» Assumption: Each basic classifier has an independent error € < 0.5
for predicting the correct decision y = 1 for some value x:

]P’(gk(x) + 1) =e<05 for k=1,...B,
gi1(x),...,ge(x) are still assumed i.i.d.

» Further, let the aggregated classifier be

g0 =1(5 Y a(x) > 05).
k



Motivation (classification)

> Let g1, ..., g5 be an ensemble of basic classifiers.
» Assumption: Each basic classifier has an independent error € < 0.5
for predicting the correct decision y = 1 for some value x:

]P’(gk(x) + 1) =e<05 for k=1,...B,
gi1(x),...,ge(x) are still assumed i.i.d.

» Further, let the aggregated classifier be
a 1
g8 (x) = l(E zk:gk(x) > 0.5) .

» Then >, gk(x) will have binomial distribution

ng ~ Bin(B,1 — ¢)



Motivation (classification)

> Let g1, ..., g5 be an ensemble of basic classifiers.
» Assumption: Each basic classifier has an independent error € < 0.5
for predicting the correct decision y = 1 for some value x:

]P’(gk(x) + 1) =e<05 for k=1,...B,
gi1(x),...,ge(x) are still assumed i.i.d.

» Further, let the aggregated classifier be
a 1
g8 (x) = l(E zk:gk(x) > 0.5) .

» Then >, gk(x) will have binomial distribution

ng ~ Bin(B,1 — ¢)

and classification error of x will decrease with increasing B:
B/2

P(g%8(x) # 1) = Z (f) (1—e)keBk ——

B—oo
k=1



Motivation (classification)

> Let g1, ..., g5 be an ensemble of basic classifiers.
» Assumption: Each basic classifier has an independent error € < 0.5
for predicting the correct decision y = 1 for some value x:

]P’(gk(x) + 1) =e<05 for k=1,...B,
gi1(x),...,ge(x) are still assumed i.i.d.

» Further, let the aggregated classifier be
a 1
g8 (x) = l(E zk:gk(x) > 0.5) .

» Then >, gk(x) will have binomial distribution

ng ~ Bin(B,1 — ¢)

and classification error of x will decrease with increasing B:
B/2

P(g*(x) #£1) = Y (f)(l —e)kePF —— 0.

B—oo
k=1



Motivation (classification)
Theorem (Chernoff-Hoeffding, Bernoulli scheme)

If Xy, ..., Xy, are i.i.d. random variables taking values in {0,1}, then for
any n > 0 it holds

IP’(]E[X,-] - %zn:X,- > 77) < exp(—2n%n).
i=1



Motivation (classification)
Theorem (Chernoff-Hoeffding, Bernoulli scheme)

If Xy, ..., Xy, are i.i.d. random variables taking values in {0,1}, then for
any n > 0 it holds

IP’(]E[X,-] - %zn:X,- > 77) < exp(—2n%n).
i=1

One can express classification error as

P(g&(x) # 1) = ]P’(é ng(x) < 0.5) .
k=1



Motivation (classification)

Theorem (Chernoff-Hoeffding, Bernoulli scheme)

If Xy, ..., Xy, are i.i.d. random variables taking values in {0,1}, then for
any n > 0 it holds

IP’(IE[X,-] - %zn:X,- > 77) < exp(—2n%n).
i=1

One can express classification error as

P(g&(x) # 1) = ]P’(é ng(x) < 0.5) .
k=1

By a sequence of simple transformations we obtain

(1—¢) ——ng )>05—¢.

]E[g1(><)]



Motivation (classification)

Theorem (Chernoff-Hoeffding, Bernoulli scheme)

If Xy, ..., Xy, are i.i.d. random variables taking values in {0,1}, then for
any n > 0 it holds

IP’(IE[X,-] - %zn:X,- > 77) < exp(—2n%n).
i=1

One can express classification error as

P(g%#(x) ( ng )<05).

By a sequence of simple transformatlons we obtain

(1—¢) ——ng )>05—¢.
]E[g1(><)]

Applying the Chernoff-Hoeffding inequality gives
P(g*(x) £ 1) < exp(—53(1 ~262).



Motivation

» The derivations from above exploit the assumption that random
variables gi(x), ..., gg(x) are independent and identically
distributed.



Motivation

» The derivations from above exploit the assumption that random
variables gi(x), ..., gg(x) are independent and identically
distributed.

> As the classifiers g, ..., gg are constructed using the same training
sample D, the assumption of independence is not really credible.



Motivation

» The derivations from above exploit the assumption that random
variables gi(x), ..., gg(x) are independent and identically
distributed.

> As the classifiers g, ..., gg are constructed using the same training
sample D, the assumption of independence is not really credible.

» Remark: If the variables gy, ..., gg identically distributed with

variance ¢, but not necessarily independent, with positive pairwise
correlation p, then

A\

1B
B ng] =
k=1



Motivation

» The derivations from above exploit the assumption that random
variables gi(x), ..., gg(x) are independent and identically
distributed.

> As the classifiers g, ..., gg are constructed using the same training
sample D, the assumption of independence is not really credible.

