
1/64

Classification tree, bagging, and random forest

Pavlo Mozharovskyi1

(with contributions of Laurent Rouviere2 and Valentin Patilea3)

1LTCI, Télécom Paris, Institut Polytechnique de Paris
2Université Rennes 2

3Ensai, CREST

Machine learning

Paris, March 12, 2022

2/64

Today

Classification tree
Algorithm
Tuning

Bagging
Motivation
Algorithm
An example

Random forest
Algorithm
Interpretation
Consistency results

3/64

Literature

Learning materials include but are not limited to:

I Hastie, T., Tibshirani, R., and Friedman, J. (2009).
The Elements of Statistics Learning: Data Mining, Inference, and
Prediction (Second Edition).
Springer.

I Section 8.7.
I Section 9.2.
I Chapter 15.

I Slides of the lecture.

I Biau, Devroye, Lugosi (2008).
Consistency of random forests and other averaging classifiers.
Journal of Machine Learning Research, 9, 2015–2033.

4/64

Binary supervised classification (reminder)

Notation:

I Given: for the random pair (X ,Y) in Rd × {0, 1} consisting of a
random observation X and its random binary label Y (class), a
sample of n i.i.d.: (x1, y1), ..., (xn, yn).

I Goal: predict the label of the new (unseen before) observation x.

I Method: construct a classification rule:

g : Rd → {0, 1} , x 7→ g(x) ,

so g(x) is the prediction of the label for observation x.

I Criterion: of the performance of g is the error probability:

R(g) = P[g(X) 6= Y] = E[1
(
g(X) 6= Y

)
] .

I The best solution: is to know the distribution of (X,Y):

g(x) = 1
(
E[Y |X = x] > 0.5

)
.

5/64

Contents

Classification tree
Algorithm
Tuning

Bagging
Motivation
Algorithm
An example

Random forest
Algorithm
Interpretation
Consistency results

6/64

Contents

Classification tree
Algorithm
Tuning

Bagging
Motivation
Algorithm
An example

Random forest
Algorithm
Interpretation
Consistency results

7/64

Classification tree (algorithm)

Growing a tree (training)

Input:

I Training sample
(
(x1, y1), ..., (xn, yn)

)
= Dn ∈ Rd × {0, 1}.

I Measure of impurity Q(m)(T) for node m of tree T .

I Stopping criteria S (m)(T) for node m of tree T .

1. Define the root node by the region R(0) containing the entire
sample, set m = 0.

2. If S (m)(T) is fulfilled then stop for this node (e.g., a lower bound for
the # of obs. in a node).

3. Find a variable and a split (one-variable threshold) diving node
region R(m) into two nodes with subregions R(mL) and R(mR) to
minimize Q(m)(T).

4. Repeat steps 2–3 for all leaves until global stopping.

Output: The tree T .

7/64

Classification tree (algorithm)

Growing a tree (training)

Input:

I Training sample
(
(x1, y1), ..., (xn, yn)

)
= Dn ∈ Rd × {0, 1}.

I Measure of impurity Q(m)(T) for node m of tree T .

I Stopping criteria S (m)(T) for node m of tree T .

1. Define the root node by the region R(0) containing the entire
sample, set m = 0.

2. If S (m)(T) is fulfilled then stop for this node (e.g., a lower bound for
the # of obs. in a node).

3. Find a variable and a split (one-variable threshold) diving node
region R(m) into two nodes with subregions R(mL) and R(mR) to
minimize Q(m)(T).

4. Repeat steps 2–3 for all leaves until global stopping.

Output: The tree T .

7/64

Classification tree (algorithm)

Growing a tree (training)

Input:

I Training sample
(
(x1, y1), ..., (xn, yn)

)
= Dn ∈ Rd × {0, 1}.

I Measure of impurity Q(m)(T) for node m of tree T .

I Stopping criteria S (m)(T) for node m of tree T .

1. Define the root node by the region R(0) containing the entire
sample, set m = 0.

2. If S (m)(T) is fulfilled then stop for this node (e.g., a lower bound for
the # of obs. in a node).

3. Find a variable and a split (one-variable threshold) diving node
region R(m) into two nodes with subregions R(mL) and R(mR) to
minimize Q(m)(T).

4. Repeat steps 2–3 for all leaves until global stopping.

Output: The tree T .

7/64

Classification tree (algorithm)

Growing a tree (training)

Input:

I Training sample
(
(x1, y1), ..., (xn, yn)

)
= Dn ∈ Rd × {0, 1}.

I Measure of impurity Q(m)(T) for node m of tree T .

I Stopping criteria S (m)(T) for node m of tree T .

1. Define the root node by the region R(0) containing the entire
sample, set m = 0.

2. If S (m)(T) is fulfilled then stop for this node (e.g., a lower bound for
the # of obs. in a node).

3. Find a variable and a split (one-variable threshold) diving node
region R(m) into two nodes with subregions R(mL) and R(mR) to
minimize Q(m)(T).

4. Repeat steps 2–3 for all leaves until global stopping.

Output: The tree T .

7/64

Classification tree (algorithm)

Growing a tree (training)

Input:

I Training sample
(
(x1, y1), ..., (xn, yn)

)
= Dn ∈ Rd × {0, 1}.

I Measure of impurity Q(m)(T) for node m of tree T .

I Stopping criteria S (m)(T) for node m of tree T .

1. Define the root node by the region R(0) containing the entire
sample, set m = 0.

2. If S (m)(T) is fulfilled then stop for this node (e.g., a lower bound for
the # of obs. in a node).

3. Find a variable and a split (one-variable threshold) diving node
region R(m) into two nodes with subregions R(mL) and R(mR) to
minimize Q(m)(T).

4. Repeat steps 2–3 for all leaves until global stopping.

Output: The tree T .

7/64

Classification tree (algorithm)

Growing a tree (training)

Input:

I Training sample
(
(x1, y1), ..., (xn, yn)

)
= Dn ∈ Rd × {0, 1}.

I Measure of impurity Q(m)(T) for node m of tree T .

I Stopping criteria S (m)(T) for node m of tree T .

1. Define the root node by the region R(0) containing the entire
sample, set m = 0.

2. If S (m)(T) is fulfilled then stop for this node (e.g., a lower bound for
the # of obs. in a node).

3. Find a variable and a split (one-variable threshold) diving node
region R(m) into two nodes with subregions R(mL) and R(mR) to
minimize Q(m)(T).

4. Repeat steps 2–3 for all leaves until global stopping.

Output: The tree T .

7/64

Classification tree (algorithm)

Growing a tree (training)

Input:

I Training sample
(
(x1, y1), ..., (xn, yn)

)
= Dn ∈ Rd × {0, 1}.

I Measure of impurity Q(m)(T) for node m of tree T .

I Stopping criteria S (m)(T) for node m of tree T .

1. Define the root node by the region R(0) containing the entire
sample, set m = 0.

2. If S (m)(T) is fulfilled then stop for this node (e.g., a lower bound for
the # of obs. in a node).

3. Find a variable and a split (one-variable threshold) diving node
region R(m) into two nodes with subregions R(mL) and R(mR) to
minimize Q(m)(T).

4. Repeat steps 2–3 for all leaves until global stopping.

Output: The tree T .

7/64

Classification tree (algorithm)

Growing a tree (training)

Input:

I Training sample
(
(x1, y1), ..., (xn, yn)

)
= Dn ∈ Rd × {0, 1}.

I Measure of impurity Q(m)(T) for node m of tree T .

I Stopping criteria S (m)(T) for node m of tree T .

1. Define the root node by the region R(0) containing the entire
sample, set m = 0.

2. If S (m)(T) is fulfilled then stop for this node (e.g., a lower bound for
the # of obs. in a node).

3. Find a variable and a split (one-variable threshold) diving node
region R(m) into two nodes with subregions R(mL) and R(mR) to
minimize Q(m)(T).

4. Repeat steps 2–3 for all leaves until global stopping.

Output: The tree T .

8/64

Classification tree – Descending the tree

I Descend the tree until a terminal node.

I In each node m, classify the observations by choosing the
majority class.

I That is, in node m classify the observations to class c(m):

c(m) = argmax
k∈{0,1}

∑
i∈R(m)

I (yi = k) .

8/64

Classification tree – Descending the tree

I Descend the tree until a terminal node.

I In each node m, classify the observations by choosing the
majority class.

I That is, in node m classify the observations to class c(m):

c(m) = argmax
k∈{0,1}

∑
i∈R(m)

I (yi = k) .

8/64

Classification tree – Descending the tree

I Descend the tree until a terminal node.

I In each node m, classify the observations by choosing the
majority class.

I That is, in node m classify the observations to class c(m):

c(m) = argmax
k∈{0,1}

∑
i∈R(m)

I (yi = k) .

9/64

Classification tree (illustration)

x 1

x 2

9/64

Classification tree (illustration)

s 1 x 1

x 2
x < s 1 1 x ≥ s 1 1

9/64

Classification tree (illustration)

s 1 x 1

x 2
x < s 1 1 x ≥ s 1 1

9/64

Classification tree (illustration)

s 1

s 2

x 1

x 2

x < s 2 2

x < s 1 1 x ≥ s 1 1

x ≥ s 2 2

9/64

Classification tree (illustration)

s 1

s 2

x 1

x 2

x < s 2 2

x < s 1 1 x ≥ s 1 1

x ≥ s 2 2

9/64

Classification tree (illustration)

s 1

s 2

s 3 x 1

x 2

x < s 2 2

x < s 1 1 x ≥ s 1 1

x ≥ s 2 2

x < s 3 1 x ≥ s 3 1

9/64

Classification tree (illustration)

s 1

s 2

s 3 x 1

x 2

x < s 2 2

x < s 1 1 x ≥ s 1 1

x ≥ s 2 2

x < s 3 1 x ≥ s 3 1

9/64

Classification tree (illustration)

s 1

s 2

s 3

s 4

x 1

x 2

x < s 2 2

x < s 1 1 x ≥ s 1 1

x ≥ s 2 2

x < s 3 1 x ≥ s 3 1

x < s 4 2 x ≥ s 4 2

9/64

Classification tree (illustration)

s 1

s 2

s 3

s 4

x 1

x 2

x < s 2 2

x < s 1 1 x ≥ s 1 1

x ≥ s 2 2

x < s 3 1 x ≥ s 3 1

x < s 4 2 x ≥ s 4 2

10/64

Classification tree: choice of impurity measure
Let n(m) = #{x | x ∈ R(m)} be the number of observations in region
R(m). Then the classification accuracy of node m classifying to class k is

p̂
(m)
k =

1

n(m)

∑
xi∈R(m)

I (yi = k) .

Possible choices for Q (the measure of impurity):
I Misclassification error:

Q(m)(T) =
n(mL)

n(m)
(1− p̂

(mL)
k(mL)) +

n(mR)

n(m)
(1− p̂

(mR)
k(mR)) ,

I Gini index:

Q(m)(T) =
n(mL)

n(m)
2p̂

(mL)
k (1− p̂

(mL)
k) +

n(mR)

n(m)
2p̂

(mR)
k (1− p̂

(mR)
k) ,

I Cross-entropy (deviance):

Q(m)(T) = −
{

(
n(mL)

n(m)

(
p̂

(mL)
k log p̂

(mL)
k + (1− p̂

(mL)
k) log(1− p̂

(mL)
k)

)
+
n(mR)

n(m)

(
p̂

(mR)
k log p̂

(mR)
k + (1− p̂

(mR)
k) log(1− p̂

(mR)
k)

)}
.

10/64

Classification tree: choice of impurity measure
Let n(m) = #{x | x ∈ R(m)} be the number of observations in region
R(m). Then the classification accuracy of node m classifying to class k is

p̂
(m)
k =

1

n(m)

∑
xi∈R(m)

I (yi = k) .

Possible choices for Q (the measure of impurity):
I Misclassification error:

Q(m)(T) =
n(mL)

n(m)
(1− p̂

(mL)
k(mL)) +

n(mR)

n(m)
(1− p̂

(mR)
k(mR)) ,

I Gini index:

Q(m)(T) =
n(mL)

n(m)
2p̂

(mL)
k (1− p̂

(mL)
k) +

n(mR)

n(m)
2p̂

(mR)
k (1− p̂

(mR)
k) ,

I Cross-entropy (deviance):

Q(m)(T) = −
{

(
n(mL)

n(m)

(
p̂

(mL)
k log p̂

(mL)
k + (1− p̂

(mL)
k) log(1− p̂

(mL)
k)

)
+
n(mR)

n(m)

(
p̂

(mR)
k log p̂

(mR)
k + (1− p̂

(mR)
k) log(1− p̂

(mR)
k)

)}
.

10/64

Classification tree: choice of impurity measure
Let n(m) = #{x | x ∈ R(m)} be the number of observations in region
R(m). Then the classification accuracy of node m classifying to class k is

p̂
(m)
k =

1

n(m)

∑
xi∈R(m)

I (yi = k) .

Possible choices for Q (the measure of impurity):
I Misclassification error:

Q(m)(T) =
n(mL)

n(m)
(1− p̂

(mL)
k(mL)) +

n(mR)

n(m)
(1− p̂

(mR)
k(mR)) ,

I Gini index:

Q(m)(T) =
n(mL)

n(m)
2p̂

(mL)
k (1− p̂

(mL)
k) +

n(mR)

n(m)
2p̂

(mR)
k (1− p̂

(mR)
k) ,

I Cross-entropy (deviance):

Q(m)(T) = −
{

(
n(mL)

n(m)

(
p̂

(mL)
k log p̂

(mL)
k + (1− p̂

(mL)
k) log(1− p̂

(mL)
k)

)
+
n(mR)

n(m)

(
p̂

(mR)
k log p̂

(mR)
k + (1− p̂

(mR)
k) log(1− p̂

(mR)
k)

)}
.

