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Learning from unlabeled data

Unlabeled data
▶ Available data are unlabeled : documents, webpages, clients

database...

▶ Labeling data is expensive and requires some expertise

Learning from unlabeled data

▶ Modeling probability distribution → graphical models

▶ Dimensionality reduction → pre-processing for pattern
recognition

▶ Clustering : group data into homogeneous clusters →
organize your data, make easier access to them, pre and post
processing



What is clustering ?

Here is a clustering in 2 clusters



Different clusterings



Clustering for image segmentation

Image from C. Bishop’s book, Pattern recognition and Machine Learning, Springer



Clustering algorithms : a data-analysis point of view

Definitions
▶ Dissimilarity : d(xi , xj), a distance (without the triangle

inequality)

▶ Between-class dispersion : for a given K-clustering C :
B(C) = 1

2

∑
k

∑
i ,j ,C(i)=k,C(j) ̸=k d(xi , xj)

▶ Within-class dispersion :
W (C) = 1

2

∑
k

∑
i ,j ,C(i)=k,C(j)=k d(xi , xj)

▶ Total dispersion :
T (x1, . . . , xn) =

1
2

∑
i ,j d(xi , xj)

NB :

T = B(C) +W (C), for all C



Clustering algorithms

Definition : a data-analysis point of view

Given a set of data S = {x1, x2, . . . , xn}, a chosen K and a
dissimilarity d , one seeks a K -partition of S, such that the
between-class dispersion (inertia) is the largest and/or the
within-class dispersion is the smallest.
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The K -means algorithm : an example of vector
quantization model

Given a set of vectors x1, x2, . . . , xn, the K -means algorithm seeks
a partition of this set into K clusters C1,C2, . . . ,Ck that minimizes
the following loss function :

R({C}Kk=1) =
K∑

k=1

∑
xi∈Ck

||xi − µk ||2,

where µk =

∑
xi∈Ck

xi

|Ck |

|Ck | : cardinal of Ck



The K -means algorithm

1. Initialization (t = 0) : initialization of the µk with K
randomly chosen observations

2. Assignment step : assign each observation to the cluster
whose mean yields the least within-cluster quantization error :

▶ C
(t)
k = {xm, ||xm − µ

(t)
k || ≤ ||xm − µ

(t)
j ||,∀j , 1 ≤ j ≤ K}

3. Update step : compute the new means
▶ t ← t + 1
▶ µ

(t)
k = 1

|C (t)
k |

∑
xj∈C

(t)
k

xj

4. Stopping criterion : Stop when the assignments no longer
change



The K -means algorithm
After Bishop, 2006



The K -means algorithm
After Bishop, 2006



Remarks

▶ The K -means algorithm converges monotonically : each
iteration of the algorithm does not increase the K -means
objective function.

▶ There is no guarantee on the number of iterations the
K -means algorithm needs in order to reach convergence.

▶ There is no nontrivial lower bound on the gap between the
value of the K -means objective of the algorithm output and
the minimum possible value of that objective function.

▶ K -means might converge to a point which is not even a local
minimum !

▶ To improve the results of K -means it is recommended to
repeat the procedure several times with different
randomly chosen initial centroids.



The K-medoids objective function

Similar to the K -means objective, except that a more general
dissimilarity V(x , µi ) is considered and the cluster centroids are
required to be members of the input set :

GK-medoids((X , d), (C1, . . . ,CK )) = min
µ1,...µk∈X

K∑
i=1

∑
x∈Ci

V(x , µi )



The K-median objective function

Similar to the K-medoids objective, except that the “distortion”
between a data point and the centroid of its cluster is measured by
distance, rather than by the square of the distance :

GK-median((X , d), (C1, . . . ,CK )) = min
µ1,...µk∈X

K∑
i=1

∑
x∈Ci

d(x , µi )

An example is the facility location problem. Consider the task of
locating K fire stations in a city. One can model houses as data
points and aim to place the stations so as to minimize the average
distance between a house and its closest fire station.



