Unsupervised learning: Anomaly detection Part I: Multivariate data

Pavlo Mozharovskyi
LTCI, Telecom Paris, Institut Polytechnique de Paris

Parcours Data Science BPCE

Paris, the 13th of June 2023

Contents

Introduction

Non-parametric approaches
One-class support vector machines
Local outlier factor
Isolation forest
Systematic orderings: data depth
The notion of data depth
The Tukey depth function
Central regions
Further depth notions
Practical session

Contents

Introduction

Non-parametric approaches
One-class support vector machines
Local outlier factor
Isolation forest

Systematic orderings: data depth
The notion of data depth
The Tukey depth function
Central regions
Further depth notions

Practical session

A real task

Regard two measurements during a test in a production process:

Given training data, polluted or not with anomalies:

- detect anomalies in the given data.

A real task

Regard two measurements during a test in a production process:

Given training data, polluted or not with anomalies:

- detect anomalies in the given data.

For new data, determine:

- Whether new observations are normal data or anomalies?

A real task

Regard two measurements during a test in a production process:

Given training data, polluted or not with anomalies:

- detect anomalies in the given data.

For new data, determine:

- Whether new observations are normal data or anomalies?

Multivariate framework

- A training data set:

$$
\boldsymbol{X}=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right\} \subset \mathbb{R}^{d}
$$

of observations in the d-dimensional Euclidean space.

Multivariate framework

- A training data set:

$$
\boldsymbol{X}=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right\} \subset \mathbb{R}^{d}
$$

of observations in the d-dimensional Euclidean space.

- Typical example: a table from a data base, with lines being observations (=individuals, items,...).

Multivariate framework

- A training data set:

$$
\boldsymbol{X}=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right\} \subset \mathbb{R}^{d}
$$

of observations in the d-dimensional Euclidean space.

- Typical example: a table from a data base, with lines being observations (=individuals, items,...).
- Construct a decision function:

$$
\mathbb{R}^{d} \rightarrow\{-1,+1\}: x \mapsto g(x)
$$

which attributes to any (possible) $\boldsymbol{x} \in \mathbb{R}^{d}$ a label whether it is an anomaly (e.g., +1) or a normal observation (e.g., -1).

Multivariate framework

- A training data set:

$$
\boldsymbol{X}=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right\} \subset \mathbb{R}^{d}
$$

of observations in the d-dimensional Euclidean space.

- Typical example: a table from a data base, with lines being observations (=individuals, items,...).
- Construct a decision function:

$$
\mathbb{R}^{d} \rightarrow\{-1,+1\}: x \mapsto g(\boldsymbol{x}),
$$

which attributes to any (possible) $\boldsymbol{x} \in \mathbb{R}^{d}$ a label whether it is an anomaly (e.g., +1) or a normal observation (e.g., -1).

- It is more useful to provide an ordering on \mathbb{R}^{d} :

$$
\mathbb{R}^{d} \rightarrow \mathbb{R}: \boldsymbol{x} \mapsto g(\boldsymbol{x})
$$

such that abnormal observations obtain higher anomaly score.

Practical session (parts I and II)

Notebooks:

- anomdet_simulation1.Rmd,
- anomdet_hurricanes.Rmd,
- anomdet_cars.ipynb,
- anomdet_airbus.ipynb.

Data sets:

- carsanom.csv: Data set on anomaly detection for cars.
- airbus_data.csv: Data set from Airbus.
- hurdat2-1851-2019-052520.txt: Historical hurricane data.

Supplementary scripts:

- depth_routines.py: Routines for data depth calculation.
- FIF.py: Implementation of the functional isolation forest.
- depth_routines.R: Routines for curves' parametrization.

Contents

Introduction

Non-parametric approaches
One-class support vector machines
Local outlier factor Isolation forest

Systematic orderings: data depth
The notion of data depth
The Tukey depth function
Central regions
Further depth notions

Practical session

Contents

Introduction

Non-parametric approaches
One-class support vector machines Local outlier factor Isolation forest

Systematic orderings: data depth
The notion of data depth
The Tukey depth function
Central regions
Further depth notions

Practical session

One-class support vector machines

(Schölkopf, Platt, Shawe-Taylor, Smola, Williamson; 1999)
Generalized portrait:

- The method of the generalized portrait was introduced by Vapnik \& Lerner (1963) and Vapnik \& Chervonenkis (1974).

One-class support vector machines

(Schölkopf, Platt, Shawe-Taylor, Smola, Williamson; 1999)
Generalized portrait:

- The method of the generalized portrait was introduced by Vapnik \& Lerner (1963) and Vapnik \& Chervonenkis (1974).
- Generalized portrait is the vector:

$$
\psi=\frac{\varphi}{\min _{x \in \boldsymbol{X}}\langle\boldsymbol{x}, \varphi\rangle} \text { with } \varphi \text { from } \max _{\|\varphi\|=1} \min _{x \in \boldsymbol{X}}\langle\boldsymbol{x}, \boldsymbol{\varphi}\rangle \text {. }
$$

Рис. 24.

One-class support vector machines
(Schölkopf, Platt, Shawe-Taylor, Smola, Williamson; 1999)
Kernel trick (Boser, Guyon, Vapnik; 1992):

- Let Φ be a feature map: $\mathbb{R}^{d} \mapsto \mathcal{H}$.

One-class support vector machines

(Schölkopf, Platt, Shawe-Taylor, Smola, Williamson; 1999)
Kernel trick (Boser, Guyon, Vapnik; 1992):

- Let Φ be a feature map: $\mathbb{R}^{d} \mapsto \mathcal{H}$.
- Due to the kernel trick, the dot product in the image of φ can be computed by evaluation of a kernel K :

$$
K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)=\left\langle\Phi\left(\boldsymbol{x}_{i}\right), \Phi\left(\boldsymbol{x}_{j}\right)\right\rangle .
$$

One-class support vector machines

(Schölkopf, Platt, Shawe-Taylor, Smola, Williamson; 1999)
Kernel trick (Boser, Guyon, Vapnik; 1992):

- Let Φ be a feature map: $\mathbb{R}^{d} \mapsto \mathcal{H}$.
- Due to the kernel trick, the dot product in the image of φ can be computed by evaluation of a kernel K :

$$
K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)=\left\langle\Phi\left(\boldsymbol{x}_{i}\right), \Phi\left(\boldsymbol{x}_{j}\right)\right\rangle .
$$

- Example: Gaussian kernel

$$
K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)=e^{\gamma\left\|\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right\|}
$$

One-class support vector machines

(Schölkopf, Platt, Shawe-Taylor, Smola, Williamson; 1999)
Kernel trick (Boser, Guyon, Vapnik; 1992):

- Let Φ be a feature map: $\mathbb{R}^{d} \mapsto \mathcal{H}$.
- Due to the kernel trick, the dot product in the image of φ can be computed by evaluation of a kernel K :

$$
K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)=\left\langle\Phi\left(\boldsymbol{x}_{i}\right), \Phi\left(\boldsymbol{x}_{j}\right)\right\rangle .
$$

- Example: Gaussian kernel

$$
K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)=e^{\gamma\left\|\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right\|}
$$

Soft margin (Cortes, Vapnik; 1995):

- Allow for a portion of points from \boldsymbol{X} to be beyond the margin, label points far from the origin by " 1 ", those close by " -1 ".

One-class support vector machines

(Schölkopf, Platt, Shawe-Taylor, Smola, Williamson; 1999)
Kernel trick (Boser, Guyon, Vapnik; 1992):

- Let Φ be a feature map: $\mathbb{R}^{d} \mapsto \mathcal{H}$.
- Due to the kernel trick, the dot product in the image of φ can be computed by evaluation of a kernel K :

$$
K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)=\left\langle\Phi\left(\boldsymbol{x}_{i}\right), \Phi\left(\boldsymbol{x}_{j}\right)\right\rangle .
$$

- Example: Gaussian kernel

$$
K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)=e^{\gamma\left\|\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right\|}
$$

Soft margin (Cortes, Vapnik; 1995):

- Allow for a portion of points from \boldsymbol{X} to be beyond the margin, label points far from the origin by " 1 ", those close by " -1 ".
- Controlled by a parameter $\nu \in(0,1)$
(Schölkopf, Platt, Shawe-Taylor, Smola, Williamson; 1999).

One-class support vector machines
(Schölkopf, Platt, Shawe-Taylor, Smola, Williamson; 1999)
Idea 1: Separate points from the origin.

One-class support vector machines

(Schölkopf, Platt, Shawe-Taylor, Smola, Williamson; 1999)
Idea 1: Separate points from the origin.
This can be formulated as a quadratic programming problem

$$
\begin{aligned}
\min _{\psi \in \mathcal{H}, \xi \in \mathbb{R}^{n}, \rho \in \mathbb{R}} & \frac{1}{2}\|\boldsymbol{\psi}\|^{2}+\frac{1}{\nu n} \sum_{i=1}^{n} \xi_{i}-\rho \\
\text { subject to } & \left\langle\boldsymbol{\psi}, \Phi\left(\boldsymbol{x}_{i}\right)\right\rangle \geq \rho-\xi_{i}, \xi_{i} \geq 0 \text { for } i=1, \ldots, n,
\end{aligned}
$$

$$
\text { with } \boldsymbol{\xi}=\left(\xi_{1}, \ldots, \xi_{n}\right)^{\top} \text {. }
$$

One-class support vector machines

(Schölkopf, Platt, Shawe-Taylor, Smola, Williamson; 1999)
Idea 1: Separate points from the origin.

This can be formulated as a quadratic programming problem

$$
\begin{aligned}
\min _{\psi \in \mathcal{H}, \boldsymbol{\xi} \in \mathbb{R}^{n}, \rho \in \mathbb{R}} & \frac{1}{2}\|\boldsymbol{\psi}\|^{2}+\frac{1}{\nu n} \sum_{i=1}^{n} \xi_{i}-\rho \\
\text { subject to } & \left\langle\boldsymbol{\psi}, \boldsymbol{\Phi}\left(\boldsymbol{x}_{i}\right)\right\rangle \geq \rho-\xi_{i}, \xi_{i} \geq 0 \text { for } i=1, \ldots, n,
\end{aligned}
$$

with $\boldsymbol{\xi}=\left(\xi_{1}, \ldots, \xi_{n}\right)^{\top}$.
The solution $\left(\boldsymbol{\psi}^{*}, \boldsymbol{\xi}^{*}, \rho^{*}\right)$ yields the following decision function:

$$
\operatorname{gocsvm}(\boldsymbol{x})=\operatorname{sgn}\left(\left\langle\boldsymbol{\psi}^{*}, \Phi(\boldsymbol{x})\right\rangle-\rho^{*}\right) .
$$

One-class support vector machines

(Schölkopf, Platt, Shawe-Taylor, Smola, Williamson; 1999)
Idea 1: Separate points from the origin.

This can be formulated as a quadratic programming problem

$$
\begin{aligned}
\min _{\psi \in \mathcal{H}, \boldsymbol{\xi} \in \mathbb{R}^{n}, \rho \in \mathbb{R}} & \frac{1}{2}\|\boldsymbol{\psi}\|^{2}+\frac{1}{\nu n} \sum_{i=1}^{n} \xi_{i}-\rho \\
\text { subject to } & \left\langle\boldsymbol{\psi}, \Phi\left(\boldsymbol{x}_{i}\right)\right\rangle \geq \rho-\xi_{i}, \xi_{i} \geq 0 \text { for } i=1, \ldots, n,
\end{aligned}
$$

with $\boldsymbol{\xi}=\left(\xi_{1}, \ldots, \xi_{n}\right)^{\top}$.
The solution $\left(\psi^{*}, \xi^{*}, \rho^{*}\right)$ yields the following decision function:

$$
\operatorname{gocsvm}(\boldsymbol{x})=\operatorname{sgn}\left(\left\langle\boldsymbol{\psi}^{*}, \Phi(\boldsymbol{x})\right\rangle-\rho^{*}\right) .
$$

One can reformulate the optimization problem to employ the kernel trick.

One-class support vector machines (Schölkopf et al., 1999)

 In dual formulation, using the Lagrangian, one can restate the optimization problem as follows:$$
\min _{\alpha} \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)
$$

subject to $\quad 0 \leq \alpha_{i} \leq \frac{1}{\nu n}$ for $i=1, \ldots, n, \sum_{i=1}^{n} \alpha_{i}=1$,
with $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)^{\top}$.

One-class support vector machines (Schölkopf et al., 1999)

 In dual formulation, using the Lagrangian, one can restate the optimization problem as follows:$$
\min _{\alpha} \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)
$$

subject to $\quad 0 \leq \alpha_{i} \leq \frac{1}{\nu n}$ for $i=1, \ldots, n, \sum_{i=1}^{n} \alpha_{i}=1$,
with $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)^{\top}$.
The decision function is then:

$$
\operatorname{gocsvm}(\boldsymbol{x})=\operatorname{sgn}\left(\sum_{i=1}^{n} \alpha_{i} K\left(\boldsymbol{x}_{i}, \boldsymbol{x}\right)-\rho\right),
$$

where ρ can be recovered from any \boldsymbol{x}_{j} such that $0<\alpha_{j}<\frac{1}{\nu n}$:

$$
\rho=\left\langle\boldsymbol{\psi}, \Phi\left(\boldsymbol{x}_{i}\right)\right\rangle=\sum_{i=1}^{n} \alpha_{i} K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)
$$

One-class support vector machines (Schölkopf et al., 1999)

Idea 2: Put points into a small ball.
$\min _{R \in \mathbb{R}, \boldsymbol{\xi} \in \mathbb{R}^{n}, \boldsymbol{c} \in \mathcal{H},} \quad R^{2}+\frac{1}{\nu n} \sum_{i=1}^{n} \xi_{i}$
subject to $\quad\left\|\Phi\left(\boldsymbol{x}_{i}\right)-\boldsymbol{c}\right\| \leq R^{2}+\xi_{i}, \xi_{i} \geq 0$ for $i=1, \ldots, n$.

