Brief introduction to machine learning

Pavlo Mozharovskyi¹

(with contributions of Laurent Rouviere² and Valentin Patilea³)

¹LTCI, Télécom Paris, Institut Polytechnique de Paris ²Université Rennes 2 ³Ensai, CREST

Machine learning

Paris, March 12, 2022

The task of classification and Bayes classifier

Linear discriminant analysis

k-nearest neighbors and the curse of dimension

Outlook

Literature

Learning materials include but are not limited to:

 Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistics Learning: Data Mining, Inference, and Prediction (Second Edition). Springer.

- Chapter 2.
- Section 4.3.
- Slides of the lecture.

Contents

The task of classification and Bayes classifier

Linear discriminant analysis

k-nearest neighbors and the curse of dimension

Outlook

Binary supervised classification

Notation:

- ► Given: for the random pair (X, Y) in R^d × {0,1} consisting of a random observation X and its random binary label Y (class), a sample of n i.i.d.: (x₁, y₁), ..., (x_n, y_n).
- **Goal:** predict the label of the new (unseen before) observation **x**.
- Method: construct a classification rule:

$$g \ : \ \mathbb{R}^d
ightarrow \left\{ 0,1
ight\}, \, \mathbf{x} \mapsto g(\mathbf{x}) \, ,$$

so $g(\mathbf{x})$ is the prediction of the label for observation \mathbf{x} .

• **Criterion:** of the performance of g is the **error probability**:

$$R(g) = \mathbb{P}[g(X) \neq Y] = \mathbb{E}[\mathbb{1}(g(X) \neq Y)].$$

In practice the error probability will be replaced by the *empirical* error:

$$R_n(g) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(g(\mathbf{x}_i) \neq y_i).$$

The Bayes classifier

▶ The 'best' situation: is to know

$$\eta(\mathbf{x}) = \mathbb{E}[Y|X = \mathbf{x}] = \mathbb{P}(Y = 1 \mid X = \mathbf{x}).$$

► The Bayes classifier is the rule

$$g^*(\mathbf{x}) = egin{cases} 1 & ext{if} & \eta(\mathbf{x}) > 1/2 \ 0 & ext{otherwise} \ . \end{cases}$$

Bayes classification rule

Bayes formula for the probability of event A conditioned on event B:

$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$

In the context of binary supervised classification:

$$P(Y = 0 | X = \mathbf{x}) = \frac{P(X = \mathbf{x} | Y = 0) P(Y = 0)}{P(X = \mathbf{x})}$$

and

$$P(Y = 1 | X = \mathbf{x}) = \frac{P(X = \mathbf{x} | Y = 1) P(Y = 1)}{P(X = \mathbf{x})}$$

When deciding which class to assign \mathbf{x} we choose "1" if

$$P(Y = 1|X = \mathbf{x}) > P(Y = 0|X = \mathbf{x}) \text{ or } \frac{P(Y = 1|X = \mathbf{x})}{P(Y = 0|X = \mathbf{x})} > 1.$$

So choose "1" if $\frac{P(X = \mathbf{x} | Y = 1) P(Y = 1)}{P(X = \mathbf{x} | Y = 0) P(Y = 0)} = \frac{f_1(\mathbf{x}) \pi_1}{f_0(\mathbf{x}) \pi_0} > 1$ and "0" if not.

٠

The task of classification and Bayes classifier

Linear discriminant analysis

k-nearest neighbors and the curse of dimension

Outlook

Iris data

Fisher's iris data: is this the same flower?

Iris setosa

Iris versicolor

Iris data - description

- Three species of Iris (Iris setosa, Iris virginica and Iris versicolor) have been sampled.
- Four features were measured from each sample: the length and the width of the sepals and petals, in centimeters.
- The scatterplot indicates Iris setosa having features different from Iris virginica and Iris versicolor which appear to be quite similar

Iris data

lris setosa		Iris versicolor	
Sepal length (cm)	Sepal width (cm)	Sepal length (cm)	Sepal width (cm)
5.1	3.5	7	3.2
4.9	3	6.4	3.2
4.7	3.2	6.9	3.1
4.6	3.1	5.5	2.3
5	3.6	6.5	2.8
5.4	3.9	5.7	2.8
4.6	3.4	6.3	3.3
5	3.4	4.9	2.4
4.4	2.9	6.6	2.9
4.6	3.2	6.2	2.9
5.3	3.7	5.1	2.5
5	3.3	5.7	2.8