» Remark: If the variables gy, ..., gg identically distributed with
variance ¢, but not necessarily independent, with positive pairwise
correlation p, then




Motivation

» The derivations from above exploit the assumption that random
variables gi(x), ..., gg(x) are independent and identically
distributed.

> As the classifiers g, ..., gg are constructed using the same training
sample D, the assumption of independence is not really credible.

» Remark: If the variables gy, ..., gg identically distributed with
variance ¢, but not necessarily independent, with positive pairwise
correlation p, then

B

1 2, 1=p >

Bng] = po —&-?U .

k=1

A\

> The idea is thus to introduce a source of randomness into the
sample used to train each single classifier g, k =1, ..., B to render
the pairwise correlation of the gi's as small as possible.



Motivation

>

The derivations from above exploit the assumption that random
variables gi(x), ..., gg(x) are independent and identically
distributed.

As the classifiers g1, ..., gg are constructed using the same training
sample D, the assumption of independence is not really credible.

Remark: If the variables g1, ..., gg identically distributed with
variance ¢, but not necessarily independent, with positive pairwise
correlation p, then

B

1 2, 1=p >

A\

The idea is thus to introduce a source of randomness into the
sample used to train each single classifier g, k =1, ..., B to render
the pairwise correlation of the gi's as small as possible.

Resort to the idea of the bootstrap.



Contents

Bagging

Algorithm



Bagging (algorithm)

Training
Input:
> Training sample ((X1,y1), ..., (X, ¥n)) = D € R? x {0,1}.



Bagging (algorithm)
Training
Input:
> Training sample ((X1,y1), ..., (X, ¥n)) = D € R? x {0,1}.
» Basic classifier g(+).



Bagging (algorithm)
Training
Input:
> Training sample ((X1,y1), ..., (X, ¥n)) = D € R? x {0,1}.
» Basic classifier g(+).

» Number of estimators to aggregate B.



Bagging (algorithm)
Training
Input:
> Training sample ((X1,y1), ..., (X, ¥n)) = D € R? x {0,1}.
» Basic classifier g(+).

» Number of estimators to aggregate B.
Fork=1,...B



Bagging (algorithm)

Training

Input:
> Training sample ((X1,y1), ..., (X, ¥n)) = D € R? x {0,1}.
» Basic classifier g(+).
» Number of estimators to aggregate B.

Fork=1,...,B
1. Draw a sample Dy , from D, using bootstrap.



Bagging (algorithm)

Training

Input:
> Training sample ((X1,y1), ..., (X, ¥n)) = D € R? x {0,1}.
» Basic classifier g(+).
» Number of estimators to aggregate B.

Fork=1,...,B
1. Draw a sample Dy , from D, using bootstrap.

2. Learn g; on D} ,.



Bagging (algorithm)

Training

Input:
> Training sample ((X1,y1), ..., (X, ¥n)) = D € R? x {0,1}.
» Basic classifier g(+).
» Number of estimators to aggregate B.

Fork=1,...,B
1. Draw a sample Dy , from D, using bootstrap.

2. Learn g; on D} ,.

Output: The aggregated classifier g288(-) = 1(% Zle gr() > 0.5).



Bagging (algorithm)

Training

Input:
> Training sample ((X1,y1), ..., (X, ¥n)) = D € R? x {0,1}.
» Basic classifier g(+).
» Number of estimators to aggregate B.

Fork=1,...,B
1. Draw a sample Dy , from D, using bootstrap.

2. Learn g; on D} ,.

Output: The aggregated classifier g288(-) = 1(% Zle gr() > 0.5).

Classification
» Classify the new observation x as

£5500 — 1L Y00 > 05)



Drawing bootstrap samples

» Bootstrap is a technique based on random sampling, which allows
for estimating the sampling distribution of almost any statistics.



Drawing bootstrap samples
» Bootstrap is a technique based on random sampling, which allows
for estimating the sampling distribution of almost any statistics.

» Bootstrap drawings are represented by B random variables 6y,
k=1,..B.



Drawing bootstrap samples

» Bootstrap is a technique based on random sampling, which allows
for estimating the sampling distribution of almost any statistics.

» Bootstrap drawings are represented by B random variables 6y,
k=1,..B.

> In general for the sample consisting of n observations, two
techniques are used to draw bootstrap samples:
> draw (choose randomly) n observations with replacements,



Drawing bootstrap samples

» Bootstrap is a technique based on random sampling, which allows
for estimating the sampling distribution of almost any statistics.

» Bootstrap drawings are represented by B random variables 6y,
k=1,..B.

> In general for the sample consisting of n observations, two
techniques are used to draw bootstrap samples:
> draw (choose randomly) n observations with replacements,
» draw (choose randomly) / < n observations without replacement.