One-class support vector machines (Schölkopf et al., 1999)

 Idea 2: Put points into a small ball.$\min _{R \in \mathbb{R}, \xi \in \mathbb{R}^{n}, c \in \mathcal{H},} \quad R^{2}+\frac{1}{\nu n} \sum_{i=1}^{n} \xi_{i}$
subject to $\quad\left\|\Phi\left(\boldsymbol{x}_{i}\right)-\boldsymbol{c}\right\| \leq R^{2}+\xi_{i}, \xi_{i} \geq 0$ for $i=1, \ldots, n$.
This leads to the dual:

$$
\min _{\alpha} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)-\sum_{i=1}^{n} \alpha_{i} K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{i}\right)
$$

subject to $\quad 0 \leq \alpha_{i} \leq \frac{1}{\nu n}$, for $i=1, \ldots, n, \sum_{i=1}^{n} \alpha_{i}=1$.

One-class support vector machines (Schölkopf et al., 1999)

Idea 2: Put points into a small ball.
$\min _{R \in \mathbb{R}, \xi \in \mathbb{R}^{n}, c \in \mathcal{H},} \quad R^{2}+\frac{1}{\nu n} \sum_{i=1}^{n} \xi_{i}$
subject to $\quad\left\|\Phi\left(\boldsymbol{x}_{i}\right)-\boldsymbol{c}\right\| \leq R^{2}+\xi_{i}, \xi_{i} \geq 0$ for $i=1, \ldots, n$.
This leads to the dual:

$$
\min _{\alpha} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)-\sum_{i=1}^{n} \alpha_{i} K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{i}\right)
$$

$$
\text { subject to } \quad 0 \leq \alpha_{i} \leq \frac{1}{\nu n}, \text { for } i=1, \ldots, n, \sum_{i=1}^{n} \alpha_{i}=1
$$

which leads to the decision function:
$\operatorname{gocsvm}(\boldsymbol{x})=\left(R^{2}-\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)+2 \sum_{i=1}^{n} \alpha_{i} K\left(\boldsymbol{x}_{i}, \boldsymbol{x}\right)-K(\boldsymbol{x}, \boldsymbol{x})\right)$,
with $R^{2}=\sum_{i, j} \alpha_{i} \alpha_{j} K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)-2 \sum_{i} \alpha_{i} K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{k}\right)+K\left(\boldsymbol{x}_{k}, \boldsymbol{x}_{k}\right)$ for any \boldsymbol{x}_{k} such that $0<\alpha_{k}<1 /(\nu n)$.

One-class support vector machines

(Schölkopf, Platt, Shawe-Taylor, Smola, Williamson; 1999)
Illustration: Case 1

One-class SVM, $v=0.9$

One-class support vector machines

(Schölkopf, Platt, Shawe-Taylor, Smola, Williamson; 1999)
Illustration: Case 1

One-class SVM, $v=0.8$

One-class support vector machines

(Schölkopf, Platt, Shawe-Taylor, Smola, Williamson; 1999)
Illustration: Case 1

One-class SVM, $v=0.7$

One-class support vector machines

(Schölkopf, Platt, Shawe-Taylor, Smola, Williamson; 1999)
Illustration: Case 1

One-class SVM, $v=0.6$

One-class support vector machines

(Schölkopf, Platt, Shawe-Taylor, Smola, Williamson; 1999)
Illustration: Case 1

One-class SVM, $v=0.5$

One-class support vector machines

(Schölkopf, Platt, Shawe-Taylor, Smola, Williamson; 1999)
Illustration: Case 1

One-class SVM, $v=0.4$

One-class support vector machines

(Schölkopf, Platt, Shawe-Taylor, Smola, Williamson; 1999)
Illustration: Case 1

One-class SVM, $v=0.3$

One-class support vector machines
(Schölkopf, Platt, Shawe-Taylor, Smola, Williamson; 1999)
Illustration: Case 1

One-class SVM, $v=0.2$

One-class support vector machines

(Schölkopf, Platt, Shawe-Taylor, Smola, Williamson; 1999)
Illustration: Case 1

One-class SVM, v=0.1

One-class support vector machines

(Schölkopf, Platt, Shawe-Taylor, Smola, Williamson; 1999)
Illustration: Case 2

One-class SVM, $v=0.9$

One-class support vector machines

(Schölkopf, Platt, Shawe-Taylor, Smola, Williamson; 1999)
Illustration: Case 2

One-class SVM, $v=0.8$

One-class support vector machines

(Schölkopf, Platt, Shawe-Taylor, Smola, Williamson; 1999)
Illustration: Case 2

One-class SVM, $v=0.7$

One-class support vector machines

(Schölkopf, Platt, Shawe-Taylor, Smola, Williamson; 1999)
Illustration: Case 2

One-class SVM, $v=0.6$

One-class support vector machines

(Schölkopf, Platt, Shawe-Taylor, Smola, Williamson; 1999)
Illustration: Case 2

One-class SVM, $v=0.5$

One-class support vector machines

(Schölkopf, Platt, Shawe-Taylor, Smola, Williamson; 1999)
Illustration: Case 2

One-class SVM, $v=0.4$

One-class support vector machines

(Schölkopf, Platt, Shawe-Taylor, Smola, Williamson; 1999)
Illustration: Case 2

One-class SVM, $v=0.3$

One-class support vector machines

(Schölkopf, Platt, Shawe-Taylor, Smola, Williamson; 1999)
Illustration: Case 2

One-class SVM, $v=0.2$

One-class support vector machines

(Schölkopf, Platt, Shawe-Taylor, Smola, Williamson; 1999)
Illustration: Case 2

One-class SVM, $v=0.1$

Contents

Introduction

Non-parametric approaches
One-class support vector machines
Local outlier factor
Isolation forest

Systematic orderings: data depth
The notion of data depth
The Tukey depth function
Central regions
Further depth notions

Practical session

Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)

k-distance of a point \boldsymbol{x} :
For any integer $k>0$, the k-distance of point \boldsymbol{x}, denoted as k-dist (\boldsymbol{x}), is defined as the distance $d(\boldsymbol{x}, \boldsymbol{o})$ between \boldsymbol{x} and a point $\boldsymbol{o} \in \boldsymbol{X}$ such that:

- for at least k points $\boldsymbol{o}^{\prime} \in \boldsymbol{X} \backslash\{\boldsymbol{x}\}$ it holds that $d\left(\boldsymbol{x}, \boldsymbol{o}^{\prime}\right) \leq d(\boldsymbol{x}, \boldsymbol{o})$, and
- for at most $k-1$ points $\boldsymbol{o}^{\prime} \in \boldsymbol{X} \backslash\{\boldsymbol{x}\}$ it holds that $d\left(\boldsymbol{x}, \boldsymbol{o}^{\prime}\right)<d(\boldsymbol{x}, \boldsymbol{o})$.

Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)

k-distance of a point \boldsymbol{x} :
For any integer $k>0$, the k-distance of point \boldsymbol{x}, denoted as k-dist (\boldsymbol{x}), is defined as the distance $d(\boldsymbol{x}, \boldsymbol{o})$ between \boldsymbol{x} and a point $\boldsymbol{o} \in \boldsymbol{X}$ such that:

- for at least k points $\boldsymbol{o}^{\prime} \in \boldsymbol{X} \backslash\{\boldsymbol{x}\}$ it holds that $d\left(\boldsymbol{x}, \boldsymbol{o}^{\prime}\right) \leq d(\boldsymbol{x}, \boldsymbol{o})$, and
- for at most $k-1$ points $\boldsymbol{o}^{\prime} \in \boldsymbol{X} \backslash\{\boldsymbol{x}\}$ it holds that $d\left(\boldsymbol{x}, \boldsymbol{o}^{\prime}\right)<d(\boldsymbol{x}, \boldsymbol{o})$.
(=Distance from \boldsymbol{x} to its k th neighbor.)

Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)

k-distance of a point \boldsymbol{x} :
For any integer $k>0$, the k-distance of point \boldsymbol{x}, denoted as
k-dist (\boldsymbol{x}), is defined as the distance $d(\boldsymbol{x}, \boldsymbol{o})$ between \boldsymbol{x} and a point
$\boldsymbol{o} \in \boldsymbol{X}$ such that:

- for at least k points $\boldsymbol{o}^{\prime} \in \boldsymbol{X} \backslash\{\boldsymbol{x}\}$ it holds that

$$
d\left(\boldsymbol{x}, \boldsymbol{o}^{\prime}\right) \leq d(\boldsymbol{x}, \boldsymbol{o}), \text { and }
$$

- for at most $k-1$ points $\boldsymbol{o}^{\prime} \in \boldsymbol{X} \backslash\{\boldsymbol{x}\}$ it holds that

$$
d\left(\boldsymbol{x}, \boldsymbol{o}^{\prime}\right)<d(\boldsymbol{x}, \boldsymbol{o})
$$

(=Distance from \boldsymbol{x} to its k th neighbor.)
k-neighborhood of a point \boldsymbol{x} :
Given the k - $\operatorname{dist}(\boldsymbol{x})$, the k-neighborhood of \boldsymbol{x}, denoted $N_{k}(\boldsymbol{x})$,
contains every point whose distance from \boldsymbol{x} is not greater than the $k-\operatorname{dist}(\boldsymbol{x})$, i.e.:

$$
N_{k}(\boldsymbol{x})=\{\boldsymbol{q} \in \boldsymbol{X} \backslash\{\boldsymbol{x}\} \mid d(\boldsymbol{x}, \boldsymbol{q}) \leq k-\operatorname{dist}(\boldsymbol{x})\}
$$

Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)

Reachability distance of order k of point \boldsymbol{x} w.r.t. point \boldsymbol{o} :
For $k \in \mathbb{N}$, the reachability distance of order k of point \boldsymbol{x} with respect to point \boldsymbol{o} is defined as:

$$
\text { reach-dist }_{k}(\boldsymbol{x}, \boldsymbol{o})=\max \{k-\operatorname{dist}(\boldsymbol{o}), d(\boldsymbol{x}, \boldsymbol{o})\}
$$

Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)

Local reachability density of a point \boldsymbol{x} :
The local reachability density of \boldsymbol{x} is defined as:

$$
\operatorname{Ird}_{k}(\boldsymbol{x})=\frac{\left|N_{k}(\boldsymbol{x})\right|}{\sum_{\boldsymbol{o} \in N_{k}(\boldsymbol{x})} \text { reach-dist }_{k}(\boldsymbol{x}, \boldsymbol{o})} .
$$

Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)

 Local reachability density of a point \boldsymbol{x} : The local reachability density of \boldsymbol{x} is defined as:$$
\operatorname{Ird}_{k}(\boldsymbol{x})=\frac{\left|N_{k}(\boldsymbol{x})\right|}{\sum_{\boldsymbol{o} \in N_{k}(\boldsymbol{x})} \text { reach-dist }_{k}(\boldsymbol{x}, \boldsymbol{o})} .
$$

Local reachability density, $\mathrm{k}=2$

Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)

 Local reachability density of a point \boldsymbol{x} : The local reachability density of \boldsymbol{x} is defined as:$$
\operatorname{Ird}_{k}(\boldsymbol{x})=\frac{\left|N_{k}(\boldsymbol{x})\right|}{\sum_{\boldsymbol{o} \in N_{k}(\boldsymbol{x})} \text { reach-dist }_{k}(\boldsymbol{x}, \boldsymbol{o})} .
$$

Local reachability density, $k=3$

Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)

 Local reachability density of a point \boldsymbol{x} : The local reachability density of \boldsymbol{x} is defined as:$$
\operatorname{Ird}_{k}(\boldsymbol{x})=\frac{\left|N_{k}(\boldsymbol{x})\right|}{\sum_{\boldsymbol{o} \in N_{k}(\boldsymbol{x})} \text { reach-dist }_{k}(\boldsymbol{x}, \boldsymbol{o})} .
$$

Local reachability density, $k=4$

Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)

 Local reachability density of a point \boldsymbol{x} : The local reachability density of \boldsymbol{x} is defined as:$$
\operatorname{Ird}_{k}(\boldsymbol{x})=\frac{\left|N_{k}(\boldsymbol{x})\right|}{\sum_{\boldsymbol{o} \in N_{k}(\boldsymbol{x})} \text { reach-dist }_{k}(\boldsymbol{x}, \boldsymbol{o})} .
$$

Local reachability density, $k=5$

Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)

 Local reachability density of a point \boldsymbol{x} : The local reachability density of \boldsymbol{x} is defined as:$$
\operatorname{Ird}_{k}(\boldsymbol{x})=\frac{\left|N_{k}(\boldsymbol{x})\right|}{\sum_{\boldsymbol{o} \in N_{k}(\boldsymbol{x})} \text { reach-dist }_{k}(\boldsymbol{x}, \boldsymbol{o})} .
$$

Local reachability density, $k=6$

Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)

 Local reachability density of a point \boldsymbol{x} : The local reachability density of \boldsymbol{x} is defined as:$$
\operatorname{Ird}_{k}(\boldsymbol{x})=\frac{\left|N_{k}(\boldsymbol{x})\right|}{\sum_{\boldsymbol{o} \in N_{k}(\boldsymbol{x})} \text { reach-dist }_{k}(\boldsymbol{x}, \boldsymbol{o})} .
$$

Local reachability density, $k=7$

Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)

