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Literature

Learning materials include but are not limited to:

I Hastie, T., Tibshirani, R., and Friedman, J. (2009).
The Elements of Statistics Learning: Data Mining, Inference, and
Prediction (Second Edition).
Springer.

I Chapter 2.
I Section 4.3.

I Slides of the lecture.



4/30

Contents

The task of classification and Bayes classifier

Linear discriminant analysis

k-nearest neighbors and the curse of dimension

Outlook



5/30

Binary supervised classification
Notation:

I Given: for the random pair (X ,Y ) in Rd × {0, 1} consisting of a
random observation X and its random binary label Y (class), a
sample of n i.i.d.: (x1, y1), ..., (xn, yn).

I Goal: predict the label of the new (unseen before) observation x.

I Method: construct a classification rule:

g : Rd → {0, 1} , x 7→ g(x) ,

so g(x) is the prediction of the label for observation x.

I Criterion: of the performance of g is the error probability:

R(g) = P[g(X ) 6= Y ] = E[1
(
g(X ) 6= Y

)
] .

I In practice the error probability will be replaced by the empirical
error:

Rn(g) =
1

n

n∑
i=1

1
(
g(xi ) 6= yi

)
.
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The Bayes classifier

I The ‘best’ situation: is to know

η(x) = E[Y |X = x] = P(Y = 1 | X = x) .

I The Bayes classifier is the rule

g∗(x) =

{
1 if η(x) > 1/2 ,

0 otherwise .
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Bayes classification rule
Bayes formula for the probability of event A conditioned on event B:

P(A|B) =
P(B|A)P(A)

P(B)
.

In the context of binary supervised classification:

P(Y = 0|X = x) =
P(X = x|Y = 0)P(Y = 0)

P(X = x)

and

P(Y = 1|X = x) =
P(X = x|Y = 1)P(Y = 1)

P(X = x)
.

When deciding which class to assign x we choose “1” if

P(Y = 1|X = x) > P(Y = 0|X = x) or
P(Y = 1|X = x)

P(Y = 0|X = x)
> 1 .

So choose “1” if
P(X = x|Y = 1)P(Y = 1)

P(X = x|Y = 0)P(Y = 0)
=

f1(x)π1

f0(x)π0
> 1 and “0” if not .
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Iris data

Fisher’s iris data:

is this the same flower?

Iris setosa Iris versicolor
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Iris data – description

I Three species of Iris (Iris setosa, Iris virginica and Iris versicolor)
have been sampled.

I Four features were measured from each sample: the length and the
width of the sepals and petals, in centimeters.

I The scatterplot indicates Iris setosa having features different from
Iris virginica and Iris versicolor which appear to be quite similar
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Iris data

Iris setosa

Sepal length (cm) Sepal width (cm)

5.1 3.5
4.9 3
4.7 3.2
4.6 3.1
5 3.6

5.4 3.9
4.6 3.4
5 3.4

4.4 2.9
... ...
... ...
... ...
4.6 3.2
5.3 3.7
5 3.3

Iris versicolor

Sepal length (cm) Sepal width (cm)

7 3.2
6.4 3.2
6.9 3.1
5.5 2.3
6.5 2.8
5.7 2.8
6.3 3.3
4.9 2.4
6.6 2.9
... ...
... ...
... ...
6.2 2.9
5.1 2.5
5.7 2.8
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Iris data

4.5 5.0 5.5 6.0 6.5 7.0

2.
0

2.
5

3.
0

3.
5

4.
0

Sepal length

S
ep

al
 w

id
th
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Linear discriminant analysis

I Assumptions:

I X given Y admits a density

I Both classes are normally distributed with the same covariance
matrix, i.e. X |Y = j ∼ N(µj ,Σj) , j = 0, 1 or

fj(x) =
1√

(2π)d det(Σj)
e−

1
2

(x−µj )
T Σ−1

j (x−µj ) , for j = 0, 1

and Σ0 = Σ1 = Σ .