Drawing bootstrap samples

v

Bootstrap is a technique based on random sampling, which allows
for estimating the sampling distribution of almost any statistics.

v

Bootstrap drawings are represented by B random variables 6y,
k=1,..B.

v

In general for the sample consisting of n observations, two
techniques are used to draw bootstrap samples:

> draw (choose randomly) n observations with replacements,

» draw (choose randomly) / < n observations without replacement.

v

Thus aggregated classifiers contain two sources of randomness:



Drawing bootstrap samples

v

Bootstrap is a technique based on random sampling, which allows
for estimating the sampling distribution of almost any statistics.

v

Bootstrap drawings are represented by B random variables 6y,
k=1,..B.

v

In general for the sample consisting of n observations, two
techniques are used to draw bootstrap samples:

> draw (choose randomly) n observations with replacements,

» draw (choose randomly) / < n observations without replacement.

v

Thus aggregated classifiers contain two sources of randomness:
> due to the D, being a random draw from distribution of (X, Y),



Drawing bootstrap samples

v

Bootstrap is a technique based on random sampling, which allows
for estimating the sampling distribution of almost any statistics.

v

Bootstrap drawings are represented by B random variables 6y,
k=1,..B.

v

In general for the sample consisting of n observations, two
techniques are used to draw bootstrap samples:

> draw (choose randomly) n observations with replacements,

» draw (choose randomly) / < n observations without replacement.

v

Thus aggregated classifiers contain two sources of randomness:

> due to the D, being a random draw from distribution of (X, Y),
> due to the bootstrap drawing.



Choice of the parameters

» There are two choices to be done:

> base classifier g(-),
» number of bootstrap iterations B.



Choice of the parameters

» There are two choices to be done:

> base classifier g(-),
» number of bootstrap iterations B.

» Under suitable conditions, given the original sample D,,, by the law
of large numbers we have, almost surely

B—oo B—oo

1 B
lim g8(x) = lim I(EZg,f(x)>0.5)



Choice of the parameters

» There are two choices to be done:

> base classifier g(-),
» number of bootstrap iterations B.

» Under suitable conditions, given the original sample D,,, by the law
of large numbers we have, almost surely

lim g%8(x) = lim 1( ng >05)

B—oo B—oo

_ (hm —ng >05)



Choice of the parameters

» There are two choices to be done:

> base classifier g(-),
» number of bootstrap iterations B.

» Under suitable conditions, given the original sample D,,, by the law
of large numbers we have, almost surely

lim g%8(x) = lim 1( ng >05)

B—oo B—oo

_ (hm —ng >05)

= 1(Elg (x) | Dn] >0.5).



Choice of the parameters

» There are two choices to be done:

> base classifier g(-),
» number of bootstrap iterations B.

» Under suitable conditions, given the original sample D,,, by the law
of large numbers we have, almost surely

lim g%8(x) = lim 1( ng >05)

B—oo B—oo

_ (hm —ng >05)

1(E"[gx (x) | Dn] >0.5).

> So g?88(x) stabilizes with increasing B converging to the bagging
estimator 1(E*[g; (x) | Dn] > 0.5).



Choice of the parameters

» There are two choices to be done:

> base classifier g(-),
» number of bootstrap iterations B.

» Under suitable conditions, given the original sample D,,, by the law
of large numbers we have, almost surely

lim g%8(x) = lim 1( ng >05)

B—oo B—oo

_ (hm —ng >05)

1(E"[gx (x) | Dn] >0.5).

> So g?88(x) stabilizes with increasing B converging to the bagging
estimator 1(E*[g; (x) | Dn] > 0.5).

» Thus, B should be chosen as large as possible, regarding
computational capabilities.



Bagging classification tree: iris data

Sepal width

4.0

35

3.0

25

2.0

Iris, 'setosa’ vs 'versicolor'

[ ]
L]
L
[ ]
[ ]
° [ ] L]
[ L]
[ [ ]
L] L) L] L)
L ) L L]
] ] ]
(] (] (] (]
(] L
(] oo
[ ]
[ ] (] L]
(]
(]
T T T T T T
4.5 5.0 55 6.0 6.5 7.0

Sepal length




Bagging classification tree: iris data

Iris, 'setosa’ vs 'versicolor', CART

Sepal width

Sepal length

DA 31/64



Bagging classification tree: iris data

Iris, 'setosa’ vs 'versicolor', bagged CART (B = 10)

Sepal width

Sepal length

DA 3764



Bagging classification tree: iris data

Iris, 'setosa’ vs 'versicolor', bagged CART (B = 100)

Sepal width

Sepal length

DA 3764



Bagging classification tree: iris data

Iris, 'setosa’ vs 'versicolor', bagged CART (B = 1000)

Sepal width

Sepal length

DA 3764



Properties and recommendations

» Bagging a good classifier can make it better, bagging a bad classifier
can make it worse.



Properties and recommendations

» Bagging a good classifier can make it better, bagging a bad classifier
can make it worse.

> Significant improvement by bagging is not expected on large data
sets because there bootstrap samples are very similar. Subsampling
is expected to improve things.



Properties and recommendations

» Bagging a good classifier can make it better, bagging a bad classifier
can make it worse.

> Significant improvement by bagging is not expected on large data
sets because there bootstrap samples are very similar. Subsampling
is expected to improve things.