Iris data

Sepal length

Linear discriminant analysis

Assumptions:

- X given Y admits a density
- Both classes are normally distributed with the same covariance matrix, *i.e.* X|Y = j ~ N(μ_j, Σ_j), j = 0, 1 or

$$f_j(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^d \det(\mathbf{\Sigma}_j)}} e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu}_j)^T \mathbf{\Sigma}_j^{-1}(\mathbf{x}-\boldsymbol{\mu}_j)}, \quad \text{for } j = 0, 1$$

and
$$\mathbf{\Sigma}_0 = \mathbf{\Sigma}_1 = \mathbf{\Sigma}$$
.

Plug-in into Bayes:

$$\begin{split} g(\mathbf{x}) &= \begin{cases} 1 & \text{if } \frac{P(Y=1|X=\mathbf{x})}{P(Y=0|X=\mathbf{x})} > 1 \,, \\ 0 & \text{else} \,; \end{cases} \\ \text{or} \quad g(\mathbf{x}) &= 1 \Bigl(\log \frac{\pi_1 f_1(\mathbf{x})}{\pi_0 f_0(\mathbf{x})} > 0 \Bigr) \end{split}$$

Linear discriminant analysis

$$\log \frac{\pi_{1} f_{1}(\mathbf{x})}{\pi_{0} f_{0}(\mathbf{x})} = \log \frac{\pi_{1}}{\pi_{0}} + \log \frac{\frac{1}{\sqrt{(2\pi)^{d} \det(\mathbf{\Sigma}_{1})}} e^{-\frac{1}{2}(\mathbf{x}-\mu_{1})^{T} \mathbf{\Sigma}_{1}^{-1}(\mathbf{x}-\mu_{1})}{\frac{1}{\sqrt{(2\pi)^{d} \det(\mathbf{\Sigma}_{0})}} e^{-\frac{1}{2}(\mathbf{x}-\mu_{0})^{T} \mathbf{\Sigma}_{0}^{-1}(\mathbf{x}-\mu_{0})}}$$

$$= \log \frac{\pi_{1}}{\pi_{0}} + \log \frac{\sqrt{\det(\mathbf{\Sigma}_{0})}}{\sqrt{\det(\mathbf{\Sigma}_{1})}}$$

$$+ \frac{1}{2} (\mathbf{x}-\mu_{0})^{T} \mathbf{\Sigma}_{0}^{-1} (\mathbf{x}-\mu_{0}) - \frac{1}{2} (\mathbf{x}-\mu_{1})^{T} \mathbf{\Sigma}_{1}^{-1} (\mathbf{x}-\mu_{1})$$

$$= \log \frac{\pi_{1}}{\pi_{0}} + \log \frac{\sqrt{\det(\mathbf{\Sigma}_{0})}}{\sqrt{\det(\mathbf{\Sigma}_{1})}}$$

$$+ \frac{1}{2} \left(\mathbf{x}^{T} \mathbf{\Sigma}_{0}^{-1} \mathbf{x} - \mathbf{x}^{T} \mathbf{\Sigma}_{0}^{-1} \mu_{0} - \mu_{0}^{T} \mathbf{\Sigma}_{0}^{-1} \mathbf{x} + \mu_{0}^{T} \mathbf{\Sigma}_{0}^{-1} \mu_{0} \right)$$

$$- \frac{1}{2} \left(\mathbf{x}^{T} \mathbf{\Sigma}_{1}^{-1} \mathbf{x} - \mathbf{x}^{T} \mathbf{\Sigma}_{1}^{-1} \mu_{1} - \mu_{1}^{T} \mathbf{\Sigma}_{1}^{-1} \mathbf{x} + \mu_{1}^{T} \mathbf{\Sigma}_{1}^{-1} \mu_{1} \right)$$

$$= \dots$$
Exploit $\mathbf{\Sigma}_{0} = \mathbf{\Sigma}_{1} = \mathbf{\Sigma}$ to simplify.

