
Unsupervised learning: Anomaly detection
Part II: Functional data

Pavlo Mozharovskyi

LTCI, Telecom Paris, Institut Polytechnique de Paris

Parcours Data Science BPCE

Paris, the 13th of June 2023



Contents

Anomaly detection in functional framework

Functional isolation forest
The method
FIF parameters
Real data benchmarking
Extension of FIF: Connection to data depth

Data depth: the integrated approach

Depth for curve data
Motivation
Methodology
Computation and properties
Illustrations
Brain imaging

Practical session



Contents

Anomaly detection in functional framework

Functional isolation forest
The method
FIF parameters
Real data benchmarking
Extension of FIF: Connection to data depth

Data depth: the integrated approach

Depth for curve data
Motivation
Methodology
Computation and properties
Illustrations
Brain imaging

Practical session



Functional data framework

▶ Let F = {F (t) ∈ Rd , t ∈ [0, 1]} be a random variable that
takes its values in a (multivariate) functional space.

▶ In practice, we only have access to the realization of F at a
finite number of arguments/times, f = {f (t1), ..., f (tp)} such
that 0 ≤ t1 < · · · < tp ≤ 1.

▶ The first step: reconstruct functional object from partial
observations (time-series) with interpolation or basis
decomposition.
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Taxonomy of functional anomalies (Hubert et al., 2015)

A non-complete taxomony of functional abnormalities:

Shape anomalies Shift anomalies
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Taxonomy of functional anomalies (Airbus data)

A non-complete taxomony of functional abnormalities:

Magnitude (=location, shift) anomalies

Shape anomalies Isolated anomalies
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FIF in the context of FAD contributions
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Functional Isolation Forest

▶ X1, . . . ,Xn are random variables in Hilbert space H and
D ⊂ H.

▶ This ensemble learning algorithm builds a collection of binary
tree based on a recursive and randomized tree-structured
partitioning procedure.

Step 1:
Draw d from ν ∈ P(D)−−−−−−−−−−−−−−→

{ Xi, d , i n}

Step 2:

{ Xi, d , i n}

Draw uniformly γ−−−−−−−−−−−−−→

{x : x, d } {x : x, d > }

▶ The trick: an anomaly should be isolated faster than normal
data.
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Functional Isolation Forest
Illustration: Isolation tree
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Children node construction in a functional isolation tree
If a node (j , k) is non terminal, it is split in three steps as follows:

1. Choose a Split function d according to the probability
distribution ν on D.

2. Choose randomly and uniformly a Split value γ in the interval[
min
x∈Sj,k

⟨x,d⟩H, max
x∈Sj,k

⟨x,d⟩H
]
,

3. Form the children subsets

Cj+1,2k = Cj ,k ∩ {x ∈ H : ⟨x,d⟩H ≤ γ},
Cj+1,2k+1 = Cj ,k ∩ {x ∈ H : ⟨x,d⟩H > γ}.

as well as the children training datasets

Sj+1,2k = Sj ,k ∩ Cj+1,2k and Sj+1,2k+1 = Sj ,k ∩ Cj+1,2k+1.

Stop when only one observation is in each node: isolation.
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Anomaly score prediction

▶ One may then define the piecewise constant function
hτ : H → N by: ∀x ∈ H,

hτ (x) = j if and only if x ∈ Cj ,k and Cj ,k is associated to a terminal node.



Anomaly score prediction

Anomaly score calculation for observation x :
1. For each isolation tree i ∈ {1, ...,N}, locate x in a terminal

node and calculate the depth of this node hi (x).
2. Attribute the anomaly score:

sn(x) = 2
− 1

N·c(n)
∑N

i=1 hi (x) ,

with c(n) = 2H(n − 1)− 2(n−1)
n where H(k) is the harmonic

number and can be estimated by ln(k) + 0.5772156649.

Score behavior:

▶ when 1
N

∑N
i=1 hi (x) → c(n), sn(x) → 0.5,

▶ when 1
N

∑N
i=1 hi (x) → 0, sn(x) → 1,

▶ when 1
N

∑N
i=1 hi (x) → n − 1, sn(x) → 0.
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Parameters of FIF

▶ Classical parameters of Isolation Forest :
▶ number of trees,
▶ size of the subsample,
▶ height limit.