10/64

Classification tree: choice of impurity measure
Let n(m) = #{x | x ∈ R(m)} be the number of observations in region
R(m). Then the classification accuracy of node m classifying to class k is

p̂
(m)
k =

1

n(m)

∑
xi∈R(m)

I (yi = k) .

Possible choices for Q (the measure of impurity):
I Misclassification error:

Q(m)(T) =
n(mL)

n(m)
(1− p̂

(mL)
k(mL)) +

n(mR)

n(m)
(1− p̂

(mR)
k(mR)) ,

I Gini index:

Q(m)(T) =
n(mL)

n(m)
2p̂

(mL)
k (1− p̂

(mL)
k) +

n(mR)

n(m)
2p̂

(mR)
k (1− p̂

(mR)
k) ,

I Cross-entropy (deviance):

Q(m)(T) = −
{

(
n(mL)

n(m)

(
p̂

(mL)
k log p̂

(mL)
k + (1− p̂

(mL)
k) log(1− p̂

(mL)
k)

)
+
n(mR)

n(m)

(
p̂

(mR)
k log p̂

(mR)
k + (1− p̂

(mR)
k) log(1− p̂

(mR)
k)

)}
.

11/64

Maximizing the gain

I Sometimes in the literature and in the textbooks, the minimization
of Q(m)(T) is presented under the equivalent for of the gain
maximization

I For instance, for the Gini index the gain is

2p̂
(m)
k (1− p̂

(m)
k)− Q

(m)
Gini (T)

I For instance, for the deviance the gain is

p̂
(m)
k log p̂

(m)
k + (1− p̂

(m)
k) log(1− p̂

(m)
k)− Q

(m)
deviance(T)

12/64

Classification tree: iris data

5.0 5.5 6.0 6.5 7.0 7.5 8.0

2.
0

2.
5

3.
0

3.
5

Iris, 'versicolor' vs 'virginica'

Sepal length

S
ep

al
 w

id
th

13/64

Classification tree: iris data

Minimum size of splittable node = 25

|

Sepal.Length>=6.15

Sepal.Length>=7.05

Sepal.Width>=2.4

Sepal.Length< 6.95

Sepal.Length< 6.15

Sepal.Length< 7.05

Sepal.Width< 2.4

Sepal.Length>=6.95

0
44/44

0
34/15

0
12/0

0
22/15

0
22/13

0
22/12

1
0/1

1
0/2

1
10/29

14/64

Classification tree: iris data

5.0 5.5 6.0 6.5 7.0 7.5 8.0

2.0

2.5

3.0

3.5

Minimum size of splittable node = 50

Sepal length

S
ep

al
 w

id
th

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

14/64

Classification tree: iris data

5.0 5.5 6.0 6.5 7.0 7.5 8.0

2.0

2.5

3.0

3.5

Minimum size of splittable node = 37

Sepal length

S
ep

al
 w

id
th

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

14/64

Classification tree: iris data

5.0 5.5 6.0 6.5 7.0 7.5 8.0

2.0

2.5

3.0

3.5

Minimum size of splittable node = 35

Sepal length

S
ep

al
 w

id
th

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

14/64

Classification tree: iris data

5.0 5.5 6.0 6.5 7.0 7.5 8.0

2.0

2.5

3.0

3.5

Minimum size of splittable node = 24

Sepal length

S
ep

al
 w

id
th

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

14/64

Classification tree: iris data

5.0 5.5 6.0 6.5 7.0 7.5 8.0

2.0

2.5

3.0

3.5

Minimum size of splittable node = 21

Sepal length

S
ep

al
 w

id
th

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

14/64

Classification tree: iris data

5.0 5.5 6.0 6.5 7.0 7.5 8.0

2.0

2.5

3.0

3.5

Minimum size of splittable node = 16

Sepal length

S
ep

al
 w

id
th

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

14/64

Classification tree: iris data

5.0 5.5 6.0 6.5 7.0 7.5 8.0

2.0

2.5

3.0

3.5

Minimum size of splittable node = 13

Sepal length

S
ep

al
 w

id
th

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

14/64

Classification tree: iris data

5.0 5.5 6.0 6.5 7.0 7.5 8.0

2.0

2.5

3.0

3.5

Minimum size of splittable node = 12

Sepal length

S
ep

al
 w

id
th

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

14/64

Classification tree: iris data

5.0 5.5 6.0 6.5 7.0 7.5 8.0

2.0

2.5

3.0

3.5

Minimum size of splittable node = 9

Sepal length

S
ep

al
 w

id
th

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

14/64

Classification tree: iris data

5.0 5.5 6.0 6.5 7.0 7.5 8.0

2.0

2.5

3.0

3.5

Minimum size of splittable node = 8

Sepal length

S
ep

al
 w

id
th

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

14/64

Classification tree: iris data

5.0 5.5 6.0 6.5 7.0 7.5 8.0

2.0

2.5

3.0

3.5

Minimum size of splittable node = 6

Sepal length

S
ep

al
 w

id
th

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

14/64

Classification tree: iris data

5.0 5.5 6.0 6.5 7.0 7.5 8.0

2.0

2.5

3.0

3.5

Minimum size of splittable node = 5

Sepal length

S
ep

al
 w

id
th

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

14/64

Classification tree: iris data

5.0 5.5 6.0 6.5 7.0 7.5 8.0

2.0

2.5

3.0

3.5

Minimum size of splittable node = 4

Sepal length

S
ep

al
 w

id
th

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

14/64

Classification tree: iris data

5.0 5.5 6.0 6.5 7.0 7.5 8.0

2.0

2.5

3.0

3.5

Minimum size of splittable node = 2

Sepal length

S
ep

al
 w

id
th

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

15/64

Contents

Classification tree
Algorithm
Tuning

Bagging
Motivation
Algorithm
An example

Random forest
Algorithm
Interpretation
Consistency results

16/64

Classification tree: tuning and properties

I A possible (and wide-spread) choice for the stopping criteria S is to
restrict the number of points in region R(m) to be split to some
constant nmin:

S (m)(T) = I (n(m) < nmin) .

I Often the classification tree is constructed in two stages:

1. nmin is set very small and the tree is grown to T0.
2. Pruning of tree (i.e., collapsing any number of its non-terminal

nodes) is conducted based on some parameter α, which consists in
choosing a subtree T ⊂ T0 that minimizes a cost-complexity
criterion, e.g.

Cα(T) =

#T∑
m=1

n(m)Q(m)(T) + α#T ,

where #T stands for the number of nodes in the tree.
For each α, it can shown that there is a unique smallest subtree Tα

that minimizes Cα(T).
Pruning parameter α is chosen by the means of cross-validation.

16/64

Classification tree: tuning and properties

I A possible (and wide-spread) choice for the stopping criteria S is to
restrict the number of points in region R(m) to be split to some
constant nmin:

S (m)(T) = I (n(m) < nmin) .

I Often the classification tree is constructed in two stages:

1. nmin is set very small and the tree is grown to T0.

2. Pruning of tree (i.e., collapsing any number of its non-terminal
nodes) is conducted based on some parameter α, which consists in
choosing a subtree T ⊂ T0 that minimizes a cost-complexity
criterion, e.g.

Cα(T) =

#T∑
m=1

n(m)Q(m)(T) + α#T ,

where #T stands for the number of nodes in the tree.
For each α, it can shown that there is a unique smallest subtree Tα

that minimizes Cα(T).
Pruning parameter α is chosen by the means of cross-validation.

16/64

Classification tree: tuning and properties

I A possible (and wide-spread) choice for the stopping criteria S is to
restrict the number of points in region R(m) to be split to some
constant nmin:

S (m)(T) = I (n(m) < nmin) .

I Often the classification tree is constructed in two stages:

1. nmin is set very small and the tree is grown to T0.
2. Pruning of tree (i.e., collapsing any number of its non-terminal

nodes) is conducted based on some parameter α, which consists in
choosing a subtree T ⊂ T0 that minimizes a cost-complexity
criterion, e.g.

Cα(T) =

#T∑
m=1

n(m)Q(m)(T) + α#T ,

where #T stands for the number of nodes in the tree.

For each α, it can shown that there is a unique smallest subtree Tα

that minimizes Cα(T).
Pruning parameter α is chosen by the means of cross-validation.

16/64

Classification tree: tuning and properties

I A possible (and wide-spread) choice for the stopping criteria S is to
restrict the number of points in region R(m) to be split to some
constant nmin:

S (m)(T) = I (n(m) < nmin) .

I Often the classification tree is constructed in two stages:

1. nmin is set very small and the tree is grown to T0.
2. Pruning of tree (i.e., collapsing any number of its non-terminal

nodes) is conducted based on some parameter α, which consists in
choosing a subtree T ⊂ T0 that minimizes a cost-complexity
criterion, e.g.

Cα(T) =

#T∑
m=1

n(m)Q(m)(T) + α#T ,

where #T stands for the number of nodes in the tree.
For each α, it can shown that there is a unique smallest subtree Tα

that minimizes Cα(T).
Pruning parameter α is chosen by the means of cross-validation.

17/64

Some more comments

I To handle predictors with unordered values when the outcome is of
0-1 type, one can simply order the predictor classes according to the
proportion falling in outcome class 1.

I To handle missing predictor values there are two recommended
approaches

I if the predictor is categorical, create a new category ‘missing’;
I a more general approach is the construction of surrogate variables

(see Hastie et al. (2009, section 9.2) for the details).

I The key advantage of the classification tree is its interpretability,
as the feature space partition is fully described by a single tree.

I Some disadvantage are the instability (trees have high variance, a
small change in the data can result in a quite different series of splits
– see bagging for a solution) and the difficulty in capturing additive
structures.

17/64

Some more comments

I To handle predictors with unordered values when the outcome is of
0-1 type, one can simply order the predictor classes according to the
proportion falling in outcome class 1.

I To handle missing predictor values there are two recommended
approaches

I if the predictor is categorical, create a new category ‘missing’;
I a more general approach is the construction of surrogate variables

(see Hastie et al. (2009, section 9.2) for the details).

I The key advantage of the classification tree is its interpretability,
as the feature space partition is fully described by a single tree.

I Some disadvantage are the instability (trees have high variance, a
small change in the data can result in a quite different series of splits
– see bagging for a solution) and the difficulty in capturing additive
structures.

17/64

Some more comments

I To handle predictors with unordered values when the outcome is of
0-1 type, one can simply order the predictor classes according to the
proportion falling in outcome class 1.

I To handle missing predictor values there are two recommended
approaches

I if the predictor is categorical, create a new category ‘missing’;
I a more general approach is the construction of surrogate variables

(see Hastie et al. (2009, section 9.2) for the details).

I The key advantage of the classification tree is its interpretability,
as the feature space partition is fully described by a single tree.

I Some disadvantage are the instability (trees have high variance, a
small change in the data can result in a quite different series of splits
– see bagging for a solution) and the difficulty in capturing additive
structures.

17/64

Some more comments

I To handle predictors with unordered values when the outcome is of
0-1 type, one can simply order the predictor classes according to the
proportion falling in outcome class 1.

I To handle missing predictor values there are two recommended
approaches

I if the predictor is categorical, create a new category ‘missing’;
I a more general approach is the construction of surrogate variables

(see Hastie et al. (2009, section 9.2) for the details).

I The key advantage of the classification tree is its interpretability,
as the feature space partition is fully described by a single tree.

I Some disadvantage are the instability (trees have high variance, a
small change in the data can result in a quite different series of splits
– see bagging for a solution) and the difficulty in capturing additive
structures.

18/64

Contents

Classification tree
Algorithm
Tuning

Bagging
Motivation
Algorithm
An example

Random forest
Algorithm
Interpretation
Consistency results

19/64

Contents

Classification tree
Algorithm
Tuning

Bagging
Motivation
Algorithm
An example

Random forest
Algorithm
Interpretation
Consistency results

20/64

The key idea

I The “Wisdom of Crowds” (Surowiecki, 2004): The collective
knowledge of a diverse and independent body of people typically
exceeds the knowledge of any single individual, and can be harnessed
by voting.

I Bagging implements this way of thinking standing for a range of
methods following the general idea introduced by Léo Breiman
(1996).

I Bagging is a shortcut for Bootstrap Aggregating.

I The main idea is to construct a single estimator that consists of a
number of basic classifiers (weak learners) (taught on a
bootstrapped samples) aggregated by averaging (voting).

20/64

The key idea

I The “Wisdom of Crowds” (Surowiecki, 2004): The collective
knowledge of a diverse and independent body of people typically
exceeds the knowledge of any single individual, and can be harnessed
by voting.

I Bagging implements this way of thinking standing for a range of
methods following the general idea introduced by Léo Breiman
(1996).

I Bagging is a shortcut for Bootstrap Aggregating.

I The main idea is to construct a single estimator that consists of a
number of basic classifiers (weak learners) (taught on a
bootstrapped samples) aggregated by averaging (voting).

20/64

The key idea

I The “Wisdom of Crowds” (Surowiecki, 2004): The collective
knowledge of a diverse and independent body of people typically
exceeds the knowledge of any single individual, and can be harnessed
by voting.

