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Chapter 1

Introduction

People are thinking by means of patterns, unlike digital machines which operate with exact

numbers. A hasty glance causes neurons of our brain to recognize dozens of patterns corre-

sponding to familiar items of daily life. Today, possibilities and needs of mankind demand

solving these tasks in an automatic way, according to precise algorithms and not involving

direct human’s work. Formally, regard an item as an object that is described by a number of

reportable properties. It can be represented as a point in an appropriate space, with the prop-

erties constituting its dimensions. Statistically, a pattern or a class can be seen as a probability

distribution of a random vector in this space. In practice these distributions are unknown, and

only samples drawn from them are given. The task is then, based on these samples, to select

the class for a new object that has been never seen before.

A huge variety of approaches to supervised classification has been developed during the last

decades. This thesis explores the recently emerged idea of applying the notion of data depth

to supervised classification. A statistical data depth is a function that describes the degree of

centrality of a point w.r.t. a data cloud. That is, a data depth determines how representative

an observation is w.r.t. the given sample, and thus to the class. A näıve way to proceed is to

assign the new observation to the class in which it has the highest depth. Data depths have

a number of attractive theoretical properties, they describe a random vector in a data driven

way, often without moment assumptions, and can have nice robustness properties. Different

shapes of the classes and their a priori probabilities intricate the task, making application of

this näıve approach unreasonable. Thus, more subtle methods are required when designing

depth-based classifiers. These are investigated in the current dissertation.

Below in this introductory chapter, a short overview of the area is given. Statistical data

depth, its properties and computational issues, together with special depth notions used in this

thesis are regarded in Section 1.1. Section 1.2 contains a brief introduction into supervised

classification and some background of applying data depth to it. Depth-based classification in

infinite-dimensional spaces is presented in Section 1.3. Section 1.4 structures the research part

of the dissertation.
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Figure 1.1: Univariate, bivariate and trivariate Tukey depth regions.

1.1 Data depth

Ordering w.r.t. a center has always been one of the most useful arts of statistical data de-

scription. Consider a sample consisting of eleven univariate observations. In the sorted data

each point can be assigned an outward-decreasing number. To normalize, the number can

be divided through the cardinality of the set, as it is shown in Figure 1.1, left, on the axis

below. This value corresponds to the portion of the sample lying beyond the regarded point

including itself. It tells us how centrally the point is located in the set. Now, if we have a new

observation, it is reasonable to describe its relation to the sample by this value of the outer

point closest to it. It represents the smallest portion of the sample to be removed to make the

point lie outside of what remains.

Analyzing data in two dimensions requires a bivariate extension of the order. For this

case, Tukey (1975) made a suggestion to separate outer points using lines, that was extended

by Donoho & Gasko (1992) to outward-decreasing order. The centrality of a point is described

by the smallest portion of the sample that can be cut off by a line through this point. For

spaces of dimension three and more a line is naturally replaced by a hyperplane. Observations

lying on this hyperplane are to be counted as well, so that the smallest fraction of the data

is lying in a closed halfspace. Data depth allows to describe the shape of the data. See, e.g.,

Figure 1.1, left, where the five contours trim all points having order smaller than some given

constant in { 1
11
, 2
11
, ..., 5

11
}. Thus, by any line through each point that belongs to the second

outermost region (its boundary is depicted dashed, its depth is at least 2
11
) not less than two

points are cut off from the sample. The approach can be generalized to higher dimensions by

cutting hyperplanes. For example, observe trimmed region having depth 2
11

when adding a

third dimension to the data in Figure 1.1, right.
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Chapter 1 Data depth

A function maintaining some center-outward ordering is a statistical depth function. Con-

ditioned on a probability measure or a sample, it determines the centrality of the argument

point. First we recall the concept of the statistical depth and the postulates it should satisfy

in Section 1.1.1. After the pioneering work of Tukey (1975) many depth notions have emerged.

To capture all of them is not the goal of this thesis. Here, only depth notions used in the

following chapters are considered in detail, see Section 1.1.2. When employing the depths to

multivariate data, questions about their computational tractability arise. These are briefly

issued in Section 1.1.3.