▶ New parameters due to the functional setup :

1. The dictionary D.

2. The probability measure ν.

3. The scalar product ⟨., .⟩H.



The role of the scalar product

▶ Compromise between both location and shape :

⟨f, g⟩ := α× ⟨f, g⟩L2
||f|| ||g||

+ (1− α)× ⟨f ′, g′⟩L2
||f ′|| ||g′||

, α ∈ [0, 1] ,

Example on a toy dataset :
▶ 90 curves defined by x(t) = 30(1− t)qtq with q equispaced in [1, 1.4],

▶ 10 abnormal curves defined by x(t) = 30(1− t)1.2t1.2 noised by
ε ∼ N (0, 0.32) on the interval [0.2, 0.8].
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Ability to detect a variety of anomalies

▶ Sobolev inner product: ⟨., .⟩W1,2 .

▶ Gaussian wavelets dictionary
dθ,σ(t) = 2√

3σπ1/4

(
1 −

(
t−θ
σ

)2
)

exp

(
−(t−θ)2

2σ2

)
.

▶ Uniform measure ν.
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Performance on real datasets (1)

▶ FIF with 4 setups (Dictionary+scalar product):
▶ Dyadic indicator (DI)+L2
▶ Cosine (Cos)+L2
▶ Cosine (Cos)+Sobolev
▶ Dataset itself (Self)+L2

Competitors:

▶ Isolation Forest,Local Outlier Factor , One-class SVM
after dimension reduction by FPCA.

▶ fHDRP : Random projection method with functional Halspace
depth.

▶ fSDO : Functional Stahel-Donoho Outlyingness.



Performance on real datasets (2)

Methods : DIL2 CosSob CosL2 SelfL2 IF LOF OCSVM fHDRP fSDO

Chinatown 0.93 0.82 0.74 0.77 0.69 0.68 0.70 0.76 0.98

Coffee 0.76 0.87 0.73 0.77 0.60 0.51 0.59 0.74 0.67

ECGFiveDays 0.78 0.75 0.81 0.56 0.81 0.89 0.90 0.60 0.81

ECG200 0.86 0.88 0.88 0.87 0.80 0.80 0.79 0.85 0.86

Handoutlines 0.73 0.76 0.73 0.72 0.68 0.61 0.71 0.73 0.76

SonyRobotAI1 0.89 0.80 0.85 0.83 0.79 0.69 0.74 0.83 0.94

SonyRobotAI2 0.77 0.75 0.79 0.92 0.86 0.78 0.80 0.86 0.81

StarLightCurves 0.82 0.81 0.76 0.86 0.76 0.72 0.77 0.77 0.85

TwoLeadECG 0.71 0.61 0.61 0.56 0.71 0.63 0.71 0.65 0.69

Yoga 0.62 0.54 0.60 0.58 0.57 0.52 0.59 0.55 0.55

EOGHorizontal 0.72 0.76 0.81 0.74 0.70 0.69 0.74 0.73 0.75

CinECGTorso 0.70 0.92 0.86 0.43 0.51 0.46 0.41 0.64 0.80

ECG5000 0.93 0.98 0.98 0.95 0.96 0.93 0.95 0.91 0.93

Table: AUC of different anomaly detection methods calculated on the
test set. Bold numbers correspond to the best result.
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Extension to multivariate functional data

FIF can be easily extended to the multivariate functional data, i.e.
when the quantity of interest lies in Rd for each moment of time:

x : [0, 1] −→ Rd

t 7−→
(
(x1(t), . . . , xd(t)

)
▶ Coordinate-wise sum of the d corresponding scalar products:

⟨f, g⟩L⊗d
2

:=
d∑

i=1

⟨f (i), g (i)⟩L2

▶ Dictionaries : Composed by univariate function on each axis,
multivariate wavelets, multivariate Brownian motion ...



Example with MNIST dataset
We extract the digits’ contours and obtain bivariate functional
curves from MNIST dataset. Each digit is transformed into a curve
in (L2([0, 1])× L2([0, 1])) using length parametrization on [0, 1].
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Connection to data depth and supervised classification

▶ One may define a functional depth by
DFIF (x ;S) = 1− sn(x ;S).

Assume that we have a training classification dataset of q classes
S = S1 ∪ ... ∪ Sq.

▶ Low dimensional representation based on depth-based map
can be defined by

x 7→ ϕ(x) =
(
DFIF (x;S1), ...,DFIF (x;Sq)

)
∈ [0, 1]q .