I Bagging implements this way of thinking standing for a range of
methods following the general idea introduced by Léo Breiman
(1996).

I Bagging is a shortcut for Bootstrap Aggregating.

I The main idea is to construct a single estimator that consists of a
number of basic classifiers (weak learners) (taught on a
bootstrapped samples) aggregated by averaging (voting).

20/64

The key idea

I The “Wisdom of Crowds” (Surowiecki, 2004): The collective
knowledge of a diverse and independent body of people typically
exceeds the knowledge of any single individual, and can be harnessed
by voting.

I Bagging implements this way of thinking standing for a range of
methods following the general idea introduced by Léo Breiman
(1996).

I Bagging is a shortcut for Bootstrap Aggregating.

I The main idea is to construct a single estimator that consists of a
number of basic classifiers (weak learners) (taught on a
bootstrapped samples) aggregated by averaging (voting).

21/64

Motivation (regression)

I Consider the standard regression setting

Y = g(X) + ε.

I The single bagged estimator

ĝB(x) =
1

B

B∑
k=1

gk(x)

is the estimator of g obtained by aggregating estimators g1, ..., gB .

I gk(x) = gk(x; (X1,Y1), ..., (Xn,Yn)) as well as
ĝB(x) = ĝB(x; (X1,Y1), ..., (Xn,Yn)) are random variables.

I One can measure the improvement of aggregating by comparing
performance of ĝB(x) and those of gk(x), k = 1, ...,B in terms of
bias and variance.

21/64

Motivation (regression)

I Consider the standard regression setting

Y = g(X) + ε.

I The single bagged estimator

ĝB(x) =
1

B

B∑
k=1

gk(x)

is the estimator of g obtained by aggregating estimators g1, ..., gB .

I gk(x) = gk(x; (X1,Y1), ..., (Xn,Yn)) as well as
ĝB(x) = ĝB(x; (X1,Y1), ..., (Xn,Yn)) are random variables.

I One can measure the improvement of aggregating by comparing
performance of ĝB(x) and those of gk(x), k = 1, ...,B in terms of
bias and variance.

21/64

Motivation (regression)

I Consider the standard regression setting

Y = g(X) + ε.

I The single bagged estimator

ĝB(x) =
1

B

B∑
k=1

gk(x)

is the estimator of g obtained by aggregating estimators g1, ..., gB .

I gk(x) = gk(x; (X1,Y1), ..., (Xn,Yn)) as well as
ĝB(x) = ĝB(x; (X1,Y1), ..., (Xn,Yn)) are random variables.

I One can measure the improvement of aggregating by comparing
performance of ĝB(x) and those of gk(x), k = 1, ...,B in terms of
bias and variance.

21/64

Motivation (regression)

I Consider the standard regression setting

Y = g(X) + ε.

I The single bagged estimator

ĝB(x) =
1

B

B∑
k=1

gk(x)

is the estimator of g obtained by aggregating estimators g1, ..., gB .

I gk(x) = gk(x; (X1,Y1), ..., (Xn,Yn)) as well as
ĝB(x) = ĝB(x; (X1,Y1), ..., (Xn,Yn)) are random variables.

I One can measure the improvement of aggregating by comparing
performance of ĝB(x) and those of gk(x), k = 1, ...,B in terms of
bias and variance.

22/64

Bias and variance (regression)

I Assumption (unfeasible): Random variables g1, ..., gB are i.i.d.

I Bias:
E[ĝB(x)] = E[gk(x)] .

Conclusion
Aggregation does not modify the bias.

I Variance:

V[ĝB(x)] =
1

B
V[gk(x)] .

Conclusion
Aggregation reduces the variance
(the conclusion here is obtained under the unfeasible assumption of i.i.d.
property of g1, ..., gB).

22/64

Bias and variance (regression)

I Assumption (unfeasible): Random variables g1, ..., gB are i.i.d.

I Bias:
E[ĝB(x)] = E[gk(x)] .

Conclusion
Aggregation does not modify the bias.

I Variance:

V[ĝB(x)] =
1

B
V[gk(x)] .

Conclusion
Aggregation reduces the variance
(the conclusion here is obtained under the unfeasible assumption of i.i.d.
property of g1, ..., gB).

22/64

Bias and variance (regression)

I Assumption (unfeasible): Random variables g1, ..., gB are i.i.d.

I Bias:
E[ĝB(x)] = E[gk(x)] .

Conclusion
Aggregation does not modify the bias.

I Variance:

V[ĝB(x)] =
1

B
V[gk(x)] .

Conclusion
Aggregation reduces the variance
(the conclusion here is obtained under the unfeasible assumption of i.i.d.
property of g1, ..., gB).

22/64

Bias and variance (regression)

I Assumption (unfeasible): Random variables g1, ..., gB are i.i.d.

I Bias:
E[ĝB(x)] = E[gk(x)] .

Conclusion
Aggregation does not modify the bias.

I Variance:

V[ĝB(x)] =
1

B
V[gk(x)] .

Conclusion
Aggregation reduces the variance
(the conclusion here is obtained under the unfeasible assumption of i.i.d.
property of g1, ..., gB).

22/64

Bias and variance (regression)

I Assumption (unfeasible): Random variables g1, ..., gB are i.i.d.

I Bias:
E[ĝB(x)] = E[gk(x)] .

Conclusion
Aggregation does not modify the bias.

I Variance:

V[ĝB(x)] =
1

B
V[gk(x)] .

Conclusion
Aggregation reduces the variance
(the conclusion here is obtained under the unfeasible assumption of i.i.d.
property of g1, ..., gB).

23/64

Motivation (classification)
I Let g1, ..., gB be an ensemble of basic classifiers.

I Assumption: Each basic classifier has an independent error ε < 0.5
for predicting the correct decision y = 1 for some value x:

P
(
gk(x) 6= 1

)
= ε < 0.5 for k = 1, ...,B ,

g1(x), ..., gB(x) are still assumed i.i.d .

I Further, let the aggregated classifier be

g agg (x) = 1
(1

B

∑
k

gk(x) > 0.5
)
.

I Then
∑

k gk(x) will have binomial distribution∑
k

gk(x) ∼ Bin(B, 1− ε)

and classification error of x will decrease with increasing B:

P
(
g agg (x) 6= 1

)
=

B/2∑
k=1

(
B

k

)
(1− ε)kεB−k −−−−→

B→∞
0 .

23/64

Motivation (classification)
I Let g1, ..., gB be an ensemble of basic classifiers.
I Assumption: Each basic classifier has an independent error ε < 0.5

for predicting the correct decision y = 1 for some value x:

P
(
gk(x) 6= 1

)
= ε < 0.5 for k = 1, ...,B ,

g1(x), ..., gB(x) are still assumed i.i.d .

I Further, let the aggregated classifier be

g agg (x) = 1
(1

B

∑
k

gk(x) > 0.5
)
.

I Then
∑

k gk(x) will have binomial distribution∑
k

gk(x) ∼ Bin(B, 1− ε)

and classification error of x will decrease with increasing B:

P
(
g agg (x) 6= 1

)
=

B/2∑
k=1

(
B

k

)
(1− ε)kεB−k −−−−→

B→∞
0 .

23/64

Motivation (classification)
I Let g1, ..., gB be an ensemble of basic classifiers.
I Assumption: Each basic classifier has an independent error ε < 0.5

for predicting the correct decision y = 1 for some value x:

P
(
gk(x) 6= 1

)
= ε < 0.5 for k = 1, ...,B ,

g1(x), ..., gB(x) are still assumed i.i.d .

I Further, let the aggregated classifier be

g agg (x) = 1
(1

B

∑
k

gk(x) > 0.5
)
.

I Then
∑

k gk(x) will have binomial distribution∑
k

gk(x) ∼ Bin(B, 1− ε)

and classification error of x will decrease with increasing B:

P
(
g agg (x) 6= 1

)
=

B/2∑
k=1

(
B

k

)
(1− ε)kεB−k −−−−→

B→∞
0 .

23/64

Motivation (classification)
I Let g1, ..., gB be an ensemble of basic classifiers.
I Assumption: Each basic classifier has an independent error ε < 0.5

for predicting the correct decision y = 1 for some value x:

P
(
gk(x) 6= 1

)
= ε < 0.5 for k = 1, ...,B ,

g1(x), ..., gB(x) are still assumed i.i.d .

I Further, let the aggregated classifier be

g agg (x) = 1
(1

B

∑
k

gk(x) > 0.5
)
.

I Then
∑

k gk(x) will have binomial distribution∑
k

gk(x) ∼ Bin(B, 1− ε)

and classification error of x will decrease with increasing B:

P
(
g agg (x) 6= 1

)
=

B/2∑
k=1

(
B

k

)
(1− ε)kεB−k −−−−→

B→∞
0 .

23/64

Motivation (classification)
I Let g1, ..., gB be an ensemble of basic classifiers.
I Assumption: Each basic classifier has an independent error ε < 0.5

for predicting the correct decision y = 1 for some value x:

P
(
gk(x) 6= 1

)
= ε < 0.5 for k = 1, ...,B ,

g1(x), ..., gB(x) are still assumed i.i.d .

I Further, let the aggregated classifier be

g agg (x) = 1
(1

B

∑
k

gk(x) > 0.5
)
.

I Then
∑

k gk(x) will have binomial distribution∑
k

gk(x) ∼ Bin(B, 1− ε)

and classification error of x will decrease with increasing B:

P
(
g agg (x) 6= 1

)
=

B/2∑
k=1

(
B

k

)
(1− ε)kεB−k −−−−→

B→∞

0 .

23/64

Motivation (classification)
I Let g1, ..., gB be an ensemble of basic classifiers.
I Assumption: Each basic classifier has an independent error ε < 0.5

for predicting the correct decision y = 1 for some value x:

P
(
gk(x) 6= 1

)
= ε < 0.5 for k = 1, ...,B ,

g1(x), ..., gB(x) are still assumed i.i.d .

I Further, let the aggregated classifier be

g agg (x) = 1
(1

B

∑
k

gk(x) > 0.5
)
.

I Then
∑

k gk(x) will have binomial distribution∑
k

gk(x) ∼ Bin(B, 1− ε)

and classification error of x will decrease with increasing B:

P
(
g agg (x) 6= 1

)
=

B/2∑
k=1

(
B

k

)
(1− ε)kεB−k −−−−→

B→∞
0 .

24/64

Motivation (classification)
Theorem (Chernoff-Hoeffding, Bernoulli scheme)
If X1, ...,Xn are i.i.d. random variables taking values in {0, 1}, then for
any η > 0 it holds

P
(
E[Xi]−

1

n

n∑
i=1

Xi > η
)
< exp(−2η2n) .

One can express classification error as

P
(
g agg (x) 6= 1

)
= P

(1

B

B∑
k=1

gk(x) < 0.5
)
.

By a sequence of simple transformations we obtain

(1− ε)︸ ︷︷ ︸
E[g1(x)]

− 1

B

B∑
k=1

gk(x) > 0.5− ε .

Applying the Chernoff-Hoeffding inequality gives

P
(
g agg (x) 6= 1

)
< exp

(
−1

2
B(1− 2ε)2

)
.

24/64

Motivation (classification)
Theorem (Chernoff-Hoeffding, Bernoulli scheme)
If X1, ...,Xn are i.i.d. random variables taking values in {0, 1}, then for
any η > 0 it holds

P
(
E[Xi]−

1

n

n∑
i=1

Xi > η
)
< exp(−2η2n) .

One can express classification error as

P
(
g agg (x) 6= 1

)
= P

(1

B

B∑
k=1

gk(x) < 0.5
)
.

By a sequence of simple transformations we obtain

(1− ε)︸ ︷︷ ︸
E[g1(x)]

− 1

B

B∑
k=1

gk(x) > 0.5− ε .

Applying the Chernoff-Hoeffding inequality gives

P
(
g agg (x) 6= 1

)
< exp

(
−1

2
B(1− 2ε)2

)
.

24/64

Motivation (classification)
Theorem (Chernoff-Hoeffding, Bernoulli scheme)
If X1, ...,Xn are i.i.d. random variables taking values in {0, 1}, then for
any η > 0 it holds

P
(
E[Xi]−

1

n

n∑
i=1

Xi > η
)
< exp(−2η2n) .

One can express classification error as

P
(
g agg (x) 6= 1

)
= P

(1

B

B∑
k=1

gk(x) < 0.5
)
.

By a sequence of simple transformations we obtain

(1− ε)︸ ︷︷ ︸
E[g1(x)]

− 1

B

B∑
k=1

gk(x) > 0.5− ε .

Applying the Chernoff-Hoeffding inequality gives

P
(
g agg (x) 6= 1

)
< exp

(
−1

2
B(1− 2ε)2

)
.

24/64

Motivation (classification)
Theorem (Chernoff-Hoeffding, Bernoulli scheme)
If X1, ...,Xn are i.i.d. random variables taking values in {0, 1}, then for
any η > 0 it holds

P
(
E[Xi]−

1

n

n∑
i=1

Xi > η
)
< exp(−2η2n) .

One can express classification error as

P
(
g agg (x) 6= 1

)
= P

(1

B

B∑
k=1

gk(x) < 0.5
)
.

By a sequence of simple transformations we obtain

(1− ε)︸ ︷︷ ︸
E[g1(x)]

− 1

B

B∑
k=1

gk(x) > 0.5− ε .

Applying the Chernoff-Hoeffding inequality gives

P
(
g agg (x) 6= 1

)
< exp

(
−1

2
B(1− 2ε)2

)
.