1.1.1 The concept

Consider a point z ∈ Rd and a random vector X distributed as P , especially one having

empirical distribution on {x1, ...,xn} in Rd. A statistical data depth is a function D(z|X) :

Rd 7→ [0, 1] that describes how deep, or central, the observation z is located w.r.t. X . In

a natural way, it involves some notion of center. This is any point attaining the highest

depth value in X , and not necessarily a single one. Attempts to find a reasonable center for

multivariate X started long time ago. One of the first scientific publications has been made

by Hayford (1902) defining the näıve componentwise median. Over the following hundred

years various multivariate medians have been defined and extensively investigated, differing in

applications and properties. For reviews the reader is referred to Donoho & Gasko (1987), Small

(1990), Chaudhuri & Sengupta (1993), Niinimaa & Oja (1999), Dhar & Chaudhuri (2011), or

Oja (2013) for the latest survey. In this view depth can also be seen as a center-outward

ordering. Points closer to the center should have higher depth, and those more outlying a

smaller one.

One of the first orderings of multivariate data has been proposed by Hodges (1955). He

performed a sign test by counting the (positive) differences of observations in their univariate

projections. Also for bivariate data, Tukey (1975) suggested to describe the shape by polygons

defined as the intersection of halfplanes containing the same portion of a sample. Barnett

(1976) did it by iteratively peeling the convex hulls. The first gave rise to the so-called location

(=halfspace, also Tukey) depth (Donoho & Gasko, 1992), the latter to the convex hull peeling

(see also Green & Silverman (1979) and Finch & Hueter (2004)), possessing no population

version. Liu (1990) presents another notion of the center-outward ordering – the simplicial

depth. By that she introduces the notion of data depth, and proves its useful properties. Many

depth notions have arisen during the last several decades, see Serfling (2006), Romanazzi

(2009), Cascos (2010) for surveys with properties. Reviews by Zuo & Serfling (2000) and

Mosler (2013) additionally categorize depth notions. A very complete listing of existing depth

notions can be found in the introductory chapter of Van Bever (2013).

The intuitive concept of a statistical data depth function can be formalized by stating

postulates it should satisfy. Such requirements have been stated first by Liu (1990) for the

simplicial depth. Later by Zuo & Serfling (2000) for general depth functions. Mosler (2013)

3



Chapter 1 Data depth

suggests a somewhat differing set of properties. Following Dyckerhoff (2004) and Mosler (2013),

a depth function is a function D(z|X) : Rd 7→ [0, 1] that is:

(D1 ) translation invariant : D(z+ b|X + b) = D(z|X) ∀ b ∈ Rd,

(D2 ) linear invariant : D(Az|AX) = D(z|X) for every d× d nonsingular matrix A,

(D3 ) zero at infinity : lim‖z‖→∞D(z|X) = 0,

(D4 ) monotone on rays : Let z∗ = argmax
z∈Rd D(z|X), then ∀ r ∈ Sd−1 the function β 7→

D(z∗ + βr|X) decreases, in the weak sense, ∀ β > 0,

(D5 ) upper semicontinuous : the upper level sets Dα(X) = {z : D(z|X) ≥ α, z ∈ Rd} are

closed ∀α.

The first two properties state that D(z|X) is affine invariant. A in (D2) can be weakened to

isometric linear transformations, which yields an orthogonal invariant depth. Taking instead

of A some constant λ > 0 gives a scale invariant depth function. (D3) ensures that the upper

level sets Dα, α > 0 are bounded. According to (D4), the upper level sets are starshaped

around z∗, and Dmax
z∈Rd

D(z|X)(X) is convex. Also, if X is centrally symmetric about z∗, i.e.

the distributions of (X − z∗) and (z∗ − X) coincide, then D(z∗|X) = maxz∈Rd D(z|X). (D4)

can be strengthened by requiring D(·|X) to be a quasiconcave function. Then the upper level

sets are convex ∀α > 0. (D5) is a useful technical restriction.

These postulates, different to those of Liu (1990), and Zuo & Serfling (2000), do not need

to require maximality at the distribution’s symmetry center, but imply this property. Addi-

tionally, (D5) requires upper semicontinuity, see also Dyckerhoff (2004).

Upper level sets Dα(X) of a depth function are called depth-trimmed or central regions.

They describe the distribution’s location, dispersion and shape. For given X , Dα(X) for

α ∈ [0, 1] constitute a nested family of trimming regions. Note that due to (D1) and (D2) the

central regions are affine equivariant.