▶ One may define a DD-plot classifier by using a classifier on
the low dimension representation of the functional dataset.



Example of depth map on MNIST dataset
S is constructed by taking 100 digits from class 1, 100 from class 5
and 100 from class 7.
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Figure: Depth space embedding of the three digits (1, 5 and 7) of the
MNIST dataset.



Some remarks on FIF

▶ New anomaly detection algorithm for functional data:

▶ Great flexibility but dictionaries (and scalar product) are tricky
to choose in an unsupervised setting.

▶ Low complexity and memory requierement.

▶ Lack of theoretical garanties!

Staerman, G., Mozharovskyi, P., Clémençon, S., and
d’Alché-Buc, F. Functional Isolation Forest. ACML 2019.

All codes are available at:
https://github.com/guillaumestaermanML/FIF.

https://github.com/guillaumestaermanML/FIF
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Detection of (multivariate) functional anomalies

▶ Functional depth of f w.r.t. F = {f i}ni=1:

D(f |F) =

∫ tmax

tmin

D1
(
f (t)|{f 1(t), ..., f n(t)}

)
dt ,

where Dd(·|·) is a multivariate data depth, as defined above.

▶ Label f as anomaly if D(f |F) < min(D) .



Integrated depth for functional data
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Let F be a stochastic process with continuous paths defined on
[0, 1], and f its realization.

Then:

D(f |F ) =

∫ 1

0
D
(
f (t)|F (t)

)
dt.

see Fraiman, Muniz, 2001; also López-Pintado, Romo, 2011.
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Let F be a stochastic process with continuous paths defined on
[0, 1], and f its realization. Then:

D(f |F ) =

∫ 1

0
min{FF (t)

(
f (t)

)
, 1− FF (t)

(
f (t)−

)
}dt.

see Fraiman, Muniz, 2001; also López-Pintado, Romo, 2011.



Multivariate functional halfspace depth

Let F be a d-real-valued stochastic process with continuous paths
defined on [0, 1], and f its realization. Then:

MFD(f |F ) =

∫ 1

0
D
(
f (t)|F (t)

)
· w(t)dt,

w(t) = wα

(
t,F (t)

)
=

vol
{
Dα

(
F (t)

)}∫ 1
0 vol

{
Dα

(
F (u)

)}
du

.

see Claeskens, Hubert, Slaets, Vakili, 2014.
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Functional depth: Motivation 2
Functional halfspace depth for the FDA-data

Parametrization by time Parametrization by length
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Time
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Functional depth: Motivation 3
Simulated hurricane tracks: curve boxplot
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The space of curves

▶ Let (Rd , | · |2) be the Euclidean space.

▶ A parametrized curve β : [0, 1] → Rd is a continuous map.
A reparametrization γ : [0, 1] → [0, 1] is increasing continuous
function: γ(0) = 0 and γ(1) = 1.

▶ Two parametrized curves β1, β2 are equivalent if and only if
there exist two reparametrizations γ1, γ2 : β1 ◦ γ1 = β2 ◦ γ2.

▶ An unparametrized curve, noted C := Cβ , is defined as the
equivalence class of β up to the above equivalence relation.
The space of unparametrized curves is then defined as

B = {Cβ : β ∈ C([0, 1],Rd)}.

▶ We endow B with the Fréchet metric :

dB (C1, C2) = inf {∥β1 − β2∥∞, β1 ∈ C1, β2 ∈ C2} , C1, C2 ∈ B .
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Associated distribution and the sampling scheme
▶ n

▶ Let C be an unparameterized curve. The length of C:

L(C) = sup
τ

{
N∑
i=1

|β(τi )− β(τi−1)|2 : τ is a partition of [0, 1]

}
,

for all β ∈ C.
▶ An unparametrized curve C is called rectifiable if L(C) is

finite. The length L : B → R + ∪{∞} is measurable:

P =
{
P prob. measure on (B, dB) : P({C ∈ B; 0 < L(C) < ∞}) = 1

}
.

▶ Let X be a random element of B stemming from distribution
P ∈ P.

▶ We derive the probability distribution QP on Rd as follows:
if X ∼ QP , then distribution of X | X = C is the (uniform on
C) probability distribution µC :

µC(A) =

∫
C
1A(x)dx .
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Associated distribution and the sampling scheme

The statistical model:

X1, . . . ,Xn i.i.d. from P.

