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A real task
Regard two measurements during a test in a production process:

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

● ●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●●
●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●
● ●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Given training data, polluted or not with anomalies:
▶ detect anomalies in the given data.



A real task
Regard two measurements during a test in a production process:
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Given training data, polluted or not with anomalies:
▶ detect anomalies in the given data.

For new data, determine:
▶ Whether new observations are normal data or anomalies?
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Given training data, polluted or not with anomalies:
▶ detect anomalies in the given data.

For new data, determine:
▶ Whether new observations are normal data or anomalies?



Multivariate framework
▶ A training data set:

X = {x1, ..., xn} ⊂ Rd

of observations in the d-dimensional Euclidean space.

▶ Typical example: a table from a data base, with lines being
observations (=individuals, items,...).

▶ Construct a decision function:

Rd → {−1,+1} : x 7→ g(x) ,

which attributes to any (possible) x ∈ Rd a label whether it is
an anomaly (e.g., +1) or a normal observation (e.g., −1).

▶ It is more useful to provide an ordering on Rd :

Rd → R : x 7→ g(x) ,

such that abnormal observations obtain higher anomaly score.



Multivariate framework
▶ A training data set:

X = {x1, ..., xn} ⊂ Rd

of observations in the d-dimensional Euclidean space.

▶ Typical example: a table from a data base, with lines being
observations (=individuals, items,...).

▶ Construct a decision function:

Rd → {−1,+1} : x 7→ g(x) ,

which attributes to any (possible) x ∈ Rd a label whether it is
an anomaly (e.g., +1) or a normal observation (e.g., −1).

▶ It is more useful to provide an ordering on Rd :

Rd → R : x 7→ g(x) ,

such that abnormal observations obtain higher anomaly score.



Multivariate framework
▶ A training data set:

X = {x1, ..., xn} ⊂ Rd

of observations in the d-dimensional Euclidean space.

▶ Typical example: a table from a data base, with lines being
observations (=individuals, items,...).

▶ Construct a decision function:

Rd → {−1,+1} : x 7→ g(x) ,

which attributes to any (possible) x ∈ Rd a label whether it is
an anomaly (e.g., +1) or a normal observation (e.g., −1).

▶ It is more useful to provide an ordering on Rd :

Rd → R : x 7→ g(x) ,

such that abnormal observations obtain higher anomaly score.



Multivariate framework
▶ A training data set:

X = {x1, ..., xn} ⊂ Rd

of observations in the d-dimensional Euclidean space.

▶ Typical example: a table from a data base, with lines being
observations (=individuals, items,...).

▶ Construct a decision function:

Rd → {−1,+1} : x 7→ g(x) ,

which attributes to any (possible) x ∈ Rd a label whether it is
an anomaly (e.g., +1) or a normal observation (e.g., −1).

▶ It is more useful to provide an ordering on Rd :

Rd → R : x 7→ g(x) ,

such that abnormal observations obtain higher anomaly score.



Practical session (parts I and II)

Notebooks:

▶ anomdet simulation1.Rmd,

▶ anomdet hurricanes.Rmd,

▶ anomdet cars.ipynb,

▶ anomdet airbus.ipynb.

Data sets:

▶ carsanom.csv: Data set on anomaly detection for cars.

▶ airbus data.csv: Data set from Airbus.

▶ hurdat2-1851-2019-052520.txt: Historical hurricane data.

Supplementary scripts:

▶ depth routines.py: Routines for data depth calculation.

▶ FIF.py: Implementation of the functional isolation forest.

▶ depth routines.R: Routines for curves’ parametrization.

https://perso.telecom-paristech.fr/mozharovskyi/resources/bpce2023/anomdet_simulation1.Rmd
https://perso.telecom-paristech.fr/mozharovskyi/resources/bpce2023/anomdet_hurricanes.Rmd
https://perso.telecom-paristech.fr/mozharovskyi/resources/bpce2023/anomdet_cars.ipynb
https://perso.telecom-paristech.fr/mozharovskyi/resources/bpce2023/anomdet_airbus.ipynb
https://perso.telecom-paristech.fr/mozharovskyi/tutanom/carsanom.csv
https://partage.imt.fr/index.php/s/KxiDcH5aeE4sCRq
https://perso.telecom-paristech.fr/mozharovskyi/tutanom/hurdat2-1851-2019-052520.txt
https://perso.telecom-paristech.fr/mozharovskyi/tutanom/depth_routines.py
https://perso.telecom-paristech.fr/mozharovskyi/tutanom/FIF.py
https://perso.telecom-paristech.fr/mozharovskyi/tutanom/depth_routines.R
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One-class support vector machines
(Schölkopf, Platt, Shawe-Taylor, Smola, Williamson; 1999)

Generalized portrait:

▶ The method of the generalized portrait was introduced by
Vapnik & Lerner (1963) and Vapnik & Chervonenkis (1974).

▶ Generalized portrait is the vector:

ψ =
φ

minx∈X ⟨x ,φ⟩
with φ from max

∥φ∥=1
min
x∈X

⟨x ,φ⟩ .
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One-class support vector machines
(Schölkopf, Platt, Shawe-Taylor, Smola, Williamson; 1999)

Kernel trick (Boser, Guyon, Vapnik; 1992):

▶ Let Φ be a feature map: Rd 7→ H.