In the variety of the depth notions developed many possess additional properties, aiming

at certain practical goals and suited for particular application areas. Systematizations of the

whole diversity have been offered by Zuo & Serfling (2000), and recently by Mosler (2013).

Zuo & Serfling (2000) suggest four types of depth functions according to their construction.

Thus type A depth functions are those defined by the average closeness of z from X , with their

sample versions being U -statistics or V -statistics. These include in particular the simplicial

depth and the majority depth (Singh, 1991). Type B is defined as scaled to [0, 1] inverse of a

nonnegative unbounded distance of z to X , including e.g. the Lp-depth (Zuo & Serfling, 2000)

and the simplicial volume depth (Zuo & Serfling (2000), see also Oja (1983)) as representatives.

Type C depth functions are defined similarly, but using an unbounded outlyingness measure.

They include the projection depth (Stahel, 1981, Donoho, 1982) and the Mahalanobis depth

(Mahalanobis, 1936) as examples. A data depth of type D is determined as the infimum of the

probability mass of a set over some class of closed subspaces in Rd, like location depth.

4



Chapter 1 Data depth

Mosler (2013) introduces three principal approaches to define a depth function. These result

in different abilities to reflect asymmetries of the distribution, in varying robustness properties

and in different computability.

• Depths based on distances. Here the depth function is defined using a distance from a

properly defined central point or using a volume. Representatives mentioned are: L2-

depth, Mahalanobis depth, projection depth and simplicial volume depth.

• Weighted mean depths. Here depth is determined via weighted-mean trimmed regions

(Dyckerhoff & Mosler, 2011, 2012), whose support function is a decreasingly weighted

mean of order statistics (i.e., an L-statistics). Examples are: zonoid depth (Koshevoy

& Mosler, 1997, Mosler, 2002), expected convex hull depth (Cascos, 2007), geometrically

weighted mean depth (Dyckerhoff & Mosler, 2011).

• Depths based on halfspaces or simplices. These approaches concern halfspaces and sim-

plices and regard only the combinatorial structure of the data. Typical examples are

location depth and simplicial depth.

The depths based on the first two approaches are also mentioned as metric depths, and those

based on the third one as combinatorial depths.

1.1.2 Some notions

Five depths, out of their thriving diversity, are used in this thesis for classification purposes.

Here, they are briefly referred, in chronological order, and their most useful features are dis-

cussed. The corresponding depth functions, for a bivariate normal sample consisting of 250

observations drawn from N
([

0
0

]
,
[
1 1
1 4

])
, are plotted in Figure 1.2.

Mahalanobis depth is based on an outlyingness measure (Zuo & Serfling, 2000), viz. the

Mahalanobis distance between z and a center of X , µX say (Mahalanobis, 1936):

d2Mah(x;µX,ΣX) = (x− µX)
′Σ−1

X (x− µX),

with “′” standing for the transposition operation. The depth of a point z w.r.t. X is then

defined as (Liu, 1992)

DMah(z|X) =
1

1 + d2Mah(z;µX ,ΣX)
, (1.1)

see Figure 1.2, top middle, for illustration. If µX and ΣX are chosen to be moment estimates,

i.e. traditional mean and covariance matrix, the corresponding depth may be sensitive to

outliers. A more robust depth is obtained with minimum volume ellipsoid (MVE) or minimum

covariance determinant (MCD) estimators, see Rousseeuw & Leroy (1987) and Lopuhaä &

Rousseeuw (1991).

This distance-based depth function satisfies all the above postulates and is quasi-concave,

too (Mosler, 2013). It is defined by a finite number of parameters (namely d(d+ 1)) and thus

5



Chapter 1 Data depth

Bivariate points Mahalanobis depth Location depth

Projection depth Zonoid depth Spatial depth

Figure 1.2: Bivariate depths.

can be regarded as a parametric depth. Based on the two first moments, its depth contours are

ellipsoids, and it can identify the distributions defined by the two first moments only. Thus a

single depth region suffices to identify a multivariate normal distribution, but also one within

an affine family of nondegenerate multivariate distributions. Also, if the distribution of X is

angularly symmetric around cX ∈ Rd, i.e. if X−cX

‖X−cX‖ and − X−cX

‖X−cX‖ have the same distribution

(with 0
0
= 0), the Mahalanobis depth may not achieve its maximum value in cX .