For Monte-Carlo estimation, we can consider the following
sampling scheme:

X1, . . . ,Xn i.i.d. from P,
for all i = 1, . . . , n

Xi ,1, . . . ,Xi ,m i.i.d. from µXi
.



Data depth for an unparametrized curve

Definition
The Tukey curve depth of C ∈ B w.r.t. QP is defined as:

D(C|QP) =

∫
C
D(x |QP , µC)dµC(x) ,

where the depth D(x |QP , µC) of an arbitrary point x ∈ C w.r.t. the
distribution QP is defined as:

D(x |QP , µC)=inf
{QP(H)

µC(H)
: H closed half-space ⊂ Rd , x ∈ ∂H

}
,

where convention 0
0 = 0 is adopted.

Definition
The sample Tukey curve depth of C ∈ B w.r.t. X1, ...,Xn is:

D(C|X1, . . . ,Xn) =

∫
C
D(x |Qn, µC)dµC(x) ,

where Qn = (µX1
+ · · ·+ µXn

)/n.
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Data depth for an unparametrized curve: intuition
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Data depth for an unparametrized curve: empirical version

▶ Let a chosen curve consist of two (independently drawn on C)
parts Y1,m = (Y1,1, . . . ,Y1,m) and Y2,m = (Y2,1, . . . ,Y2,m)
with empirical distribution

µ̂m =
1

m

m∑
i=1

δY1,i
,

where δx is the Dirac measure in x ∈ Rd .

▶ Let Q̂n,m be the empirical distribution (observed sample)
Xn,m = {Xi ,j , i = 1, ..., n, j = 1, ...,m}

Q̂n,m =
1

nm

n∑
i=1

m∑
j=1

δXi,j
.

▶ To compute the sample Tukey curve depth, a Monte Carlo
approximation is used.
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Data depth for an unparametrized curve: empirical version

▶ Let H be a closed halfspace in Rd and Hn,m
∆ denote a

collection of such halfspaces such that for all H ∈ Hn,m
∆ either

Q̂n,m(H) = 0 or µ̂m(H) > ∆, almost surely, for ∆ ∈ (0, 12).

Definition
The Monte Carlo approximation of the Tukey curve depth of C
w.r.t. X1, ...,Xn is defined as:

D̂n,m,∆(C|X1, ...,Xn)=
1

m

m∑
i=1

D̂(Y2,i |Q̂n,m, µ̂m,Hn,m
∆ ) ,

with the depth of an arbitrary point x ∈ Rd w.r.t. Q̂n,m being:

D̂(x |Q̂n,m, µ̂m,Hn,m
∆ ) = inf

{Q̂n,m(H)

µ̂m(H)
: H ∈ Hn,m

∆ , x ∈ ∂H
}

and 0
0 = 0 as before.
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Calculation of the Tukey curve depth
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Calculation of the Tukey curve depth

D(Y2,c |Qm,Hm,b) =
1
5

(
5
7
+ 3

8
+ 6

8
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7
+ 3

6

)
2
8

= 2.1



Calculation of the Tukey curve depth

D(Y2,c |Qm,Hm,b) =
1
5

(
3
7
+ 5

8
+ 4

8
+ 3

7
+ 3

6

)
2
8

= 1.9857



Calculation of the Tukey curve depth

D(Y2,c |Qm,Hm,b) =
1
5

(
4
7
+ 3

8
+ 4

8
+ 4

7
+ 4

6

)
5
8

= 0.7159



Data depth for an unparametrized curve: consistency

Theorem
Let C ∈ B be a rectifiable curve, and let P be a probability
measure in the space of curves such that P ∈ P. Let (∆m) be a
decreasing sequence of positive numbers such that (∆m) and

(
√

log(m)
m /∆2

m) converges to zero when m → ∞.

Then:

▶ the Monte Carlo approximation D̂n,m,∆m(C|X1, ...,Xn)
converges in probability to D(C|X1, . . . ,Xn) as m → ∞;

▶ the Monte Carlo approximation D̂n,m,∆m(C|X1, ...,Xn)
converges in probability to D(C|P) as m, n → ∞;

▶ the sample Tukey curve depth D(C|X1, ...,Xn) converges in
probability to D(C|P) as n → ∞.
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Data depth for an unparametrized curve: properties
Restrict to Bℓ, the subset of unparametrized curves of positive
length bounded by ℓ > 0. Then the Tukey curve depth satisfies the
following properties:
▶ Nonnegativity and boundedness by one:

D(C|QP) ∈ [0, 1] .