 Local reachability density of a point \boldsymbol{x} : The local reachability density of \boldsymbol{x} is defined as:$$
\operatorname{Ird}_{k}(\boldsymbol{x})=\frac{\left|N_{k}(\boldsymbol{x})\right|}{\sum_{\boldsymbol{o} \in N_{k}(\boldsymbol{x})} \text { reach-dist }_{k}(\boldsymbol{x}, \boldsymbol{o})} .
$$

Local reachability density, $\mathrm{k}=10$

Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)

 Local reachability density of a point \boldsymbol{x} : The local reachability density of \boldsymbol{x} is defined as:$$
\operatorname{Ird}_{k}(\boldsymbol{x})=\frac{\left|N_{k}(\boldsymbol{x})\right|}{\sum_{\boldsymbol{o} \in N_{k}(\boldsymbol{x})} \text { reach-dist }_{k}(\boldsymbol{x}, \boldsymbol{o})} .
$$

Local reachability density, $\mathbf{k}=15$

Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)

 Local reachability density of a point \boldsymbol{x} : The local reachability density of \boldsymbol{x} is defined as:$$
\operatorname{Ird}_{k}(\boldsymbol{x})=\frac{\left|N_{k}(\boldsymbol{x})\right|}{\sum_{\boldsymbol{o} \in N_{k}(\boldsymbol{x})} \text { reach-dist }_{k}(\boldsymbol{x}, \boldsymbol{o})} .
$$

Local reachability density, $\mathbf{k = 2 0}$

Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)

 Local reachability density of a point \boldsymbol{x} : The local reachability density of \boldsymbol{x} is defined as:$$
\operatorname{Ird}_{k}(\boldsymbol{x})=\frac{\left|N_{k}(\boldsymbol{x})\right|}{\sum_{\boldsymbol{o} \in N_{k}(\boldsymbol{x})} \text { reach-dist }_{k}(\boldsymbol{x}, \boldsymbol{o})} .
$$

Local reachability density, $k=24$

Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)

 Local reachability density of a point \boldsymbol{x} : The local reachability density of \boldsymbol{x} is defined as:$$
\operatorname{Ird}_{k}(\boldsymbol{x})=\frac{\left|N_{k}(\boldsymbol{x})\right|}{\sum_{\boldsymbol{o} \in N_{k}(\boldsymbol{x})} \text { reach-dist }_{k}(\boldsymbol{x}, \boldsymbol{o})} .
$$

Local reachability density, $\mathbf{k = 2 5}$

Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)

Local reachability density of a point \boldsymbol{x} :
The local reachability density of \boldsymbol{x} is defined as:

$$
\operatorname{Ird}_{k}(\boldsymbol{x})=\frac{\left|N_{k}(\boldsymbol{x})\right|}{\sum_{\boldsymbol{o} \in N_{k}(\boldsymbol{x})} \text { reach-dist }_{k}(\boldsymbol{x}, \boldsymbol{o})} .
$$

Local reachability density, $\mathbf{k}=\mathbf{2 6}$

Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)

Local reachability density of a point \boldsymbol{x} :
The local reachability density of \boldsymbol{x} is defined as:

$$
\operatorname{Ird}_{k}(\boldsymbol{x})=\frac{\left|N_{k}(\boldsymbol{x})\right|}{\sum_{\boldsymbol{o} \in N_{k}(\boldsymbol{x})} \text { reach-dist }_{k}(\boldsymbol{x}, \boldsymbol{o})} .
$$

Local reachability density, $\mathbf{k = 2 7}$

Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)

Local outlier factor of a point \boldsymbol{x} :
The local outlier factor of \boldsymbol{x} is defined as:

$$
L O F_{k}(\boldsymbol{x})=\frac{\sum_{\boldsymbol{o} \in N_{k}(\boldsymbol{x})} \frac{\operatorname{Ird_{k}(\boldsymbol {o})}}{\operatorname{Ir} d_{k}(\boldsymbol{x})}}{\left|N_{k}(\boldsymbol{x})\right|}
$$

Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)

Local outlier factor of a point \boldsymbol{x} :
The local outlier factor of \boldsymbol{x} is defined as:
$L O F_{k}(\boldsymbol{x})=\frac{\sum_{\boldsymbol{o} \in N_{k}(x)} \frac{\operatorname{Ird}(\boldsymbol{d})}{\operatorname{Ir} d_{k}(\boldsymbol{x})}}{\left|N_{k}(\boldsymbol{x})\right|}$.

Local outlier factor, $\mathbf{k}=2$

Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)

Local outlier factor of a point \boldsymbol{x} :
The local outlier factor of \boldsymbol{x} is defined as:

$$
L O F_{k}(\boldsymbol{x})=\frac{\sum_{\boldsymbol{o} \in N_{k}(\boldsymbol{x})} \frac{\operatorname{Ird_{k}(\boldsymbol {o})}}{\operatorname{Ird} d_{k}(\boldsymbol{x})}}{\left|N_{k}(\boldsymbol{x})\right|}
$$

Local outlier factor, $\mathbf{k}=\mathbf{3}$

Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)

Local outlier factor of a point \boldsymbol{x} :
The local outlier factor of \boldsymbol{x} is defined as:
$L O F_{k}(\boldsymbol{x})=\frac{\sum_{\boldsymbol{o} \in N_{k}(x)} \frac{\operatorname{Ird}(\boldsymbol{d})}{\operatorname{Ir} d_{k}(\boldsymbol{x})}}{\left|N_{k}(\boldsymbol{x})\right|}$.

Local outlier factor, $k=4$

Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)

Local outlier factor of a point \boldsymbol{x} :
The local outlier factor of \boldsymbol{x} is defined as:

$$
L O F_{k}(\boldsymbol{x})=\frac{\sum_{\boldsymbol{o} \in N_{k}(\boldsymbol{x})} \frac{\operatorname{Ird_{k}(\boldsymbol {o})}}{\operatorname{Ird} d_{k}(\boldsymbol{x})}}{\left|N_{k}(\boldsymbol{x})\right|}
$$

Local outlier factor, $\mathbf{k}=5$

Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)

Local outlier factor of a point \boldsymbol{x} :
The local outlier factor of \boldsymbol{x} is defined as:

$$
L O F_{k}(\boldsymbol{x})=\frac{\sum_{\boldsymbol{o} \in N_{k}(\boldsymbol{x})} \frac{\operatorname{Ird_{k}(\boldsymbol {o})}}{\operatorname{Ird} d_{k}(\boldsymbol{x})}}{\left|N_{k}(\boldsymbol{x})\right|}
$$

Local outlier factor, $k=6$

Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)

Local outlier factor of a point \boldsymbol{x} :
The local outlier factor of \boldsymbol{x} is defined as:

$$
L O F_{k}(\boldsymbol{x})=\frac{\sum_{\boldsymbol{o} \in N_{k}(\boldsymbol{x})} \frac{\operatorname{Ird_{k}(\boldsymbol {o})}}{\operatorname{Ird} d_{k}(\boldsymbol{x})}}{\left|N_{k}(\boldsymbol{x})\right|}
$$

Local outlier factor, $\mathbf{k}=\mathbf{7}$

Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)

Local outlier factor of a point \boldsymbol{x} :
The local outlier factor of \boldsymbol{x} is defined as:

$$
L O F_{k}(\boldsymbol{x})=\frac{\sum_{\boldsymbol{o} \in N_{k}(\boldsymbol{x})} \frac{\operatorname{Ird_{k}(\boldsymbol {o})}}{\operatorname{Ird} d_{k}(\boldsymbol{x})}}{\left|N_{k}(\boldsymbol{x})\right|}
$$

Local outlier factor, $\mathbf{k}=10$

Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)

Local outlier factor of a point \boldsymbol{x} :
The local outlier factor of \boldsymbol{x} is defined as:

$$
L O F_{k}(\boldsymbol{x})=\frac{\sum_{\boldsymbol{o} \in N_{k}(\boldsymbol{x})} \frac{\operatorname{Ird_{k}(\boldsymbol {o})}}{\operatorname{Ird} d_{k}(\boldsymbol{x})}}{\left|N_{k}(\boldsymbol{x})\right|}
$$

Local outlier factor, $\mathbf{k}=15$

Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)

Local outlier factor of a point \boldsymbol{x} :
The local outlier factor of \boldsymbol{x} is defined as:

$$
L O F_{k}(\boldsymbol{x})=\frac{\sum_{\boldsymbol{o} \in N_{k}(\boldsymbol{x})} \frac{\operatorname{Ird_{k}(\boldsymbol {o})}}{\operatorname{Ird} d_{k}(\boldsymbol{x})}}{\left|N_{k}(\boldsymbol{x})\right|}
$$

Local outlier factor, $\mathbf{k = 2 0}$

Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)

Local outlier factor of a point \boldsymbol{x} :
The local outlier factor of \boldsymbol{x} is defined as:

$$
L O F_{k}(\boldsymbol{x})=\frac{\sum_{\boldsymbol{o} \in N_{k}(\boldsymbol{x})} \frac{\operatorname{Ird_{k}(\boldsymbol {o})}}{\operatorname{Ird} d_{k}(\boldsymbol{x})}}{\left|N_{k}(\boldsymbol{x})\right|}
$$

Local outlier factor, $\mathbf{k}=\mathbf{2 4}$

Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)

Local outlier factor of a point \boldsymbol{x} :
The local outlier factor of \boldsymbol{x} is defined as:

$$
L O F_{k}(\boldsymbol{x})=\frac{\sum_{\boldsymbol{o} \in N_{k}(\boldsymbol{x})} \frac{\operatorname{Ird_{k}(\boldsymbol {o})}}{\operatorname{Ird} d_{k}(\boldsymbol{x})}}{\left|N_{k}(\boldsymbol{x})\right|}
$$

Local outlier factor, $\mathbf{k}=\mathbf{2 5}$

Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)

Local outlier factor of a point \boldsymbol{x} :
The local outlier factor of \boldsymbol{x} is defined as:

$$
L O F_{k}(\boldsymbol{x})=\frac{\sum_{\boldsymbol{o} \in N_{k}(\boldsymbol{x})} \frac{\operatorname{Ird_{k}(\boldsymbol {o})}}{\operatorname{Ird} d_{k}(\boldsymbol{x})}}{\left|N_{k}(\boldsymbol{x})\right|}
$$

Local outlier factor, $\mathbf{k}=\mathbf{2 6}$

Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)

Local outlier factor of a point \boldsymbol{x} :
The local outlier factor of \boldsymbol{x} is defined as:

$$
L O F_{k}(\boldsymbol{x})=\frac{\sum_{\boldsymbol{o} \in N_{k}(\boldsymbol{x})} \frac{\operatorname{Ird_{k}(\boldsymbol {o})}}{\operatorname{Ird} d_{k}(\boldsymbol{x})}}{\left|N_{k}(\boldsymbol{x})\right|}
$$

Local outlier factor, $\mathbf{k}=\mathbf{2 7}$

Contents

Introduction

Non-parametric approaches
One-class support vector machines Local outlier factor
Isolation forest

Systematic orderings: data depth
The notion of data depth
The Tukey depth function
Central regions
Further depth notions

Practical session

Isolation forest (Liu, Ting, Zhou; 2008)

- Isolation forest (Liu, Ting, Zhou; 2008) is an anomaly detection method inherited from the famous random forest algorithm (Breiman, 2001).
- Since no supervised feedback is given, isolation forest is based on purely random (uniform) variable-based partitioning.

Isolation forest (Liu, Ting, Zhou; 2008)

- Isolation forest (Liu, Ting, Zhou; 2008) is an anomaly detection method inherited from the famous random forest algorithm (Breiman, 2001).
- Since no supervised feedback is given, isolation forest is based on purely random (uniform) variable-based partitioning.
- Main idea: Outlying observations are isolated faster.

Isolation forest (Liu, Ting, Zhou; 2008)

- Isolation forest (Liu, Ting, Zhou; 2008) is an anomaly detection method inherited from the famous random forest algorithm (Breiman, 2001).
- Since no supervised feedback is given, isolation forest is based on purely random (uniform) variable-based partitioning.
- Main idea: Outlying observations are isolated faster.
- Tree-kind partitioning is done until "full isolation": outlying observations will have smaller depth (on an average) in the isolation tree.
- A monotone transform is usually applied to the aggregated estimate.
- To reduce both masking effect and computation cost, small-size sub-sampling is used instead of bootstrap.

Isolation forest (Liu, Ting, Zhou; 2008)

- Each isolation tree is grown recursively using the described below node-construction procedure

Isolation forest (Liu, Ting, Zhou; 2008)

- Each isolation tree is grown recursively using the described below node-construction procedure
Non-terminal node (j, k), subspace $\mathcal{C}_{j, k}$, training subset $\mathcal{S}_{j, k}$: 1. Choose a split variable I uniformly from $\{1, \ldots, d\}$.