» Bagging could be improved by using a robust location estimator
instead a mean over the B bootstrapped classifiers. Taking the
median yields the so-called bragging (Buhlmann, 2003). Trimmed
means is another option.



Properties and recommendations

» Bagging a good classifier can make it better, bagging a bad classifier
can make it worse.

> Significant improvement by bagging is not expected on large data
sets because there bootstrap samples are very similar. Subsampling
is expected to improve things.

» Bagging could be improved by using a robust location estimator
instead a mean over the B bootstrapped classifiers. Taking the
median yields the so-called bragging (Buhlmann, 2003). Trimmed
means is another option.

» Bagging reduces interpretability of the classifier because any simple
structure in the model is lost.



Contents

Bagging

An example



Normal2 data generation

» Generate independent copies of a bivariate normal vector:
» for Y =0 mean (0,0) and
1 1
=i %)

» for Y =1 mean (0,0) and the variance is equal to 4%



Normal2 data

Normal2 (location—scale alternative, training)

0T

-2

-4

x1



Normal2 data

Normal2 (location—scale alternative, test)

15

10
|

-10
|

-15
|

x1



Bagging LDA: Normal2 data

Bagging the LDA classifier on the Normal2 data set

Classification error
0.360 0.365 0.370
! !

0.355
|

0.350
|

0.345

T T T T T T
0 200 400 600 800 1000

Number of base classifiers



Bagging classification tree: Normal2 data

Bagging the CART (min split = 1) on the Normal2 data set

Classification error

0.300 0.305 0.310 0.315 0.320 0.325 0.330
|

T T T T T T
0 100 200 300 400 500

Number of base classifiers



Bagging classification tree: Normal2 data

Bagging the CART (min split = 5) on the Normal2 data set

0.315
|

0.310
|

Classification error
0.305
!

0.300

0.295
|

T T T T T T
0 100 200 300 400 500

Number of base classifiers



Bagging classification tree: Normal2 data

Bagging the CART (min split = 10) on the Normal2 data set

0.295 0.300 0.305
| | |

Classification error

0.290

T T T T T T
0 100 200 300 400 500

Number of base classifiers



Bagging classification tree: Normal2 data

Bagging the CART (min split = 25) on the Normal2 data set

0.295
|

Classification error
0.290
!

0.285
|

0.280

T T T T T T
0 100 200 300 400 500

Number of base classifiers



Contents

Random forest
Algorithm
Interpretation
Consistency results



Contents

Random forest
Algorithm



The key idea

» Random forest is a collection of trees.


http://www.stat.berkeley.edu/~breiman/RandomForests/

The key idea

» Random forest is a collection of trees.

» Random forests have been introduced by Léo Breiman in the early
2000s. The following web-page is dedicated to random forests:
http://www.stat.berkeley.edu/~breiman/RandomForests/


http://www.stat.berkeley.edu/~breiman/RandomForests/

The key idea

» Random forest is a collection of trees.

» Random forests have been introduced by Léo Breiman in the early
2000s. The following web-page is dedicated to random forests:
http://www.stat.berkeley.edu/~breiman/RandomForests/

» Random forests can be seen as a modified version of bagging as
they also aggregate trees taught on the bootstrap samples.


http://www.stat.berkeley.edu/~breiman/RandomForests/

The key idea

>

Random forest is a collection of trees.

Random forests have been introduced by Léo Breiman in the early
2000s. The following web-page is dedicated to random forests:
http://www.stat.berkeley.edu/~breiman/RandomForests/

Random forests can be seen as a modified version of bagging as
they also aggregate trees taught on the bootstrap samples.

However, random forests introduce a substantial modification of
bagging that builds a large collection of de-correlated trees.


http://www.stat.berkeley.edu/~breiman/RandomForests/

The key idea

>

Random forest is a collection of trees.

Random forests have been introduced by Léo Breiman in the early
2000s. The following web-page is dedicated to random forests:
http://www.stat.berkeley.edu/~breiman/RandomForests/

Random forests can be seen as a modified version of bagging as
they also aggregate trees taught on the bootstrap samples.

However, random forests introduce a substantial modification of
bagging that builds a large collection of de-correlated trees.

Let Tk(x), k =1,..., B be tree-similar classifiers

(Tx : RY — {0,1}). The random forest classifier assigns new
observation x by aggregating these:

TRF (x ( ZTk >0.5).


http://www.stat.berkeley.edu/~breiman/RandomForests/

The key idea

X, A
e®l®e o .
o o ®e o °
0 e S,
e © | o ° L [
° )
® O
'.. e ® ©
[ ] [ ) )
[} [} o @ -
® s
() ° ° .. ..4
°
°
° ° ° o "°, -
31 33 N~



The key idea

XA
e’l®e * o ,°
o o ®o ° °
® = Sz
.. [ ] ° L L
° °
® O
o'. e ® ©
° ° °
[ ] ([} .. °
® S
o © - e © .04
°
°
° ° ® o .o -
S S3 X,

» To reduce correlation between trees, Breiman proposes

> first, randomly select m variables out of all d variables,
> next, pick the best variable/split-point among the m.