Location depth follows the idea of Tukey (1975) (see also Donoho & Gasko (1992)). The

location (=Tukey, halfspace) depth of z w.r.t. X is determined as:

Dloc(z|X) = inf{P (H) : H is a closed halfspace, z ∈ H}, (1.2)

see Figure 1.2, top right, for illustration.

Location depth is a combinatorial depth, and it satisfies all the postulates prescribed for

a depth function. It is additionally quasiconcave, and equals zero immediately outside the

convex support of X . For any P , there exists at least one point having depth not smaller

than 1
1+d

(Mizera, 2002). For absolutely continuous P , it is a continuous function of z, and its

maximum value equals 1/2. For angularly symmetric distributions, the maximum is attained

at the symmetry center (Zuo & Serfling, 2000). If X has no Lebesgue density, location depth

6



Chapter 1 Data depth

is a discrete function of z, and the set of depth-maximizing locations – the halfspace median

– can consist of more than one point. Location depth determines the empirical distribution

uniquely (Struyf & Rousseeuw, 1999, Koshevoy, 2002), and converges for a sample from P

almost surely to the depth of P (Donoho & Gasko, 1992).

Projection depth, similar to Mahalanobis depth, is based on a measure of outlyingness, used

by Stahel (1981) and Donoho (1982), see Liu (1992). The worst case outlyingness is obtained

by maximizing an outlyingness measure over all univariate projections:

oprj(z|X) = sup
u∈Sd−1

|u′z−m(u′X)|
σ(u′X)

,

with m(Y ) and σ(Y ) being any univariate location and scatter measures. In practice most

often median,med(Y ), and median absolute deviation from the mediam,MAD(Y ) = med(|Y −
med(Y )|), are used as they are robust measures. Liu (1992) also suggests to use the gravity

center of Oja (1983) as a median. Projection depth is then obtained as

Dprj(z|X) =
1

1 + oprj(z|X)
, (1.3)

see Figure 1.2, bottom left, for illustration.

This distance-based depth satisfies all the postulates and quasiconcavity. By involving the

symmetric scale factor MAD its contours retain a certain degree of symmetry and thus are

not well suited for describing skewed data.

Zonoid depth has been first introduced by Koshevoy & Mosler (1997), see also Mosler (2002)

for a discussion in detail. Unlike most of the other depths, the zonoid depth function is defined

by means of depth contours – zonoid trimmed regions. The zonoid α-trimmed region of a

probability measure P having finite expectation is defined as (Koshevoy & Mosler, 1997)

Zα(P ) =
{∫

Rd

xg(x)dP (x) :

g : Rd 7→
[
0,

1

α

]
measurable and

∫

Rd

g(x)dP (x) = 1
}

for α ∈ (0, 1], and

Z0(P ) = cl
( ⋃

α∈(0,1]
Dα(P )

)

for α = 0, where “cl” denotes closure. Rather intuitive is the definition of the zonoid region of

an empirical distribution. For α ∈ [ k
n
, k+1

n
], k = 1, ..., n− 1 the zonoid region is defined as

Zα(X) = conv
{ 1

αn

k∑

j=1

xij +
(
1− k

αn

)
xik+1

: {i1, ..., ik+1} ⊂ N
}
,

7



Chapter 1 Data depth

where N = {1, ..., n}, and for α ∈ [0, 1
n
]

Zα(X) = conv
(
supp(X)

)
=
⋂

{H ∈ Hd : P (H) = 1},

where “conv” is the convex hull, “supp” denotes the support, and Hd is the set of halfspaces

in Rd. Thus, e.g., Z 3
n
(X) is the convex hull over the set of all possible averages involving three

points of the support of X , and Z0(X) is just the convex hull over the support.

The zonoid depth of a point z w.r.t. X is then defined as the largest α ∈ [0, 1] such that

Zα(X) contains z if z ∈ conv
(
supp(X)

)
and 0 otherwise:

Dzon(z|X) =

{
sup{α : x ∈ Zα(X)} if x ∈ conv

(
supp(X)

)
,

0 otherwise,
(1.4)

see Figure 1.2, bottom middle, for illustration.