25/64

Motivation
I The derivations from above exploit the assumption that random

variables g1(x), ..., gB(x) are independent and identically
distributed.

I As the classifiers g1, ..., gB are constructed using the same training
sample Dn, the assumption of independence is not really credible.

I Remark: If the variables g1, . . . , gB identically distributed with
variance σ2, but not necessarily independent, with positive pairwise
correlation ρ, then

V

[
1

B

B∑
k=1

gk

]
= ρσ2 +

1− ρ
B

σ2 .

I The idea is thus to introduce a source of randomness into the
sample used to train each single classifier gk , k = 1, ...,B to render
the pairwise correlation of the gk ’s as small as possible.

I Resort to the idea of the bootstrap.

25/64

Motivation
I The derivations from above exploit the assumption that random

variables g1(x), ..., gB(x) are independent and identically
distributed.

I As the classifiers g1, ..., gB are constructed using the same training
sample Dn, the assumption of independence is not really credible.

I Remark: If the variables g1, . . . , gB identically distributed with
variance σ2, but not necessarily independent, with positive pairwise
correlation ρ, then

V

[
1

B

B∑
k=1

gk

]
= ρσ2 +

1− ρ
B

σ2 .

I The idea is thus to introduce a source of randomness into the
sample used to train each single classifier gk , k = 1, ...,B to render
the pairwise correlation of the gk ’s as small as possible.

I Resort to the idea of the bootstrap.

25/64

Motivation
I The derivations from above exploit the assumption that random

variables g1(x), ..., gB(x) are independent and identically
distributed.

I As the classifiers g1, ..., gB are constructed using the same training
sample Dn, the assumption of independence is not really credible.

I Remark: If the variables g1, . . . , gB identically distributed with
variance σ2, but not necessarily independent, with positive pairwise
correlation ρ, then

V

[
1

B

B∑
k=1

gk

]
=

ρσ2 +
1− ρ
B

σ2 .

I The idea is thus to introduce a source of randomness into the
sample used to train each single classifier gk , k = 1, ...,B to render
the pairwise correlation of the gk ’s as small as possible.

I Resort to the idea of the bootstrap.

25/64

Motivation
I The derivations from above exploit the assumption that random

variables g1(x), ..., gB(x) are independent and identically
distributed.

I As the classifiers g1, ..., gB are constructed using the same training
sample Dn, the assumption of independence is not really credible.

I Remark: If the variables g1, . . . , gB identically distributed with
variance σ2, but not necessarily independent, with positive pairwise
correlation ρ, then

V

[
1

B

B∑
k=1

gk

]
= ρσ2 +

1− ρ
B

σ2 .

I The idea is thus to introduce a source of randomness into the
sample used to train each single classifier gk , k = 1, ...,B to render
the pairwise correlation of the gk ’s as small as possible.

I Resort to the idea of the bootstrap.

25/64

Motivation
I The derivations from above exploit the assumption that random

variables g1(x), ..., gB(x) are independent and identically
distributed.

I As the classifiers g1, ..., gB are constructed using the same training
sample Dn, the assumption of independence is not really credible.

I Remark: If the variables g1, . . . , gB identically distributed with
variance σ2, but not necessarily independent, with positive pairwise
correlation ρ, then

V

[
1

B

B∑
k=1

gk

]
= ρσ2 +

1− ρ
B

σ2 .

I The idea is thus to introduce a source of randomness into the
sample used to train each single classifier gk , k = 1, ...,B to render
the pairwise correlation of the gk ’s as small as possible.

I Resort to the idea of the bootstrap.

25/64

Motivation
I The derivations from above exploit the assumption that random

variables g1(x), ..., gB(x) are independent and identically
distributed.

I As the classifiers g1, ..., gB are constructed using the same training
sample Dn, the assumption of independence is not really credible.

I Remark: If the variables g1, . . . , gB identically distributed with
variance σ2, but not necessarily independent, with positive pairwise
correlation ρ, then

V

[
1

B

B∑
k=1

gk

]
= ρσ2 +

1− ρ
B

σ2 .

I The idea is thus to introduce a source of randomness into the
sample used to train each single classifier gk , k = 1, ...,B to render
the pairwise correlation of the gk ’s as small as possible.

I Resort to the idea of the bootstrap.

26/64

Contents

Classification tree
Algorithm
Tuning

Bagging
Motivation
Algorithm
An example

Random forest
Algorithm
Interpretation
Consistency results

27/64

Bagging (algorithm)

Training
Input:

I Training sample
(
(x1, y1), ..., (xn, yn)

)
= Dn ∈ Rd × {0, 1}.

I Basic classifier g(·).

I Number of estimators to aggregate B.

For k = 1, ...,B

1. Draw a sample D∗n,k from Dn using bootstrap.

2. Learn g∗k on D∗n,k .

Output: The aggregated classifier g agg (·) = 1
(

1
B

∑B
k=1 g

∗
k (·) > 0.5

)
.

Classification
I Classify the new observation x as

g agg (x) = 1
(1

B

B∑
k=1

g∗k (x) > 0.5
)
.

27/64

Bagging (algorithm)

Training
Input:

I Training sample
(
(x1, y1), ..., (xn, yn)

)
= Dn ∈ Rd × {0, 1}.

I Basic classifier g(·).

I Number of estimators to aggregate B.

For k = 1, ...,B

1. Draw a sample D∗n,k from Dn using bootstrap.

2. Learn g∗k on D∗n,k .

Output: The aggregated classifier g agg (·) = 1
(

1
B

∑B
k=1 g

∗
k (·) > 0.5

)
.

Classification
I Classify the new observation x as

g agg (x) = 1
(1

B

B∑
k=1

g∗k (x) > 0.5
)
.

27/64

Bagging (algorithm)

Training
Input:

I Training sample
(
(x1, y1), ..., (xn, yn)

)
= Dn ∈ Rd × {0, 1}.

I Basic classifier g(·).

I Number of estimators to aggregate B.

For k = 1, ...,B

1. Draw a sample D∗n,k from Dn using bootstrap.

2. Learn g∗k on D∗n,k .

Output: The aggregated classifier g agg (·) = 1
(

1
B

∑B
k=1 g

∗
k (·) > 0.5

)
.

Classification
I Classify the new observation x as

g agg (x) = 1
(1

B

B∑
k=1

g∗k (x) > 0.5
)
.

27/64

Bagging (algorithm)

Training
Input:

I Training sample
(
(x1, y1), ..., (xn, yn)

)
= Dn ∈ Rd × {0, 1}.

I Basic classifier g(·).

I Number of estimators to aggregate B.

For k = 1, ...,B

1. Draw a sample D∗n,k from Dn using bootstrap.

2. Learn g∗k on D∗n,k .

Output: The aggregated classifier g agg (·) = 1
(

1
B

∑B
k=1 g

∗
k (·) > 0.5

)
.

Classification
I Classify the new observation x as

g agg (x) = 1
(1

B

B∑
k=1

g∗k (x) > 0.5
)
.

27/64

Bagging (algorithm)

Training
Input:

I Training sample
(
(x1, y1), ..., (xn, yn)

)
= Dn ∈ Rd × {0, 1}.

I Basic classifier g(·).

I Number of estimators to aggregate B.

For k = 1, ...,B

1. Draw a sample D∗n,k from Dn using bootstrap.

2. Learn g∗k on D∗n,k .

Output: The aggregated classifier g agg (·) = 1
(

1
B

∑B
k=1 g

∗
k (·) > 0.5

)
.

Classification
I Classify the new observation x as

g agg (x) = 1
(1

B

B∑
k=1

g∗k (x) > 0.5
)
.

27/64

Bagging (algorithm)

Training
Input:

I Training sample
(
(x1, y1), ..., (xn, yn)

)
= Dn ∈ Rd × {0, 1}.

I Basic classifier g(·).

I Number of estimators to aggregate B.

For k = 1, ...,B

1. Draw a sample D∗n,k from Dn using bootstrap.

2. Learn g∗k on D∗n,k .

Output: The aggregated classifier g agg (·) = 1
(

1
B

∑B
k=1 g

∗
k (·) > 0.5

)
.

Classification
I Classify the new observation x as

g agg (x) = 1
(1

B

B∑
k=1

g∗k (x) > 0.5
)
.

27/64

Bagging (algorithm)

Training
Input:

I Training sample
(
(x1, y1), ..., (xn, yn)

)
= Dn ∈ Rd × {0, 1}.

I Basic classifier g(·).

I Number of estimators to aggregate B.

For k = 1, ...,B

1. Draw a sample D∗n,k from Dn using bootstrap.

2. Learn g∗k on D∗n,k .

Output: The aggregated classifier g agg (·) = 1
(

1
B

∑B
k=1 g

∗
k (·) > 0.5

)
.

Classification
I Classify the new observation x as

g agg (x) = 1
(1

B

B∑
k=1

g∗k (x) > 0.5
)
.

27/64

Bagging (algorithm)

Training
Input:

I Training sample
(
(x1, y1), ..., (xn, yn)

)
= Dn ∈ Rd × {0, 1}.

I Basic classifier g(·).

I Number of estimators to aggregate B.

For k = 1, ...,B

1. Draw a sample D∗n,k from Dn using bootstrap.

2. Learn g∗k on D∗n,k .

Output: The aggregated classifier g agg (·) = 1
(

1
B

∑B
k=1 g

∗
k (·) > 0.5

)
.

Classification
I Classify the new observation x as

g agg (x) = 1
(1

B

B∑
k=1

g∗k (x) > 0.5
)
.

28/64

Drawing bootstrap samples

I Bootstrap is a technique based on random sampling, which allows
for estimating the sampling distribution of almost any statistics.

I Bootstrap drawings are represented by B random variables θk ,
k = 1, ...,B.

I In general for the sample consisting of n observations, two
techniques are used to draw bootstrap samples:

I draw (choose randomly) n observations with replacements,
I draw (choose randomly) l < n observations without replacement.

I Thus aggregated classifiers contain two sources of randomness:
I due to the Dn being a random draw from distribution of (X ,Y),
I due to the bootstrap drawing.

28/64

Drawing bootstrap samples

I Bootstrap is a technique based on random sampling, which allows
for estimating the sampling distribution of almost any statistics.

I Bootstrap drawings are represented by B random variables θk ,
k = 1, ...,B.

I In general for the sample consisting of n observations, two
techniques are used to draw bootstrap samples:

I draw (choose randomly) n observations with replacements,
I draw (choose randomly) l < n observations without replacement.

I Thus aggregated classifiers contain two sources of randomness:
I due to the Dn being a random draw from distribution of (X ,Y),
I due to the bootstrap drawing.

28/64

Drawing bootstrap samples

I Bootstrap is a technique based on random sampling, which allows
for estimating the sampling distribution of almost any statistics.

I Bootstrap drawings are represented by B random variables θk ,
k = 1, ...,B.

I In general for the sample consisting of n observations, two
techniques are used to draw bootstrap samples:

I draw (choose randomly) n observations with replacements,

I draw (choose randomly) l < n observations without replacement.

I Thus aggregated classifiers contain two sources of randomness:
I due to the Dn being a random draw from distribution of (X ,Y),
I due to the bootstrap drawing.

28/64

Drawing bootstrap samples

I Bootstrap is a technique based on random sampling, which allows
for estimating the sampling distribution of almost any statistics.

I Bootstrap drawings are represented by B random variables θk ,
k = 1, ...,B.

I In general for the sample consisting of n observations, two
techniques are used to draw bootstrap samples:

I draw (choose randomly) n observations with replacements,
I draw (choose randomly) l < n observations without replacement.

I Thus aggregated classifiers contain two sources of randomness:
I due to the Dn being a random draw from distribution of (X ,Y),
I due to the bootstrap drawing.

28/64

Drawing bootstrap samples

I Bootstrap is a technique based on random sampling, which allows
for estimating the sampling distribution of almost any statistics.

I Bootstrap drawings are represented by B random variables θk ,
k = 1, ...,B.

I In general for the sample consisting of n observations, two
techniques are used to draw bootstrap samples:

I draw (choose randomly) n observations with replacements,
I draw (choose randomly) l < n observations without replacement.

I Thus aggregated classifiers contain two sources of randomness:

I due to the Dn being a random draw from distribution of (X ,Y),
I due to the bootstrap drawing.

28/64

Drawing bootstrap samples

I Bootstrap is a technique based on random sampling, which allows
for estimating the sampling distribution of almost any statistics.

I Bootstrap drawings are represented by B random variables θk ,
k = 1, ...,B.

I In general for the sample consisting of n observations, two
techniques are used to draw bootstrap samples:

I draw (choose randomly) n observations with replacements,
I draw (choose randomly) l < n observations without replacement.

I Thus aggregated classifiers contain two sources of randomness:
I due to the Dn being a random draw from distribution of (X ,Y),

I due to the bootstrap drawing.

28/64

Drawing bootstrap samples

I Bootstrap is a technique based on random sampling, which allows
for estimating the sampling distribution of almost any statistics.

I Bootstrap drawings are represented by B random variables θk ,
k = 1, ...,B.

I In general for the sample consisting of n observations, two
techniques are used to draw bootstrap samples:

I draw (choose randomly) n observations with replacements,
I draw (choose randomly) l < n observations without replacement.

I Thus aggregated classifiers contain two sources of randomness:
I due to the Dn being a random draw from distribution of (X ,Y),
I due to the bootstrap drawing.

29/64

Choice of the parameters
I There are two choices to be done:

I base classifier g(·),
I number of bootstrap iterations B.