Random forests (algorithm)
Training
Input:
» Training sample ((x1, 1), .., (Xn, ¥n)) = Dn € R? x {0, 1}.



Random forests (algorithm)
Training
Input:
» Training sample ((x1, 1), .., (Xn, ¥n)) = Dn € R? x {0, 1}.
» Number of trees B; minimum number of observations for a node to
be split npnjn; impurity criterion Q.



Random forests (algorithm)
Training
Input:
» Training sample ((x1, 1), .., (Xn, ¥n)) = Dn € R? x {0, 1}.
» Number of trees B; minimum number of observations for a node to
be split npnjn; impurity criterion Q.
» number of variables to use when splitting m € {1, ..., d}.



Random forests (algorithm)

Training

Input:
» Training sample ((x1, 1), .., (Xn, ¥n)) = Dn € R? x {0, 1}.
» Number of trees B; minimum number of observations for a node to

be split npnjn; impurity criterion Q.

» number of variables to use when splitting m € {1, ..., d}.

For k=1,...,B



Random forests (algorithm)

Training

Input:
» Training sample ((x1, 1), .., (Xn, ¥n)) = Dn € R? x {0, 1}.
» Number of trees B; minimum number of observations for a node to

be split npnjn; impurity criterion Q.

» number of variables to use when splitting m € {1, ..., d}.

For k=1,...,B
1. Draw a sample Dy , from D,, using bootstrap.



Random forests (algorithm)
Training
Input:
» Training sample ((x1, 1), .., (Xn, ¥n)) = Dn € R? x {0, 1}.
» Number of trees B; minimum number of observations for a node to
be split npnjn; impurity criterion Q.
» number of variables to use when splitting m € {1, ..., d}.
For k=1,...,B
1. Draw a sample Dy , from D,, using bootstrap.
2. Learn the classification tree T on D; ,; each time when splitting a
node, search optimal variable among m variables randomly chosen
out of all d variables.



Random forests (algorithm)

Training

Input:
» Training sample ((x1, 1), .., (Xn, ¥n)) = Dn € R? x {0, 1}.
» Number of trees B; minimum number of observations for a node to

be split npnjn; impurity criterion Q.

» number of variables to use when splitting m € {1, ..., d}.

For k=1,...,B
1. Draw a sample Dy , from D,, using bootstrap.

2. Learn the classification tree T on D ,; each time when splitting a
node, search optimal variable among m variables randomly chosen
out of all d variables.

Output: The aggregated classifier TRF(.) = 1(% SPL T > O.5).



Random forests (algorithm)

Training

Input:
» Training sample ((x1, 1), .., (Xn, ¥n)) = Dn € R? x {0, 1}.
» Number of trees B; minimum number of observations for a node to

be split npnjn; impurity criterion Q.

» number of variables to use when splitting m € {1, ..., d}.

For k=1,...,B
1. Draw a sample Dy , from D,, using bootstrap.

2. Learn the classification tree T on D ,; each time when splitting a
node, search optimal variable among m variables randomly chosen
out of all d variables.

Output: The aggregated classifier TRF(.) = 1(% SPL T > 0.5).

Classification
» Classify the new observation x as

TRF(x ( Z >05)



Spam data

> See Hastie et al. (2009, ch.1)

» A standard data set consisting of information from 4601 email
messages

» The purpose is to predict if the email message is a spam or not

» For all 4601 email messages, the following information is available

> the true outcome (email type) email or spam is available
> the relative frequencies of 57 of the most commonly occurring words
and punctuation marks in the email message.



Random forests: spam data

Random forest (m = 7) on the spam data set

N
I—!7
o
e
[
n o
7 2
go
S
=
[}
c
oo}
£ 8]
s ©°
=
7]
%]
k:
@)
©
0.7
o

0 50 100 150 200

Number of trees



Properties
» There are two introduced sources of randomness:



Properties
» There are two introduced sources of randomness:

> B bootstrap samples,



Properties
» There are two introduced sources of randomness:

> B bootstrap samples,

> m variables randomly chosen out of d when splitting each tree
node.



Properties
» There are two introduced sources of randomness:

> B bootstrap samples,

> m variables randomly chosen out of d when splitting each tree
node.

» The method is simple, implementations are available in numerous
software, e.g. R-package randomForest.



Properties
» There are two introduced sources of randomness:

> B bootstrap samples,

> m variables randomly chosen out of d when splitting each tree
node.

» The method is simple, implementations are available in numerous
software, e.g. R-package randomForest.

» The classifier is known for relatively high speed of training and
classification.



Properties
» There are two introduced sources of randomness:

> B bootstrap samples,

> m variables randomly chosen out of d when splitting each tree
node.

» The method is simple, implementations are available in numerous
software, e.g. R-package randomForest.

» The classifier is known for relatively high speed of training and
classification.

» The classifier is known for its relatively precise prediction on
complex data, i.e. those including many variables, missing entries,
etc.



Properties
» There are two introduced sources of randomness:

> B bootstrap samples,

> m variables randomly chosen out of d when splitting each tree
node.

» The method is simple, implementations are available in numerous
software, e.g. R-package randomForest.