Isolation forest (Liu, Ting, Zhou; 2008)

- Each isolation tree is grown recursively using the described below node-construction procedure
Non-terminal node (j, k), subspace $\mathcal{C}_{j, k}$, training subset $\mathcal{S}_{j, k}$:

1. Choose a split variable I uniformly from $\{1, \ldots, d\}$.
2. Choose randomly and uniformly a split value κ in the interval

$$
\left[\min _{\boldsymbol{x} \in \mathcal{S}_{j, k}}\left\langle\boldsymbol{x}, \boldsymbol{e}_{l}\right\rangle, \max _{\boldsymbol{x} \in \mathcal{S}_{j, k}}\left\langle\boldsymbol{x}, \boldsymbol{e}_{j}\right\rangle\right] .
$$

Isolation forest (Liu, Ting, Zhou; 2008)

- Each isolation tree is grown recursively using the described below node-construction procedure
Non-terminal node (j, k), subspace $\mathcal{C}_{j, k}$, training subset $\mathcal{S}_{j, k}$:

1. Choose a split variable I uniformly from $\{1, \ldots, d\}$.
2. Choose randomly and uniformly a split value κ in the interval

$$
\left[\min _{\boldsymbol{x} \in \mathcal{S}_{j, k}}\left\langle\boldsymbol{x}, \boldsymbol{e}_{l}\right\rangle, \max _{\boldsymbol{x} \in \mathcal{S}_{j, k}}\left\langle\boldsymbol{x}, \boldsymbol{e}_{j}\right\rangle\right] .
$$

3. Form the children subsets

$$
\begin{aligned}
\mathcal{C}_{j+1,2 k} & =\mathcal{C}_{j, k} \cap\left\{\boldsymbol{x} \in \mathbb{R}^{d}:\left\langle\boldsymbol{x}, \boldsymbol{e}_{l}\right\rangle \leq \kappa\right\} \\
\mathcal{C}_{j+1,2 k+1} & =\mathcal{C}_{j, k} \cap\left\{\boldsymbol{x} \in \mathbb{R}^{d}:\left\langle\boldsymbol{x}, \boldsymbol{e}_{l}\right\rangle>\kappa\right\}
\end{aligned}
$$

as well as the children training datasets

$$
\mathcal{S}_{j+1,2 k}=\mathcal{S}_{j, k} \cap \mathcal{C}_{j+1,2 k} \text { and } \mathcal{S}_{j+1,2 k+1}=\mathcal{S}_{j, k} \cap \mathcal{C}_{j+1,2 k+1}
$$

Isolation forest (Liu, Ting, Zhou; 2008)

- Each isolation tree is grown recursively using the described below node-construction procedure
Non-terminal node (j, k), subspace $\mathcal{C}_{j, k}$, training subset $\mathcal{S}_{j, k}$:

1. Choose a split variable I uniformly from $\{1, \ldots, d\}$.
2. Choose randomly and uniformly a split value κ in the interval

$$
\left[\min _{\boldsymbol{x} \in \mathcal{S}_{j, k}}\left\langle\boldsymbol{x}, \boldsymbol{e}_{l}\right\rangle, \max _{\boldsymbol{x} \in \mathcal{S}_{j, k}}\left\langle\boldsymbol{x}, \boldsymbol{e}_{j}\right\rangle\right] .
$$

3. Form the children subsets

$$
\begin{aligned}
\mathcal{C}_{j+1,2 k} & =\mathcal{C}_{j, k} \cap\left\{\boldsymbol{x} \in \mathbb{R}^{d}:\left\langle\boldsymbol{x}, \boldsymbol{e}_{l}\right\rangle \leq \kappa\right\} \\
\mathcal{C}_{j+1,2 k+1} & =\mathcal{C}_{j, k} \cap\left\{\boldsymbol{x} \in \mathbb{R}^{d}:\left\langle\boldsymbol{x}, \boldsymbol{e}_{l}\right\rangle>\kappa\right\}
\end{aligned}
$$

as well as the children training datasets

$$
\mathcal{S}_{j+1,2 k}=\mathcal{S}_{j, k} \cap \mathcal{C}_{j+1,2 k} \text { and } \mathcal{S}_{j+1,2 k+1}=\mathcal{S}_{j, k} \cap \mathcal{C}_{j+1,2 k+1}
$$

Stop when only one observation is in each node; isolation.

Isolation forest (Liu, Ting, Zhou; 2008)

Illustration: Isolation tree

Isolation forest

Isolation forest (Liu, Ting, Zhou; 2008)

Illustration: Isolation tree

Isolation tree, split 0

Isolation forest (Liu, Ting, Zhou; 2008)

Illustration: Isolation tree

Isolation tree, split 1

Isolation forest (Liu, Ting, Zhou; 2008)
Illustration: Isolation tree

Isolation tree, split 2

Isolation forest (Liu, Ting, Zhou; 2008)

Illustration: Isolation tree

Isolation tree, split 3

Isolation forest (Liu, Ting, Zhou; 2008)
Illustration: Isolation tree

Isolation tree, split 4

Isolation forest (Liu, Ting, Zhou; 2008)
Illustration: Isolation tree

Isolation tree, split 5

Isolation forest (Liu, Ting, Zhou; 2008)
Illustration: Isolation tree

Isolation tree, split 6

Isolation forest (Liu, Ting, Zhou; 2008)
Illustration: Isolation tree

Isolation tree, split 7

Isolation forest (Liu, Ting, Zhou; 2008)
Illustration: Isolation tree

Isolation tree, split 8

Isolation forest (Liu, Ting, Zhou; 2008)
Illustration: Isolation tree

Isolation tree, split 9

Isolation forest (Liu, Ting, Zhou; 2008)
Illustration: Isolation tree

Isolation tree, split 10

Isolation forest (Liu, Ting, Zhou; 2008)
Illustration: Isolation tree

Isolation tree, split 11

Isolation forest (Liu, Ting, Zhou; 2008)
Illustration: Isolation tree

Isolation tree, split 12

Isolation forest (Liu, Ting, Zhou; 2008)
Illustration: Isolation tree

Isolation tree, split 13

Isolation forest (Liu, Ting, Zhou; 2008)
Illustration: Isolation tree

Isolation tree, split 14

Isolation forest (Liu, Ting, Zhou; 2008)
Illustration: Isolation tree

Isolation tree, split 15

Isolation forest (Liu, Ting, Zhou; 2008)
Illustration: Isolation tree

Isolation tree, split 16

Isolation forest (Liu, Ting, Zhou; 2008)
Illustration: Isolation tree

Isolation tree, split 17

Isolation forest (Liu, Ting, Zhou; 2008)
Illustration: Isolation tree

Isolation tree, split 18

Isolation forest (Liu, Ting, Zhou; 2008)
Illustration: Isolation tree

Isolation tree, split 19

Isolation forest (Liu, Ting, Zhou; 2008)
Illustration: Isolation tree

Isolation tree, split 20

Isolation forest (Liu, Ting, Zhou; 2008)

Illustration: Isolation tree

Isolation tree, split 21

Isolation forest (Liu, Ting, Zhou; 2008)
Illustration: Isolation tree

Isolation tree, split 22

Isolation forest (Liu, Ting, Zhou; 2008)
Illustration: Isolation tree

Isolation tree, split 23

Isolation forest (Liu, Ting, Zhou; 2008)

Illustration: Isolation tree

Isolation tree, split 24

Isolation forest (Liu, Ting, Zhou; 2008)
Illustration: Isolation tree

Isolation tree, split 25

Isolation forest (Liu, Ting, Zhou; 2008)

Anomaly score calculation for observation \boldsymbol{x} :

1. For each isolation tree $i \in\{1, \ldots, T\}$, locate \boldsymbol{x} in a terminal node and calculate the depth of this node $h_{i}(\boldsymbol{x})$.
2. Attribute the anomaly score:

$$
s(x)=2^{-\frac{\frac{1}{n} \sum_{i=1}^{T} h_{i}(x)}{c(n)}},
$$

with $c(n)=2 H(n-1)-\frac{2(n-1)}{n}$ where $H(k)$ is the harmonic number and can be estimated by $\ln (k)+0.5772156649$.

Score behavior:

- when $\frac{1}{n} \sum_{i=1}^{T} h_{i}(\boldsymbol{x}) \rightarrow c(n), s(\boldsymbol{x}) \rightarrow 0.5$,
- when $\frac{1}{n} \sum_{i=1}^{T} h_{i}(x) \rightarrow 0, s(x) \rightarrow 1$,
- when $\frac{1}{n} \sum_{i=1}^{T} h_{i}(\boldsymbol{x}) \rightarrow n-1, s(x) \rightarrow 0$.

Isolation forest (Liu, Ting, Zhou; 2008)

Illustration: Anomaly score

Isolation forest score, 100 trees

Contents

Introduction

Non-parametric approaches
One-class support vector machines Local outlier factor Isolation forest

Systematic orderings: data depth
The notion of data depth
The Tukey depth function
Central regions
Further depth notions

Practical session

Contents

Introduction

Non-parametric approaches
One-class support vector machines
Local outlier factor Isolation forest

Systematic orderings: data depth
The notion of data depth The Tukey depth function Central regions Further depth notions

Practical session

Data depth

Babies with low birth weight

Data depth

Babies with low birth weight

Statistical data depth

A data depth measures how close a given point is located to the center of a distribution. For $\boldsymbol{x} \in \mathbb{R}^{p}$ and a p-variate random vector X distributed as $P \in \mathcal{P}$, a data depth is a function

$$
D: \mathbb{R}^{p} \times \mathcal{P} \rightarrow[0,1],(\mathbf{x}, P) \mapsto D(x \mid P)
$$

Statistical data depth

A data depth measures how close a given point is located to the center of a distribution. For $\boldsymbol{x} \in \mathbb{R}^{p}$ and a p-variate random vector X distributed as $P \in \mathcal{P}$, a data depth is a function

$$
D: \mathbb{R}^{p} \times \mathcal{P} \rightarrow[0,1],(x, P) \mapsto D(x \mid P)
$$

that is:
D1 translation invariant: $D(\boldsymbol{x}+b \mid X+b)=D(\boldsymbol{x} \mid X)$ for any $b \in \mathbb{R}^{p}$;

Statistical data depth

A data depth measures how close a given point is located to the center of a distribution. For $\boldsymbol{x} \in \mathbb{R}^{p}$ and a p-variate random vector X distributed as $P \in \mathcal{P}$, a data depth is a function

$$
D: \mathbb{R}^{p} \times \mathcal{P} \rightarrow[0,1],(x, P) \mapsto D(x \mid P)
$$

that is:
D1 translation invariant: $D(\boldsymbol{x}+b \mid X+b)=D(\boldsymbol{x} \mid X)$ for any $b \in \mathbb{R}^{p}$;
D2 linear invariant: $D(A \boldsymbol{x} \mid A X)=D(\boldsymbol{x} \mid X)$ for any $p \times p$ non-singular matrix A;

Statistical data depth

A data depth measures how close a given point is located to the center of a distribution. For $\boldsymbol{x} \in \mathbb{R}^{p}$ and a p-variate random vector X distributed as $P \in \mathcal{P}$, a data depth is a function

$$
D: \mathbb{R}^{p} \times \mathcal{P} \rightarrow[0,1],(\boldsymbol{x}, P) \mapsto D(x \mid P)
$$

that is:
D1 translation invariant: $D(\boldsymbol{x}+b \mid X+b)=D(\boldsymbol{x} \mid X)$ for any $b \in \mathbb{R}^{p}$;
D2 linear invariant: $D(A \boldsymbol{x} \mid A X)=D(\boldsymbol{x} \mid X)$ for any $p \times p$ non-singular matrix A;
D3 vanishing at infinity: $\lim _{\|x\| \rightarrow \infty} D(\boldsymbol{x} \mid X)=0$;

Statistical data depth

A data depth measures how close a given point is located to the center of a distribution. For $\boldsymbol{x} \in \mathbb{R}^{p}$ and a p-variate random vector X distributed as $P \in \mathcal{P}$, a data depth is a function

$$
D: \mathbb{R}^{p} \times \mathcal{P} \rightarrow[0,1],(\boldsymbol{x}, P) \mapsto D(x \mid P)
$$

that is:
D1 translation invariant: $D(\boldsymbol{x}+b \mid X+b)=D(\boldsymbol{x} \mid X)$ for any $b \in \mathbb{R}^{p}$;
D2 linear invariant: $D(A \boldsymbol{x} \mid A X)=D(\boldsymbol{x} \mid X)$ for any $p \times p$ non-singular matrix A;
D3 vanishing at infinity: $\lim _{\|\boldsymbol{x}\| \rightarrow \infty} D(\boldsymbol{x} \mid X)=0$;
D4 monotone on rays: for any $\boldsymbol{x}^{*} \in \operatorname{argmax}_{\boldsymbol{x} \in \mathbb{R}^{p}} D(\boldsymbol{x} \mid X)$, any $\boldsymbol{x} \in \mathbb{R}^{p}$, and any $0 \leq \alpha \leq 1$ it holds:
$D(\boldsymbol{x} \mid X) \leq D\left(\boldsymbol{x}^{*}+\alpha\left(\boldsymbol{x}-\boldsymbol{x}^{*}\right) \mid X\right) ;$

Statistical data depth

A data depth measures how close a given point is located to the center of a distribution. For $\boldsymbol{x} \in \mathbb{R}^{p}$ and a p-variate random vector X distributed as $P \in \mathcal{P}$, a data depth is a function

$$
D: \mathbb{R}^{p} \times \mathcal{P} \rightarrow[0,1],(\boldsymbol{x}, P) \mapsto D(x \mid P)
$$

that is:
D1 translation invariant: $D(\boldsymbol{x}+b \mid X+b)=D(\boldsymbol{x} \mid X)$ for any $b \in \mathbb{R}^{p}$;
D2 linear invariant: $D(A \boldsymbol{x} \mid A X)=D(\boldsymbol{x} \mid X)$ for any $p \times p$ non-singular matrix A;
D3 vanishing at infinity: $\lim _{\|\boldsymbol{x}\| \rightarrow \infty} D(\boldsymbol{x} \mid X)=0$;
D4 monotone on rays: for any $\boldsymbol{x}^{*} \in \operatorname{argmax}_{\boldsymbol{x} \in \mathbb{R}^{p}} D(\boldsymbol{x} \mid X)$, any $\boldsymbol{x} \in \mathbb{R}^{p}$, and any $0 \leq \alpha \leq 1$ it holds:
$D(\boldsymbol{x} \mid X) \leq D\left(\boldsymbol{x}^{*}+\alpha\left(\boldsymbol{x}-\boldsymbol{x}^{*}\right) \mid X\right) ;$
D5 upper semicontinuous in \boldsymbol{x} : the upper-level sets $D_{\alpha}(X)=\left\{\boldsymbol{x} \in \mathbb{R}^{p}: D(\boldsymbol{x} \mid X) \geq \alpha\right\}$ are closed for all α.