I Under suitable conditions, given the original sample Dn, by the law
of large numbers we have, almost surely

lim
B→∞

g agg (x) = lim
B→∞

1
(1

B

B∑
k=1

g∗k (x) > 0.5
)

= 1
(

lim
B→∞

1

B

B∑
k=1

g∗k (x) > 0.5
)

= 1
(
E∗[g∗k (x) | Dn] > 0.5

)
.

I So g agg (x) stabilizes with increasing B converging to the bagging
estimator 1

(
E∗[g∗k (x) | Dn] > 0.5

)
.

I Thus, B should be chosen as large as possible, regarding
computational capabilities.

29/64

Choice of the parameters
I There are two choices to be done:

I base classifier g(·),
I number of bootstrap iterations B.

I Under suitable conditions, given the original sample Dn, by the law
of large numbers we have, almost surely

lim
B→∞

g agg (x) = lim
B→∞

1
(1

B

B∑
k=1

g∗k (x) > 0.5
)

= 1
(

lim
B→∞

1

B

B∑
k=1

g∗k (x) > 0.5
)

= 1
(
E∗[g∗k (x) | Dn] > 0.5

)
.

I So g agg (x) stabilizes with increasing B converging to the bagging
estimator 1

(
E∗[g∗k (x) | Dn] > 0.5

)
.

I Thus, B should be chosen as large as possible, regarding
computational capabilities.

29/64

Choice of the parameters
I There are two choices to be done:

I base classifier g(·),
I number of bootstrap iterations B.

I Under suitable conditions, given the original sample Dn, by the law
of large numbers we have, almost surely

lim
B→∞

g agg (x) = lim
B→∞

1
(1

B

B∑
k=1

g∗k (x) > 0.5
)

= 1
(

lim
B→∞

1

B

B∑
k=1

g∗k (x) > 0.5
)

= 1
(
E∗[g∗k (x) | Dn] > 0.5

)
.

I So g agg (x) stabilizes with increasing B converging to the bagging
estimator 1

(
E∗[g∗k (x) | Dn] > 0.5

)
.

I Thus, B should be chosen as large as possible, regarding
computational capabilities.

29/64

Choice of the parameters
I There are two choices to be done:

I base classifier g(·),
I number of bootstrap iterations B.

I Under suitable conditions, given the original sample Dn, by the law
of large numbers we have, almost surely

lim
B→∞

g agg (x) = lim
B→∞

1
(1

B

B∑
k=1

g∗k (x) > 0.5
)

= 1
(

lim
B→∞

1

B

B∑
k=1

g∗k (x) > 0.5
)

= 1
(
E∗[g∗k (x) | Dn] > 0.5

)
.

I So g agg (x) stabilizes with increasing B converging to the bagging
estimator 1

(
E∗[g∗k (x) | Dn] > 0.5

)
.

I Thus, B should be chosen as large as possible, regarding
computational capabilities.

29/64

Choice of the parameters
I There are two choices to be done:

I base classifier g(·),
I number of bootstrap iterations B.

I Under suitable conditions, given the original sample Dn, by the law
of large numbers we have, almost surely

lim
B→∞

g agg (x) = lim
B→∞

1
(1

B

B∑
k=1

g∗k (x) > 0.5
)

= 1
(

lim
B→∞

1

B

B∑
k=1

g∗k (x) > 0.5
)

= 1
(
E∗[g∗k (x) | Dn] > 0.5

)
.

I So g agg (x) stabilizes with increasing B converging to the bagging
estimator 1

(
E∗[g∗k (x) | Dn] > 0.5

)
.

I Thus, B should be chosen as large as possible, regarding
computational capabilities.

29/64

Choice of the parameters
I There are two choices to be done:

I base classifier g(·),
I number of bootstrap iterations B.

I Under suitable conditions, given the original sample Dn, by the law
of large numbers we have, almost surely

lim
B→∞

g agg (x) = lim
B→∞

1
(1

B

B∑
k=1

g∗k (x) > 0.5
)

= 1
(

lim
B→∞

1

B

B∑
k=1

g∗k (x) > 0.5
)

= 1
(
E∗[g∗k (x) | Dn] > 0.5

)
.

I So g agg (x) stabilizes with increasing B converging to the bagging
estimator 1

(
E∗[g∗k (x) | Dn] > 0.5

)
.

I Thus, B should be chosen as large as possible, regarding
computational capabilities.

30/64

Bagging classification tree: iris data

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Iris, 'setosa' vs 'versicolor'

Sepal length

S
ep

al
 w

id
th

31/64

Bagging classification tree: iris data

4.5 5.0 5.5 6.0 6.5 7.0

2.0

2.5

3.0

3.5

4.0

Iris, 'setosa' vs 'versicolor', CART

Sepal length

S
ep

al
 w

id
th

32/64

Bagging classification tree: iris data

4.5 5.0 5.5 6.0 6.5 7.0

2.0

2.5

3.0

3.5

4.0

Iris, 'setosa' vs 'versicolor', bagged CART (B = 10)

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

32/64

Bagging classification tree: iris data

4.5 5.0 5.5 6.0 6.5 7.0

2.0

2.5

3.0

3.5

4.0

Iris, 'setosa' vs 'versicolor', bagged CART (B = 100)

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

32/64

Bagging classification tree: iris data

4.5 5.0 5.5 6.0 6.5 7.0

2.0

2.5

3.0

3.5

4.0

Iris, 'setosa' vs 'versicolor', bagged CART (B = 1000)

Sepal length

S
ep

al
 w

id
th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

33/64

Properties and recommendations

I Bagging a good classifier can make it better, bagging a bad classifier
can make it worse.

I Significant improvement by bagging is not expected on large data
sets because there bootstrap samples are very similar. Subsampling
is expected to improve things.

I Bagging could be improved by using a robust location estimator
instead a mean over the B bootstrapped classifiers. Taking the
median yields the so-called bragging (Buhlmann, 2003). Trimmed
means is another option.

I Bagging reduces interpretability of the classifier because any simple
structure in the model is lost.

33/64

Properties and recommendations

I Bagging a good classifier can make it better, bagging a bad classifier
can make it worse.

I Significant improvement by bagging is not expected on large data
sets because there bootstrap samples are very similar. Subsampling
is expected to improve things.

I Bagging could be improved by using a robust location estimator
instead a mean over the B bootstrapped classifiers. Taking the
median yields the so-called bragging (Buhlmann, 2003). Trimmed
means is another option.

I Bagging reduces interpretability of the classifier because any simple
structure in the model is lost.

33/64

Properties and recommendations

I Bagging a good classifier can make it better, bagging a bad classifier
can make it worse.

I Significant improvement by bagging is not expected on large data
sets because there bootstrap samples are very similar. Subsampling
is expected to improve things.

I Bagging could be improved by using a robust location estimator
instead a mean over the B bootstrapped classifiers. Taking the
median yields the so-called bragging (Buhlmann, 2003). Trimmed
means is another option.

I Bagging reduces interpretability of the classifier because any simple
structure in the model is lost.

33/64

Properties and recommendations

I Bagging a good classifier can make it better, bagging a bad classifier
can make it worse.

I Significant improvement by bagging is not expected on large data
sets because there bootstrap samples are very similar. Subsampling
is expected to improve things.

I Bagging could be improved by using a robust location estimator
instead a mean over the B bootstrapped classifiers. Taking the
median yields the so-called bragging (Buhlmann, 2003). Trimmed
means is another option.

I Bagging reduces interpretability of the classifier because any simple
structure in the model is lost.

34/64

Contents

Classification tree
Algorithm
Tuning

Bagging
Motivation
Algorithm
An example

Random forest
Algorithm
Interpretation
Consistency results

35/64

Normal2 data generation

I Generate independent copies of a bivariate normal vector:
I for Y = 0 mean (0, 0) and

Σ =

(
1 1
1 4

)
I for Y = 1 mean (0, 0) and the variance is equal to 4Σ

36/64

Normal2 data

−4 −2 0 2 4 6

−
10

−
5

0
5

10
Normal2 (location−scale alternative, training)

x1

x2

37/64

Normal2 data

−5 0 5

−
15

−
10

−
5

0
5

10
15

Normal2 (location−scale alternative, test)

x1

x2

38/64

Bagging LDA: Normal2 data

0 200 400 600 800 1000

0.
34

5
0.

35
0

0.
35

5
0.

36
0

0.
36

5
0.

37
0

Bagging the LDA classifier on the Normal2 data set

Number of base classifiers

C
la

ss
ifi

ca
tio

n
er

ro
r

39/64

Bagging classification tree: Normal2 data

0 100 200 300 400 500

0.
30

0
0.

30
5

0.
31

0
0.

31
5

0.
32

0
0.

32
5

0.
33

0
Bagging the CART (min split = 1) on the Normal2 data set

Number of base classifiers

C
la

ss
ifi

ca
tio

n
er

ro
r

40/64

Bagging classification tree: Normal2 data

0 100 200 300 400 500

0.
29

5
0.

30
0

0.
30

5
0.

31
0

0.
31

5
Bagging the CART (min split = 5) on the Normal2 data set

Number of base classifiers

C
la

ss
ifi

ca
tio

n
er

ro
r

41/64

Bagging classification tree: Normal2 data

0 100 200 300 400 500

0.
29

0
0.

29
5

0.
30

0
0.

30
5

Bagging the CART (min split = 10) on the Normal2 data set

Number of base classifiers

C
la

ss
ifi

ca
tio

n
er

ro
r

42/64

Bagging classification tree: Normal2 data

0 100 200 300 400 500

0.
28

0
0.

28
5

0.
29

0
0.

29
5

Bagging the CART (min split = 25) on the Normal2 data set

Number of base classifiers

C
la

ss
ifi

ca
tio

n
er

ro
r

43/64

Contents

Classification tree
Algorithm
Tuning

Bagging
Motivation
Algorithm
An example

Random forest
Algorithm
Interpretation
Consistency results

44/64

Contents

Classification tree
Algorithm
Tuning

Bagging
Motivation
Algorithm
An example

Random forest
Algorithm
Interpretation
Consistency results

45/64

The key idea
I Random forest is a collection of trees.

I Random forests have been introduced by Léo Breiman in the early
2000s. The following web-page is dedicated to random forests:
http://www.stat.berkeley.edu/~breiman/RandomForests/

I Random forests can be seen as a modified version of bagging as
they also aggregate trees taught on the bootstrap samples.

I However, random forests introduce a substantial modification of
bagging that builds a large collection of de-correlated trees.

I Let Tk(x), k = 1, ...,B be tree-similar classifiers
(Tk : Rd → {0, 1}). The random forest classifier assigns new
observation x by aggregating these:

TRF (x) = 1
(1

B

B∑
k=1

Tk(x) > 0.5
)
.

http://www.stat.berkeley.edu/~breiman/RandomForests/

45/64

The key idea
I Random forest is a collection of trees.

I Random forests have been introduced by Léo Breiman in the early
2000s. The following web-page is dedicated to random forests:
http://www.stat.berkeley.edu/~breiman/RandomForests/

I Random forests can be seen as a modified version of bagging as
they also aggregate trees taught on the bootstrap samples.

I However, random forests introduce a substantial modification of
bagging that builds a large collection of de-correlated trees.

I Let Tk(x), k = 1, ...,B be tree-similar classifiers
(Tk : Rd → {0, 1}). The random forest classifier assigns new
observation x by aggregating these:

TRF (x) = 1
(1

B

B∑
k=1

Tk(x) > 0.5
)
.

http://www.stat.berkeley.edu/~breiman/RandomForests/

45/64

The key idea
I Random forest is a collection of trees.

I Random forests have been introduced by Léo Breiman in the early
2000s. The following web-page is dedicated to random forests:
http://www.stat.berkeley.edu/~breiman/RandomForests/

I Random forests can be seen as a modified version of bagging as
they also aggregate trees taught on the bootstrap samples.

I However, random forests introduce a substantial modification of
bagging that builds a large collection of de-correlated trees.

I Let Tk(x), k = 1, ...,B be tree-similar classifiers
(Tk : Rd → {0, 1}). The random forest classifier assigns new
observation x by aggregating these:

TRF (x) = 1
(1

B

B∑
k=1

Tk(x) > 0.5
)
.

http://www.stat.berkeley.edu/~breiman/RandomForests/

45/64

The key idea
I Random forest is a collection of trees.

I Random forests have been introduced by Léo Breiman in the early
2000s. The following web-page is dedicated to random forests:
http://www.stat.berkeley.edu/~breiman/RandomForests/

I Random forests can be seen as a modified version of bagging as
they also aggregate trees taught on the bootstrap samples.

I However, random forests introduce a substantial modification of
bagging that builds a large collection of de-correlated trees.

I Let Tk(x), k = 1, ...,B be tree-similar classifiers
(Tk : Rd → {0, 1}). The random forest classifier assigns new
observation x by aggregating these:

TRF (x) = 1
(1

B

B∑
k=1

Tk(x) > 0.5
)
.

http://www.stat.berkeley.edu/~breiman/RandomForests/

45/64

The key idea
I Random forest is a collection of trees.

I Random forests have been introduced by Léo Breiman in the early
2000s. The following web-page is dedicated to random forests:
http://www.stat.berkeley.edu/~breiman/RandomForests/

I Random forests can be seen as a modified version of bagging as
they also aggregate trees taught on the bootstrap samples.

I However, random forests introduce a substantial modification of
bagging that builds a large collection of de-correlated trees.