▶ Similarity invariance: Let f : Rd → Rd f be a similarity, i.e.
there exists an orthogonal matrix A, a factor r > 0 and a
vector b ∈ Rd such that for all x ∈ Rd , f (x) = rAx + b. In
particular for all x and y in Rd , |f (x)− f (y)|2 = r |x − y |2.
Denote by Pf the distribution of the image through f of a
stochastic process having a distribution P. Then

D(f ◦ C|QPf
) = D(C|QP) .

▶ Vanishing at infinity:

lim
dG(C,0)→∞,C∈Bℓ

D(C,QP) = inf
C∈Bℓ

D(C,QP) = 0 .
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Binary supervised classification: MNIST (“0” vs “1”)

Some examples:
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Given: training sample S0 = {C1, ..., Cm} stemming from P0 and
S1 = {Cm+1, ..., Cm+n} stemming from P1 in B.

Find: classifier g : B → {0, 1} best separating P0 and P1.



Binary supervised classification: MNIST (“0” vs “1”)
Consider DD-plot (Li, Cuesta-Albertos, Liu ’12):

Z = {z i : z i =
(
D(Ci |QP0),D(Ci |QP1)

)
, i = 1, ...,m + n} .
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Unsupervised classification: MNIST (“0”, “1”, and “7”)

Some examples:
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Task: Find reasonable grouping with data depth (Jörnsten ’04).



Unsupervised classification: MNIST (“0”, “1”, and “7”)
Depth-based clustering (Jörnsten ’04):

▶ Let {C1, ..., C∑
j nj

} be the observed sample and let Ij ,
j = 1, ..., J denote the corresponding partitioning into J
clusters (indices of observations belonging to each cluster j)
with ∪j Ij = {1, ...,

∑
j nj} and Ij1 ∩ Ij2 = ∅ for all j1 ̸= j2.

▶ Define the silhouette width of an observation i belonging to
cluster j as

Sil ji =
d̄−j
i − d̄ j

i

max{d̄−j
i , d̄ j

i }
,

where d̄ j
i =

1
#Ij−1

∑
i ′∈Ij , i ′ ̸=i dB(Ci , Ci ′) and

d̄−j
i ∈ argminj ′ ̸=j

1
#Ij′

∑
i ′∈Ij′

dB(Ci , Ci ′) are average distances

to the observations in its own cluster and in the closest among
foreign clusters respectively.

▶ The relative depth is defined as

ReD j
i = D(Ci |{Ci ′}i ′∈Ij )−max

j ′ ̸=j
D(Ci |{Ci ′}i ′∈Ij′ ) .
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Unsupervised classification: MNIST (“0”, “1”, and “7”)
Clustering criterion:

C ({Ij}J1) =
1∑
j nj

J∑
j=1

∑
i∈Ij

ci ({Ij}J1) ,

with the observation-wise clustering criterion:

ci ({Ij}J1) = (1− λ)Sil ji + λReD j
i .
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Comparison with functional depth: Example 1

Simulated S letters: depth-induced ranking
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Comparison with functional depth: Example 2

Simulated hurricane tracks: curve boxplot

MFHD – time MFHD - length
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Comparison with functional depth: Anomaly detection 1

Data set 1 with introduced anomalies:
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Comparison with functional depth: Anomaly detection 2

Data set 2 with introduced anomalies:
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Application: brain imaging – OATS data

▶ The Older Australian Twins Study (OATS) includes
diffusion tensor magnetic resonance images (DTI) of 34 twin
pairs: 11 dizygotic (DZ) and 23 monozygotic (MZ).

▶ For each individual, 1000 fiber tracts connecting the motor
cortex with the brain stem extracted for each hemisphere.

Questions to answer:

▶ Information compression for better understanding of brain
functioning.

▶ Outlier detection for indication of wrongly tracked fibers.

▶ Curve registration for aligning data from different individuals
before further analysis.

▶ Studying genetic dependency (DZ vs. MZ) for identifying
disease causes.
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functioning.

▶ Outlier detection for indication of wrongly tracked fibers.

▶ Curve registration for aligning data from different individuals
before further analysis.

▶ Studying genetic dependency (DZ vs. MZ) for identifying
disease causes.
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▶ The Older Australian Twins Study (OATS) includes
diffusion tensor magnetic resonance images (DTI) of 34 twin
pairs: 11 dizygotic (DZ) and 23 monozygotic (MZ).

