Unsupervised learning: Clustering algorithms*

Thomas Belhalfaoui and Pavlo Mozharovskyi

LTCI, Télécom Paris, Institute Polytechnique de Paris

Parcours Data Science BPCE
Paris, June 6, 2023

*Based on slides by Pavlo Mozharovskyi,
Florence d'Alché-Buc, Alexandre Gramfort, Slim Essid



Learning from unlabeled data

Unlabeled data

» Available data are unlabeled : documents, webpages, clients
database...

P Labeling data is expensive and requires some expertise

Learning from unlabeled data

» Modeling probability distribution — graphical models
» Dimensionality reduction — pre-processing for pattern
recognition

» Clustering : group data into homogeneous clusters —
organize your data, make easier access to them, pre and post
processing



What is clustering ?

Here is a clustering in 2 clusters




Different clusterings

k-means Ward Single-link
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Clustering for image segmentation

Criginal image

Image from C. Bishop's book, Pattern recognition and Machine Learning, Springer



Clustering algorithms : a data-analysis point of view

Definitions
» Dissimilarity : d(x;,x;), a distance (without the triangle
inequality)
> Between class dispersion : for a given K-clustering C :
B(C) =3 Zk Z,,J C(i)=k,C(j)#k d(xi, xj)

> Within- class dispersion :
W(C) = 3 3k Xij cliy=k,c(iy=k 9(xi X7)
> Total dispersion :
T(x1,...,%n) = %ZU d(xi, ;)
NB :
T = B(C) + W(C), for all C



Clustering algorithms

Definition : a data-analysis point of view

Given a set of data S = {x1,x2,...,Xx,}, a chosen K and a
dissimilarity d, one seeks a K-partition of S, such that the
between-class dispersion (inertia) is the largest and/or the
within-class dispersion is the smallest.



Outline

K-means



The K-means algorithm : an example of vector
quantization model

Given a set of vectors xi, xo, ..., X,, the K-means algorithm seeks
a partition of this set into K clusters Ci, G, . .., Cx that minimizes
the following loss function :

R({C}n) Z D lxi = pd

k=1 x;€Cy

D ec, i
where ji = 757“‘"

|Ck| : cardinal of Cy



The K-means algorithm

1. Initialization (t = 0) : initialization of the y, with K
randomly chosen observations

2. Assignment step : assign each observation to the cluster
whose mean yields the least within-cluster quantization error :

> G = Dt i = 1] < M — 111,51 < 5 < K
3. Update step : compute the new means

> t(e) t+1
t) 1 .
> N’k - ‘C;Et)l ijec‘it)XJ

4. Stopping criterion : Stop when the assignments no longer
change



The K-means algorithm
After Bishop, 2006




The K-means algorithm
After Bishop, 2006
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Remarks

» The K-means algorithm converges monotonically : each
iteration of the algorithm does not increase the K-means
objective function.

» There is no guarantee on the number of iterations the
K-means algorithm needs in order to reach convergence.

» There is no nontrivial lower bound on the gap between the
value of the K-means objective of the algorithm output and
the minimum possible value of that objective function.

> K-means might converge to a point which is not even a local
minimum !

» To improve the results of K-means it is recommended to
repeat the procedure several times with different
randomly chosen initial centroids.



The K-medoids objective function

Similar to the K-means objective, except that a more general
dissimilarity V(x, i) is considered and the cluster centroids are
required to be members of the input set :

K
Gic-medoias((X, ), (CLroo ) = min_ > % Vix, i)

ye kS .
HLee-Hk i=1 xeC;



The K-median objective function

Similar to the K-medoids objective, except that the “distortion”
between a data point and the centroid of its cluster is measured by
distance, rather than by the square of the distance :

GK-median((Xad)a(Clv"'7CK) = min Z Z d X MI

s UK EX
HLee-lk i=1 xe(;

An example is the facility location problem. Consider the task of
locating K fire stations in a city. One can model houses as data
points and aim to place the stations so as to minimize the average
distance between a house and its closest fire station.



Outline

Hierarchical Agglomerative Clustering (HAC)



Principle of Hierarchical clustering

Goal build a dendrogram
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Hierarchical Agglomerative clustering

Building a dendrogram

1.

Singletons containing a single data are initial clusters

2.nb=n
3.
4. While (nb > 1) do

Build the distance matrix between the clusters

» The two closest clusters are joined using a node/branch whose
length is equal to the distance between the two clusters

» The two clusters are removed and nb = nb-1;

» The distance between the new cluster and all remaining ones
are computed



Clustering from a dendrogram
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P In order to obtain a clustering, the dendrogram is cut using
some cutoff value

» As for K-means or Gaussian Mixture Models, finding the right
cutoff is a difficult issue



Distance D between two clusters A and B

Common choices :
» Single linkage : D(A, B) = minyca yepd(x,y)
— favours connectivity
» Complete linkage : D(A, B) = maxyca yepd(X,y)
— favours compactness
» Ward’s method : D(A, B) = -"A"6-d(mp, mp)

na+ng
mp (resp. mg) : center of gravity of A (resp. B)

— minimises the total within-cluster dispersion



Examples 1
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Examples 2

Single-link




Outline

DBSCAN



DBSCAN

» “Density-based spatial clustering of applications with noise”
(DBSCAN) is a very popular, simple and powerful algorithm
first proposed by Ester et al. 1996.