I Let Tk(x), k = 1, ...,B be tree-similar classifiers
(Tk : Rd → {0, 1}). The random forest classifier assigns new
observation x by aggregating these:

TRF (x) = 1
(1

B

B∑
k=1

Tk(x) > 0.5
)
.

http://www.stat.berkeley.edu/~breiman/RandomForests/

46/64

The key idea

s 1

s 2

s 3

s 4

x 1

x 2

x < s 2 2

x < s 1 1 x ≥ s 1 1

x ≥ s 2 2

x < s 3 1 x ≥ s 3 1

x < s 4 2 x ≥ s 4 2

I To reduce correlation between trees, Breiman proposes
I first, randomly select m variables out of all d variables,
I next, pick the best variable/split-point among the m.

46/64

The key idea

s 1

s 2

s 3

s 4

x 1

x 2

x < s 2 2

x < s 1 1 x ≥ s 1 1

x ≥ s 2 2

x < s 3 1 x ≥ s 3 1

x < s 4 2 x ≥ s 4 2

I To reduce correlation between trees, Breiman proposes
I first, randomly select m variables out of all d variables,
I next, pick the best variable/split-point among the m.

47/64

Random forests (algorithm)
Training
Input:

I Training sample
(
(x1, y1), ..., (xn, yn)

)
= Dn ∈ Rd × {0, 1}.

I Number of trees B; minimum number of observations for a node to
be split nmin; impurity criterion Q.

I number of variables to use when splitting m ∈ {1, ..., d}.
For k = 1, ...,B

1. Draw a sample D∗n,k from Dn using bootstrap.

2. Learn the classification tree T ∗k on D∗n,k ; each time when splitting a
node, search optimal variable among m variables randomly chosen
out of all d variables.

Output: The aggregated classifier TRF (·) = 1
(

1
B

∑B
k=1 T

∗
k (·) > 0.5

)
.

Classification
I Classify the new observation x as

TRF (x) = 1
(1

B

B∑
k=1

T ∗k (x) > 0.5
)
.

47/64

Random forests (algorithm)
Training
Input:

I Training sample
(
(x1, y1), ..., (xn, yn)

)
= Dn ∈ Rd × {0, 1}.

I Number of trees B; minimum number of observations for a node to
be split nmin; impurity criterion Q.

I number of variables to use when splitting m ∈ {1, ..., d}.
For k = 1, ...,B

1. Draw a sample D∗n,k from Dn using bootstrap.

2. Learn the classification tree T ∗k on D∗n,k ; each time when splitting a
node, search optimal variable among m variables randomly chosen
out of all d variables.

Output: The aggregated classifier TRF (·) = 1
(

1
B

∑B
k=1 T

∗
k (·) > 0.5

)
.

Classification
I Classify the new observation x as

TRF (x) = 1
(1

B

B∑
k=1

T ∗k (x) > 0.5
)
.

47/64

Random forests (algorithm)
Training
Input:

I Training sample
(
(x1, y1), ..., (xn, yn)

)
= Dn ∈ Rd × {0, 1}.

I Number of trees B; minimum number of observations for a node to
be split nmin; impurity criterion Q.

I number of variables to use when splitting m ∈ {1, ..., d}.

For k = 1, ...,B

1. Draw a sample D∗n,k from Dn using bootstrap.

2. Learn the classification tree T ∗k on D∗n,k ; each time when splitting a
node, search optimal variable among m variables randomly chosen
out of all d variables.

Output: The aggregated classifier TRF (·) = 1
(

1
B

∑B
k=1 T

∗
k (·) > 0.5

)
.

Classification
I Classify the new observation x as

TRF (x) = 1
(1

B

B∑
k=1

T ∗k (x) > 0.5
)
.

47/64

Random forests (algorithm)
Training
Input:

I Training sample
(
(x1, y1), ..., (xn, yn)

)
= Dn ∈ Rd × {0, 1}.

I Number of trees B; minimum number of observations for a node to
be split nmin; impurity criterion Q.

I number of variables to use when splitting m ∈ {1, ..., d}.
For k = 1, ...,B

1. Draw a sample D∗n,k from Dn using bootstrap.

2. Learn the classification tree T ∗k on D∗n,k ; each time when splitting a
node, search optimal variable among m variables randomly chosen
out of all d variables.

Output: The aggregated classifier TRF (·) = 1
(

1
B

∑B
k=1 T

∗
k (·) > 0.5

)
.

Classification
I Classify the new observation x as

TRF (x) = 1
(1

B

B∑
k=1

T ∗k (x) > 0.5
)
.

47/64

Random forests (algorithm)
Training
Input:

I Training sample
(
(x1, y1), ..., (xn, yn)

)
= Dn ∈ Rd × {0, 1}.

I Number of trees B; minimum number of observations for a node to
be split nmin; impurity criterion Q.

I number of variables to use when splitting m ∈ {1, ..., d}.
For k = 1, ...,B

1. Draw a sample D∗n,k from Dn using bootstrap.

2. Learn the classification tree T ∗k on D∗n,k ; each time when splitting a
node, search optimal variable among m variables randomly chosen
out of all d variables.

Output: The aggregated classifier TRF (·) = 1
(

1
B

∑B
k=1 T

∗
k (·) > 0.5

)
.

Classification
I Classify the new observation x as

TRF (x) = 1
(1

B

B∑
k=1

T ∗k (x) > 0.5
)
.

47/64

Random forests (algorithm)
Training
Input:

I Training sample
(
(x1, y1), ..., (xn, yn)

)
= Dn ∈ Rd × {0, 1}.

I Number of trees B; minimum number of observations for a node to
be split nmin; impurity criterion Q.

I number of variables to use when splitting m ∈ {1, ..., d}.
For k = 1, ...,B

1. Draw a sample D∗n,k from Dn using bootstrap.

2. Learn the classification tree T ∗k on D∗n,k ; each time when splitting a
node, search optimal variable among m variables randomly chosen
out of all d variables.

Output: The aggregated classifier TRF (·) = 1
(

1
B

∑B
k=1 T

∗
k (·) > 0.5

)
.

Classification
I Classify the new observation x as

TRF (x) = 1
(1

B

B∑
k=1

T ∗k (x) > 0.5
)
.

47/64

Random forests (algorithm)
Training
Input:

I Training sample
(
(x1, y1), ..., (xn, yn)

)
= Dn ∈ Rd × {0, 1}.

I Number of trees B; minimum number of observations for a node to
be split nmin; impurity criterion Q.

I number of variables to use when splitting m ∈ {1, ..., d}.
For k = 1, ...,B

1. Draw a sample D∗n,k from Dn using bootstrap.

2. Learn the classification tree T ∗k on D∗n,k ; each time when splitting a
node, search optimal variable among m variables randomly chosen
out of all d variables.

Output: The aggregated classifier TRF (·) = 1
(

1
B

∑B
k=1 T

∗
k (·) > 0.5

)
.

Classification
I Classify the new observation x as

TRF (x) = 1
(1

B

B∑
k=1

T ∗k (x) > 0.5
)
.

47/64

Random forests (algorithm)
Training
Input:

I Training sample
(
(x1, y1), ..., (xn, yn)

)
= Dn ∈ Rd × {0, 1}.

I Number of trees B; minimum number of observations for a node to
be split nmin; impurity criterion Q.

I number of variables to use when splitting m ∈ {1, ..., d}.
For k = 1, ...,B

1. Draw a sample D∗n,k from Dn using bootstrap.

2. Learn the classification tree T ∗k on D∗n,k ; each time when splitting a
node, search optimal variable among m variables randomly chosen
out of all d variables.

Output: The aggregated classifier TRF (·) = 1
(

1
B

∑B
k=1 T

∗
k (·) > 0.5

)
.

Classification
I Classify the new observation x as

TRF (x) = 1
(1

B

B∑
k=1

T ∗k (x) > 0.5
)
.

48/64

Spam data

I See Hastie et al. (2009, ch.1)

I A standard data set consisting of information from 4601 email
messages

I The purpose is to predict if the email message is a spam or not

I For all 4601 email messages, the following information is available
I the true outcome (email type) email or spam is available
I the relative frequencies of 57 of the most commonly occurring words

and punctuation marks in the email message.

49/64

Random forests: spam data

0 50 100 150 200

0.
06

0.
08

0.
10

0.
12

Random forest (m = 7) on the spam data set

Number of trees

C
la

ss
ifi

ca
tio

n
er

ro
r

(t
es

t s
et

)

50/64

Properties
I There are two introduced sources of randomness:

I B bootstrap samples,

I m variables randomly chosen out of d when splitting each tree
node.

I The method is simple, implementations are available in numerous
software, e.g. R-package randomForest.

I The classifier is known for relatively high speed of training and
classification.

I The classifier is known for its relatively precise prediction on
complex data, i.e. those including many variables, missing entries,
etc.

I Classifier has limited sensibility w.r.t. to the choice of
parameters: B, m, nmin.

50/64

Properties
I There are two introduced sources of randomness:

I B bootstrap samples,

I m variables randomly chosen out of d when splitting each tree
node.

I The method is simple, implementations are available in numerous
software, e.g. R-package randomForest.

I The classifier is known for relatively high speed of training and
classification.

I The classifier is known for its relatively precise prediction on
complex data, i.e. those including many variables, missing entries,
etc.

I Classifier has limited sensibility w.r.t. to the choice of
parameters: B, m, nmin.

50/64

Properties
I There are two introduced sources of randomness:

I B bootstrap samples,

I m variables randomly chosen out of d when splitting each tree
node.

I The method is simple, implementations are available in numerous
software, e.g. R-package randomForest.

I The classifier is known for relatively high speed of training and
classification.

I The classifier is known for its relatively precise prediction on
complex data, i.e. those including many variables, missing entries,
etc.

I Classifier has limited sensibility w.r.t. to the choice of
parameters: B, m, nmin.

50/64

Properties
I There are two introduced sources of randomness:

I B bootstrap samples,

I m variables randomly chosen out of d when splitting each tree
node.

I The method is simple, implementations are available in numerous
software, e.g. R-package randomForest.

I The classifier is known for relatively high speed of training and
classification.

I The classifier is known for its relatively precise prediction on
complex data, i.e. those including many variables, missing entries,
etc.

I Classifier has limited sensibility w.r.t. to the choice of
parameters: B, m, nmin.

50/64

Properties
I There are two introduced sources of randomness:

I B bootstrap samples,

I m variables randomly chosen out of d when splitting each tree
node.

I The method is simple, implementations are available in numerous
software, e.g. R-package randomForest.

I The classifier is known for relatively high speed of training and
classification.

I The classifier is known for its relatively precise prediction on
complex data, i.e. those including many variables, missing entries,
etc.

I Classifier has limited sensibility w.r.t. to the choice of
parameters: B, m, nmin.

50/64

Properties
I There are two introduced sources of randomness:

I B bootstrap samples,

I m variables randomly chosen out of d when splitting each tree
node.

I The method is simple, implementations are available in numerous
software, e.g. R-package randomForest.

I The classifier is known for relatively high speed of training and
classification.

I The classifier is known for its relatively precise prediction on
complex data, i.e. those including many variables, missing entries,
etc.

I Classifier has limited sensibility w.r.t. to the choice of
parameters: B, m, nmin.

50/64

Properties
I There are two introduced sources of randomness:

I B bootstrap samples,

I m variables randomly chosen out of d when splitting each tree
node.

I The method is simple, implementations are available in numerous
software, e.g. R-package randomForest.

I The classifier is known for relatively high speed of training and
classification.

I The classifier is known for its relatively precise prediction on
complex data, i.e. those including many variables, missing entries,
etc.

I Classifier has limited sensibility w.r.t. to the choice of
parameters: B, m, nmin.

51/64

Choice of number m of variables for a node
I Parameter m is related to the dependence between single trees.

I The lower is m:

I to larger extent the variables at which to split each node are chosen
randomly,
thus the more different are single trees,
thus the more independent are single trees,

I the lower is the prediction accuracy of each single tree,
and thus of the entire forest as well.

I The higher is m: vice versa.

I It is recommended to check the performance of the random forests
for different choices of m.

I The inventors recommend m = b
√
dc

(the default value in R-package randomForest).

51/64

Choice of number m of variables for a node
I Parameter m is related to the dependence between single trees.

I The lower is m:

I to larger extent the variables at which to split each node are chosen
randomly,
thus the more different are single trees,
thus the more independent are single trees,

I the lower is the prediction accuracy of each single tree,
and thus of the entire forest as well.

I The higher is m: vice versa.

I It is recommended to check the performance of the random forests
for different choices of m.

I The inventors recommend m = b
√
dc

(the default value in R-package randomForest).

51/64

Choice of number m of variables for a node
I Parameter m is related to the dependence between single trees.

I The lower is m:

I to larger extent the variables at which to split each node are chosen
randomly,
thus the more different are single trees,
thus the more independent are single trees,

I the lower is the prediction accuracy of each single tree,
and thus of the entire forest as well.

I The higher is m: vice versa.

I It is recommended to check the performance of the random forests
for different choices of m.

I The inventors recommend m = b
√
dc

(the default value in R-package randomForest).

51/64

Choice of number m of variables for a node
I Parameter m is related to the dependence between single trees.

I The lower is m:

I to larger extent the variables at which to split each node are chosen
randomly,
thus the more different are single trees,
thus the more independent are single trees,

I the lower is the prediction accuracy of each single tree,
and thus of the entire forest as well.

I The higher is m: vice versa.

I It is recommended to check the performance of the random forests
for different choices of m.