14/31

Linear discriminant analysis

$$\log \frac{\pi_{1} f_{1}(\mathbf{x})}{\pi_{0} f_{0}(\mathbf{x})} = \log \frac{\pi_{1}}{\pi_{0}} + \log \frac{\sqrt{\det(\mathbf{\Sigma})}}{\sqrt{\det(\mathbf{\Sigma})}} \\ + \frac{1}{2} \Big(\mathbf{x}^{T} \mathbf{\Sigma}^{-1} \mathbf{x} - \mathbf{x}^{T} \mathbf{\Sigma}^{-1} \mu_{0} - \mu_{0}^{T} \mathbf{\Sigma}^{-1} \mathbf{x} + \mu_{0}^{T} \mathbf{\Sigma}^{-1} \mu_{0} \Big) \\ - \frac{1}{2} \Big(\mathbf{x}^{T} \mathbf{\Sigma}^{-1} \mathbf{x} - \mathbf{x}^{T} \mathbf{\Sigma}^{-1} \mu_{1} - \mu_{1}^{T} \mathbf{\Sigma}^{-1} \mathbf{x} + \mu_{1}^{T} \mathbf{\Sigma}^{-1} \mu_{1} \Big) \\ = \log \frac{\pi_{1}}{\pi_{0}} + \frac{1}{2} \mu_{0}^{T} \mathbf{\Sigma}^{-1} \mu_{0} - \frac{1}{2} \mu_{1}^{T} \mathbf{\Sigma}^{-1} \mu_{1} \\ + \frac{1}{2} \mathbf{x}^{T} \mathbf{\Sigma}^{-1} (\mu_{1} - \mu_{0}) + \frac{1}{2} (\mu_{1} - \mu_{0})^{T} \mathbf{\Sigma}^{-1} \mathbf{x}$$

$$= \log \frac{\pi_1}{\pi_0} - \frac{1}{2} (\mu_1 - \mu_0)^T \mathbf{\Sigma}^{-1} (\mu_1 - \mu_0) \\ + \mathbf{x}^T \mathbf{\Sigma}^{-1} (\mu_1 - \mu_0) \,.$$

Linear discriminant analysis (algorithm)

Learning:

Let

• $I_0 = \{i : y_i = 0, i = 1, ..., n\} (n_0 = \#I_0);$

$$I_1 = \{i : y_i = 1, i = 1, ..., n\} (n_1 = \# I_1) .$$

Estimate

- Priors: $p_0 = \frac{n_0}{n}$, $p_1 = \frac{n_1}{n}$;
- ► Means: $\bar{\mathbf{x}}_0 = \frac{1}{n_0} \sum_{i \in I_0} \mathbf{x}_i$, $\bar{\mathbf{x}}_1 = \frac{1}{n_1} \sum_{i \in I_1} \mathbf{x}_i$, $(\bar{\mathbf{x}}_1 \bar{\mathbf{x}}_0)$;

Common covariance matrix:

$$\boldsymbol{S} = \frac{1}{n-2} \left(\sum_{i \in I_0} (\boldsymbol{\mathsf{x}}_i - \bar{\boldsymbol{\mathsf{x}}}_0) (\boldsymbol{\mathsf{x}}_i - \bar{\boldsymbol{\mathsf{x}}}_0)^T + \sum_{i \in I_1} (\boldsymbol{\mathsf{x}}_i - \bar{\boldsymbol{\mathsf{x}}}_1) (\boldsymbol{\mathsf{x}}_i - \bar{\boldsymbol{\mathsf{x}}}_1)^T \right)$$

Classification: For a new observation x

$$g(\mathbf{x}) = \begin{cases} 1 & \text{if } \log \frac{p_1}{p_0} - \frac{1}{2} (\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_0)^T \boldsymbol{S}^{-1} (\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_0) \\ & + \mathbf{x}^T \boldsymbol{S}^{-1} (\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_0) > 0 \,, \\ 0 & \text{otherwise} \,. \end{cases}$$

Linear discriminant analysis (iris data)

Sepal length

Linear discriminant analysis (iris data)

Sepal length

Linear discriminant analysis (closer look)

Assume $\pi_0 = \pi_1 = 0.5$:

Bias-corrected discrimination function

$$T(\mathbf{x}) = (\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_0)^T \boldsymbol{S}^{-1} \left(\mathbf{x} - \frac{1}{2} (\bar{\mathbf{x}}_1 + \bar{\mathbf{x}}_0) \right) - \frac{n(n_1 - n_0)d}{2(n - d - 1)n_0n_1}$$