» The classifier is known for relatively high speed of training and
classification.

» The classifier is known for its relatively precise prediction on
complex data, i.e. those including many variables, missing entries,
etc.

» Classifier has limited sensibility w.r.t. to the choice of
parameters: B, m, npyn.



Choice of number m of variables for a node

> Parameter m is related to the dependence between single trees.



Choice of number m of variables for a node

> Parameter m is related to the dependence between single trees.

» The lower is m:



Choice of number m of variables for a node

> Parameter m is related to the dependence between single trees.
» The lower is m:

> to larger extent the variables at which to split each node are chosen
randomly,
thus the more different are single trees,
thus the more independent are single trees,



Choice of number m of variables for a node

> Parameter m is related to the dependence between single trees.
> The lower is m:

> to larger extent the variables at which to split each node are chosen
randomly,
thus the more different are single trees,
thus the more independent are single trees,

> the lower is the prediction accuracy of each single tree,
and thus of the entire forest as well.



Choice of number m of variables for a node

> Parameter m is related to the dependence between single trees.
> The lower is m:

> to larger extent the variables at which to split each node are chosen
randomly,
thus the more different are single trees,
thus the more independent are single trees,

> the lower is the prediction accuracy of each single tree,
and thus of the entire forest as well.

» The higher is m: vice versa.



Choice of number m of variables for a node

> Parameter m is related to the dependence between single trees.
> The lower is m:

> to larger extent the variables at which to split each node are chosen
randomly,
thus the more different are single trees,
thus the more independent are single trees,

> the lower is the prediction accuracy of each single tree,
and thus of the entire forest as well.

» The higher is m: vice versa.

» It is recommended to check the performance of the random forests
for different choices of m.



Choice of number m of variables for a node

> Parameter m is related to the dependence between single trees.
> The lower is m:

> to larger extent the variables at which to split each node are chosen
randomly,
thus the more different are single trees,
thus the more independent are single trees,

> the lower is the prediction accuracy of each single tree,
and thus of the entire forest as well.

» The higher is m: vice versa.

» It is recommended to check the performance of the random forests
for different choices of m.

> The inventors recommend m = |/d|
(the default value in R-package randomForest).



Random forests: spam data

Random forest on the spam data set

[=] — m=7
N 4
S — m=1
)
(2]
17
E
£ a4
§ =]
5]
c
o
]
2
2 2
< o
[6)
1e)
Q —
S}
T T T T T
0 50 100 150 200

Number of trees



Contents

Random forest

Interpretation



Performance and interpretation

» |t is desirable to measure the performance of the random forests, as
of any other classification technique, in terms of the error probability:

R(TFFY=P(TRF(X)#Y).



Performance and interpretation

» |t is desirable to measure the performance of the random forests, as
of any other classification technique, in terms of the error probability:

R(TFFY=P(TRF(X)#Y).

» As usual, the error can be measured:



Performance and interpretation

» |t is desirable to measure the performance of the random forests, as
of any other classification technique, in terms of the error probability:

R(TFFY=P(TRF(X)#Y).

» As usual, the error can be measured:

> For a probability distribution: by a simulation study, i.e. train TR"
and measure its classification error for a number of simulated data
sets.



Performance and interpretation

» |t is desirable to measure the performance of the random forests, as
of any other classification technique, in terms of the error probability:

R(TFFY=P(TRF(X)#Y).

» As usual, the error can be measured:

> For a probability distribution: by a simulation study, i.e. train TR"
and measure its classification error for a number of simulated data
sets.

» For given data: by splitting data into training and test subsets, by
iterating this splitting if data are small, or by cross-validation.



Performance and interpretation

» |t is desirable to measure the performance of the random forests, as
of any other classification technique, in terms of the error probability:

R(TFFY=P(TRF(X)#Y).

» As usual, the error can be measured:

> For a probability distribution: by a simulation study, i.e. train TR"
and measure its classification error for a number of simulated data
sets.

» For given data: by splitting data into training and test subsets, by
iterating this splitting if data are small, or by cross-validation.

» Random forests offer an additional possibility to directly estimate
classification error exploiting the out-of-bag (OOB) principle.



Performance and interpretation

» |t is desirable to measure the performance of the random forests, as
of any other classification technique, in terms of the error probability:

R(TFFY=P(TRF(X)#Y).

» As usual, the error can be measured:

> For a probability distribution: by a simulation study, i.e. train TR"
and measure its classification error for a number of simulated data
sets.

» For given data: by splitting data into training and test subsets, by
iterating this splitting if data are small, or by cross-validation.

» Random forests offer an additional possibility to directly estimate
classification error exploiting the out-of-bag (OOB) principle.

» The same idea can be extended from sample points to variables
allowing to measure variable importance.



Out-of-bag error

» For each pair (x;,y;) from D,, let I; be the set of indices of trees
whose bootstrap samples D}, do not contain this observation.



Out-of-bag error

» For each pair (x;,y;) from D,, let I; be the set of indices of trees
whose bootstrap samples D}, do not contain this observation.