Statistical data depth

Some remarks:

- D4 implies star-shaped upper-level sets of D.

Statistical data depth

Some remarks:

- D4 implies star-shaped upper-level sets of D.

One can strengthen to:

- D4con: $D(\cdot \mid X)$ is a quasiconcave function, i.e. the upper-level sets $D_{\alpha}(X)$ are convex for all α.

Statistical data depth

Some remarks:

- D4 implies star-shaped upper-level sets of D.

One can strengthen to:

- D4con: $D(\cdot \mid X)$ is a quasiconcave function, i.e. the upper-level sets $D_{\alpha}(X)$ are convex for all α.
- D1 and D2 define affine invariante depth.

Statistical data depth

Some remarks:

- D4 implies star-shaped upper-level sets of D.

One can strengthen to:

- D4con: $D(\cdot \mid X)$ is a quasiconcave function, i.e. the upper-level sets $D_{\alpha}(X)$ are convex for all α.
- D1 and D2 define affine invariante depth.

One can also weaken to:

- D2iso: $D(A \boldsymbol{x} \mid A X)=D(\boldsymbol{x} \mid X)$ for every isometric linear A to define orthogonal invariant depth;

Statistical data depth

Some remarks:

- D4 implies star-shaped upper-level sets of D.

One can strengthen to:

- D4con: $D(\cdot \mid X)$ is a quasiconcave function, i.e. the upper-level sets $D_{\alpha}(X)$ are convex for all α.
- D1 and D2 define affine invariante depth.

One can also weaken to:

- D2iso: $D(A \boldsymbol{x} \mid A X)=D(\boldsymbol{x} \mid X)$ for every isometric linear A to define orthogonal invariant depth;
- D2sca: $D(\lambda \boldsymbol{x} \mid \lambda X)=D(\boldsymbol{x} \mid X)$ for any $\lambda>0$ to define scale invariant depth.

Statistical data depth

Some remarks:

- D4 implies star-shaped upper-level sets of D.

One can strengthen to:

- D4con: $D(\cdot \mid X)$ is a quasiconcave function, i.e. the upper-level sets $D_{\alpha}(X)$ are convex for all α.
- D1 and D2 define affine invariante depth.

One can also weaken to:

- D2iso: $D(A \boldsymbol{x} \mid A X)=D(\boldsymbol{x} \mid X)$ for every isometric linear A to define orthogonal invariant depth;
- D2sca: $D(\lambda \boldsymbol{x} \mid \lambda X)=D(\boldsymbol{x} \mid X)$ for any $\lambda>0$ to define scale invariant depth.

Depth notions: Mahalanobis ('36), projection (Stahel, '81; Donoho, '82), simplicial volume (Oja, '83), simplicial (Liu, '90), zonoid (Koshevoy, Mosler, '97), spatial (Vardi, Zhang, '00; Serfling, '02), lens (Liu, Modarres, '11), ... depth.

Applications of data depth:

- Multivariate data analysis (Liu, Parelius, Singh '99);
- Statistical quality control (Liu, Singh '93);
- Cluster analysis and classification (Mosler, Hoberg '06; Li, Cuesta-Albertos, Liu '12; M., Mosler, Lange '15);
- Tests for multivariate location, scale, symmetry (Liu '92; Dyckerhoff '02; Dyckerhoff, Ley, Paindaveine '15);
- Outlier detection (Hubert, Rousseeuw, Segaert '15);
- Multivariate risk measurement (Cascos, Mochalov '07);
- Robust linear programming (Bazovkin, Mosler '15);
- Missing data imputation (M., Josse, Husson '20);
- etc.

R-package ddalpha (Pokotylo, M., Dyckerhoff, Nagy):
calculates a number of depths; performs depth-based classification of multivariate and functional data; contains 50 multivariate and 5 functional data sets.
Python library data-depth: to be released soon,

Contents

Introduction

Non-parametric approaches
One-class support vector machines
Local outlier factor Isolation forest

Systematic orderings: data depth
The notion of data depth
The Tukey depth function
Central regions
Further depth notions

Practical session

Tukey (=halfspace, location) depth

Tukey (1975) - "Mathematics and the picturing of data"
Tukey depth of $\boldsymbol{x} \in \mathbb{R}^{p}$ w.r.t. a d-variate random vector X distributed as P is defined as the smallest probability mass of a closed halfspace containing \mathbf{x} :
$D^{T}(\boldsymbol{x} \mid X)=\inf \{P(H): H$ is a closed halfspace, $\boldsymbol{x} \in H\}$,

Tukey (=halfspace, location) depth

Tukey (1975) - "Mathematics and the picturing of data"
Tukey depth of $\boldsymbol{x} \in \mathbb{R}^{p}$ w.r.t. a d-variate random vector X distributed as P is defined as the smallest probability mass of a closed halfspace containing \mathbf{x} :
$D^{T}(\boldsymbol{x} \mid X)=\inf \{P(H): H$ is a closed halfspace, $\boldsymbol{x} \in H\}$, and w.r.t. a data set $\boldsymbol{X}=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right\} \subset \mathbb{R}^{p}$:

$$
D^{T(n)}(\boldsymbol{x} \mid \boldsymbol{X})=\frac{1}{n} \min _{\boldsymbol{u} \in \mathbb{S}^{p-1}} \sharp\left\{i: \boldsymbol{u}^{\prime} \boldsymbol{x}_{i} \geq \boldsymbol{u}^{\prime} \boldsymbol{x}\right\} .
$$

Tukey (=halfspace, location) depth

Tukey (1975) - "Mathematics and the picturing of data"
Tukey depth of $\boldsymbol{x} \in \mathbb{R}^{p}$ w.r.t. a d-variate random vector X distributed as P is defined as the smallest probability mass of a closed halfspace containing \mathbf{x} :

$$
D^{T}(\boldsymbol{x} \mid X)=\inf \{P(H): H \text { is a closed halfspace, } \boldsymbol{x} \in H\}
$$

and w.r.t. a data set $\boldsymbol{X}=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right\} \subset \mathbb{R}^{p}$:

$$
D^{T(n)}(\boldsymbol{x} \mid \boldsymbol{X})=\frac{1}{n} \min _{\boldsymbol{u} \in \mathbb{S}^{p-1}} \sharp\left\{i: \boldsymbol{u}^{\prime} \boldsymbol{x}_{i} \geq \boldsymbol{u}^{\prime} \boldsymbol{x}\right\} .
$$

Tukey depth

- satisfies all the above postulates,
- is purely non-parametric and robust,
- has direct connection to quantiles and many applications.

Tukey (=halfspace, location) data depth

Babies with low birth weight

Tukey (=halfspace, location) data depth

Babies with low birth weight

Tukey (=halfspace, location) data depth

Babies with low birth weight

Tukey (=halfspace, location) data depth

Babies with low birth weight

Tukey (=halfspace, location) data depth

Babies with low birth weight

Tukey (=halfspace, location) data depth

Babies with low birth weight

Tukey (=halfspace, location) data depth

Babies with low birth weight

Tukey (=halfspace, location) data depth

Babies with low birth weight

114 / 161

Tukey (=halfspace, location) data depth

Babies with low birth weight

Tukey (=halfspace, location) data depth

Babies with low birth weight

Tukey (=halfspace, location) data depth

Babies with low birth weight

Tukey (=halfspace, location) data depth

Babies with low birth weight

Tukey (=halfspace, location) data depth

Babies with low birth weight

Tukey (=halfspace, location) data depth

Babies with low birth weight

Tukey (=halfspace, location) data depth

Babies with low birth weight

Tukey (=halfspace, location) data depth

Babies with low birth weight

Tukey (=halfspace, location) data depth

Babies with low birth weight

Tukey (=halfspace, location) data depth

Babies with low birth weight

Tukey (=halfspace, location) data depth

Babies with low birth weight

Tukey (=halfspace, location) data depth

Babies with low birth weight

Tukey (=halfspace, location) data depth

Contents

Introduction

Non-parametric approaches
One-class support vector machines
Local outlier factor Isolation forest

Systematic orderings: data depth
The notion of data depth
The Tukey depth function
Central regions
Further depth notions

Practical session

Central regions

- For given distribution P and $\alpha \in[0,1]$, the level sets $D_{\alpha}(P)$ form a family of depth-trimmed of central regions.

Central regions

- For given distribution P and $\alpha \in[0,1]$, the level sets $D_{\alpha}(P)$ form a family of depth-trimmed of central regions.
- The innermost region arises at some depth $\alpha_{\max } \leq 1$, which depends on the depth notion D and distribution P. Then $D_{\alpha}(X)$ is the set of deepest points.

Central regions

- For given distribution P and $\alpha \in[0,1]$, the level sets $D_{\alpha}(P)$ form a family of depth-trimmed of central regions.
- The innermost region arises at some depth $\alpha_{\max } \leq 1$, which depends on the depth notion D and distribution P. Then $D_{\alpha}(X)$ is the set of deepest points.
- Central regions describe distribution w.r.t. location, dispersion, and shape.

Central regions

- For given distribution P and $\alpha \in[0,1]$, the level sets $D_{\alpha}(P)$ form a family of depth-trimmed of central regions.
- The innermost region arises at some depth $\alpha_{\max } \leq 1$, which depends on the depth notion D and distribution P. Then $D_{\alpha}(X)$ is the set of deepest points.
- Central regions describe distribution w.r.t. location, dispersion, and shape.
- Properties of central regions, for any α :
- Due to D1 and D2 $D_{\alpha}(X)$ is affine equivariant:
$D_{\alpha}(A X+b)=A D_{\alpha}(X)+b$ for any $p \times p$ non-singular matrix A and any $b \in \mathbb{R}^{p}$;

Central regions

- For given distribution P and $\alpha \in[0,1]$, the level sets $D_{\alpha}(P)$ form a family of depth-trimmed of central regions.
- The innermost region arises at some depth $\alpha_{\max } \leq 1$, which depends on the depth notion D and distribution P. Then $D_{\alpha}(X)$ is the set of deepest points.
- Central regions describe distribution w.r.t. location, dispersion, and shape.
- Properties of central regions, for any α :
- Due to D1 and D2 $D_{\alpha}(X)$ is affine equivariant:
$D_{\alpha}(A X+b)=A D_{\alpha}(X)+b$ for any $p \times p$ non-singular matrix A and any $b \in \mathbb{R}^{p}$;
- Due to D3 $D_{\alpha}(X)$ is bounded;

Central regions

- For given distribution P and $\alpha \in[0,1]$, the level sets $D_{\alpha}(P)$ form a family of depth-trimmed of central regions.
- The innermost region arises at some depth $\alpha_{\max } \leq 1$, which depends on the depth notion D and distribution P. Then $D_{\alpha}(X)$ is the set of deepest points.
- Central regions describe distribution w.r.t. location, dispersion, and shape.
- Properties of central regions, for any α :
- Due to D1 and D2 $D_{\alpha}(X)$ is affine equivariant: $D_{\alpha}(A X+b)=A D_{\alpha}(X)+b$ for any $p \times p$ non-singular matrix A and any $b \in \mathbb{R}^{p}$;
- Due to D3 $D_{\alpha}(X)$ is bounded;
- Due to D4 $D_{\alpha}(X)$-s are nested:
if $\alpha \geq \beta$, then $D_{\alpha}(X) \subseteq D_{\beta}(X)$, and star-shaped;

Central regions

- For given distribution P and $\alpha \in[0,1]$, the level sets $D_{\alpha}(P)$ form a family of depth-trimmed of central regions.
- The innermost region arises at some depth $\alpha_{\max } \leq 1$, which depends on the depth notion D and distribution P. Then $D_{\alpha}(X)$ is the set of deepest points.
- Central regions describe distribution w.r.t. location, dispersion, and shape.
- Properties of central regions, for any α :
- Due to D1 and D2 $D_{\alpha}(X)$ is affine equivariant: $D_{\alpha}(A X+b)=A D_{\alpha}(X)+b$ for any $p \times p$ non-singular matrix A and any $b \in \mathbb{R}^{p}$;
- Due to D3 $D_{\alpha}(X)$ is bounded;
- Due to D4 $D_{\alpha}(X)$-s are nested:
if $\alpha \geq \beta$, then $D_{\alpha}(X) \subseteq D_{\beta}(X)$, and star-shaped; due to $\mathbf{D} 4$ con $D_{\alpha}(X)$ is in addition convex;

Central regions

- For given distribution P and $\alpha \in[0,1]$, the level sets $D_{\alpha}(P)$ form a family of depth-trimmed of central regions.
- The innermost region arises at some depth $\alpha_{\max } \leq 1$, which depends on the depth notion D and distribution P. Then $D_{\alpha}(X)$ is the set of deepest points.
- Central regions describe distribution w.r.t. location, dispersion, and shape.
- Properties of central regions, for any α :
- Due to D1 and D2 $D_{\alpha}(X)$ is affine equivariant: $D_{\alpha}(A X+b)=A D_{\alpha}(X)+b$ for any $p \times p$ non-singular matrix A and any $b \in \mathbb{R}^{p}$;
- Due to D3 $D_{\alpha}(X)$ is bounded;
- Due to D4 $D_{\alpha}(X)$-s are nested:
if $\alpha \geq \beta$, then $D_{\alpha}(X) \subseteq D_{\beta}(X)$, and star-shaped; due to $\mathbf{D} 4$ con $D_{\alpha}(X)$ is in addition convex;
- Due to D5 $D_{\alpha}(X)$ is closed.