▶ Due to the kernel trick, the dot product in the image of φ can
be computed by evaluation of a kernel K :

K (x i , x j) = ⟨Φ(x i ),Φ(x j)⟩ .

▶ Example: Gaussian kernel

K (x i , x j) = eγ∥x i ,x j∥

Soft margin (Cortes, Vapnik; 1995):

▶ Allow for a portion of points from X to be beyond the margin,
label points far from the origin by “1”, those close by “-1”.

▶ Controlled by a parameter ν ∈ (0, 1)
(Schölkopf, Platt, Shawe-Taylor, Smola, Williamson; 1999).



One-class support vector machines
(Schölkopf, Platt, Shawe-Taylor, Smola, Williamson; 1999)

Kernel trick (Boser, Guyon, Vapnik; 1992):

▶ Let Φ be a feature map: Rd 7→ H.

▶ Due to the kernel trick, the dot product in the image of φ can
be computed by evaluation of a kernel K :

K (x i , x j) = ⟨Φ(x i ),Φ(x j)⟩ .

▶ Example: Gaussian kernel

K (x i , x j) = eγ∥x i ,x j∥

Soft margin (Cortes, Vapnik; 1995):

▶ Allow for a portion of points from X to be beyond the margin,
label points far from the origin by “1”, those close by “-1”.

▶ Controlled by a parameter ν ∈ (0, 1)
(Schölkopf, Platt, Shawe-Taylor, Smola, Williamson; 1999).



One-class support vector machines
(Schölkopf, Platt, Shawe-Taylor, Smola, Williamson; 1999)

Kernel trick (Boser, Guyon, Vapnik; 1992):

▶ Let Φ be a feature map: Rd 7→ H.

▶ Due to the kernel trick, the dot product in the image of φ can
be computed by evaluation of a kernel K :

K (x i , x j) = ⟨Φ(x i ),Φ(x j)⟩ .

▶ Example: Gaussian kernel

K (x i , x j) = eγ∥x i ,x j∥

Soft margin (Cortes, Vapnik; 1995):

▶ Allow for a portion of points from X to be beyond the margin,
label points far from the origin by “1”, those close by “-1”.

▶ Controlled by a parameter ν ∈ (0, 1)
(Schölkopf, Platt, Shawe-Taylor, Smola, Williamson; 1999).



One-class support vector machines
(Schölkopf, Platt, Shawe-Taylor, Smola, Williamson; 1999)

Kernel trick (Boser, Guyon, Vapnik; 1992):

▶ Let Φ be a feature map: Rd 7→ H.

▶ Due to the kernel trick, the dot product in the image of φ can
be computed by evaluation of a kernel K :

K (x i , x j) = ⟨Φ(x i ),Φ(x j)⟩ .

▶ Example: Gaussian kernel

K (x i , x j) = eγ∥x i ,x j∥

Soft margin (Cortes, Vapnik; 1995):

▶ Allow for a portion of points from X to be beyond the margin,
label points far from the origin by “1”, those close by “-1”.

▶ Controlled by a parameter ν ∈ (0, 1)
(Schölkopf, Platt, Shawe-Taylor, Smola, Williamson; 1999).



One-class support vector machines
(Schölkopf, Platt, Shawe-Taylor, Smola, Williamson; 1999)

Kernel trick (Boser, Guyon, Vapnik; 1992):

▶ Let Φ be a feature map: Rd 7→ H.

▶ Due to the kernel trick, the dot product in the image of φ can
be computed by evaluation of a kernel K :

K (x i , x j) = ⟨Φ(x i ),Φ(x j)⟩ .

▶ Example: Gaussian kernel

K (x i , x j) = eγ∥x i ,x j∥

Soft margin (Cortes, Vapnik; 1995):

▶ Allow for a portion of points from X to be beyond the margin,
label points far from the origin by “1”, those close by “-1”.

▶ Controlled by a parameter ν ∈ (0, 1)
(Schölkopf, Platt, Shawe-Taylor, Smola, Williamson; 1999).



One-class support vector machines
(Schölkopf, Platt, Shawe-Taylor, Smola, Williamson; 1999)

Idea 1: Separate points from the origin.

This can be formulated as a quadratic programming problem

min
ψ∈H,ξ∈Rn,ρ∈R

1

2
∥ψ∥2 + 1

νn

n∑
i=1

ξi − ρ

subject to ⟨ψ,Φ(x i )⟩ ≥ ρ− ξi , ξi ≥ 0 for i = 1, ..., n ,

with ξ = (ξ1, ..., ξn)
⊤.

The solution (ψ∗, ξ∗, ρ∗) yields the following decision function:

gOCSVM(x) = sgn(⟨ψ∗,Φ(x)⟩ − ρ∗) .

One can reformulate the optimization problem to employ the
kernel trick.
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One-class support vector machines (Schölkopf et al., 1999)
In dual formulation, using the Lagrangian, one can restate the
optimization problem as follows:

min
α

1

2

n∑
i=1

n∑
j=1

αiαjK (x i , x j)

subject to 0 ≤ αi ≤
1

νn
for i = 1, ..., n,

n∑
i=1

αi = 1 ,

with α = (α1, ..., αn)
⊤.