» DBSCAN is one of the most common clustering algorithms
and also most cited in scientific literature.

» In 2014, it was awared the test of time award at the leading
data mining conference, KDD.



DBSCAN Algorithm

>

>

2 parameters : ¢ and the minimum number of points required
to form a dense region q.

Start with an arbitrary starting point not yet visited. Retrieve
its e-neighborhood. If it contains sufficiently many points, a
cluster is started. Otherwise, the point is labeled as noise. 1

If a point is found to be a dense part of a cluster, its
e-neighborhood is also part of that cluster. All points that are
found within the e-neighborhood are added, so is their own
e-neighborhood when they are also dense.

Process continues until the density-connected cluster is
completely found.

Start again with a new point, until all points have been visited.

1. A point marked as noise might later be found in a sufficiently sized
e-environment of a different point and hence be made part of a cluster.



DBSCAN lllustration

With q=4 in 2D :

Red : core points, Yellow : non core but in cluster, Blue : noise

Source : https ://en.wikipedia.org/wiki/DBSCAN



Algorithm 1 DBSCAN

1. procedure DBSCAN(X, ¢, q)
Initialize : C = 0.

2 for each point x in X do

3 if x is visited then

4 continue to next point.

5: end if

6: mark x as visited.

7 neighbors = getNeighbors(x, ¢€)
8 if —neighbors— < g then

9: mark x as noise.

10: else

11: C = next cluster

12: expandCluster(x, neighbors, C, ¢, q)
13: end if

14: end for

15: Output : All produced clusters.
16: end procedure
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15:
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. procedure EXPANDCLUSTER(X, neighbors, C, ¢, q)
add x to C
for each y in neighbors do
if y is not visited then
mark y as visited
neighbors_y = regionQuery(y, €)
if —neighbors_y— > q then
neighbors = neighbors joined with neighbors_y
end if
end if
if y is not yet member of any cluster then
add y to cluster C
end if
end for
end procedure
. procedure REGIONQUERY(X, €)
Output : all points within x's e-neighborhood (including x)
end procedure




DBSCAN Pros

» No need to specify the number of clusters in the data a priori,
as opposed to K-means.

» It can find arbitrarily shaped clusters. It can even find a
cluster completely surrounded by (but not connected to) a
different cluster.

» Due to the g parameter, the so-called single-link effect
(different clusters being connected by a thin line of points) is
reduced.

» It has a notion of noise, and is robust to outliers.



DBSCAN Cons

» It is not entirely deterministic (output depends on the order of
the points).

» |t still needs to specify a distance measure (like K-means or
spectral clustering).

» It can not cluster data sets with a large difference in densities
as the g — e combination cannot then be chosen appropriately
for all clusters.



Outline

Gaussian Mixture Modelling
GMM parameter estimation



Clustering by modelling the data distribution

> Assume xi,...,X, is an i.i.d sample of n data points

> Model the data distribution by a Gaussian Mixture Model

» Each data point is to be associated with the component that
best explains it

05
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Clustering by modelling the data distribution

» Assume xi,...,X, is an i.i.d sample of n data points
» Model the data distribution by a Gaussian Mixture Model

» Each data point is to be associated with the component that
best explains it

05




The Gaussian mixture model (GMM)

A parametric model :

K

p(X) = Z FkP(X‘,U,k, Zk) D: py(x) p,(x)

k=1

where px)

> p(x|pk L) = N (x| e, Zc) S~ |
> K m=1,0<m <1



GMM formulation using latent variables

Let's introduce the K-dimensional indicator variable
z = [z]1<k<k, such that :

» 2, €{0,1}, >, ze =1 and p(zx = 1) = 7
> p(x|zx = 1) = N(x|pk, k)



GMM formulation using latent variables

Let's introduce the K-dimensional indicator variable
z = [z]1<k<k, such that :

» 2, €{0,1}, >, ze =1 and p(zx = 1) = 7
> p(x|zx = 1) = N(x|pk, k)

The marginal distribution is obtained by summing over all states of
z:

() =Y pxz) = 3 p@)p(xl2)

K
= > mN(xlpk, k)

k=1



Cluster assignment and responsibilities

Assignment to a particular cluster C, can be done based on :

p(zi = 1)p(x|z = 1)

z) = z. = 1|x —
(2) = pzx = 1|x) S p(z = 1)p(x|z = 1)

TN (X ke, Tk)
SR N (X, )