» By these trees, observation x; is then classified as

1
Vi = %ZTE(X:'%

kel;



Out-of-bag error

» For each pair (x;,y;) from D,, let I; be the set of indices of trees
whose bootstrap samples D}, do not contain this observation.

» By these trees, observation x; is then classified as

1
Vi = %ZTE(X:'%

kel;

» Averaging over all observations x;, i = 1,..., n from D, gives the
out-of-bag estimate of the error rate:

n

1
Roos = ;Zl(}?i #Yi) .

i=1



Random forests: spam data

Random forest (m = 7) on the spam data set

<
F! —
o
— test set error
—— OOB error
y
o
8
@
§ 2
=
2
‘0
[%}
S
O <9 4
o
©o
O_ —
o
T T T T T
0 50 100 150 200

Number of trees



Random forests: spam data

Random forest (m = 1) on the spam data set

o — test set error
N
s —— OOB error
s
=
= n
§ o
= o
g
=
73
0
k]
(8}
o
h
o

0 50 100 150 200

Number of trees



Importance of a variable
> For a bootstrap sample Dy ,, let D,’j; be the subset of training
sample not contained in D} ,, i.e. it holds D; , UD; " = D, and
DN D:T( = 0.



Importance of a variable
> For a bootstrap sample Dy ,, let D:; be the subset of training
sample not contained in D} ,, i.e. it holds D; , UD; " = D, and
D, ND, =0
» Then, let Roop(x) be the classification error estimated on DZ;:

1
Roos() = = > UTEx) #yi) -

"k xep);



Importance of a variable
> For a bootstrap sample Dy ,, let D,’:; be the subset of training
sample not contained in D} ,, i.e. it holds D; , UD; " = D, and
DrxNDLk =
» Then, let Roop(x) be the classification error estimated on DZ;:

L S 1T £y).

Roos(k) =
#Dn k
’ XE'D:,;

> Further, let D}, (j) be the same subset D, where the values of
variable j € {1 .,d} have been randomly perturbed, and
measure the error from above on this perturbed subset:

1
Roos(k.j) = D0 S UTex) #yi) -

x€D; (j)



Importance of a variable
> For a bootstrap sample Dy ,, let DZ; be the subset of training
sample not contained in D} ,, i.e. it holds D; , UD; " = D, and
DrxNDLk =
» Then, let Roop(x) be the classification error estimated on DZ;:

L S 1T £y).

Roos(k) =

# Dok XD,

> Further, let D}, (j) be the same subset D, where the values of
variable j € {1 .,d} have been randomly perturbed, and
measure the error from above on this perturbed subset:

Roos(k.j) = #’;(J) S UTi(x) #yi)-

mkY xeDr ()

» The importance of variable j can thus be measured (by averaging
over all B trees) as:

B
Imp(X Z Roos(k.jy — Roos(k)) -
k:



Random forests: importance of the variables using the Gini
index decrease

Random forest (m = 7, B = 500) on the spam data set

100
|

80
|

Mean Gini index decrease
40
L

20
|

mmmﬂHﬂﬂﬂﬂﬂﬂﬂﬂﬂmmmmmmmmmw

Index



Contents

Random forest

Consistency results



Consistency of the purely random forest classifier

Define the purely random tree classifier T as follows:



Consistency of the purely random forest classifier

Define the purely random tree classifier T as follows:
» The support of X (and thus the root node of T*7") is [0, 1]¢.



Consistency of the purely random forest classifier

Define the purely random tree classifier T as follows:
» The support of X (and thus the root node of T*7") is [0, 1]¢.

> At each step, the leaf is chosen uniformly at random among all
existing leaves.



Consistency of the purely random forest classifier

Define the purely random tree classifier T as follows:
» The support of X (and thus the root node of T*7") is [0, 1]¢.

> At each step, the leaf is chosen uniformly at random among all
existing leaves.

» At each node, the split variable j is chosen uniformly at random
among 1,....d.



Consistency of the purely random forest classifier

Define the purely random tree classifier T as follows:
» The support of X (and thus the root node of T*7") is [0, 1]¢.
> At each step, the leaf is chosen uniformly at random among all
existing leaves.
» At each node, the split variable j is chosen uniformly at random
among 1,....d.

> The selected cell is split at a random location, chosen according to a
uniform random variable on the length of the chosen side of the
selected cell.



Consistency of the purely random forest classifier

Define the purely random tree classifier T as follows:

>

>

The support of X (and thus the root node of T*7") is [0, 1]¢.

At each step, the leaf is chosen uniformly at random among all
existing leaves.
At each node, the split variable j is chosen uniformly at random
among 1,....d.

The selected cell is split at a random location, chosen according to a
uniform random variable on the length of the chosen side of the
selected cell.

The procedure is repeated k times where k > 1 is fixed in advance.



Consistency of the purely random forest classifier

Define the purely random tree classifier T as follows:
» The support of X (and thus the root node of T*7") is [0, 1]¢.

> At each step, the leaf is chosen uniformly at random among all
existing leaves.

» At each node, the split variable j is chosen uniformly at random
among 1,....d.