The decision function is then:

gOCSVM(x) = sgn
( n∑
i=1

αiK (x i , x)− ρ
)
,

where ρ can be recovered from any x j such that 0 < αj <
1
νn :

ρ = ⟨ψ,Φ(x i )⟩ =
n∑

i=1

αiK (x i , x j) .
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One-class support vector machines (Schölkopf et al., 1999)
Idea 2: Put points into a small ball.

min
R∈R,ξ∈Rn,c∈H,

R2 +
1

νn

n∑
i=1

ξi

subject to ∥Φ(x i )− c∥ ≤ R2 + ξi , ξi ≥ 0 for i = 1, ..., n .

This leads to the dual:

min
α

n∑
i=1

n∑
j=1

αiαjK (x i , x j)−
n∑

i=1

αiK (x i , x i )

subject to 0 ≤ αi ≤
1

νn
, for i = 1, ..., n,

n∑
i=1

αi = 1 .

which leads to the decision function:

gOCSVM(x) =
(
R2−

n∑
i=1

n∑
j=1

αiαjK (x i , x j)+2
n∑

i=1

αiK (x i , x)−K (x , x)
)
,

with R2 =
∑

i ,j αiαjK (x i , x j)− 2
∑

i αiK (x i , xk) + K (xk , xk) for
any xk such that 0 < αk < 1/(νn).
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One-class support vector machines
(Schölkopf, Platt, Shawe-Taylor, Smola, Williamson; 1999)

Illustration: Case 1
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Illustration: Case 1
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Illustration: Case 1

−1.5 −1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

One−class SVM,  ν  =  0.5

X1

X
2

0.29

−1

0.61

−0.56

0

0

0

0.73

−0.16

−0.93

0.16

−0.36

−0.71

0.46

0.29

0.16

0.68

−0.44

0.72 0.52

−0.24

−1.24

0.71

−0.29
0.29

−3.73



One-class support vector machines
(Schölkopf, Platt, Shawe-Taylor, Smola, Williamson; 1999)

Illustration: Case 1
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Illustration: Case 1
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Illustration: Case 1
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Illustration: Case 1
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Illustration: Case 2
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Illustration: Case 2
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Illustration: Case 2
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Illustration: Case 2

−1.5 −1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

One−class SVM,  ν  =  0.5

X1

X
2

0.49

−1.39

0.22

−0.61

0.39

−0.05

0.05

0.36

−0.54

−0.23

0.63

0.08

−1.01

0.47

0.01

−0.01

0.41

−0.28

0.69 0.25

−0.21

−1.3

0.34

0.38
0.57

−0.51−0.24

−0.59

−0.25

−0.15



One-class support vector machines
(Schölkopf, Platt, Shawe-Taylor, Smola, Williamson; 1999)

Illustration: Case 2
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Illustration: Case 2
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Illustration: Case 2
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Illustration: Case 2
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)

k-distance of a point x :
For any integer k > 0, the k-distance of point x , denoted as
k-dist(x), is defined as the distance d(x , o) between x and a point
o ∈ X such that:

▶ for at least k points o ′ ∈ X \ {x} it holds that
d(x , o ′) ≤ d(x , o), and

▶ for at most k − 1 points o ′ ∈ X \ {x} it holds that
d(x , o ′) < d(x , o).

(=Distance from x to its kth neighbor.)

k-neighborhood of a point x :
Given the k-dist(x), the k-neighborhood of x , denoted Nk(x),
contains every point whose distance from x is not greater than the
k-dist(x), i.e.:

Nk(x) =
{
q ∈ X \ {x} | d(x ,q) ≤ k-dist(x)

}
.
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Reachability distance of order k of point x w.r.t. point o:
For k ∈ N, the reachability distance of order k of point x with
respect to point o is defined as:

reach-distk(x , o) = max{k-dist(o), d(x , o)} .
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local reachability density of a point x :
The local reachability density of x is defined as:

lrdk(x) =
|Nk(x)|∑

o∈Nk (x) reach-distk(x , o)
.
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local reachability density of a point x :
The local reachability density of x is defined as:

lrdk(x) =
|Nk(x)|∑

o∈Nk (x) reach-distk(x , o)
.
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local reachability density of a point x :
The local reachability density of x is defined as:

lrdk(x) =
|Nk(x)|∑

o∈Nk (x) reach-distk(x , o)
.
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local reachability density of a point x :
The local reachability density of x is defined as:

lrdk(x) =
|Nk(x)|∑

o∈Nk (x) reach-distk(x , o)
.
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local reachability density of a point x :
The local reachability density of x is defined as:

lrdk(x) =
|Nk(x)|∑

o∈Nk (x) reach-distk(x , o)
.
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local reachability density of a point x :
The local reachability density of x is defined as:

lrdk(x) =
|Nk(x)|∑

o∈Nk (x) reach-distk(x , o)
.