Cluster assignment and responsibilities

Assignment to a particular cluster C, can be done based on :

p(zi = 1)p(x|z = 1)
>/ p(z = 1)p(x|z = 1)
TN (X[ ik, Zk)
> mN (X, £))

Y(zk) = plzx = 1|x) =

— (zx) is the responsibility that component k takes for explaining
X



Cluster assignment and responsibilities
After Bishop, 2006

0.5 0.5 0.5

Original data Unlabelled Responsibilities



Mean and variance estimation in a 1D Gaussian
distribution

We observe xi,...,xp, ni.i.d samples from an unknown Gaussian
distribution :

plxlnn0) = 2= expl—5 5(x ~ i)’}

Maximum Likelihood Principle

P Likelihood : probability that data have been generated by the
model

» Find i and o such that the likelihood
(X1, Xns 1y 0) = [ 1721 p(xi|pt, o) be maximal

In practice, for exponential distributions, we maximize In¢(.;.).



Likelihood

n
L0 mipo) = ][ plu o)
i=1

n
= > Inp(xilu, o)
i=1

n

= —nln(vV270) — % Z(X,- — p)?

i=1



Maximum Likelihood Principle estimates for 1 and o

(Strict) convexity of £ makes the problem easy to solve :

o) _
ou

— We get : i =13~ x; (empirical mean)

> To find pu :

» Then, to find o, we use /i : M(” 9 — 0

— We get : 62 =15 .(x; — f1)? (emplrlcal variance)



Multivariate Gaussian Distribution

X :#x—lx— Ty Y x —
N(x|p, X) (mm%ep{ 5 (x =) 2T (x = )}

Mean and covariance estimation by maximum likelihood
estimation :
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Gaussian Mixture Model estimation (general case)

Log likelihood to be maximized

n n K
In [ p(xilm, 1, 2) = D In{ map(xilins Ta)}
i=1 k=1

i=1



Gaussian Mixture Model estimation (general case)

Log likelihood to be maximized

n n K
In H p(xilm, p, X) = Z |n{z TP (Xt Tk) }
i=1 i—1 k=1

A difficult function to optimize

» the log is outside the sum

» the model is not identifiable : many latent settings have the
same likelihood



Expectation-Maximization (EM) algorithm

> A general algorithm to solve estimation problems with
incomplete data

» this algorithm is used in many other probabilistic models (not
only GMM)

Refs : Demspter, Laird and Rubin1977 : more than 40000 citations
Good introductions : Bishop's book (2006), Kevin Murphy's course
notes (2006), Bilmes's tutorial, (1998)

Key idea : exploit the responsibilities y(z)



EM algorithm for GMM estimation
After Bishop, 2006

1. Initialise pg, Xk and g

2. E-step : evaluate the responsibilities using the current parameter

values :
TN (X | ks X i)
K
> mN (Xl Z5)

where z;, indicates if x; comes from the k" Gaussian

'Y(Zik) =

3. M-step : re-estimate the parameters using the current
responsibilities :

1 n
= 27(Zik)xi
1 n
Y= - D (zi) 6 — ) (6 — )"
i—1

n
s
Ty = 7; where ny = g v(zik)
i=1



EM algorithm for GMM estimation
After Bishop, 2006

4. Evaluate the log likelihood

n K
Z In {Z 7rk./\/'(x,-\,uk, Zk)}
i=1 k=1

and check for convergence of either the parameters or the log
likelihood. If no convergence, return to step 2.



EM algorithm for GMM estimation

After Bishop, 2006
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Expectation maximization algorithm

» Local convergence only
» Need to restart the algorithm with different initial guesses

> K-means are a good way of initialising the algorithm



Outline

Model selection



How to select K the number of clusters?

Numerous criteria have been proposed with varying success in
practise.

» Stability criterion (Ben-Hur and Elisseef, 2002)
» BIC criterion for GMM



Stability

A clustering algorithm is stable if when run twice on two close
datasets it provides almost similar clusterings.

In practice, use bootstrap samples without replacement to measure
stability.



Stability Algorithm

Let S be the dataset.
> f=0.38
> for k=2 to kmax do
» for b=1 to B do
S1 = subsample(S,f) : a subsample with a fraction f of data
8> = subsample(S,f) : a subsample with a fraction f of data
G = cluster(Sy,k)
G, = cluster(Sz,k)
intersect = S1 N Sz
> S(b,k) = sim(G(intersect), G (intersect))
» endfor
» S(k) = mean(S(b,k))
» endfor

vVVvyVvYVYYy



Model selection for GMM

How do we select the number of components ?

> A simple way is to use cross-validation to find the K valued
that maximize the log likelihood.

> Alternatively, we can use the BIC (Bayesian information
criterion) score



Model selection for GMM

BIC score :

BIC() = log p(S|GME) — g log n,

where d is the dimensionality of the model and n the number of
data points.

d, the dimensionality of the model, is here the number of

estimated parameters : (K — 1) mixing probabilities, Kd mean

d(d+1)
2

coefficients and K covariance parameters.
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