> The selected cell is split at a random location, chosen according to a
uniform random variable on the length of the chosen side of the
selected cell.

» The procedure is repeated k times where k > 1 is fixed in advance.

» The only data driven element is the class label of the leaf, chosen
due to the majority of the observations contained in it.



Consistency of the purely random forest classifier

Define the purely random tree classifier T as follows:
» The support of X (and thus the root node of T*7") is [0, 1]¢.
> At each step, the leaf is chosen uniformly at random among all
existing leaves.
» At each node, the split variable j is chosen uniformly at random
among 1,....d.

> The selected cell is split at a random location, chosen according to a
uniform random variable on the length of the chosen side of the
selected cell.

» The procedure is repeated k times where k > 1 is fixed in advance.

» The only data driven element is the class label of the leaf, chosen
due to the majority of the observations contained in it.

Theorem (Biau, Devroye, Lugosi, 2008; Th. 1)
Assume that the distribution of X is supported on [0,1]¢. Then the

purely random forest classifier TgrRF =1(% Zle TP (-,Dp)) (as well as

prRF
TB

limg_ oo ) is consistent whenever k — oo and k/n — 0 as k — oo.



Consistency of the scale-invariant random forest classifier

Define the scale-invariant random tree classifier 75 as follows:



Consistency of the scale-invariant random forest classifier

Define the scale-invariant random tree classifier 75 as follows:

> Take the purely random tree classifier.



Consistency of the scale-invariant random forest classifier

Define the scale-invariant random tree classifier 75 as follows:

> Take the purely random tree classifier.

> Let the root node be the entire space RY.



Consistency of the scale-invariant random forest classifier
Define the scale-invariant random tree classifier T* as follows:
> Take the purely random tree classifier.
> Let the root node be the entire space RY.

» Define the node-cutting procedure as follows:
if the cell (node) m contains n,, points xi, ..., X,,,, then the random
index I is chosen uniformly from the set {0,1, ..., n,}, and the cut is
performed in the chosen variable between the points x; and x;41.



Consistency of the scale-invariant random forest classifier

Define the scale-invariant random tree classifier 75 as follows:

> Take the purely random tree classifier.
> Let the root node be the entire space RY.

» Define the node-cutting procedure as follows:
if the cell (node) m contains n,, points xi, ..., X,,,, then the random
index I is chosen uniformly from the set {0,1, ..., n,}, and the cut is
performed in the chosen variable between the points x; and x;41.

Theorem (Biau, Devroye, Lugosi, 2008)
Assume that the distribution of X has non-atomic marginals in RY. Then
the scale-invariant random forest classifier T§"" = 1(% Zle TS(-,Dp))

(as well as limpg_, TEIRF) is consistent whenever k — oo and % — 0 as
k — oo.



Consistency of bagging

Remind:

» Bagging classifier:

1 B
g2 (x) =1(5 D gi(x) > 05).

k=1



Consistency of bagging

Remind:

» Bagging classifier:

225 (x (

H
Mw
I

g ( >o5)

> Averaged classifier (the limit of the bagging classifier):
I|m g% (x) = 1(E*[gi(x) | D) > 0.5]) .

with 6 being a random variable delivering a bootstrap sample of size
Bin(n, g,) (without replacement), and g, € [0, 1].



Consistency of bagging

Remind:

» Bagging classifier:

225 (x (

H
Mw
I

g ( >o5)

> Averaged classifier (the limit of the bagging classifier):
I|m g% (x) = 1(E*[gi(x) | D) > 0.5]) .

with 6 being a random variable delivering a bootstrap sample of size
Bin(n, g,) (without replacement), and g, € [0, 1].

Theorem (Biau, Devroye, Lugosi, 2008; Th. 6)
Assume that the classifier g is consistent for a certain distribution
(X,Y). Then the bagging classifier gg? and its limit

1(E[gi (x) | Dn)] > 0.5) are also consistent if ng, — 0o as n — co.



Thank you for your attention!



And some more references

>

Biau, G., Devroye, L., and Lugosi, G. (2008). Consistency of random
forests and other averaging classifiers. Journal of Machine Learning
Research, 9, 2015-2033.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 123-140.
Breiman, L. (2001). Random forests. Machine Learning, 45, 5-32.

Buhlmann, P. (2003). Bagging, subbagging and bragging for improving
some prediction algorithms. Recent Advances and Trends in
Nonparametric Statistics. Akritas, M.G. and Politis, D.N. (Eds.). Elsevier,
pp. 9-34.

Gyorfi, L., Kohler, M., Krzyzak, A., Walk, H. (2002) A distribution-free
theory of nonparametric regression Springer.
Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of

Statistics Learning: Data Mining, Inference, and Prediction (Second
Edition). Springer.

Stone, C.J. (1977). Consistent nonparametric regression. The Annals of
Statistics, 55(4), 595-645.

Zhou, Z.-H. (2012). Ensemble Methods: Foundations and Algorithms.
CRC Press.



	Classification tree
	Algorithm
	Tuning

	Bagging
	Motivation
	Algorithm
	An example

	Random forest
	Algorithm
	Interpretation
	Consistency results