−1.5 −1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

Local reachability density, k = 6

X1

X
2

3.15

2.52

3.83

3.06

2.67

4.26

3.82

4.23

3.11

3.25

3.28

3.4

2.86

3.54

4.24

3.43

4.25

3.15

3.52 4.07

3.24

2.31

4.26

3.4
3.34

0.6 0.61

0.6

0.61

0.62



Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local reachability density of a point x :
The local reachability density of x is defined as:

lrdk(x) =
|Nk(x)|∑

o∈Nk (x) reach-distk(x , o)
.
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local reachability density of a point x :
The local reachability density of x is defined as:

lrdk(x) =
|Nk(x)|∑

o∈Nk (x) reach-distk(x , o)
.
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local reachability density of a point x :
The local reachability density of x is defined as:

lrdk(x) =
|Nk(x)|∑

o∈Nk (x) reach-distk(x , o)
.
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local reachability density of a point x :
The local reachability density of x is defined as:

lrdk(x) =
|Nk(x)|∑

o∈Nk (x) reach-distk(x , o)
.
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local reachability density of a point x :
The local reachability density of x is defined as:

lrdk(x) =
|Nk(x)|∑

o∈Nk (x) reach-distk(x , o)
.
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local reachability density of a point x :
The local reachability density of x is defined as:

lrdk(x) =
|Nk(x)|∑

o∈Nk (x) reach-distk(x , o)
.
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local reachability density of a point x :
The local reachability density of x is defined as:

lrdk(x) =
|Nk(x)|∑

o∈Nk (x) reach-distk(x , o)
.
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local reachability density of a point x :
The local reachability density of x is defined as:

lrdk(x) =
|Nk(x)|∑

o∈Nk (x) reach-distk(x , o)
.
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local outlier factor of a point x :
The local outlier factor of x is defined as:

LOFk(x) =

∑
o∈Nk (x)

lrdk (o)
lrdk (x)

|Nk(x)|
.
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local outlier factor of a point x :
The local outlier factor of x is defined as:

LOFk(x) =

∑
o∈Nk (x)

lrdk (o)
lrdk (x)

|Nk(x)|
.
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local outlier factor of a point x :
The local outlier factor of x is defined as:

LOFk(x) =

∑
o∈Nk (x)

lrdk (o)
lrdk (x)

|Nk(x)|
.
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local outlier factor of a point x :
The local outlier factor of x is defined as:

LOFk(x) =

∑
o∈Nk (x)

lrdk (o)
lrdk (x)

|Nk(x)|
.
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local outlier factor of a point x :
The local outlier factor of x is defined as:

LOFk(x) =

∑
o∈Nk (x)

lrdk (o)
lrdk (x)

|Nk(x)|
.
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local outlier factor of a point x :
The local outlier factor of x is defined as:

LOFk(x) =

∑
o∈Nk (x)

lrdk (o)
lrdk (x)

|Nk(x)|
.

−1.5 −1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

Local outlier factor, k = 6

X1

X
2

1.07

1.19

1.02

1.24

1.13

0.97

1.01

0.98

1.18

1.05

1.04

1

1.29

0.96

0.98

1.04

0.97

1.2

0.94 1.03

1.16

1.31

0.97

1
1.02

2.522.48

2.51

2.49

2.45



Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local outlier factor of a point x :
The local outlier factor of x is defined as:

LOFk(x) =

∑
o∈Nk (x)

lrdk (o)
lrdk (x)

|Nk(x)|
.
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local outlier factor of a point x :
The local outlier factor of x is defined as:

LOFk(x) =

∑
o∈Nk (x)

lrdk (o)
lrdk (x)

|Nk(x)|
.
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local outlier factor of a point x :
The local outlier factor of x is defined as:

LOFk(x) =

∑
o∈Nk (x)

lrdk (o)
lrdk (x)

|Nk(x)|
.
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local outlier factor of a point x :
The local outlier factor of x is defined as:

LOFk(x) =

∑
o∈Nk (x)

lrdk (o)
lrdk (x)

|Nk(x)|
.
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local outlier factor of a point x :
The local outlier factor of x is defined as:

LOFk(x) =

∑
o∈Nk (x)

lrdk (o)
lrdk (x)

|Nk(x)|
.
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local outlier factor of a point x :
The local outlier factor of x is defined as:

LOFk(x) =

∑
o∈Nk (x)

lrdk (o)
lrdk (x)

|Nk(x)|
.
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local outlier factor of a point x :
The local outlier factor of x is defined as:

LOFk(x) =

∑
o∈Nk (x)

lrdk (o)
lrdk (x)

|Nk(x)|
.
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Local outlier factor (Breunig, Kriegel, Ng, Sander; 2000)
Local outlier factor of a point x :
The local outlier factor of x is defined as:

LOFk(x) =

∑
o∈Nk (x)

lrdk (o)
lrdk (x)

|Nk(x)|
.
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Isolation forest (Liu, Ting, Zhou; 2008)

▶ Isolation forest (Liu, Ting, Zhou; 2008) is an anomaly
detection method inherited from the famous random forest
algorithm (Breiman, 2001).

▶ Since no supervised feedback is given, isolation forest is based
on purely random (uniform) variable-based partitioning.

▶ Main idea: Outlying observations are isolated faster.

▶ Tree-kind partitioning is done until “full isolation”: outlying
observations will have smaller depth (on an average) in the
isolation tree.