Tukey-trimmed regions

Tukey depth defines a family of (depth-)trimmed (central) regions $D_{\tau}^{T}(X)$, the upper-level sets of the depth function:

$$
D_{\tau}^{T}(X)=\left\{x \in \mathbb{R}^{\boldsymbol{p}}: D^{T}(\boldsymbol{x} \mid X) \geq \tau\right\} .
$$

Tukey-trimmed regions

Tukey depth defines a family of (depth-)trimmed (central) regions $D_{\tau}^{T}(X)$, the upper-level sets of the depth function:

$$
D_{\tau}^{T}(X)=\left\{x \in \mathbb{R}^{p}: D^{T}(x \mid X) \geq \tau\right\} .
$$

Properties:

Depth:

- Affine invariant;

Regions:

Affine equivariant;

Tukey-trimmed regions

Tukey depth defines a family of (depth-)trimmed (central) regions $D_{\tau}^{T}(X)$, the upper-level sets of the depth function:

$$
D_{\tau}^{T}(X)=\left\{x \in \mathbb{R}^{p}: D^{T}(x \mid X) \geq \tau\right\} .
$$

Properties:

Depth:

- Affine invariant;
- Vanishing at infinity;

Regions:

Affine equivariant;
Bounded;

Tukey-trimmed regions

Tukey depth defines a family of (depth-)trimmed (central) regions $D_{\tau}^{T}(X)$, the upper-level sets of the depth function:

$$
D_{\tau}^{T}(X)=\left\{x \in \mathbb{R}^{p}: D^{T}(x \mid X) \geq \tau\right\} .
$$

Properties:

Depth:

- Affine invariant;
- Vanishing at infinity;
- Monotone w.r.t. deepest point;

Regions:

Affine equivariant;
Bounded;
Nested;

Tukey-trimmed regions

Tukey depth defines a family of (depth-)trimmed (central) regions $D_{\tau}^{T}(X)$, the upper-level sets of the depth function:

$$
D_{\tau}^{T}(X)=\left\{x \in \mathbb{R}^{p}: D^{T}(x \mid X) \geq \tau\right\} .
$$

Properties:

Depth:

- Affine invariant;
- Vanishing at infinity;
- Monotone w.r.t. deepest point;
- Upper-semicontinuous;

Regions:

Affine equivariant;
Bounded;
Nested;
Closed;

Tukey-trimmed regions

Tukey depth defines a family of (depth-)trimmed (central) regions $D_{\tau}^{T}(X)$, the upper-level sets of the depth function:

$$
D_{\tau}^{T}(X)=\left\{x \in \mathbb{R}^{p}: D^{T}(x \mid X) \geq \tau\right\} .
$$

Properties:

Depth:

- Affine invariant;
- Vanishing at infinity;
- Monotone w.r.t. deepest point;
- Upper-semicontinuous;
- Quasiconcave.

Regions:

Affine equivariant;
Bounded;
Nested;
Closed;
Convex.

Tukey (=halfspace, location) depth-trimmed regions

Babies with low birth weight

Tukey (=halfspace, location) depth-trimmed regions

Babies with low birth weight

Tukey (=halfspace, location) depth-trimmed regions

Babies with low birth weight

Tukey (=halfspace, location) depth-trimmed regions

Babies with low birth weight

Tukey (=halfspace, location) depth-trimmed regions

Babies with low birth weight

Tukey (=halfspace, location) depth-trimmed regions

Babies with low birth weight

Tukey (=halfspace, location) depth-trimmed regions

Babies with low birth weight

Tukey (=halfspace, location) depth-trimmed regions

Babies with low birth weight

0

Tukey (=halfspace, location) depth-trimmed regions

Babies with low birth weight

-

Tukey (=halfspace, location) depth-trimmed regions

Babies with low birth weight

-

Tukey (=halfspace, location) depth-trimmed regions

Babies with low birth weight

0

Tukey (=halfspace, location) depth-trimmed regions

Babies with low birth weight

Tukey (=halfspace, location) depth-trimmed regions

Babies with low birth weight

Tukey (=halfspace, location) depth-trimmed regions

Babies with low birth weight

Tukey (=halfspace, location) depth-trimmed regions

Babies with low birth weight

Tukey (=halfspace, location) depth-trimmed regions

Babies with low birth weight

Tukey (=halfspace, location) depth-trimmed regions

Babies with low birth weight

Tukey (=halfspace, location) depth-trimmed regions

Babies with low birth weight

Tukey (=halfspace, location) depth-trimmed regions

Babies with low birth weight

Tukey (=halfspace, location) depth-trimmed regions

Babies with low birth weight

Tukey (=halfspace, location) depth-trimmed regions

Babies with low birth weight

Tukey (=halfspace, location) depth-trimmed regions

Babies with low birth weight

Tukey (=halfspace, location) depth-trimmed regions

Babies with low birth weight

Tukey (=halfspace, location) depth-trimmed regions

Babies with low birth weight

。

Tukey (=halfspace, location) depth-trimmed regions

Babies with low birth weight

Tukey (=halfspace, location) data depth

Tukey (=halfspace, location) depth region

Tukey (=halfspace, location) depth region: $\tau=2 / 161$

Tukey (=halfspace, location) depth region: $\tau=5 / 161$

Tukey (=halfspace, location) depth region: $\tau=9 / 161$

Tukey (=halfspace, location) depth region: $\tau=13 / 161$

Tukey (=halfspace, location) depth region: $\tau=17 / 161$

Tukey (=halfspace, location) depth region: $\tau=25 / 161$

Tukey (=halfspace, location) depth region: $\tau=33 / 161$

Tukey (=halfspace, location) depth region: $\tau=41 / 161$

Tukey (=halfspace, location) depth region: $\tau=49 / 161$

Tukey (=halfspace, location) depth region: $\tau=57 / 161$

Tukey (=halfspace, location) depth region: $\tau=65 / 161$

Tukey (=halfspace, location) depth region: $\tau=68 / 161$

Contents

Introduction

Non-parametric approaches
One-class support vector machines Local outlier factor Isolation forest

Systematic orderings: data depth
The notion of data depth
The Tukey depth function
Central regions
Further depth notions

Practical session

Mahalanobis depth (Mahalanobis, 1936)

- Mahalanobis depth is defined as:

$$
D^{M a h}(\boldsymbol{x} \mid X)=\frac{1}{1+\left(\delta^{M a h}\right)^{2}(\boldsymbol{x} \mid X)}
$$

based on Mahalanobis distance:

$$
\left(\delta^{M a h}\right)^{2}(\boldsymbol{x} \mid X)=\left(\boldsymbol{x}-\boldsymbol{\mu}_{X}\right)^{T} \boldsymbol{\Sigma}_{X}^{-1}\left(\boldsymbol{x}-\boldsymbol{\mu}_{X}\right)
$$

Mahalanobis depth (Mahalanobis, 1936)

- Mahalanobis depth is defined as:

$$
D^{M a h}(\boldsymbol{x} \mid X)=\frac{1}{1+\left(\delta^{M a h}\right)^{2}(\boldsymbol{x} \mid X)}
$$

based on Mahalanobis distance:

$$
\left(\delta^{M a h}\right)^{2}(\boldsymbol{x} \mid X)=\left(\boldsymbol{x}-\boldsymbol{\mu}_{X}\right)^{T} \boldsymbol{\Sigma}_{X}^{-1}\left(\boldsymbol{x}-\boldsymbol{\mu}_{X}\right)
$$

- In the empirical version, $\boldsymbol{\mu}_{X}$ and $\boldsymbol{\Sigma}_{X}$ are substituted by suitable estimates:
- moment estimates;
- robust estimates such as minimum volume ellipsoid or minimum covariance determinant (MCD).

Mahalanobis depth (Mahalanobis, 1936)

- Mahalanobis depth is defined as:

$$
D^{M a h}(\boldsymbol{x} \mid X)=\frac{1}{1+\left(\delta^{M a h}\right)^{2}(\boldsymbol{x} \mid X)}
$$

based on Mahalanobis distance:

$$
\left(\delta^{M a h}\right)^{2}(\boldsymbol{x} \mid X)=\left(\boldsymbol{x}-\boldsymbol{\mu}_{X}\right)^{T} \boldsymbol{\Sigma}_{X}^{-1}\left(\boldsymbol{x}-\boldsymbol{\mu}_{X}\right)
$$

- In the empirical version, $\boldsymbol{\mu}_{X}$ and $\boldsymbol{\Sigma}_{X}$ are substituted by suitable estimates:
- moment estimates;
- robust estimates such as minimum volume ellipsoid or minimum covariance determinant (MCD).
- Properties:
- satisfies D1 - D5 and D4con, is continuous;

Mahalanobis depth (Mahalanobis, 1936)

- Mahalanobis depth is defined as:

$$
D^{M a h}(\boldsymbol{x} \mid X)=\frac{1}{1+\left(\delta^{M a h}\right)^{2}(\boldsymbol{x} \mid X)}
$$

based on Mahalanobis distance:

$$
\left(\delta^{M a h}\right)^{2}(\boldsymbol{x} \mid X)=\left(\boldsymbol{x}-\boldsymbol{\mu}_{X}\right)^{T} \boldsymbol{\Sigma}_{X}^{-1}\left(\boldsymbol{x}-\boldsymbol{\mu}_{X}\right)
$$

- In the empirical version, $\boldsymbol{\mu}_{X}$ and $\boldsymbol{\Sigma}_{X}$ are substituted by suitable estimates:
- moment estimates;
- robust estimates such as minimum volume ellipsoid or minimum covariance determinant (MCD).
- Properties:
- satisfies D1 - D5 and D4con, is continuous;
- being defined by $d(d+1)$ parameters, can be seen as a parametric depth;

Mahalanobis depth (Mahalanobis, 1936)

- Mahalanobis depth is defined as:

$$
D^{M a h}(\boldsymbol{x} \mid X)=\frac{1}{1+\left(\delta^{M a h}\right)^{2}(\boldsymbol{x} \mid X)}
$$

based on Mahalanobis distance:

$$
\left(\delta^{M a h}\right)^{2}(\boldsymbol{x} \mid X)=\left(\boldsymbol{x}-\boldsymbol{\mu}_{X}\right)^{T} \boldsymbol{\Sigma}_{X}^{-1}\left(\boldsymbol{x}-\boldsymbol{\mu}_{X}\right)
$$

- In the empirical version, $\boldsymbol{\mu}_{X}$ and $\boldsymbol{\Sigma}_{X}$ are substituted by suitable estimates:
- moment estimates;
- robust estimates such as minimum volume ellipsoid or minimum covariance determinant (MCD).
- Properties:
- satisfies D1 - D5 and D4con, is continuous;
- being defined by $d(d+1)$ parameters, can be seen as a parametric depth;
- by a single elliptical contour characterizes a multivariate normal distribution or one within an affine family of non-degenerate elliptical distributions,

ECG five days data

ECG five days data

$$
\hat{f}_{i} \mapsto \boldsymbol{x}_{i}=\left[\int_{0}^{T} \hat{f}_{i}(t) d t, \int_{0}^{T} \hat{f}_{i}^{\prime}(t) d t\right]
$$

with $\hat{f}_{i}(t)$ being the function obtained by connecting the points $\left(t_{i j}, f_{i}\left(t_{i j}\right)\right), j=1, \ldots, N_{i}$ with line segments, $\hat{f}_{i}^{\prime}(t)$ its derivative.

ECG five days data

$$
\hat{f}_{i} \mapsto \boldsymbol{x}_{i}=\left[\int_{0}^{T} \hat{f}_{i}(t) d t, \int_{0}^{T} \hat{f}_{i}^{\prime}(t) d t\right]
$$

with $\hat{f}_{i}(t)$ being the function obtained by connecting the points $\left(t_{i j}, f_{i}\left(t_{i j}\right)\right), j=1, \ldots, N_{i}$ with line segments, $\hat{f}_{i}^{\prime}(t)$ its derivative.

Mahalanobis depth (Mahalanobis, 1936)

Mahalanobis depth (Mahalanobis, 1936)

Multivariate anomaly detection: an example

Multivariate anomaly detection: an example

- Checking for minimum and maximum in each test result.

Multivariate anomaly detection: an example

- Checking for minimum and maximum in each test result.
- Label observation \boldsymbol{x} as anomaly if:

$$
\boldsymbol{x} \notin[\min (\text { Test } 1), \max (\text { Test } 1)] \times[\min (\text { Test2 }), \max (\text { Test } 2)] .
$$

Multivariate anomaly detection: an example

- Checking for minimum and maximum in each test result.
- Label observation \boldsymbol{x} as anomaly if:

$$
\boldsymbol{x} \notin[\min (\text { Test } 1), \max (\text { Test } 1)] \times[\min (\text { Test2 }), \max (\text { Test } 2)] .
$$

- Not all anomalies can be detected.

Multivariate anomaly detection: an example

- Mahalanobis distance of an observation $\boldsymbol{x} \in \mathbb{R}^{2}$ (from the mean) is defined as follows:

$$
d_{M a h}(\boldsymbol{x} \mid \boldsymbol{X})=(\boldsymbol{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu}),
$$

where $\boldsymbol{\mu}$ is the mean and $\boldsymbol{\Sigma}$ is the covariance matrix.

Multivariate anomaly detection: an example

- Mahalanobis distance of an observation $\boldsymbol{x} \in \mathbb{R}^{2}$ (from the mean) is defined as follows:

$$
d_{M a h}(\boldsymbol{x} \mid \boldsymbol{X})=(\boldsymbol{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu}),
$$

where $\boldsymbol{\mu}$ is the mean and $\boldsymbol{\Sigma}$ is the covariance matrix.