Let

$$u = (\bar{\mathbf{x}}_{1} - \bar{\mathbf{x}}_{0})^{T} \mathbf{S}^{-1} (\bar{\mathbf{x}}_{1} - \mu_{1}) - \frac{(\bar{\mathbf{x}}_{1} - \bar{\mathbf{x}}_{0})^{T} \mathbf{S}^{-1} (\bar{\mathbf{x}}_{1} - \bar{\mathbf{x}}_{0})}{2} + \frac{n(n_{1} - n_{0})d}{2(n - d - 1)n_{0}n_{1}},$$

$$v = (\bar{\mathbf{x}}_{1} - \bar{\mathbf{x}}_{0})^{T} \mathbf{S}^{-1} \mathbf{\Sigma} \mathbf{S}^{-1} (\bar{\mathbf{x}}_{1} - \bar{\mathbf{x}}_{0}).$$

Discrimination function conditioned on data is distributed as

$$T(\mathbf{x})|\bar{\mathbf{x}}_0,\bar{\mathbf{x}}_1,\mathbf{S}\sim N(-u,v).$$

Error probability (for class "1")

$$R_1 = \mathbb{E}\big[\mathbb{P}\big(T(\mathbf{x}) \leq 0 | \mathbf{x}, y = 1\big)\big] = \mathbb{E}[\Phi(\frac{u}{\sqrt{v}})].$$

Linear discriminant analysis (closer look)

Error probability R_1 can be consistently estimated:

$$\hat{R}_1 = \Phi\left(\frac{\hat{u_0}}{\sqrt{\hat{v_0}}}\right),$$

where

$$\hat{u}_{0} = -\frac{\hat{\Delta}^{2}}{2(1-\frac{d}{n})},$$

$$\hat{v}_{0} = \frac{1}{(1-\frac{d}{n})^{3}} (\hat{\Delta}^{2} + \frac{d}{n\pi_{0}\pi_{1}}),$$

$$\hat{\Delta}^{2} = \frac{n-d-1}{n} (\bar{\mathbf{x}}_{1} - \bar{\mathbf{x}}_{0})^{T} \mathbf{S}^{-1} (\bar{\mathbf{x}}_{1} - \bar{\mathbf{x}}_{0}) - \frac{(n+2)d}{n_{0}n_{1}}$$

Corollary

Under certain asymptotic framework it holds that

$$\hat{R}_1 \stackrel{p}{\to} R_1$$

The task of classification and Bayes classifier

Linear discriminant analysis

k-nearest neighbors and the curse of dimension

Outlook

k-nearest neighbors (algorithm)

For $\mathbf{x} \in \mathbb{R}^d$ and some integer 0 < k < n, let a set $I_k(\mathbf{x})$ index the *k*-nearest neighbors of the point \mathbf{x} :

$$I_k(\mathbf{x}) = \{i(1), ..., i(k)\},\$$

where $\|\mathbf{x} - \mathbf{x}_{i(1)}\| \le \|\mathbf{x} - \mathbf{x}_{i(2)}\| \le ... \le \|\mathbf{x} - \mathbf{x}_{i(n)}\|$ is an ascending order. k is to be set, *e.g.* chosen by the means of cross-validation.

Then the k-nearest neighbors (kNN) algorithm classifies a new observation as follows:

Calculate the ratio of classes' proportion in the k-neighborhood:

$$p_k(\mathbf{x}) = \frac{\sum_{i \in I_k(\mathbf{x})} \mathbb{1}(y_i = 1)}{\sum_{i \in I_k(\mathbf{x})} \mathbb{1}(y_i = 0)}.$$

Assign the class based on majority:

$$g(\mathbf{x}) = egin{cases} 1 & ext{if } p_k(\mathbf{x}) > 1\,, \ 0 & ext{otherwise}\,. \end{cases}$$

▶ Deal with ties, *e.g.* decide randomly, or choose odd *k*s only.