▶ A monotone transform is usually applied to the aggregated
estimate.

▶ To reduce both masking effect and computation cost,
small-size sub-sampling is used instead of bootstrap.
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Isolation forest (Liu, Ting, Zhou; 2008)
▶ Each isolation tree is grown recursively using the described

below node-construction procedure

Non-terminal node (j , k), subspace Cj ,k , training subset Sj ,k :

1. Choose a split variable l uniformly from {1, ..., d}.
2. Choose randomly and uniformly a split value κ in the interval[

min
x∈Sj,k

⟨x , e l⟩, max
x∈Sj,k

⟨x , e j⟩
]
.

3. Form the children subsets

Cj+1,2k = Cj ,k ∩ {x ∈ Rd : ⟨x , e l⟩ ≤ κ},
Cj+1,2k+1 = Cj ,k ∩ {x ∈ Rd : ⟨x , e l⟩ > κ}.

as well as the children training datasets

Sj+1,2k = Sj ,k ∩ Cj+1,2k and Sj+1,2k+1 = Sj ,k ∩ Cj+1,2k+1.

Stop when only one observation is in each node: isolation.
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Isolation forest (Liu, Ting, Zhou; 2008)
Illustration: Isolation tree
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Illustration: Isolation tree
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Illustration: Isolation tree
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Illustration: Isolation tree
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Illustration: Isolation tree
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Illustration: Isolation tree
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Illustration: Isolation tree
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Illustration: Isolation tree
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Illustration: Isolation tree
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Illustration: Isolation tree
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Illustration: Isolation tree
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Illustration: Isolation tree
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Illustration: Isolation tree

−1.5 −1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

Isolation tree, split 13

X1

X
2

8

8

10
10

98
7

6 6

1



Isolation forest (Liu, Ting, Zhou; 2008)
Illustration: Isolation tree
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Illustration: Isolation tree
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Illustration: Isolation tree
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Illustration: Isolation tree
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Illustration: Isolation tree
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Isolation forest (Liu, Ting, Zhou; 2008)
Illustration: Isolation tree
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Illustration: Isolation tree
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Illustration: Isolation tree
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Illustration: Isolation tree
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Illustration: Isolation tree
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Illustration: Isolation tree
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Illustration: Isolation tree
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Isolation forest (Liu, Ting, Zhou; 2008)

Anomaly score calculation for observation x :
1. For each isolation tree i ∈ {1, ...,T}, locate x in a terminal

node and calculate the depth of this node hi (x).
2. Attribute the anomaly score:

s(x) = 2
−

1
n
∑T

i=1 hi (x)
c(n) ,

with c(n) = 2H(n − 1)− 2(n−1)
n where H(k) is the harmonic

number and can be estimated by ln(k) + 0.5772156649.

Score behavior:

▶ when 1
n

∑T
i=1 hi (x) → c(n), s(x) → 0.5,

▶ when 1
n

∑T
i=1 hi (x) → 0, s(x) → 1,

▶ when 1
n

∑T
i=1 hi (x) → n − 1, s(x) → 0.



Isolation forest (Liu, Ting, Zhou; 2008)
Illustration: Anomaly score
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Data depth
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Statistical data depth
A data depth measures how close a given point is located to the
center of a distribution. For x ∈ Rp and a p-variate random vector
X distributed as P ∈ P, a data depth is a function

D : Rp × P → [0, 1], (x ,P) 7→ D(x |P)

that is:

D1 translation invariant: D(x + b|X + b) = D(x |X ) for any
b ∈ Rp;

D2 linear invariant: D(Ax |AX ) = D(x |X ) for any p × p
non-singular matrix A;

D3 vanishing at infinity: lim||x ||→∞D(x |X ) = 0;

D4 monotone on rays: for any x∗ ∈ argmaxx∈Rp D(x |X ), any
x ∈ Rp, and any 0 ≤ α ≤ 1 it holds:
D(x |X ) ≤ D(x∗ + α(x − x∗)|X );

D5 upper semicontinuous in x : the upper-level sets
Dα(X ) = {x ∈ Rp : D(x |X ) ≥ α} are closed for all α.
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D5 upper semicontinuous in x : the upper-level sets
Dα(X ) = {x ∈ Rp : D(x |X ) ≥ α} are closed for all α.
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Statistical data depth

Some remarks:

▶ D4 implies star-shaped upper-level sets of D.

One can strengthen to:
▶ D4con: D(·|X ) is a quasiconcave function, i.e. the

upper-level sets Dα(X ) are convex for all α.

▶ D1 and D2 define affine invariante depth.

One can also weaken to:
▶ D2iso: D(Ax |AX ) = D(x |X ) for every isometric linear A to

define orthogonal invariant depth;

▶ D2sca: D(λx |λX ) = D(x |X ) for any λ > 0 to define scale
invariant depth.