▶ For each individual, 1000 fiber tracts connecting the motor
cortex with the brain stem extracted for each hemisphere.

Questions to answer:

▶ Information compression for better understanding of brain
functioning.

▶ Outlier detection for indication of wrongly tracked fibers.

▶ Curve registration for aligning data from different individuals
before further analysis.

▶ Studying genetic dependency (DZ vs. MZ) for identifying
disease causes.



Application: brain imaging



Application: brain imaging – depth-based ordering



Application: brain imaging – information compression



Application: brain imaging, right stem – outlier detection



Application: brain imaging, right stem – registration

Subject 104 Subject 110 Subject 131

▶ The red and the dark blue curves are respectively the deepest
curves before registration of the respective subject and subject 235,
the subject whose deepest curve is the deepest of all.

▶ We bring the red curve as close as possible (in terms of the
distance) to the black curve. The transformed curve (after
registration) is the light blue curve.

▶ Distances from each curve to the deepest one (dark blue) before
(red) and after (light blue) registration are 10.271 and 3.245 (for
subject 104), 4.539 and 3.395 (for subject 110), 3.329 and 2.084
(for subject 131), respectively.



Application: brain imaging, right stem – twins comparison
105 vs. 205 (DZ) 120 vs. 220 (DZ) 132 vs. 232 (DZ)
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104 vs. 204 (MZ) 106 vs. 206 (MZ) 131 vs. 231 (MZ)
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Thank you for attention! (and a short list of literature)
▶ Chandola, V., Banerjee, A., and Kumar, V. (2009). Anomaly

detection: A survey. ACM Computing Surveys (CSUR), 41(3):15,
1–58.

▶ Breunig, M.M., Kriegel, H.-P., Ng, R.T., and Sander, J. (2000).
LOF: Identifying density-based local outliers. In: Proceedings of the
2000 ACM SIGMOD International Conference on Management of
Data, 29, 93–104.

▶ Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A., and
Williamson, R. (2001). Estimating the support of a high-dimensional
distribution. Neural Computation, 13(7), 1443–1471.

▶ Liu, F.T., Ting, K.M., and Zhou, Z. (2008). Isolation forest. In:
Proceedings of the 2008 Eighth IEEE International Conference on
Data Mining, 413–422.

▶ Mosler, K. (2013). Depth statistics. In: Robustness and Complex
Data Structures: Festschrift in Honour of Ursula Gather, 17—34.

▶ Hubert, M., Rousseeuw, P.J., and Segaert, P. (2015). Multivariate
functional outlier detection. Statistical Methods & Applications,
24(2), 177—202.



Practical session (part II)

Notebooks:

▶ anomdet simulation1.Rmd,

▶ anomdet hurricanes.Rmd,

▶ anomdet cars.ipynb,

▶ anomdet airbus.ipynb.

Data sets:

▶ carsanom.csv: Data set on anomaly detection for cars.

▶ airbus data.csv: Data set from Airbus.

▶ hurdat2-1851-2019-052520.txt: Historical hurricane data.

Supplementary scripts:

▶ depth routines.py: Routines for data depth calculation.

▶ FIF.py: Implementation of the functional isolation forest.

▶ depth routines.R: Routines for curves’ parametrization.

https://perso.telecom-paristech.fr/mozharovskyi/resources/bpce2023/anomdet_simulation1.Rmd
https://perso.telecom-paristech.fr/mozharovskyi/resources/bpce2023/anomdet_hurricanes.Rmd
https://perso.telecom-paristech.fr/mozharovskyi/resources/bpce2023/anomdet_cars.ipynb
https://perso.telecom-paristech.fr/mozharovskyi/resources/bpce2023/anomdet_airbus.ipynb
https://perso.telecom-paristech.fr/mozharovskyi/tutanom/carsanom.csv
https://partage.imt.fr/index.php/s/KxiDcH5aeE4sCRq
https://perso.telecom-paristech.fr/mozharovskyi/tutanom/hurdat2-1851-2019-052520.txt
https://perso.telecom-paristech.fr/mozharovskyi/tutanom/depth_routines.py
https://perso.telecom-paristech.fr/mozharovskyi/tutanom/FIF.py
https://perso.telecom-paristech.fr/mozharovskyi/tutanom/depth_routines.R
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