- Label \boldsymbol{x} as anomaly $d_{\text {Mah }}(\boldsymbol{x} \mid \boldsymbol{X})>\max \left(d_{\text {Mah }}\right)$.

Multivariate anomaly detection: robustness

Multivariate anomaly detection: robustness

- Mahalanobis distance (moment estimators) not robust.

Multivariate anomaly detection: robustness

- Mahalanobis distance (moment estimators) not robust.
- Stahel-Donoho outlyingness of \boldsymbol{x} w.r.t. $\boldsymbol{X}=\left\{\boldsymbol{x}_{i}\right\}_{i=1}^{n}$:

$$
O_{S D}(\boldsymbol{x} \mid \boldsymbol{X})=\max _{\boldsymbol{u} \in \mathcal{S}^{d-1}} \frac{\left|\boldsymbol{x}^{\top} \boldsymbol{u}-\operatorname{med}(\boldsymbol{X} \boldsymbol{u})\right|}{\operatorname{MAD}(\boldsymbol{X} \boldsymbol{u})}
$$

Multivariate anomaly detection: robustness

- Mahalanobis distance (moment estimators) not robust.
- Stahel-Donoho outlyingness of \boldsymbol{x} w.r.t. $\boldsymbol{X}=\left\{\boldsymbol{x}_{i}\right\}_{i=1}^{n}$:

$$
O_{S D}(\boldsymbol{x} \mid \boldsymbol{X})=\max _{\boldsymbol{u} \in \mathcal{S}^{d-1}} \frac{\left|\boldsymbol{x}^{\top} \boldsymbol{u}-\operatorname{med}(\boldsymbol{X} \boldsymbol{u})\right|}{\operatorname{MAD}(\boldsymbol{X} \boldsymbol{u})}
$$

Multivariate anomaly detection: robustness

- Mahalanobis distance (moment estimators) not robust.
- Stahel-Donoho outlyingness of \boldsymbol{x} w.r.t. $\boldsymbol{X}=\left\{\boldsymbol{x}_{i}\right\}_{i=1}^{n}$:

$$
O_{S D}(\boldsymbol{x} \mid \boldsymbol{X})=\max _{\boldsymbol{u} \in \mathcal{S}^{d-1}} \frac{\left|\boldsymbol{x}^{\top} \boldsymbol{u}-\operatorname{med}(\boldsymbol{X} \boldsymbol{u})\right|}{\operatorname{MAD}(\boldsymbol{X} \boldsymbol{u})}
$$

Multivariate anomaly detection: robustness

- Mahalanobis distance (moment estimators) not robust.
- Stahel-Donoho outlyingness of \boldsymbol{x} w.r.t. $\boldsymbol{X}=\left\{\boldsymbol{x}_{i}\right\}_{i=1}^{n}$:

$$
O_{S D}(\boldsymbol{x} \mid \boldsymbol{X})=\max _{\boldsymbol{u} \in \mathcal{S}^{d-1}} \frac{\left|\boldsymbol{x}^{\top} \boldsymbol{u}-\operatorname{med}(\boldsymbol{X} \boldsymbol{u})\right|}{\operatorname{MAD}(\boldsymbol{X} \boldsymbol{u})}
$$

Multivariate anomaly detection: robustness

- Mahalanobis distance (moment estimators) not robust.
- Stahel-Donoho outlyingness of \boldsymbol{x} w.r.t. $\boldsymbol{X}=\left\{\boldsymbol{x}_{i}\right\}_{i=1}^{n}$:

$$
O_{S D}(\boldsymbol{x} \mid \boldsymbol{X})=\max _{\boldsymbol{u} \in \mathcal{S}^{d-1}} \frac{\left|\boldsymbol{x}^{\top} \boldsymbol{u}-\operatorname{med}(\boldsymbol{X} \boldsymbol{u})\right|}{\operatorname{MAD}(\boldsymbol{X} \boldsymbol{u})}
$$

Multivariate anomaly detection: robustness

- Mahalanobis distance (moment estimators) not robust.
- Stahel-Donoho outlyingness of \boldsymbol{x} w.r.t. $\boldsymbol{X}=\left\{\boldsymbol{x}_{i}\right\}_{i=1}^{n}$:

$$
O_{S D}(\boldsymbol{x} \mid \boldsymbol{X})=\max _{\boldsymbol{u} \in \mathcal{S}^{d-1}} \frac{\left|\boldsymbol{x}^{\top} \boldsymbol{u}-\operatorname{med}(\boldsymbol{X} \boldsymbol{u})\right|}{\operatorname{MAD}(\boldsymbol{X} \boldsymbol{u})}
$$

Multivariate anomaly detection: robustness

- Mahalanobis distance (moment estimators) not robust.
- Stahel-Donoho outlyingness of \boldsymbol{x} w.r.t. $\boldsymbol{X}=\left\{\boldsymbol{x}_{i}\right\}_{i=1}^{n}$:

$$
O_{S D}(\boldsymbol{x} \mid \boldsymbol{X})=\max _{\boldsymbol{u} \in \mathcal{S}^{d-1}} \frac{\left|\boldsymbol{x}^{\top} \boldsymbol{u}-\operatorname{med}(\boldsymbol{X} \boldsymbol{u})\right|}{\operatorname{MAD}(\boldsymbol{X} \boldsymbol{u})}
$$

Multivariate anomaly detection: robustness

- Mahalanobis distance (moment estimators) not robust.
- Stahel-Donoho outlyingness of \boldsymbol{x} w.r.t. $\boldsymbol{X}=\left\{\boldsymbol{x}_{i}\right\}_{i=1}^{n}$:

$$
O_{S D}(\boldsymbol{x} \mid \boldsymbol{X})=\max _{\boldsymbol{u} \in \mathcal{S}^{d-1}} \frac{\left|\boldsymbol{x}^{\top} \boldsymbol{u}-\operatorname{med}(\boldsymbol{X} \boldsymbol{u})\right|}{\operatorname{MAD}(\boldsymbol{X} \boldsymbol{u})}
$$

Multivariate anomaly detection: robustness

- Mahalanobis distance (moment estimators) not robust.
- Stahel-Donoho outlyingness of \boldsymbol{x} w.r.t. $\boldsymbol{X}=\left\{\boldsymbol{x}_{i}\right\}_{i=1}^{n}$:

$$
O_{S D}(\boldsymbol{x} \mid \boldsymbol{X})=\max _{\boldsymbol{u} \in \mathcal{S}^{d-1}} \frac{\left|\boldsymbol{x}^{\top} \boldsymbol{u}-\operatorname{med}(\boldsymbol{X} \boldsymbol{u})\right|}{\operatorname{MAD}(\boldsymbol{X} \boldsymbol{u})}
$$

- Label \boldsymbol{x} as anomaly if $O_{S D}(\boldsymbol{x} \mid \boldsymbol{X})>\max \left(O_{S D}\right)$.

Multivariate anomaly detection: robustness

- Mahalanobis distance (moment estimators) not robust.
- Stahel-Donoho outlyingness of \boldsymbol{x} w.r.t. $\boldsymbol{X}=\left\{\boldsymbol{x}_{i}\right\}_{i=1}^{n}$:

$$
O_{S D}(\boldsymbol{x} \mid \boldsymbol{X})=\max _{\boldsymbol{u} \in \mathcal{S}^{d-1}} \frac{\left|\boldsymbol{x}^{\top} \boldsymbol{u}-\operatorname{med}(\boldsymbol{X} \boldsymbol{u})\right|}{\operatorname{MAD}(\boldsymbol{X} \boldsymbol{u})}
$$

- Label \boldsymbol{x} as anomaly if $O_{S D}(\boldsymbol{x} \mid \boldsymbol{X})>\max \left(O_{S D}\right)$.

Projection depth (Zuo \& Serfling, 2000)

According to Zuo \& Serfling (2000), projection depth is defined as:

$$
D^{p r j}(x \mid X)=\frac{1}{1+O_{S D}(x \mid X)}
$$

Projection depth (Zuo \& Serfling, 2000)

According to Zuo \& Serfling (2000), projection depth is defined as:

$$
D^{p r j}(\boldsymbol{x} \mid X)=\frac{1}{1+O_{S D}(\boldsymbol{x} \mid X)}
$$

where

$$
O_{S D}(\boldsymbol{x} \mid X)=\sup _{\boldsymbol{r} \in S^{d-1}} \frac{\left|X^{T} \boldsymbol{r}-\operatorname{med}\left(X^{T} \boldsymbol{r}\right)\right|}{\operatorname{MAD}\left(X^{T} \boldsymbol{r}\right)}
$$

is the projected outlyingness (Stahel, 1981; Donoho, 1982), $\operatorname{med}(Y)$ and $\operatorname{MAD}(Y)=\operatorname{med}(|Y-\operatorname{med}(Y)|)$ are the univariate median and median absolute deviation from the median, respectively.

Projection depth (Zuo \& Serfling, 2000)

According to Zuo \& Serfling (2000), projection depth is defined as:

$$
D^{p r j}(\boldsymbol{x} \mid X)=\frac{1}{1+O_{S D}(\boldsymbol{x} \mid X)},
$$

where

$$
O_{S D}(\boldsymbol{x} \mid X)=\sup _{\boldsymbol{r} \in S^{d-1}} \frac{\left|X^{\top} \boldsymbol{r}-\operatorname{med}\left(X^{\top} \boldsymbol{r}\right)\right|}{\operatorname{MAD}\left(X^{\top} \boldsymbol{r}\right)}
$$

is the projected outlyingness (Stahel, 1981; Donoho, 1982), $\operatorname{med}(Y)$ and $\operatorname{MAD}(Y)=\operatorname{med}(|Y-\operatorname{med}(Y)|)$ are the univariate median and median absolute deviation from the median, respectively.

Properties:

- Satisfies D1 - D5 and D4con, is continuous;

Projection depth (Zuo \& Serfling, 2000)

According to Zuo \& Serfling (2000), projection depth is defined as:

$$
D^{p r j}(\boldsymbol{x} \mid X)=\frac{1}{1+O_{S D}(\boldsymbol{x} \mid X)},
$$

where

$$
O_{S D}(\boldsymbol{x} \mid X)=\sup _{\boldsymbol{r} \in S^{d-1}} \frac{\left|X^{\top} \boldsymbol{r}-\operatorname{med}\left(X^{\top} \boldsymbol{r}\right)\right|}{\operatorname{MAD}\left(X^{\top} \boldsymbol{r}\right)}
$$

is the projected outlyingness (Stahel, 1981; Donoho, 1982), $\operatorname{med}(Y)$ and $\operatorname{MAD}(Y)=\operatorname{med}(|Y-\operatorname{med}(Y)|)$ are the univariate median and median absolute deviation from the median, respectively.

Properties:

- Satisfies D1 - D5 and D4con, is continuous;
- its median has asymptotic breakdown point of 0.5.

Projection depth (Zuo \& Serfling, 2000)

Spatial depth (Vardi \& Zhang, 2000; Serfling 2002)

Exploiting the idea of spatial quantiles of Chaudhuri (1996) and Koltchinskii (1997), Vardi \& Zhang (2000) and Serflig (2002) formulate the spatial depth (also L_{1}-depth) as:
$D^{s p t}(\boldsymbol{x} \mid X)=1-\left\|\mathbb{E}\left[\frac{\boldsymbol{x}-X}{\|\boldsymbol{x}-X\|}\right]\right\|$ with $\quad \frac{\boldsymbol{x}-X}{\|\boldsymbol{x}-X\|}=0 \quad$ if $\quad \boldsymbol{x}-X=\mathbf{0}$.

Spatial depth (Vardi \& Zhang, 2000; Serfling 2002)

Exploiting the idea of spatial quantiles of Chaudhuri (1996) and Koltchinskii (1997), Vardi \& Zhang (2000) and Serflig (2002) formulate the spatial depth (also L_{1}-depth) as:
$D^{s p t}(\boldsymbol{x} \mid X)=1-\left\|\mathbb{E}\left[\frac{\boldsymbol{x}-X}{\|\boldsymbol{x}-X\|}\right]\right\|$ with $\quad \frac{\boldsymbol{x}-X}{\|\boldsymbol{x}-X\|}=0 \quad$ if $\quad \boldsymbol{x}-X=\mathbf{0}$.

Spatial depth (Vardi \& Zhang, 2000; Serfling 2002)

Exploiting the idea of spatial quantiles of Chaudhuri (1996) and Koltchinskii (1997), Vardi \& Zhang (2000) and Serflig (2002) formulate the spatial depth (also L_{1}-depth) as:
$D^{s p t}(\boldsymbol{x} \mid X)=1-\left\|\mathbb{E}\left[\frac{\boldsymbol{x}-X}{\|\boldsymbol{x}-X\|}\right]\right\|$ with $\quad \frac{\boldsymbol{x}-X}{\|\boldsymbol{x}-X\|}=0 \quad$ if $\quad \boldsymbol{x}-X=\mathbf{0}$.

Spatial depth (Vardi \& Zhang, 2000; Serfling 2002)

Exploiting the idea of spatial quantiles of Chaudhuri (1996) and Koltchinskii (1997), Vardi \& Zhang (2000) and Serflig (2002) formulate the spatial depth (also L_{1}-depth) as:
$D^{s p t}(\boldsymbol{x} \mid X)=1-\left\|\mathbb{E}\left[\frac{\boldsymbol{x}-X}{\|\boldsymbol{x}-X\|}\right]\right\|$ with $\quad \frac{\boldsymbol{x}-X}{\|\boldsymbol{x}-X\|}=0 \quad$ if $\quad \boldsymbol{x}-X=\mathbf{0}$.