Depth notions: Mahalanobis (’36), projection (Stahel, ’81;
Donoho, ’82), simplicial volume (Oja, ’83), simplicial (Liu, ’90),
zonoid (Koshevoy, Mosler, ’97), spatial (Vardi, Zhang, ’00;
Serfling, ’02), lens (Liu, Modarres, ’11), ... depth.
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Applications of data depth:
▶ Multivariate data analysis (Liu, Parelius, Singh ’99);

▶ Statistical quality control (Liu, Singh ’93);

▶ Cluster analysis and classification (Mosler, Hoberg ’06; Li,
Cuesta-Albertos, Liu ’12; M., Mosler, Lange ’15);

▶ Tests for multivariate location, scale, symmetry (Liu ’92;
Dyckerhoff ’02; Dyckerhoff, Ley, Paindaveine ’15);

▶ Outlier detection (Hubert, Rousseeuw, Segaert ’15);

▶ Multivariate risk measurement (Cascos, Mochalov ’07);

▶ Robust linear programming (Bazovkin, Mosler ’15);

▶ Missing data imputation (M., Josse, Husson ’20);

▶ etc.

R-package ddalpha (Pokotylo, M., Dyckerhoff, Nagy):
calculates a number of depths; performs depth-based classification
of multivariate and functional data; contains 50 multivariate and 5
functional data sets.
Python library data-depth: to be released soon.
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Tukey (=halfspace, location) depth

Tukey (1975) — “Mathematics and the picturing of data”

Tukey depth of x ∈ Rp w.r.t. a d-variate random vector X
distributed as P is defined as the smallest probability mass of a
closed halfspace containing x:

DT (x |X ) = inf{P(H) : H is a closed halfspace, x ∈ H},

and w.r.t. a data set X = {x1, ..., xn} ⊂ Rp:

DT (n)(x |X ) =
1

n
min

u∈Sp−1
♯{i : u ′x i ≥ u ′x}.

Tukey depth

▶ satisfies all the above postulates,

▶ is purely non-parametric and robust,

▶ has direct connection to quantiles and many applications.
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Tukey (=halfspace, location) data depth
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Tukey (=halfspace, location) data depth
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Tukey (=halfspace, location) data depth
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Tukey (=halfspace, location) data depth
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Tukey (=halfspace, location) data depth
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Tukey (=halfspace, location) data depth
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Tukey (=halfspace, location) data depth
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Tukey (=halfspace, location) data depth

● ●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●●●●

●

●

● ●

●

●

●

●

● ●

●● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

● ●

●

●

●

●

●●

● ●

● ●

●

●

●

●

●●

●● ●

●

800 1000 1200 1400

20
25

30
35

Babies with low birth weight

Weight, in grams

A
ge

, i
n 

w
ee

ks

● ●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●●●●

●

●

● ●

●

●

●

●

● ●

●● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

● ●

●

●

●

●

●●

● ●

● ●

●

●

●

●

●●

●● ●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

● ●

●

●

●

●

● ●

●● ●

●

●●

●

●

●

●

●

●

●●

●●

●

●

● ●

●

●

●

●●

● ●

● ●

●

●

●

●

●●

●● ●

●

152 / 161
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Tukey (=halfspace, location) data depth
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Tukey (=halfspace, location) data depth
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Tukey (=halfspace, location) data depth
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Tukey (=halfspace, location) data depth
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Tukey (=halfspace, location) data depth
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Tukey (=halfspace, location) data depth
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Central regions

▶ For given distribution P and α ∈ [0, 1], the level sets Dα(P)
form a family of depth-trimmed of central regions.

▶ The innermost region arises at some depth αmax ≤ 1, which
depends on the depth notion D and distribution P. Then
Dα(X ) is the set of deepest points.

▶ Central regions describe distribution w.r.t. location,
dispersion, and shape.

▶ Properties of central regions, for any α:
▶ Due to D1 and D2 Dα(X ) is affine equivariant:

Dα(AX + b) = ADα(X ) + b for any p × p non-singular matrix
A and any b ∈ Rp;

▶ Due to D3 Dα(X ) is bounded;
▶ Due to D4 Dα(X )-s are nested:

if α ≥ β, then Dα(X ) ⊆ Dβ(X ), and star-shaped;
due to D4con Dα(X ) is in addition convex;

▶ Due to D5 Dα(X ) is closed.
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Tukey-trimmed regions

Tukey depth defines a family of (depth-)trimmed (central) regions
DT
τ (X ), the upper-level sets of the depth function:

DT
τ (X ) =

{
x ∈ Rp : DT (x |X ) ≥ τ

}
.

Properties:

Depth: Regions:

▶ Affine invariant; Affine equivariant;

▶ Vanishing at infinity; Bounded;

▶ Monotone w.r.t. deepest point; Nested;

▶ Upper-semicontinuous; Closed;

▶ Quasiconcave. Convex.
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Tukey (=halfspace, location) depth-trimmed regions
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Tukey (=halfspace, location) data depth



Tukey (=halfspace, location) depth region



Tukey (=halfspace, location) depth region: τ = 2/161



Tukey (=halfspace, location) depth region: τ = 5/161



Tukey (=halfspace, location) depth region: τ = 9/161



Tukey (=halfspace, location) depth region: τ =13/161



Tukey (=halfspace, location) depth region: τ =17/161



Tukey (=halfspace, location) depth region: τ =25/161



Tukey (=halfspace, location) depth region: τ =33/161



Tukey (=halfspace, location) depth region: τ =41/161



Tukey (=halfspace, location) depth region: τ =49/161



Tukey (=halfspace, location) depth region: τ =57/161



Tukey (=halfspace, location) depth region: τ =65/161



Tukey (=halfspace, location) depth region: τ =68/161
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Mahalanobis depth (Mahalanobis, 1936)
▶ Mahalanobis depth is defined as:

DMah(x |X ) =
1

1 + (δMah)2(x |X )
,

based on Mahalanobis distance:

(δMah)2(x |X ) = (x − µX )
TΣ−1

X (x − µX ) .