I The inventors recommend m = b
√
dc

(the default value in R-package randomForest).

51/64

Choice of number m of variables for a node
I Parameter m is related to the dependence between single trees.

I The lower is m:

I to larger extent the variables at which to split each node are chosen
randomly,
thus the more different are single trees,
thus the more independent are single trees,

I the lower is the prediction accuracy of each single tree,
and thus of the entire forest as well.

I The higher is m: vice versa.

I It is recommended to check the performance of the random forests
for different choices of m.

I The inventors recommend m = b
√
dc

(the default value in R-package randomForest).

51/64

Choice of number m of variables for a node
I Parameter m is related to the dependence between single trees.

I The lower is m:

I to larger extent the variables at which to split each node are chosen
randomly,
thus the more different are single trees,
thus the more independent are single trees,

I the lower is the prediction accuracy of each single tree,
and thus of the entire forest as well.

I The higher is m: vice versa.

I It is recommended to check the performance of the random forests
for different choices of m.

I The inventors recommend m = b
√
dc

(the default value in R-package randomForest).

51/64

Choice of number m of variables for a node
I Parameter m is related to the dependence between single trees.

I The lower is m:

I to larger extent the variables at which to split each node are chosen
randomly,
thus the more different are single trees,
thus the more independent are single trees,

I the lower is the prediction accuracy of each single tree,
and thus of the entire forest as well.

I The higher is m: vice versa.

I It is recommended to check the performance of the random forests
for different choices of m.

I The inventors recommend m = b
√
dc

(the default value in R-package randomForest).

52/64

Random forests: spam data

0 50 100 150 200

0.
05

0.
10

0.
15

0.
20

Random forest on the spam data set

Number of trees

C
la

ss
ifi

ca
tio

n
er

ro
r

(t
es

t s
et

)

m = 7
m = 1

53/64

Contents

Classification tree
Algorithm
Tuning

Bagging
Motivation
Algorithm
An example

Random forest
Algorithm
Interpretation
Consistency results

54/64

Performance and interpretation
I It is desirable to measure the performance of the random forests, as

of any other classification technique, in terms of the error probability:

R(TRF) = P
(
TRF (X) 6= Y

)
.

I As usual, the error can be measured:

I For a probability distribution: by a simulation study, i.e. train TRF

and measure its classification error for a number of simulated data
sets.

I For given data: by splitting data into training and test subsets, by
iterating this splitting if data are small, or by cross-validation.

I Random forests offer an additional possibility to directly estimate
classification error exploiting the out-of-bag (OOB) principle.

I The same idea can be extended from sample points to variables
allowing to measure variable importance.

54/64

Performance and interpretation
I It is desirable to measure the performance of the random forests, as

of any other classification technique, in terms of the error probability:

R(TRF) = P
(
TRF (X) 6= Y

)
.

I As usual, the error can be measured:

I For a probability distribution: by a simulation study, i.e. train TRF

and measure its classification error for a number of simulated data
sets.

I For given data: by splitting data into training and test subsets, by
iterating this splitting if data are small, or by cross-validation.

I Random forests offer an additional possibility to directly estimate
classification error exploiting the out-of-bag (OOB) principle.

I The same idea can be extended from sample points to variables
allowing to measure variable importance.

54/64

Performance and interpretation
I It is desirable to measure the performance of the random forests, as

of any other classification technique, in terms of the error probability:

R(TRF) = P
(
TRF (X) 6= Y

)
.

I As usual, the error can be measured:

I For a probability distribution: by a simulation study, i.e. train TRF

and measure its classification error for a number of simulated data
sets.

I For given data: by splitting data into training and test subsets, by
iterating this splitting if data are small, or by cross-validation.

I Random forests offer an additional possibility to directly estimate
classification error exploiting the out-of-bag (OOB) principle.

I The same idea can be extended from sample points to variables
allowing to measure variable importance.

54/64

Performance and interpretation
I It is desirable to measure the performance of the random forests, as

of any other classification technique, in terms of the error probability:

R(TRF) = P
(
TRF (X) 6= Y

)
.

I As usual, the error can be measured:

I For a probability distribution: by a simulation study, i.e. train TRF

and measure its classification error for a number of simulated data
sets.

I For given data: by splitting data into training and test subsets, by
iterating this splitting if data are small, or by cross-validation.

I Random forests offer an additional possibility to directly estimate
classification error exploiting the out-of-bag (OOB) principle.

I The same idea can be extended from sample points to variables
allowing to measure variable importance.

54/64

Performance and interpretation
I It is desirable to measure the performance of the random forests, as

of any other classification technique, in terms of the error probability:

R(TRF) = P
(
TRF (X) 6= Y

)
.

I As usual, the error can be measured:

I For a probability distribution: by a simulation study, i.e. train TRF

and measure its classification error for a number of simulated data
sets.

I For given data: by splitting data into training and test subsets, by
iterating this splitting if data are small, or by cross-validation.

I Random forests offer an additional possibility to directly estimate
classification error exploiting the out-of-bag (OOB) principle.

I The same idea can be extended from sample points to variables
allowing to measure variable importance.

54/64

Performance and interpretation
I It is desirable to measure the performance of the random forests, as

of any other classification technique, in terms of the error probability:

R(TRF) = P
(
TRF (X) 6= Y

)
.

I As usual, the error can be measured:

I For a probability distribution: by a simulation study, i.e. train TRF

and measure its classification error for a number of simulated data
sets.

I For given data: by splitting data into training and test subsets, by
iterating this splitting if data are small, or by cross-validation.

I Random forests offer an additional possibility to directly estimate
classification error exploiting the out-of-bag (OOB) principle.

I The same idea can be extended from sample points to variables
allowing to measure variable importance.

55/64

Out-of-bag error

I For each pair (xi , yi) from Dn, let Ii be the set of indices of trees
whose bootstrap samples D∗n do not contain this observation.

I By these trees, observation xi is then classified as

ŷi =
1

#Ii

∑
k∈Ii

T ∗k (xi) .

I Averaging over all observations xi , i = 1, ..., n from Dn gives the
out-of-bag estimate of the error rate:

ROOB =
1

n

n∑
i=1

1
(
ŷi 6= yi

)
.

55/64

Out-of-bag error

I For each pair (xi , yi) from Dn, let Ii be the set of indices of trees
whose bootstrap samples D∗n do not contain this observation.

I By these trees, observation xi is then classified as

ŷi =
1

#Ii

∑
k∈Ii

T ∗k (xi) .

I Averaging over all observations xi , i = 1, ..., n from Dn gives the
out-of-bag estimate of the error rate:

ROOB =
1

n

n∑
i=1

1
(
ŷi 6= yi

)
.

55/64

Out-of-bag error

I For each pair (xi , yi) from Dn, let Ii be the set of indices of trees
whose bootstrap samples D∗n do not contain this observation.

I By these trees, observation xi is then classified as

ŷi =
1

#Ii

∑
k∈Ii

T ∗k (xi) .

I Averaging over all observations xi , i = 1, ..., n from Dn gives the
out-of-bag estimate of the error rate:

ROOB =
1

n

n∑
i=1

1
(
ŷi 6= yi

)
.

56/64

Random forests: spam data

0 50 100 150 200

0.
06

0.
08

0.
10

0.
12

0.
14

Random forest (m = 7) on the spam data set

Number of trees

C
la

ss
ifi

ca
tio

n
er

ro
r

test set error
OOB error

56/64

Random forests: spam data

0 50 100 150 200

0.
10

0.
15

0.
20

Random forest (m = 1) on the spam data set

Number of trees

C
la

ss
ifi

ca
tio

n
er

ro
r

test set error
OOB error

57/64

Importance of a variable
I For a bootstrap sample D∗n,k , let D∗−n,k be the subset of training

sample not contained in D∗n,k , i.e. it holds D∗n,k ∪ D
∗−
n,k = Dn and

D∗n,k ∩ D
∗−
n,k = ∅.

I Then, let ROOB(k) be the classification error estimated on D∗−n,k :

ROOB(k) =
1

#D∗−n,k

∑
x∈D∗−

n,k

1
(
T ∗k (x) 6= yi

)
.

I Further, let D∗−n,k(j) be the same subset D∗−n,k where the values of
variable j ∈ {1, ..., d} have been randomly perturbed, and
measure the error from above on this perturbed subset:

ROOB(k,j) =
1

#D∗−n,k(j)

∑
x∈D∗−

n,k (j)

1
(
T ∗k (x) 6= yi

)
.

I The importance of variable j can thus be measured (by averaging
over all B trees) as:

Imp(Xj) =
1

B

B∑
k=1

(ROOB(k,j) − ROOB(k)) .

57/64

Importance of a variable
I For a bootstrap sample D∗n,k , let D∗−n,k be the subset of training

sample not contained in D∗n,k , i.e. it holds D∗n,k ∪ D
∗−
n,k = Dn and

D∗n,k ∩ D
∗−
n,k = ∅.

I Then, let ROOB(k) be the classification error estimated on D∗−n,k :

ROOB(k) =
1

#D∗−n,k

∑
x∈D∗−

n,k

1
(
T ∗k (x) 6= yi

)
.

I Further, let D∗−n,k(j) be the same subset D∗−n,k where the values of
variable j ∈ {1, ..., d} have been randomly perturbed, and
measure the error from above on this perturbed subset:

ROOB(k,j) =
1

#D∗−n,k(j)

∑
x∈D∗−

n,k (j)

1
(
T ∗k (x) 6= yi

)
.

I The importance of variable j can thus be measured (by averaging
over all B trees) as:

Imp(Xj) =
1

B

B∑
k=1

(ROOB(k,j) − ROOB(k)) .

57/64

Importance of a variable
I For a bootstrap sample D∗n,k , let D∗−n,k be the subset of training

sample not contained in D∗n,k , i.e. it holds D∗n,k ∪ D
∗−
n,k = Dn and

D∗n,k ∩ D
∗−
n,k = ∅.

I Then, let ROOB(k) be the classification error estimated on D∗−n,k :

ROOB(k) =
1

#D∗−n,k

∑
x∈D∗−

n,k

1
(
T ∗k (x) 6= yi

)
.

I Further, let D∗−n,k(j) be the same subset D∗−n,k where the values of
variable j ∈ {1, ..., d} have been randomly perturbed, and
measure the error from above on this perturbed subset:

ROOB(k,j) =
1

#D∗−n,k(j)

∑
x∈D∗−

n,k (j)

1
(
T ∗k (x) 6= yi

)
.

I The importance of variable j can thus be measured (by averaging
over all B trees) as:

Imp(Xj) =
1

B

B∑
k=1

(ROOB(k,j) − ROOB(k)) .

57/64

Importance of a variable
I For a bootstrap sample D∗n,k , let D∗−n,k be the subset of training

sample not contained in D∗n,k , i.e. it holds D∗n,k ∪ D
∗−
n,k = Dn and

D∗n,k ∩ D
∗−
n,k = ∅.

I Then, let ROOB(k) be the classification error estimated on D∗−n,k :

ROOB(k) =
1

#D∗−n,k

∑
x∈D∗−

n,k

1
(
T ∗k (x) 6= yi

)
.

I Further, let D∗−n,k(j) be the same subset D∗−n,k where the values of
variable j ∈ {1, ..., d} have been randomly perturbed, and
measure the error from above on this perturbed subset:

ROOB(k,j) =
1

#D∗−n,k(j)

∑
x∈D∗−

n,k (j)

1
(
T ∗k (x) 6= yi

)
.

I The importance of variable j can thus be measured (by averaging
over all B trees) as:

Imp(Xj) =
1

B

B∑
k=1

(ROOB(k,j) − ROOB(k)) .

58/64

Random forests: importance of the variables using the Gini
index decrease

Random forest (m = 7, B = 500) on the spam data set

Index

M
ea

n
G

in
i i

nd
ex

 d
ec

re
as

e

0
20

40
60

80
10

0
12

0

59/64

Contents

Classification tree
Algorithm
Tuning

Bagging
Motivation
Algorithm
An example

Random forest
Algorithm
Interpretation
Consistency results

60/64

Consistency of the purely random forest classifier

Define the purely random tree classifier T pr as follows:

I The support of X (and thus the root node of T pr) is [0, 1]d .

I At each step, the leaf is chosen uniformly at random among all
existing leaves.

I At each node, the split variable j is chosen uniformly at random
among 1, ..., d .

I The selected cell is split at a random location, chosen according to a
uniform random variable on the length of the chosen side of the
selected cell.

I The procedure is repeated k times where k ≥ 1 is fixed in advance.

I The only data driven element is the class label of the leaf, chosen
due to the majority of the observations contained in it.

Theorem (Biau, Devroye, Lugosi, 2008; Th. 1)
Assume that the distribution of X is supported on [0, 1]d . Then the

purely random forest classifier T prRF
B = 1

(
1
B

∑B
k=1 T

pr (·,Dn)
)

(as well as

limB→∞ T prRF
B) is consistent whenever k →∞ and k/n→ 0 as k →∞.

60/64

Consistency of the purely random forest classifier

Define the purely random tree classifier T pr as follows:

I The support of X (and thus the root node of T pr) is [0, 1]d .

I At each step, the leaf is chosen uniformly at random among all
existing leaves.

I At each node, the split variable j is chosen uniformly at random
among 1, ..., d .

I The selected cell is split at a random location, chosen according to a
uniform random variable on the length of the chosen side of the
selected cell.

I The procedure is repeated k times where k ≥ 1 is fixed in advance.