The zonoid depth belongs to the class of weighted mean depths; see Dyckerhoff & Mosler

(2011, 2012), and additionally Mosler (2013) for detailed discussion. It satisfies all the above

postulates and is quasiconcave. It fails to achieve maximality at the symmetry center of an

angularly symmetric distribution. As well as location depth, zonoid depth vanishes beyond the

convex support of X . Its maximum, located at E[X ], always equals 1. Thus the depth is not

robust.

‘Lifting’ all properly scaled zonoid regions into Rd+1 yields the ‘lift zonoid’, which fully

characterizes the distribution (Mosler, 2002). It generates an antisymmetric depth order (=set

inclusion of lift zonoids) and a probability semi-metric (=Hausdorff distance between the lift

zonoids). Additionally, zonoid regions are invariant to any linear transformation, their marginal

projections are zonoid regions of the marginal distributions.

Spatial depth (also L1-depth) is a distance-based depth exploiting the idea of spatial quan-

tiles of Chaudhuri (1996) and Koltchinskii (1997), formulated by Vardi & Zhang (2000) and

Serfling (2002). Affine invariant spatial depth is defined as:

Dspt(z|X) = 1− ‖EX [v
(
Σ−1/2(z−X)

)
]‖, (1.5)

with v(x) = x

‖x‖ if x 6= 0, and v(0) = 0; see Figure 1.2, bottom right, for illustration. ΣX is a

scatter matrix of X , which provides the affine invariance.

Affine invariant spatial depth satisfies all the postulates, is continuous but not quasiconcave.

Its maximum is referred to as the spatial median. In the one-dimensional case it coincides with

the location depth.

1.1.3 Computational issues

When applying depth to multivariate data some depth notions cause substantial computational

burden. Depending on the statistical methodology used, one may need to compute data depth

for a number of points, also w.r.t. several data clouds. This leads to even higher computational
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Chapter 1 Data depth

expenses. On the other hand, in applications to supervised classification, exact depth values

at high computational cost may be replaced by reasonable approximations. Here, we give an

overview of computational possibilities for the depths introduced in Section 1.1.2, and specify

those employed in this thesis.

The computational task is twofold: (1) calculation of the depth of a single point z w.r.t.

a data cloud X , and (2) construction of a depth central region for a given depth value. Ad

(1), such extensions as computing depth for a number of points at once, or of the data cloud

itself are under consideration as well, and in some cases can yield an increase of efficiency. Ad

(2), a geometric d-dimensional body has to be shaped, which can be a quite involved task.

For depths like location depth, computing a certain range of regions (Johnson et al., 1998)

or their entire family (Miller et al., 2003) at once can bring additional acceleration. Another

practical problem is updating a depth and its central regions when X is dynamically changed

by insertion or deletion of observations, see e.g. Burr et al. (2011).

Mahalanobis depth and spatial depth can be computed exactly from (1.1) and (1.5), corre-

spondingly, in an efficient way. For Mahalanobis depth, a robust choice are MCD estimates

which are still computationally very efficient. A robustness parameter has to be chosen though.

Moment estimates can be taken for µX and ΣX , to speed up the procedure extremely at the cost

of robustness. In this dissertation, in Chapter 3 we employ both estimates, while in Chapter 4

only moment estimates are used. Central regions for Mahalanobis depth are ellipsoids located

at µX and stretched in directions of the eigenvectors of ΣX according to its eigenvalues. To

the knowledge of the author, no algorithm for construction of the spatial depth central regions

exists for d > 1.

Zonoid depth can be computed efficiently as the solution of a linear program. A very fast

algorithm exploiting the idea of Dantzig-Wolfe decomposition has been proposed by Dyckerhoff

et al. (1996). Dyckerhoff (2000) has suggested an algorithm to compute its bivariate contours.

Mosler et al. (2009) construct an algorithm computing zonoid central region for d > 2. This

was the first algorithm building central regions of dimension > 2. Later, Bazovkin & Mosler

(2012) design a general algorithm for weighted-mean trimmed regions.