▶ In the empirical version, µX and ΣX are substituted by
suitable estimates:
▶ moment estimates;
▶ robust estimates such as minimum volume ellipsoid or

minimum covariance determinant (MCD).
▶ Properties:

▶ satisfies D1 – D5 and D4con, is continuous;
▶ being defined by d(d + 1) parameters, can be seen as a

parametric depth;
▶ by a single elliptical contour characterizes a multivariate

normal distribution or one within an affine family of
non-degenerate elliptical distributions.
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ECG five days data
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f̂i (t)dt,
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f̂ ′i (t)dt

]
,

with f̂i (t) being the function obtained by connecting the points
(tij , fi (tij)), j = 1, . . . ,Ni with line segments, f̂ ′i (t) its derivative.
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Mahalanobis depth (Mahalanobis, 1936)
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Mahalanobis depth (Mahalanobis, 1936)
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Multivariate anomaly detection: an example
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Multivariate anomaly detection: an example
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▶ Checking for minimum and maximum in each test result.



Multivariate anomaly detection: an example
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▶ Checking for minimum and maximum in each test result.
▶ Label observation x as anomaly if:

x /∈ [min(Test1),max(Test1)]× [min(Test2),max(Test2)] .
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▶ Checking for minimum and maximum in each test result.
▶ Label observation x as anomaly if:

x /∈ [min(Test1),max(Test1)]× [min(Test2),max(Test2)] .

▶ Not all anomalies can be detected.
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▶ Mahalanobis distance of an observation x ∈ R2 (from the
mean) is defined as follows:

dMah(x |X ) = (x − µ)⊤Σ−1(x − µ) ,
where µ is the mean and Σ is the covariance matrix.
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▶ Mahalanobis distance of an observation x ∈ R2 (from the
mean) is defined as follows:

dMah(x |X ) = (x − µ)⊤Σ−1(x − µ) ,
where µ is the mean and Σ is the covariance matrix.

▶ Label x as anomaly dMah(x |X ) > max(dMah) .
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▶ Mahalanobis distance (moment estimators) not robust.
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▶ Mahalanobis distance (moment estimators) not robust.
▶ Stahel-Donoho outlyingness of x w.r.t. X = {x i}ni=1:

OSD(x |X ) = max
u∈Sd−1

|x⊤u −med(Xu)|
MAD(Xu)

.
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▶ Mahalanobis distance (moment estimators) not robust.
▶ Stahel-Donoho outlyingness of x w.r.t. X = {x i}ni=1:

OSD(x |X ) = max
u∈Sd−1

|x⊤u −med(Xu)|
MAD(Xu)

.
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▶ Mahalanobis distance (moment estimators) not robust.
▶ Stahel-Donoho outlyingness of x w.r.t. X = {x i}ni=1:

OSD(x |X ) = max
u∈Sd−1

|x⊤u −med(Xu)|
MAD(Xu)

.
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▶ Mahalanobis distance (moment estimators) not robust.
▶ Stahel-Donoho outlyingness of x w.r.t. X = {x i}ni=1:

OSD(x |X ) = max
u∈Sd−1

|x⊤u −med(Xu)|
MAD(Xu)

.
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▶ Mahalanobis distance (moment estimators) not robust.
▶ Stahel-Donoho outlyingness of x w.r.t. X = {x i}ni=1:

OSD(x |X ) = max
u∈Sd−1

|x⊤u −med(Xu)|
MAD(Xu)

.
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▶ Mahalanobis distance (moment estimators) not robust.
▶ Stahel-Donoho outlyingness of x w.r.t. X = {x i}ni=1:

OSD(x |X ) = max
u∈Sd−1

|x⊤u −med(Xu)|
MAD(Xu)

.



Multivariate anomaly detection: robustness

●

●
●

●

●
● ●●● ●

●
●

●●

●
●●

●

●
● ●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5.24 1

▶ Mahalanobis distance (moment estimators) not robust.
▶ Stahel-Donoho outlyingness of x w.r.t. X = {x i}ni=1:

OSD(x |X ) = max
u∈Sd−1

|x⊤u −med(Xu)|
MAD(Xu)

.



Multivariate anomaly detection: robustness

●

●
●

●

●●

●
●●

●
●

●

●●●
●

●●

●
●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

6.35 1.21

▶ Mahalanobis distance (moment estimators) not robust.
▶ Stahel-Donoho outlyingness of x w.r.t. X = {x i}ni=1:

OSD(x |X ) = max
u∈Sd−1

|x⊤u −med(Xu)|
MAD(Xu)

.
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▶ Mahalanobis distance (moment estimators) not robust.
▶ Stahel-Donoho outlyingness of x w.r.t. X = {x i}ni=1:

OSD(x |X ) = max
u∈Sd−1

|x⊤u −med(Xu)|
MAD(Xu)

.