Outline

K -means

Hierarchical Agglomerative Clustering (HAC)

DBSCAN

Gaussian Mixture Modelling

Model selection



Principle of Hierarchical clustering

Goal build a dendrogram



Hierarchical Agglomerative clustering

Building a dendrogram

1. Singletons containing a single data are initial clusters

2. nb = n

3. Build the distance matrix between the clusters

4. While (nb > 1) do
▶ The two closest clusters are joined using a node/branch whose

length is equal to the distance between the two clusters
▶ The two clusters are removed and nb = nb-1 ;
▶ The distance between the new cluster and all remaining ones

are computed



Clustering from a dendrogram

▶ In order to obtain a clustering, the dendrogram is cut using
some cutoff value

▶ As for K -means or Gaussian Mixture Models, finding the right
cutoff is a difficult issue



Distance D between two clusters A and B

Common choices :

▶ Single linkage : D(A,B) = minx∈A,y∈Bd(x , y)

→ favours connectivity

▶ Complete linkage : D(A,B) = maxx∈A,y∈Bd(x , y)

→ favours compactness

▶ Ward’s method : D(A,B) = nAnB
nA+nB

d(mA,mB)

mA (resp. mB) : center of gravity of A (resp. B)

→ minimises the total within-cluster dispersion



Examples 1



Examples 2
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DBSCAN

▶ “Density-based spatial clustering of applications with noise”
(DBSCAN) is a very popular, simple and powerful algorithm
first proposed by Ester et al. 1996.

▶ DBSCAN is one of the most common clustering algorithms
and also most cited in scientific literature.

▶ In 2014, it was awared the test of time award at the leading
data mining conference, KDD.



DBSCAN Algorithm

▶ 2 parameters : ϵ and the minimum number of points required
to form a dense region q.

▶ Start with an arbitrary starting point not yet visited. Retrieve
its ϵ-neighborhood. If it contains sufficiently many points, a
cluster is started. Otherwise, the point is labeled as noise. 1

▶ If a point is found to be a dense part of a cluster, its
ϵ-neighborhood is also part of that cluster. All points that are
found within the ϵ-neighborhood are added, so is their own
ϵ-neighborhood when they are also dense.

▶ Process continues until the density-connected cluster is
completely found.

▶ Start again with a new point, until all points have been visited.

1. A point marked as noise might later be found in a sufficiently sized
ϵ-environment of a different point and hence be made part of a cluster.



DBSCAN Illustration

With q=4 in 2D :

Red : core points, Yellow : non core but in cluster, Blue : noise
Source : https ://en.wikipedia.org/wiki/DBSCAN



Algorithm 1 DBSCAN

1: procedure DBSCAN(X , ϵ, q)
Initialize : C = 0.

2: for each point x in X do
3: if x is visited then
4: continue to next point.
5: end if
6: mark x as visited.
7: neighbors = getNeighbors(x , ϵ)
8: if —neighbors— < q then
9: mark x as noise.

10: else
11: C = next cluster
12: expandCluster(x, neighbors, C, ϵ, q)
13: end if
14: end for
15: Output : All produced clusters.
16: end procedure



1: procedure expandCluster(x, neighbors, C, ϵ, q)
2: add x to C
3: for each y in neighbors do
4: if y is not visited then
5: mark y as visited
6: neighbors y = regionQuery(y, ϵ)
7: if —neighbors y— ≥ q then
8: neighbors = neighbors joined with neighbors y
9: end if

10: end if
11: if y is not yet member of any cluster then
12: add y to cluster C
13: end if
14: end for
15: end procedure
16: procedure regionQuery(x, ϵ)
17: Output : all points within x’s ϵ-neighborhood (including x)
18: end procedure



DBSCAN Pros

▶ No need to specify the number of clusters in the data a priori,
as opposed to K -means.

▶ It can find arbitrarily shaped clusters. It can even find a
cluster completely surrounded by (but not connected to) a
different cluster.

▶ Due to the q parameter, the so-called single-link effect
(different clusters being connected by a thin line of points) is
reduced.

▶ It has a notion of noise, and is robust to outliers.



DBSCAN Cons

▶ It is not entirely deterministic (output depends on the order of
the points).

▶ It still needs to specify a distance measure (like K -means or
spectral clustering).