I Plug-in into Bayes:

g(x) =

{
1 if P(Y=1|X=x)

P(Y=0|X=x) > 1 ,

0 else ;

or g(x) = 1
(

log
π1f1(x)

π0f0(x)
> 0
)
.
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Linear discriminant analysis

log
π1f1(x)

π0f0(x)
=

log
π1

π0
+ log

1√
(2π)d det(Σ1)

e−
1
2 (x−µ1)T Σ−1

1 (x−µ1)

1√
(2π)d det(Σ0)

e−
1
2 (x−µ0)T Σ−1

0 (x−µ0)

= log
π1

π0
+ log

√
det(Σ0)√
det(Σ1)

+
1

2
(x− µ0)TΣ−1

0 (x− µ0)− 1

2
(x− µ1)TΣ−1

1 (x− µ1)

= log
π1

π0
+ log

√
det(Σ0)√
det(Σ1)

+
1

2

(
xTΣ−1

0 x− xTΣ−1
0 µ0 − µT

0 Σ−1
0 x + µT

0 Σ−1
0 µ0

)
− 1

2

(
xTΣ−1

1 x− xTΣ−1
1 µ1 − µT

1 Σ−1
1 x + µT

1 Σ−1
1 µ1

)
= ...

Exploit Σ0 = Σ1 = Σ to simplify.
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Linear discriminant analysis
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Linear discriminant analysis (algorithm)

I Learning:

Let
I I0 = {i : yi = 0 , i = 1, ..., n} (n0 = #I0) ;

I I1 = {i : yi = 1 , i = 1, ..., n} (n1 = #I1) .

Estimate
I Priors: p0 = n0

n
, p1 = n1

n
;

I Means: x̄0 = 1
n0

∑
i∈I0 xi , x̄1 = 1

n1

∑
i∈I1 xi , (x̄1 − x̄0) ;

I Common covariance matrix:

S = 1
n−2

(∑
i∈I0 (xi − x̄0)(xi − x̄0)T +

∑
i∈I1 (xi − x̄1)(xi − x̄1)T

)
.

I Classification: For a new observation x
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Linear discriminant analysis (iris data)
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Linear discriminant analysis (closer look)
Assume π0 = π1 = 0.5:

I Bias-corrected discrimination function

T (x) = (x̄1 − x̄0)TS−1
(
x− 1

2
(x̄1 + x̄0)

)
− n(n1 − n0)d

2(n − d − 1)n0n1
.

I Let

u = (x̄1−x̄0)TS−1(x̄1−µ1)− (x̄1 − x̄0)TS−1(x̄1 − x̄0)

2
+

n(n1 − n0)d

2(n − d − 1)n0n1
,

v = (x̄1 − x̄0)TS−1ΣS−1(x̄1 − x̄0) .

I Discrimination function conditioned on data is distributed as

T (x)|x̄0, x̄1,S ∼ N(−u, v) .

I Error probability (for class “1”)

R1 = E
[
P
(
T (x) ≤ 0|x, y = 1

)]
= E[Φ(

u√
v

)] .
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Linear discriminant analysis (closer look)
Error probability R1 can be consistently estimated:

R̂1 = Φ
( û0√

v̂0

)
,

where

û0 = − ∆̂2

2(1− d
n )
,

v̂0 =
1

(1− d
n )3

(
∆̂2 +

d

nπ0π1

)
,

∆̂2 =
n − d − 1

n
(x̄1 − x̄0)TS−1(x̄1 − x̄0)− (n + 2)d

n0n1
.

Corollary
Under certain asymptotic framework it holds that

R̂1
p→ R1 .
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k-nearest neighbors (algorithm)
For x ∈ Rd and some integer 0 < k < n, let a set Ik(x) index the
k-nearest neighbors of the point x:

Ik(x) = {i(1), ..., i(k)} ,

where ‖x− xi(1)‖ ≤ ‖x− xi(2)‖ ≤ ... ≤ ‖x− xi(n)‖ is an ascending order.

k is to be set, e.g. chosen by the means of cross-validation.