▶ Label x as anomaly if OSD(x |X ) > max(OSD) .
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▶ Mahalanobis distance (moment estimators) not robust.
▶ Stahel-Donoho outlyingness of x w.r.t. X = {x i}ni=1:

OSD(x |X ) = max
u∈Sd−1

|x⊤u −med(Xu)|
MAD(Xu)

.

▶ Label x as anomaly if OSD(x |X ) > max(OSD) .



Projection depth (Zuo & Serfling, 2000)

According to Zuo & Serfling (2000), projection depth is defined
as:

Dprj(x |X ) =
1

1 + OSD(x |X )
,

where

OSD(x |X ) = sup
r∈Sd−1

|XT r −med(XT r)|
MAD(XT r)

is the projected outlyingness (Stahel, 1981; Donoho, 1982),
med(Y ) and MAD(Y ) = med

(∣∣Y −med(Y )
∣∣) are the univariate

median and median absolute deviation from the median,
respectively.

Properties:

▶ Satisfies D1 – D5 and D4con, is continuous;

▶ its median has asymptotic breakdown point of 0.5.
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Spatial depth (Vardi & Zhang, 2000; Serfling 2002)
Exploiting the idea of spatial quantiles of Chaudhuri (1996) and
Koltchinskii (1997), Vardi & Zhang (2000) and Serflig (2002)
formulate the spatial depth (also L1-depth) as:

Dspt(x |X ) = 1−
∥∥∥E

[ x − X

∥x − X∥
]∥∥∥ with

x − X

∥x − X∥
= 0 if x−X = 0 .
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Exploiting the idea of spatial quantiles of Chaudhuri (1996) and
Koltchinskii (1997), Vardi & Zhang (2000) and Serflig (2002)
formulate the spatial depth (also L1-depth) as:

Dspt(x |X ) = 1−
∥∥∥E

[
v
(
Σ− 1

2 (x − X )
)]∥∥∥ ,

with

v(y) =

{
y

∥y∥ if y ̸= 0 ,

0 if y = 0 .

Properties:

▶ satisfies D1 – D5, but not D4con, is continuous;

▶ if Σ is orthogonal, satisfies D2iso only;

▶ with D2iso its maximum (say x∗) is referred to as spatial
median, a multivariate location estimator having asymptotic
breakdown point of 0.5.
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Thank you for attention! (and a short list of literature)

▶ Chandola, V., Banerjee, A., and Kumar, V. (2009). Anomaly
detection: A survey. ACM Computing Surveys (CSUR), 41(3):15,
1–58.

▶ Breunig, M.M., Kriegel, H.-P., Ng, R.T., and Sander, J. (2000).
LOF: Identifying density-based local outliers. In: Proceedings of the
2000 ACM SIGMOD International Conference on Management of
Data, 29, 93–104.

▶ Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A., and
Williamson, R. (2001). Estimating the support of a high-dimensional
distribution. Neural Computation, 13(7), 1443–1471.

▶ Liu, F.T., Ting, K.M., and Zhou, Z. (2008). Isolation forest. In:
Proceedings of the 2008 Eighth IEEE International Conference on
Data Mining, 413–422.

▶ Mosler, K. (2013). Depth statistics. In: Robustness and Complex
Data Structures: Festschrift in Honour of Ursula Gather, 17—34.



Practical session (part I)

Notebooks:

▶ anomdet simulation1.Rmd,

▶ anomdet hurricanes.Rmd,

▶ anomdet cars.ipynb,

▶ anomdet airbus.ipynb.

Data sets:

▶ carsanom.csv: Data set on anomaly detection for cars.

▶ airbus data.csv: Data set from Airbus.

▶ hurdat2-1851-2019-052520.txt: Historical hurricane data.

Supplementary scripts:

▶ depth routines.py: Routines for data depth calculation.

▶ FIF.py: Implementation of the functional isolation forest.

▶ depth routines.R: Routines for curves’ parametrization.

https://perso.telecom-paristech.fr/mozharovskyi/resources/bpce2023/anomdet_simulation1.Rmd
https://perso.telecom-paristech.fr/mozharovskyi/resources/bpce2023/anomdet_hurricanes.Rmd
https://perso.telecom-paristech.fr/mozharovskyi/resources/bpce2023/anomdet_cars.ipynb
https://perso.telecom-paristech.fr/mozharovskyi/resources/bpce2023/anomdet_airbus.ipynb
https://perso.telecom-paristech.fr/mozharovskyi/tutanom/carsanom.csv
https://partage.imt.fr/index.php/s/KxiDcH5aeE4sCRq
https://perso.telecom-paristech.fr/mozharovskyi/tutanom/hurdat2-1851-2019-052520.txt
https://perso.telecom-paristech.fr/mozharovskyi/tutanom/depth_routines.py
https://perso.telecom-paristech.fr/mozharovskyi/tutanom/FIF.py
https://perso.telecom-paristech.fr/mozharovskyi/tutanom/depth_routines.R
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