Spatial depth (Vardi \& Zhang, 2000; Serfling 2002)

Exploiting the idea of spatial quantiles of Chaudhuri (1996) and Koltchinskii (1997), Vardi \& Zhang (2000) and Serflig (2002) formulate the spatial depth (also L_{1}-depth) as:
$D^{s p t}(\boldsymbol{x} \mid X)=1-\left\|\mathbb{E}\left[\frac{\boldsymbol{x}-X}{\|\boldsymbol{x}-X\|}\right]\right\|$ with $\quad \frac{\boldsymbol{x}-X}{\|\boldsymbol{x}-X\|}=0 \quad$ if $\quad \boldsymbol{x}-X=\mathbf{0}$.

Spatial depth (Vardi \& Zhang, 2000; Serfling 2002)

Exploiting the idea of spatial quantiles of Chaudhuri (1996) and Koltchinskii (1997), Vardi \& Zhang (2000) and Serflig (2002) formulate the spatial depth (also L_{1}-depth) as:
$D^{s p t}(\boldsymbol{x} \mid X)=1-\left\|\mathbb{E}\left[\frac{\boldsymbol{x}-X}{\|\boldsymbol{x}-X\|}\right]\right\|$ with $\quad \frac{\boldsymbol{x}-X}{\|\boldsymbol{x}-X\|}=0 \quad$ if $\quad \boldsymbol{x}-X=\mathbf{0}$.

Spatial depth (Vardi \& Zhang, 2000; Serfling 2002)

Exploiting the idea of spatial quantiles of Chaudhuri (1996) and Koltchinskii (1997), Vardi \& Zhang (2000) and Serflig (2002) formulate the spatial depth (also L_{1}-depth) as:
$D^{s p t}(\boldsymbol{x} \mid X)=1-\left\|\mathbb{E}\left[\frac{\boldsymbol{x}-X}{\|\boldsymbol{x}-X\|}\right]\right\|$ with $\quad \frac{\boldsymbol{x}-X}{\|\boldsymbol{x}-X\|}=0 \quad$ if $\quad \boldsymbol{x}-X=\mathbf{0}$.

Spatial depth (Vardi \& Zhang, 2000; Serfling 2002)

Exploiting the idea of spatial quantiles of Chaudhuri (1996) and Koltchinskii (1997), Vardi \& Zhang (2000) and Serflig (2002) formulate the spatial depth (also L_{1}-depth) as:
$D^{s p t}(\boldsymbol{x} \mid X)=1-\left\|\mathbb{E}\left[\frac{\boldsymbol{x}-X}{\|\boldsymbol{x}-X\|}\right]\right\|$ with $\quad \frac{\boldsymbol{x}-X}{\|\boldsymbol{x}-X\|}=0 \quad$ if $\quad \boldsymbol{x}-X=\mathbf{0}$.

Spatial depth (Vardi \& Zhang, 2000; Serfling 2002)

Exploiting the idea of spatial quantiles of Chaudhuri (1996) and Koltchinskii (1997), Vardi \& Zhang (2000) and Serflig (2002) formulate the spatial depth (also L_{1}-depth) as:
$D^{s p t}(\boldsymbol{x} \mid X)=1-\left\|\mathbb{E}\left[\frac{\boldsymbol{x}-X}{\|\boldsymbol{x}-X\|}\right]\right\|$ with $\quad \frac{\boldsymbol{x}-X}{\|\boldsymbol{x}-X\|}=0 \quad$ if $\quad \boldsymbol{x}-X=\mathbf{0}$.

Spatial depth (Vardi \& Zhang, 2000; Serfling 2002)

Exploiting the idea of spatial quantiles of Chaudhuri (1996) and Koltchinskii (1997), Vardi \& Zhang (2000) and Serflig (2002) formulate the spatial depth (also L_{1}-depth) as:

$$
D^{s p t}(\boldsymbol{x} \mid X)=1-\left\|\mathbb{E}\left[v\left(\boldsymbol{\Sigma}^{-\frac{1}{2}}(\boldsymbol{x}-X)\right)\right]\right\|,
$$

with

$$
v(\boldsymbol{y})= \begin{cases}\boldsymbol{y} \\ \|\boldsymbol{y}\| & \text { if } \boldsymbol{y} \neq \mathbf{0}, \\ \mathbf{0} & \text { if } \boldsymbol{y}=\mathbf{0} .\end{cases}
$$

Spatial depth (Vardi \& Zhang, 2000; Serfling 2002)

Exploiting the idea of spatial quantiles of Chaudhuri (1996) and Koltchinskii (1997), Vardi \& Zhang (2000) and Serflig (2002) formulate the spatial depth (also L_{1}-depth) as:

$$
D^{s p t}(\boldsymbol{x} \mid X)=1-\left\|\mathbb{E}\left[v\left(\boldsymbol{\Sigma}^{-\frac{1}{2}}(\boldsymbol{x}-X)\right)\right]\right\|,
$$

with

$$
v(\boldsymbol{y})= \begin{cases}\boldsymbol{y} & \text { if } \boldsymbol{y} \neq \mathbf{0} \\ \mathbf{0} \| & \text { if } \boldsymbol{y}=\mathbf{0} .\end{cases}
$$

Properties:

- satisfies D1 - D5, but not D4con, is continuous;

Spatial depth (Vardi \& Zhang, 2000; Serfling 2002)

Exploiting the idea of spatial quantiles of Chaudhuri (1996) and Koltchinskii (1997), Vardi \& Zhang (2000) and Serflig (2002) formulate the spatial depth (also L_{1}-depth) as:

$$
D^{s p t}(\boldsymbol{x} \mid X)=1-\left\|\mathbb{E}\left[v\left(\boldsymbol{\Sigma}^{-\frac{1}{2}}(\boldsymbol{x}-X)\right)\right]\right\|,
$$

with

$$
v(\boldsymbol{y})= \begin{cases}\boldsymbol{y} & \text { if } \boldsymbol{y} \neq \mathbf{0} \\ \mathbf{0} & \text { if } \boldsymbol{y}=\mathbf{0} .\end{cases}
$$

Properties:

- satisfies D1 - D5, but not D4con, is continuous;
- if $\boldsymbol{\Sigma}$ is orthogonal, satisfies D2iso only;

Spatial depth (Vardi \& Zhang, 2000; Serfling 2002)

Exploiting the idea of spatial quantiles of Chaudhuri (1996) and Koltchinskii (1997), Vardi \& Zhang (2000) and Serflig (2002) formulate the spatial depth (also L_{1}-depth) as:

$$
D^{s p t}(\boldsymbol{x} \mid X)=1-\left\|\mathbb{E}\left[v\left(\boldsymbol{\Sigma}^{-\frac{1}{2}}(\boldsymbol{x}-X)\right)\right]\right\|,
$$

with

$$
v(\boldsymbol{y})= \begin{cases}\boldsymbol{y} \\ \|\boldsymbol{y}\| & \text { if } \boldsymbol{y} \neq \mathbf{0}, \\ \mathbf{0} & \text { if } \boldsymbol{y}=\mathbf{0} .\end{cases}
$$

Properties:

- satisfies D1 - D5, but not D4con, is continuous;
- if $\boldsymbol{\Sigma}$ is orthogonal, satisfies D2iso only;
- with D2iso its maximum (say \boldsymbol{x}^{*}) is referred to as spatial median, a multivariate location estimator having asymptotic breakdown point of 0.5 .

Spatial depth (Vardi \& Zhang, 2000; Serfling 2002)

Contents

Introduction

Non-parametric approaches
One-class support vector machines
Local outlier factor
Isolation forest

Systematic orderings: data depth
The notion of data depth
The Tukey depth function
Central regions
Further depth notions
Practical session

Thank you for attention! (and a short list of literature)

- Chandola, V., Banerjee, A., and Kumar, V. (2009). Anomaly detection: A survey. ACM Computing Surveys (CSUR), 41(3):15, 1-58.
- Breunig, M.M., Kriegel, H.-P., Ng, R.T., and Sander, J. (2000). LOF: Identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, 29, 93-104.
- Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A., and Williamson, R. (2001). Estimating the support of a high-dimensional distribution. Neural Computation, 13(7), 1443-1471.
- Liu, F.T., Ting, K.M., and Zhou, Z. (2008). Isolation forest. In: Proceedings of the 2008 Eighth IEEE International Conference on Data Mining, 413-422.
- Mosler, K. (2013). Depth statistics. In: Robustness and Complex Data Structures: Festschrift in Honour of Ursula Gather, 17-34.

Practical session (part I)

Notebooks:

- anomdet_simulation1.Rmd,
- anomdet hurricanes.Rmd,
- anomdet_cars.ipynb,
- anomdet_airbus.ipynb.

Data sets:

- carsanom.csv: Data set on anomaly detection for cars.
- airbus_data.csv: Data set from Airbus.
- hurdat2-1851-2019-052520.txt: Historical hurricane data.

Supplementary scripts:

- depth_routines.py: Routines for data depth calculation.
- FIF.py: Implementation of the functional isolation forest.
- depth routines.R: Routines for curves' parametrization.

Literature (mentioned in the tutorial) (1)

- Boser, B.E., Guyon, I., and Vapnik, V.N. (1992). A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop of Computational Learning Theory, Pittsburgh, ACM, 5, 144-152.
- Breunig, M.M., Kriegel, H.-P., Ng, R.T., and Sander, J. (2000). LOF: Identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, 29, 93-104.
- Chandola, V., Banerjee, A., and Kumar, V. (2009). Anomaly detection: A survey. ACM Computing Surveys (CSUR), 41(3):15, 1-58.
- Chaudhuri P. (1996). On a geometric notion of quantiles for multivariate data. Journal of the American Statistical Association, 91, 862-872.
- Claeskens, G., Hubert, M., Slaets, L., and Vakili, K. (2014). Multivariate functional halfspace depth. Journal of the American Statistical Association, 109(505), 411-423.
- Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273-297.
- Donoho D. (1982). Breakdown Properties of Multivariate Location Estimators. Ph.D. thesis, Harvard University.
- Donoho D.L., Gasko M. (1992). Breakdown properties of location estimates based on halfspace depth and projected outlyingness. The Annals of Statistics, 20, 1803-1827.

Literature (mentioned in the tutorial) (2)

- Fraiman, R. and Muniz, G. (2001). Trimmed means for functional data. TEST, 10, 419-440.
- Hariri, S., Carrasco Kind, M., and Brunner, R.J. (2018). Extended isolation forest. arXiv:1811.02141.
- Hubert, M., Rousseeuw, P.J., and Segaert, P. (2015). Multivariate functional outlier detection. Statistical Methods \& Applications, 24(2), 177-202.
- Koltchinskii V. (1997). M-estimation, convexity and quantiles. The Annals of Statistics, 25, 435-477.
- Koshevoy G., Mosler K. (1997). Zonoid trimming for multivariate distributions. The Annals of Statistics, 25, 1998-2017.
- Liu R.Y. (1990). On a notion of data depth based on random simplices. The Annals of Statistics, 18, 405-414.
- Liu, Z. and Modarres, R. (2011). Lens data depth and median. Journal of Nonparametric Statistics, 23, 1063-1074.
- Liu, F.T., Ting, K.M., and Zhou, Z. (2008). Isolation forest. In: Proceedings of the 2008 Eighth IEEE International Conference on Data Mining, 413-422.

Literature (mentioned in the tutorial) (3)

- López-Pintado, S. and Romo, J. (2009). On the concept of depth for functional data. Journal of the American Statistical Association, 104(486), 718-734.
- Mahalanobis P.C. (1936). On the generalized distance in statistics. Proceedings of the National Institute of Sciences of India, 12, 49-55.
- Markou, M. and Singh, S. (2003). Novelty detection: a review - Part 1: Statistical approaches. Signal Processing, 83(12), 2481-2497.
- Markou, M. and Singh, S. (2003). Novelty detection: a review - Part 2: Neural network based approaches. Signal Processing, 83(12), 2499-2521.
- Miljković, D. (2010). Review of novelty detection methods. The 33rd International Convention MIPRO, Opatija, 593-598.
- Mosler, K. (2013). Depth statistics. In: Robustness and Complex Data Structures: Festschrift in Honour of Ursula Gather, 17-34.
- Oja, H. (1983). Descriptive statistics for multivariate distributions. Statistics and Probability Letters, 1, 327-332.
- Pimentel, M.A.F., Clifton, D.A., Clifton, L., and Tarassenko, L. (2014). A review of novelty detection. Signal Processing, 99, 215-249.
- Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A., and Williamson, R. (2001). Estimating the support of a high-dimensional distribution. Neural Computation, 13(7), 1443-1471.

Literature (mentioned in the tutorial) (4)

- Serfling, R. (2002). A depth function and a scale curve based on spatial quantiles. In: Statistical Data Analysis Based on the L_{1}-Norm and Related Methodsm Birkhäser, Basel, 25-38.
- Stahel W. (1981). Robust Estimation: Infinitesimal Optimality and Covariance Matrix Estimators (In German). Ph.D. thesis, Swiss Federal Institute of Technology in Zurich.
- Tukey J.W. (1975). Mathematics and the picturing of data. In: Proceedings of the International Congress of Mathematicians, volume 2, Canadian Mathematical Congress, 523-531.
- Vapnik, V. and Chervonenkis, A. (1974). Theory of Pattern Recognition (in Russian). Nauka, Moscow.
- Vapnik, V. and Lerner, A. (1963). Pattern recognition using generalized portraits. Avtomatika i Telemekhanika, 24, 774-780.
- Vardi Y., Zhang C. (2000). The multivariate L_{1}-median and associated data depth. Proceedings of the National Academy of Sciences of the United States of America, 97, 1423-1426.
- Zuo Y., Serfling R. (2000). General notions of statistical depth function. The Annals of Statistics, 28, 461-482.