Consider the kNN regression estimate of P(Y = 1 | X = x), (which, remember, here is equal to E(Y | X = x)):

$$\widehat{\eta}(\mathbf{x}) = \widehat{\eta}_n(\mathbf{x}) = \sum_{i=1}^n w_{in}(x) y_i = \frac{1}{k} \sum_{i \in I_k(\mathbf{x})} y_i ,$$

with

$$w_{in} = rac{\mathbb{1}(i \in I_k(\mathbf{x}))}{k}$$

Remark: the rule

$$g(\mathbf{x}) = \mathbb{1}(p_k(\mathbf{x}) > 1)$$

is equivalent to the rule

$$\mathbb{1}(\widehat{\eta}(\mathsf{x})>1/2)$$
 .

k-nearest neighbors (iris data, k=9)

Sepal length

k-nearest neighbors classifier (universal consistency)

Under certain assumptions, kNN is universally consistent, *i.e.* approaches the classification error of the Bayes classifier with increasing length of the training sample n.

Theorem (Stone, 1977)

If $k \to \infty$ and $\frac{k}{n} \to 0$ then the kNN in \mathbb{R}^d with Euclidean distance is universally consistent, i.e.

$$\lim_{n\to\infty} \mathbb{E}\Big[\int_X \big(\widehat{\eta}_n(\mathbf{x}) - \mathbb{E}[Y|X=\mathbf{x}]\big)^2 \mu_X(d\mathbf{x})\Big] = 0\,,$$

for any probability measure of (X, Y). Here, μ_X is the probability measure of X.

In general for kernel-based methods with h being the bandwidth:

Theorem (Devroye-Krzyżak, 1989)

If $h\to 0$ and $nh^d\to +\infty$ then the kernel-based classifier is universally consistent.

Rate of convergence

Nonparametric methods suffer from the **curse of dimensionality**: if the number of exploratory variables is large, the spherical neighborhood is filled poorly, which reduces the rate of convergence.

Recall the kNN regression estimate:

$$\widehat{\eta}(\mathbf{x}) = rac{1}{k} \sum_{i \in I_k(\mathbf{x})} y_i \, .$$

Theorem (Györfi, Kohler, Krzyżak, Walk, 2002)

If the regression function is Lipschitz continuous then for the kNN estimator it holds

$$\mathbb{E}\Big[\int_X \big(\widehat{\eta}_n(\mathbf{x}) - \mathbb{E}[Y|X=\mathbf{x}]\big)^2 \mu_X(d\mathbf{x})\Big] = O(n^{-\frac{2}{d+2}}).$$

In practice non-parametric estimators possess poor performance in high-dimensional spaces.

Possible solution: aggregation methods

Aggregation methods allow, to a certain extent, deal with

- 1. curse of dimensionality;
- 2. sensibility of the method w.r.t. the choice of parameters;
- 3. **preserve previous properties** while being computationally tractable.

These proposed approaches are based on the **aggregation**, *i.e.*:

- 1. construct an ensemble of $g_1, ..., g_B$ of weak learning algorithms;
- 2. aggregate them into the final classifier

$$g(\mathbf{x}) = \frac{1}{B} \sum_{k=1}^{B} g_k(\mathbf{x}).$$

The key concepts:

- bagging and random forests;
- boosting.

Contents

The task of classification and Bayes classifier

Linear discriminant analysis

k-nearest neighbors and the curse of dimension

Outlook

Possible solution: aggregation methods

Aggregation methods allow, to a certain extent, deal with

- 1. curse of dimensionality;
- 2. sensibility of the method w.r.t. the choice of parameters;
- 3. **preserve previous properties** while being computationally tractable.

These proposed approaches are based on the **aggregation**, *i.e.*:

- 1. construct an ensemble of $g_1, ..., g_B$ of weak learning algorithms;
- 2. aggregate them into the final classifier

$$g(\mathbf{x}) = \frac{1}{B} \sum_{k=1}^{B} g_k(\mathbf{x}).$$

The key concepts:

- bagging and random forests;
- boosting.

Thank you for your attention!

And some more references

- Devroye, L., Gyöfri, L., Lugosi, G. (1996).
 A Probabilistic Theory of Pattern Recognition.
 Springer.
- Györfi, L., Kohler, M., Krzyżak, A., Walk, H. (2002). A distribution-free theory of nonparametric regression. Springer.
- Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistics Learning: Data Mining, Inference, and Prediction (Second Edition). Springer.
- Stone, C.J. (1977).
 Consistent nonparametric regression.
 The Annals of Statistics, 55(4), 595–645.
- Vapnik, V. N. (1998).
 Statistical Learning Theory.
 John Wiley & Sons.