▶ It can not cluster data sets with a large difference in densities
as the q − ϵ combination cannot then be chosen appropriately
for all clusters.
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Clustering by modelling the data distribution
▶ Assume x1, . . . , xn is an i.i.d sample of n data points
▶ Model the data distribution by a Gaussian Mixture Model
▶ Each data point is to be associated with the component that

best explains it



Clustering by modelling the data distribution

▶ Assume x1, . . . , xn is an i.i.d sample of n data points

▶ Model the data distribution by a Gaussian Mixture Model

▶ Each data point is to be associated with the component that
best explains it



The Gaussian mixture model (GMM)

A parametric model :

p(x) =
K∑

k=1

πkp(x |µk ,Σk)

where

▶ p(x |µk ,Σk) = N (x |µk ,Σk)

▶
∑K

k=1 πk = 1, 0 ≤ πk ≤ 1.



GMM formulation using latent variables

Let’s introduce the K -dimensional indicator variable
z = [zk ]1≤k≤K , such that :

▶ zk ∈ {0, 1},
∑

k zk = 1 and p(zk = 1) = πk
▶ p(x |zk = 1) = N (x |µk ,Σk)

The marginal distribution is obtained by summing over all states of
z :

p(x) =
∑
z

p(x , z) =
∑
z

p(z)p(x |z)

=
K∑

k=1

πkN (x |µk ,Σk)



GMM formulation using latent variables

Let’s introduce the K -dimensional indicator variable
z = [zk ]1≤k≤K , such that :

▶ zk ∈ {0, 1},
∑

k zk = 1 and p(zk = 1) = πk
▶ p(x |zk = 1) = N (x |µk ,Σk)

The marginal distribution is obtained by summing over all states of
z :

p(x) =
∑
z

p(x , z) =
∑
z

p(z)p(x |z)

=
K∑

k=1

πkN (x |µk ,Σk)



Cluster assignment and responsibilities

Assignment to a particular cluster Ck can be done based on :

γ(zk) = p(zk = 1|x) =
p(zk = 1)p(x |zk = 1)∑K
j=1 p(zj = 1)p(x |zj = 1)

=
πkN (x |µk ,Σk)∑K
j=1 πjN (x |µj ,Σj)

→ γ(zk) is the responsibility that component k takes for explaining
x



Cluster assignment and responsibilities

Assignment to a particular cluster Ck can be done based on :

γ(zk) = p(zk = 1|x) =
p(zk = 1)p(x |zk = 1)∑K
j=1 p(zj = 1)p(x |zj = 1)

=
πkN (x |µk ,Σk)∑K
j=1 πjN (x |µj ,Σj)

→ γ(zk) is the responsibility that component k takes for explaining
x



Cluster assignment and responsibilities
After Bishop, 2006

Original data Unlabelled Responsibilities



Mean and variance estimation in a 1D Gaussian
distribution

We observe x1, . . . , xn, n i.i.d samples from an unknown Gaussian
distribution :

p(x |µ, σ) = 1√
2πσ

exp{− 1

2σ2
(x − µ)2}

Maximum Likelihood Principle

▶ Likelihood : probability that data have been generated by the
model

▶ Find µ and σ such that the likelihood
ℓ(x1, . . . , xn;µ, σ) =

∏n
i=1 p(xi |µ, σ) be maximal

In practice, for exponential distributions, we maximize ln ℓ(.; .).



Likelihood

L(x1, . . . , xn;µ, σ) = ln
n∏

i=1

p(xi |µ, σ)

=
n∑

i=1

ln p(xi |µ, σ)

= −n ln(
√
2πσ)− 1

2σ2

n∑
i=1

(xi − µ)2



Maximum Likelihood Principle estimates for µ and σ

(Strict) convexity of L makes the problem easy to solve :

▶ To find µ : ∂L(µ,σ)
∂µ = 0

→ We get : µ̂ = 1
n

∑
i xi (empirical mean)

▶ Then, to find σ, we use µ̂ : ∂L(µ̂,σ)
∂σ = 0

→ We get : σ̂2 = 1
n

∑
i (xi − µ̂)2 (empirical variance)