I The only data driven element is the class label of the leaf, chosen
due to the majority of the observations contained in it.

Theorem (Biau, Devroye, Lugosi, 2008; Th. 1)
Assume that the distribution of X is supported on [0, 1]d . Then the

purely random forest classifier T prRF
B = 1

(
1
B

∑B
k=1 T

pr (·,Dn)
)

(as well as

limB→∞ T prRF
B) is consistent whenever k →∞ and k/n→ 0 as k →∞.

60/64

Consistency of the purely random forest classifier

Define the purely random tree classifier T pr as follows:

I The support of X (and thus the root node of T pr) is [0, 1]d .

I At each step, the leaf is chosen uniformly at random among all
existing leaves.

I At each node, the split variable j is chosen uniformly at random
among 1, ..., d .

I The selected cell is split at a random location, chosen according to a
uniform random variable on the length of the chosen side of the
selected cell.

I The procedure is repeated k times where k ≥ 1 is fixed in advance.

I The only data driven element is the class label of the leaf, chosen
due to the majority of the observations contained in it.

Theorem (Biau, Devroye, Lugosi, 2008; Th. 1)
Assume that the distribution of X is supported on [0, 1]d . Then the

purely random forest classifier T prRF
B = 1

(
1
B

∑B
k=1 T

pr (·,Dn)
)

(as well as

limB→∞ T prRF
B) is consistent whenever k →∞ and k/n→ 0 as k →∞.

60/64

Consistency of the purely random forest classifier

Define the purely random tree classifier T pr as follows:

I The support of X (and thus the root node of T pr) is [0, 1]d .

I At each step, the leaf is chosen uniformly at random among all
existing leaves.

I At each node, the split variable j is chosen uniformly at random
among 1, ..., d .

I The selected cell is split at a random location, chosen according to a
uniform random variable on the length of the chosen side of the
selected cell.

I The procedure is repeated k times where k ≥ 1 is fixed in advance.

I The only data driven element is the class label of the leaf, chosen
due to the majority of the observations contained in it.

Theorem (Biau, Devroye, Lugosi, 2008; Th. 1)
Assume that the distribution of X is supported on [0, 1]d . Then the

purely random forest classifier T prRF
B = 1

(
1
B

∑B
k=1 T

pr (·,Dn)
)

(as well as

limB→∞ T prRF
B) is consistent whenever k →∞ and k/n→ 0 as k →∞.

60/64

Consistency of the purely random forest classifier

Define the purely random tree classifier T pr as follows:

I The support of X (and thus the root node of T pr) is [0, 1]d .

I At each step, the leaf is chosen uniformly at random among all
existing leaves.

I At each node, the split variable j is chosen uniformly at random
among 1, ..., d .

I The selected cell is split at a random location, chosen according to a
uniform random variable on the length of the chosen side of the
selected cell.

I The procedure is repeated k times where k ≥ 1 is fixed in advance.

I The only data driven element is the class label of the leaf, chosen
due to the majority of the observations contained in it.

Theorem (Biau, Devroye, Lugosi, 2008; Th. 1)
Assume that the distribution of X is supported on [0, 1]d . Then the

purely random forest classifier T prRF
B = 1

(
1
B

∑B
k=1 T

pr (·,Dn)
)

(as well as

limB→∞ T prRF
B) is consistent whenever k →∞ and k/n→ 0 as k →∞.

60/64

Consistency of the purely random forest classifier

Define the purely random tree classifier T pr as follows:

I The support of X (and thus the root node of T pr) is [0, 1]d .

I At each step, the leaf is chosen uniformly at random among all
existing leaves.

I At each node, the split variable j is chosen uniformly at random
among 1, ..., d .

I The selected cell is split at a random location, chosen according to a
uniform random variable on the length of the chosen side of the
selected cell.

I The procedure is repeated k times where k ≥ 1 is fixed in advance.

I The only data driven element is the class label of the leaf, chosen
due to the majority of the observations contained in it.

Theorem (Biau, Devroye, Lugosi, 2008; Th. 1)
Assume that the distribution of X is supported on [0, 1]d . Then the

purely random forest classifier T prRF
B = 1

(
1
B

∑B
k=1 T

pr (·,Dn)
)

(as well as

limB→∞ T prRF
B) is consistent whenever k →∞ and k/n→ 0 as k →∞.

60/64

Consistency of the purely random forest classifier

Define the purely random tree classifier T pr as follows:

I The support of X (and thus the root node of T pr) is [0, 1]d .

I At each step, the leaf is chosen uniformly at random among all
existing leaves.

I At each node, the split variable j is chosen uniformly at random
among 1, ..., d .

I The selected cell is split at a random location, chosen according to a
uniform random variable on the length of the chosen side of the
selected cell.

I The procedure is repeated k times where k ≥ 1 is fixed in advance.

I The only data driven element is the class label of the leaf, chosen
due to the majority of the observations contained in it.

Theorem (Biau, Devroye, Lugosi, 2008; Th. 1)
Assume that the distribution of X is supported on [0, 1]d . Then the

purely random forest classifier T prRF
B = 1

(
1
B

∑B
k=1 T

pr (·,Dn)
)

(as well as

limB→∞ T prRF
B) is consistent whenever k →∞ and k/n→ 0 as k →∞.

60/64

Consistency of the purely random forest classifier

Define the purely random tree classifier T pr as follows:

I The support of X (and thus the root node of T pr) is [0, 1]d .

I At each step, the leaf is chosen uniformly at random among all
existing leaves.

I At each node, the split variable j is chosen uniformly at random
among 1, ..., d .

I The selected cell is split at a random location, chosen according to a
uniform random variable on the length of the chosen side of the
selected cell.

I The procedure is repeated k times where k ≥ 1 is fixed in advance.

I The only data driven element is the class label of the leaf, chosen
due to the majority of the observations contained in it.

Theorem (Biau, Devroye, Lugosi, 2008; Th. 1)
Assume that the distribution of X is supported on [0, 1]d . Then the

purely random forest classifier T prRF
B = 1

(
1
B

∑B
k=1 T

pr (·,Dn)
)

(as well as

limB→∞ T prRF
B) is consistent whenever k →∞ and k/n→ 0 as k →∞.

61/64

Consistency of the scale-invariant random forest classifier

Define the scale-invariant random tree classifier T si as follows:

I Take the purely random tree classifier.

I Let the root node be the entire space Rd .

I Define the node-cutting procedure as follows:
if the cell (node) m contains nm points x1, ..., xnm , then the random
index I is chosen uniformly from the set {0, 1, ..., nm}, and the cut is
performed in the chosen variable between the points xI and xI+1.

Theorem (Biau, Devroye, Lugosi, 2008)
Assume that the distribution of X has non-atomic marginals in Rd . Then
the scale-invariant random forest classifier T siRF

B = 1
(

1
B

∑B
k=1 T

si (·,Dn)
)

(as well as limB→∞ T siRF
B) is consistent whenever k →∞ and k

n → 0 as
k →∞.

61/64

Consistency of the scale-invariant random forest classifier

Define the scale-invariant random tree classifier T si as follows:

I Take the purely random tree classifier.

I Let the root node be the entire space Rd .

I Define the node-cutting procedure as follows:
if the cell (node) m contains nm points x1, ..., xnm , then the random
index I is chosen uniformly from the set {0, 1, ..., nm}, and the cut is
performed in the chosen variable between the points xI and xI+1.

Theorem (Biau, Devroye, Lugosi, 2008)
Assume that the distribution of X has non-atomic marginals in Rd . Then
the scale-invariant random forest classifier T siRF

B = 1
(

1
B

∑B
k=1 T

si (·,Dn)
)

(as well as limB→∞ T siRF
B) is consistent whenever k →∞ and k

n → 0 as
k →∞.

61/64

Consistency of the scale-invariant random forest classifier

Define the scale-invariant random tree classifier T si as follows:

I Take the purely random tree classifier.

I Let the root node be the entire space Rd .

I Define the node-cutting procedure as follows:
if the cell (node) m contains nm points x1, ..., xnm , then the random
index I is chosen uniformly from the set {0, 1, ..., nm}, and the cut is
performed in the chosen variable between the points xI and xI+1.

Theorem (Biau, Devroye, Lugosi, 2008)
Assume that the distribution of X has non-atomic marginals in Rd . Then
the scale-invariant random forest classifier T siRF

B = 1
(

1
B

∑B
k=1 T

si (·,Dn)
)

(as well as limB→∞ T siRF
B) is consistent whenever k →∞ and k

n → 0 as
k →∞.

61/64

Consistency of the scale-invariant random forest classifier

Define the scale-invariant random tree classifier T si as follows:

I Take the purely random tree classifier.

I Let the root node be the entire space Rd .

I Define the node-cutting procedure as follows:
if the cell (node) m contains nm points x1, ..., xnm , then the random
index I is chosen uniformly from the set {0, 1, ..., nm}, and the cut is
performed in the chosen variable between the points xI and xI+1.

Theorem (Biau, Devroye, Lugosi, 2008)
Assume that the distribution of X has non-atomic marginals in Rd . Then
the scale-invariant random forest classifier T siRF

B = 1
(

1
B

∑B
k=1 T

si (·,Dn)
)

(as well as limB→∞ T siRF
B) is consistent whenever k →∞ and k

n → 0 as
k →∞.

61/64

Consistency of the scale-invariant random forest classifier

Define the scale-invariant random tree classifier T si as follows:

I Take the purely random tree classifier.

I Let the root node be the entire space Rd .

I Define the node-cutting procedure as follows:
if the cell (node) m contains nm points x1, ..., xnm , then the random
index I is chosen uniformly from the set {0, 1, ..., nm}, and the cut is
performed in the chosen variable between the points xI and xI+1.

Theorem (Biau, Devroye, Lugosi, 2008)
Assume that the distribution of X has non-atomic marginals in Rd . Then
the scale-invariant random forest classifier T siRF

B = 1
(

1
B

∑B
k=1 T

si (·,Dn)
)

(as well as limB→∞ T siRF
B) is consistent whenever k →∞ and k

n → 0 as
k →∞.

62/64

Consistency of bagging
Remind:

I Bagging classifier:

g agg
B (x) = 1

(1

B

B∑
k=1

g∗k (x) > 0.5
)
.

I Averaged classifier (the limit of the bagging classifier):

lim
B→∞

g agg
B (x) = 1

(
E∗[g∗k (x) | Dn) > 0.5]

)
.

with θ being a random variable delivering a bootstrap sample of size
Bin(n, qn) (without replacement), and qn ∈ [0, 1].

Theorem (Biau, Devroye, Lugosi, 2008; Th. 6)
Assume that the classifier g is consistent for a certain distribution
(X ,Y). Then the bagging classifier g agg

B and its limit
1
(
E[g∗k (x) | Dn)] > 0.5

)
are also consistent if nqn →∞ as n→∞.

62/64

Consistency of bagging
Remind:

I Bagging classifier:

g agg
B (x) = 1

(1

B

B∑
k=1

g∗k (x) > 0.5
)
.

I Averaged classifier (the limit of the bagging classifier):

lim
B→∞

g agg
B (x) = 1

(
E∗[g∗k (x) | Dn) > 0.5]

)
.

with θ being a random variable delivering a bootstrap sample of size
Bin(n, qn) (without replacement), and qn ∈ [0, 1].

Theorem (Biau, Devroye, Lugosi, 2008; Th. 6)
Assume that the classifier g is consistent for a certain distribution
(X ,Y). Then the bagging classifier g agg

B and its limit
1
(
E[g∗k (x) | Dn)] > 0.5

)
are also consistent if nqn →∞ as n→∞.

62/64

Consistency of bagging
Remind:

I Bagging classifier:

g agg
B (x) = 1

(1

B

B∑
k=1

g∗k (x) > 0.5
)
.

I Averaged classifier (the limit of the bagging classifier):

lim
B→∞

g agg
B (x) = 1

(
E∗[g∗k (x) | Dn) > 0.5]

)
.

with θ being a random variable delivering a bootstrap sample of size
Bin(n, qn) (without replacement), and qn ∈ [0, 1].

Theorem (Biau, Devroye, Lugosi, 2008; Th. 6)
Assume that the classifier g is consistent for a certain distribution
(X ,Y). Then the bagging classifier g agg

B and its limit
1
(
E[g∗k (x) | Dn)] > 0.5

)
are also consistent if nqn →∞ as n→∞.

63/64

Thank you for your attention!

64/64

And some more references

I Biau, G., Devroye, L., and Lugosi, G. (2008). Consistency of random
forests and other averaging classifiers. Journal of Machine Learning
Research, 9, 2015–2033.

I Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 123–140.

I Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.

I Buhlmann, P. (2003). Bagging, subbagging and bragging for improving
some prediction algorithms. Recent Advances and Trends in
Nonparametric Statistics. Akritas, M.G. and Politis, D.N. (Eds.). Elsevier,
pp. 9–34.

I Györfi, L., Kohler, M., Krzyżak, A., Walk, H. (2002) A distribution-free
theory of nonparametric regression Springer.

I Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of
Statistics Learning: Data Mining, Inference, and Prediction (Second
Edition). Springer.

I Stone, C.J. (1977). Consistent nonparametric regression. The Annals of
Statistics, 55(4), 595–645.

I Zhou, Z.-H. (2012). Ensemble Methods: Foundations and Algorithms.
CRC Press.

	Classification tree
	Algorithm
	Tuning

	Bagging
	Motivation
	Algorithm
	An example

	Random forest
	Algorithm
	Interpretation
	Consistency results