Then the k-nearest neighbors (kNN) algorithm classifies a new
observation as follows:

I Calculate the ratio of classes’ proportion in the k-neighborhood:

pk(x) =

∑
i∈Ik (x) 1(yi = 1)∑
i∈Ik (x) 1(yi = 0)

.

I Assign the class based on majority:

g
(
x
)

=

{
1 if pk(x) > 1 ,

0 otherwise .

I Deal with ties, e.g. decide randomly, or choose odd ks only.



22/30

k-nearest neighbors (algorithm)
For x ∈ Rd and some integer 0 < k < n, let a set Ik(x) index the
k-nearest neighbors of the point x:

Ik(x) = {i(1), ..., i(k)} ,

where ‖x− xi(1)‖ ≤ ‖x− xi(2)‖ ≤ ... ≤ ‖x− xi(n)‖ is an ascending order.
k is to be set, e.g. chosen by the means of cross-validation.

Then the k-nearest neighbors (kNN) algorithm classifies a new
observation as follows:

I Calculate the ratio of classes’ proportion in the k-neighborhood:

pk(x) =

∑
i∈Ik (x) 1(yi = 1)∑
i∈Ik (x) 1(yi = 0)

.

I Assign the class based on majority:

g
(
x
)

=

{
1 if pk(x) > 1 ,

0 otherwise .

I Deal with ties, e.g. decide randomly, or choose odd ks only.



22/30

k-nearest neighbors (algorithm)
For x ∈ Rd and some integer 0 < k < n, let a set Ik(x) index the
k-nearest neighbors of the point x:

Ik(x) = {i(1), ..., i(k)} ,

where ‖x− xi(1)‖ ≤ ‖x− xi(2)‖ ≤ ... ≤ ‖x− xi(n)‖ is an ascending order.
k is to be set, e.g. chosen by the means of cross-validation.

Then the k-nearest neighbors (kNN) algorithm classifies a new
observation as follows:

I Calculate the ratio of classes’ proportion in the k-neighborhood:

pk(x) =

∑
i∈Ik (x) 1(yi = 1)∑
i∈Ik (x) 1(yi = 0)

.

I Assign the class based on majority:

g
(
x
)

=

{
1 if pk(x) > 1 ,

0 otherwise .

I Deal with ties, e.g. decide randomly, or choose odd ks only.



22/30

k-nearest neighbors (algorithm)
For x ∈ Rd and some integer 0 < k < n, let a set Ik(x) index the
k-nearest neighbors of the point x:

Ik(x) = {i(1), ..., i(k)} ,

where ‖x− xi(1)‖ ≤ ‖x− xi(2)‖ ≤ ... ≤ ‖x− xi(n)‖ is an ascending order.
k is to be set, e.g. chosen by the means of cross-validation.

Then the k-nearest neighbors (kNN) algorithm classifies a new
observation as follows:

I Calculate the ratio of classes’ proportion in the k-neighborhood:

pk(x) =

∑
i∈Ik (x) 1(yi = 1)∑
i∈Ik (x) 1(yi = 0)

.

I Assign the class based on majority:

g
(
x
)

=

{
1 if pk(x) > 1 ,

0 otherwise .

I Deal with ties, e.g. decide randomly, or choose odd ks only.



22/30

k-nearest neighbors (algorithm)
For x ∈ Rd and some integer 0 < k < n, let a set Ik(x) index the
k-nearest neighbors of the point x:

Ik(x) = {i(1), ..., i(k)} ,

where ‖x− xi(1)‖ ≤ ‖x− xi(2)‖ ≤ ... ≤ ‖x− xi(n)‖ is an ascending order.
k is to be set, e.g. chosen by the means of cross-validation.