Location depth belongs to the class of so called combinatorial depths. Its exact computation

is very expensive. Thus a substantial part of the literature on location depth considers compu-

tational issues. Here we name only a few sources that are most relevant for the content of this

thesis. For extensive references the reader is referred to Sections 5.1.1 and 5.1.2 regarding exact

and approximate computation, respectively. For bivariate data, Rousseeuw & Ruts (1996) pro-

pose an exact algorithm, and Ruts & Rousseeuw (1996a) construct central regions. Rousseeuw

& Struyf (1998) publish an algorithm computing location depth for d = 3. Hallin et al. (2010)

establish the connection between the multiple-output regression and location depth, and sug-

gest an algorithm producing all the halfspaces determining a central region in their intersection

(see also Paindaveine & Šiman (2012a,b)). Liu & Zuo (2014a) develop an algorithm computing

location depth exactly in any dimension, which proves to be extremely time consuming. High
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Chapter 1 Depth based classification

computational cost is a general characteristic of all algorithms computing location depth or its

central regions.

Dyckerhoff (2004) introduces the weak projection property of a depth, i.e. that the depth

can be obtained as the minimum over the depths on all univariate projections. He proves that,

among others, location depth possesses this property, which gives rise to an approximation.

Cuesta-Albertos & Nieto-Reyes (2008) propose the random Tukey depth, and Chen et al.

(2013) suggest a more systematic approach. In this thesis, the random Tukey depth with

slight computational modifications is exploited.

Projection depth is another depth intrinsically defined as an optimization problem. By that

it causes even larger computational effort than location depth does. The depth and its contours

have been computed exactly for d = 2 by Zuo & Lai (2011) and Liu et al. (2013), respectively,

and for d > 2 by Liu & Zuo (2014b). To avoid the enormous computational expenses, in this

thesis projection depth is approximated in the same way as location depth.

1.2 Depth based classification

In Section 1.1 a way of center-outward ordering of data has been regarded – statistical data

depth. It describes the data’s location, scale and shape, defining relatedness of an observation

to a data cloud. Here, a closer look is taken at its application to the task of the supervised

classification, or supervised statistical learning, restricted w.l.o.g. to the case of two classes only

(=binary classification). Consider the joint distribution (X, Y ) of a d-dimensional input vector

X and a binary nominal output Y taking values “0” and “1”. These constitute two classes

(labeled “0” and “1”, respectively), also representable by conditional probability distributions

P0 and P1 of X possessing densities f0 and f1. Let R be the class of all measurable mappings

Rd 7→ {0, 1}. Given is a training sample: X0 = {x1, ...,xm} and X1 = {xm+1, ...xm+n} drawn

from P0 and P1, respectively, which is a bunch of observations labeled by a teacher in accordance

with belonging to a class, i.e. numbered “0” or “1”. Based on this training sample X0 ∪X1,

we construct a rule r(·) : Rd 7→ {0, 1}, which, for a new observation x0 ∈ Rd, predicts to which

of the classes it belongs: ĉlass(x0) = r(x0). r is then mentioned as classification or decision

rule, and a mapping c : Rmd × Rnd 7→ R that constructs a decision rule based on a training

sample is called classification method or classifier. Such notation is also convenient because the

function c is applied in the training phase, where the classifying rule r is synthesized. Then

the created r is applied in the classification phase to determine to which class a newly seen

observation belongs.

One of the most common quality criteria for r is that r should minimize (the mathematical

expectation of) the classification error,

E(r, P0, P1) = π0

∫

Rd

I
(
r(x) = 1

)
dP0(x) (1.6)

+ π1

∫

Rd

I
(
r(x) = 0

)
dP1(x),
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Chapter 1 Depth based classification

with π0 and π1 being prior probabilities of the classes, while I(·) is an indicator function tak-

ing value 1 when the condition is fulfilled and 0 otherwise. For given P0 and P1 the minimal

achievable error E∗(P0, P1) = infr∈R E(r, P0, P1) is referred to as the Bayes error, and a clas-

sification method whose error converges to it when m,n → ∞ is called Bayes consistent or

Bayes optimal. Usually different classifiers are Bayes consistent under certain restrictions on

P0 and P1. Those consistent for any distribution are referred to as universally consistent.

In practice, when P0 and P1 are unknown, E(r, P0, P1) can be consistently estimated using

the jack-knife (=leave-one-out cross-validation) method (Luntz & Brailovsky, 1969, Stone,

1974). For a given classification method c and a training sample X0 ∪ X1 the jack-knife

estimate is defined as

Ê(c, X0, X1) =
1

m+ n

( m∑

i=1

I
(
c(X0 \ {xi}, X1)(xi) = 1

)

+

m+n∑

i=m+1

I
(
c(X0, X1 \ {xi})(xi) = 0

))
.