Multivariate Gaussian Distribution

N (x |µ,Σ) = 1

(2π|Σ|)
1
2

exp{−1

2
(x − µ)TΣ−1(x − µ)}

Mean and covariance estimation by maximum likelihood
estimation :

µ̂ =
1

n

n∑
i=1

xi

Σ̂ =
1

n

n∑
i=1

(xi − µ)(xi − µ)T



Gaussian Mixture Model estimation (general case)

Log likelihood to be maximized

ln
n∏

i=1

p(xi |π, µ,Σ) =
n∑

i=1

ln{
K∑

k=1

πkp(xi |µk ,Σk)}



Gaussian Mixture Model estimation (general case)

Log likelihood to be maximized

ln
n∏

i=1

p(xi |π, µ,Σ) =
n∑

i=1

ln{
K∑

k=1

πkp(xi |µk ,Σk)}

A difficult function to optimize

▶ the log is outside the sum

▶ the model is not identifiable : many latent settings have the
same likelihood



Expectation-Maximization (EM) algorithm

▶ A general algorithm to solve estimation problems with
incomplete data

▶ this algorithm is used in many other probabilistic models (not
only GMM)

Refs : Demspter, Laird and Rubin1977 : more than 40000 citations
Good introductions : Bishop’s book (2006), Kevin Murphy’s course
notes (2006), Bilmes’s tutorial, (1998)

Key idea : exploit the responsibilities γ(zk)



EM algorithm for GMM estimation
After Bishop, 2006

1. Initialise µk , Σk and πk

2. E-step : evaluate the responsibilities using the current parameter
values :

γ(zik) =
πkN (xi |µk ,Σk)∑K
j=1 πjN (xi |µj ,Σj)

where zik indicates if xi comes from the k th Gaussian

3. M-step : re-estimate the parameters using the current
responsibilities :

µk =
1

nk

n∑
i=1

γ(zik)xi

Σk =
1

nk

n∑
i=1

γ(zik)(xi − µk)(xi − µk)
T

πk =
nk
n
; where nk =

n∑
i=1

γ(zik)



EM algorithm for GMM estimation
After Bishop, 2006

4. Evaluate the log likelihood

n∑
i=1

ln

{
K∑

k=1

πkN (xi |µk ,Σk)

}

and check for convergence of either the parameters or the log
likelihood. If no convergence, return to step 2.



EM algorithm for GMM estimation
After Bishop, 2006



Expectation maximization algorithm

▶ Local convergence only

▶ Need to restart the algorithm with different initial guesses

▶ K -means are a good way of initialising the algorithm



Outline

K -means

Hierarchical Agglomerative Clustering (HAC)

DBSCAN

Gaussian Mixture Modelling

Model selection



How to select K the number of clusters ?

Numerous criteria have been proposed with varying success in
practise.

▶ Stability criterion (Ben-Hur and Elisseef, 2002)

▶ BIC criterion for GMM



Stability

A clustering algorithm is stable if when run twice on two close
datasets it provides almost similar clusterings.

In practice, use bootstrap samples without replacement to measure
stability.



Stability Algorithm

Let S be the dataset.

▶ f = 0.8
▶ for k=2 to kmax do

▶ for b=1 to B do
▶ S1 = subsample(S,f) : a subsample with a fraction f of data
▶ S2 = subsample(S,f) : a subsample with a fraction f of data
▶ C1 = cluster(S1,k)
▶ C2 = cluster(S2,k)
▶ intersect = S1 ∩ S2

▶ S(b,k) = sim(C1(intersect), C2(intersect))

▶ endfor
▶ S(k) = mean(S(b,k))

▶ endfor



Model selection for GMM

How do we select the number of components ?

▶ A simple way is to use cross-validation to find the K valued
that maximize the log likelihood.

▶ Alternatively, we can use the BIC (Bayesian information
criterion) score



Model selection for GMM

BIC score :

BIC (θ) = log p(S |θ̂ML)− d

2
log n,

where d is the dimensionality of the model and n the number of
data points.

d , the dimensionality of the model, is here the number of
estimated parameters : (K − 1) mixing probabilities, Kd mean

coefficients and K d(d+1)
2 covariance parameters.
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