Then the k-nearest neighbors (kNN) algorithm classifies a new
observation as follows:

I Calculate the ratio of classes’ proportion in the k-neighborhood:

pk(x) =

∑
i∈Ik (x) 1(yi = 1)∑
i∈Ik (x) 1(yi = 0)

.

I Assign the class based on majority:

g
(
x
)

=

{
1 if pk(x) > 1 ,

0 otherwise .

I Deal with ties, e.g. decide randomly, or choose odd ks only.



22/30

k-nearest neighbors (algorithm)
For x ∈ Rd and some integer 0 < k < n, let a set Ik(x) index the
k-nearest neighbors of the point x:

Ik(x) = {i(1), ..., i(k)} ,

where ‖x− xi(1)‖ ≤ ‖x− xi(2)‖ ≤ ... ≤ ‖x− xi(n)‖ is an ascending order.
k is to be set, e.g. chosen by the means of cross-validation.

Then the k-nearest neighbors (kNN) algorithm classifies a new
observation as follows:

I Calculate the ratio of classes’ proportion in the k-neighborhood:

pk(x) =

∑
i∈Ik (x) 1(yi = 1)∑
i∈Ik (x) 1(yi = 0)

.

I Assign the class based on majority:

g
(
x
)

=

{
1 if pk(x) > 1 ,

0 otherwise .

I Deal with ties, e.g. decide randomly, or choose odd ks only.



23/30

I Consider the kNN regression estimate of P(Y = 1 | X = x), (which,
remember, here is equal to E(Y | X = x)):

η̂(x) = η̂n(x) =
n∑

i=1

win(x)yi =
1

k

∑
i∈Ik (x)

yi ,

with

win =
1(i ∈ Ik(x))

k
.

I Remark: the rule
g
(
x
)

= 1(pk(x) > 1)

is equivalent to the rule

1(η̂(x) > 1/2) .
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k-nearest neighbors (iris data, k=9)
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k-nearest neighbors classifier (universal consistency)

Under certain assumptions, kNN is universally consistent, i.e. approaches
the classification error of the Bayes classifier with increasing length of the
training sample n.

Theorem (Stone, 1977)
If k →∞ and k

n → 0 then the kNN in Rd with Euclidean distance is
universally consistent, i.e.

lim
n→∞

E
[∫

X

(
η̂n(x)− E[Y |X = x]

)2
µX (dx)

]
= 0 ,

for any probability measure of (X ,Y ). Here, µX is the probability
measure of X .

In general for kernel-based methods with h being the bandwidth:

Theorem (Devroye-Krzyżak, 1989)
If h→ 0 and nhd → +∞ then the kernel-based classifier is universally
consistent.
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Rate of convergence

Nonparametric methods suffer from the curse of dimensionality: if the
number of exploratory variables is large, the spherical neighborhood is
filled poorly, which reduces the rate of convergence.

Recall the kNN regression estimate:

η̂(x) =
1

k

∑
i∈Ik (x)

yi .

Theorem (Györfi, Kohler, Krzyżak, Walk, 2002)
If the regression function is Lipschitz continuous then for the kNN
estimator it holds

E
[∫

X

(
η̂n(x)− E[Y |X = x]

)2
µX (dx)

]
= O(n−

2
d+2 ) .

In practice non-parametric estimators possess poor performance in
high-dimensional spaces.
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Possible solution: aggregation methods

Aggregation methods allow, to a certain extent, deal with

1. curse of dimensionality;

2. sensibility of the method w.r.t. the choice of parameters;

3. preserve previous properties while being computationally
tractable.

These proposed approaches are based on the aggregation, i.e.:

1. construct an ensemble of g1, ..., gB of weak learning algorithms;

2. aggregate them into the final classifier

g(x) =
1

B

B∑
k=1

gk(x) .

The key concepts:

I bagging and random forests;

I boosting.
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Thank you for your attention!
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