Often, for time saving reasons, generalized cross-validation with leaving out more than one

observation at a time is employed.

Two principally different rule-constructing methodologies, relevant for this thesis, are briefly

described below: classifiers of the plug-in type, and classifiers minimizing the empirical risk.

Overviews of the methods of supervised classification include Ripley (1996), Devroye et al.

(1996), Vapnik (1998), Hastie et al. (2009), Haykin (2009) and many others.

Plug-in classifiers constitute classification methods that construct rules of the form

r(x0) = argmax
i∈{0,1}

πifi(x0) = I
(
η(x0) ≥

1

2

)
, (1.7)

see, e.g., Devroye et al. (1996) for other analytical forms. In them, πi and the functions fi, or

η(x0) = E[Y |X = x0], are to be plugged-in, i.e. replaced by a reasonable estimator. In what

follows we briefly review the so-called traditional classifiers of the plug-in type.

Introduced by Fisher (1936) linear discriminant analysis (LDA) is a particularly fast pro-

cedure constructing a linear decision rule. It separates the classes on the one-dimensional

projection obtained by regarding f0 and f1 as normal densities. Their parameters, µX0 , µX1

and ΣX0 = ΣX1 , are estimated from the data as the classes’ means and the pooled covariance

matrix. Thus, LDA is Bayes consistent for multivariate normal distributions with the same

covariance matrix and when the priors are known (see, e.g., Hastie et al. (2009)). In other cases

it may perform very poorly, e.g. it can be shown that even when the classes are linearly sepa-

rable the error of LDA can be arbitrarily high (Devroye et al., 1996). On the other hand, when

round-shaped classes lie far from each other, LDA can be a reasonable solution, see Chapter 3.

Its robustness properties are very much determined by the mean and covariance estimators

used (see Section 1.1.2). An extension of LDA by accounting for the covariance matrices of

both classes is known as quadratic discriminant analysis (QDA). It yields a quadratic decision
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Chapter 1 Depth based classification

rule and proves Bayes optimality also for the Gaussian case when the classes’ covariance matri-

ces are different. Another classifier of the plug-in type can be constructed using kernel density

analysis (KDA) to estimate f0 and f1 (Wand & Jones, 1995). Here kernel parameters have

to be presumed, and are usually estimated by means of cross-validation. Priors can be taken

equal to classes’ portions, or alternatively cross-validated. A k-nearest-neighbor (kNN) classi-

fier estimates η = π1f1
π0f0

as the relation of class memberships among k nearest to x0 neighbors

(Fix & Hodges, 1951, Stone, 1977). KDA and kNN are universally consistent.

Sparseness of empirical data, presence of outliers, substantially differing classes’ portions

in the training sample tangle the estimation of η, and can lead to rather poor rules. In

addition, making no assumptions about P0 and P1 asks for – usually time consuming – cross-

validation when tuning the parameters of r. Thus, another rule-constructing methodology is

often preferred. This is regarded right below.

Empirical risk minimization is another methodology of construction of a classification rule.

Here, from some class of decision rules Rc ∈ R, r is chosen, that minimizes some loss function

L averaged over X0 ∪X1 for given r. The most natural is the indicator loss function L(x) =

I
(
r(x) 6= class(x)

)
that yields empirical risk, i.e. the portion of misclassified observations

obtained by applying r to X0 ∪X1 used for training:

L(r, X0, X1) =
1

m+ n

( m∑

i=1

I
(
r(xi) = 1

)
+

m+n∑

i=m+1

I
(
r(xi) = 0

))
. (1.8)

Even for the class of linear rules its search for generally located X0 ∪X1 has non-polynomial

(NP) complexity (Höffgen et al., 1995). If X0 and X1 are linearly separable this task can be

formulated in terms of quadratic programming (Vapnik & Chervonenkis, 1974). To circumvent

NP-completeness for linearly nonseparable X0 and X1, other loss functions (e.g., based on the

distance to the separating hyperplane) are used, which are computationally tractable. These

allow for complexity O
(
(m+n)3

)
in time and O

(
(m+n)2

)
in space, and even less when using

specialized algorithms for support vector machines (see, e.g., Osuna et al. (1997), Platt (1999)).

Historically, the first empirical risk minimizing classifier is the perceptron, designed (also

mechanically) by Rosenblatt (1958) and based on the neuron model of McCulloch & Pitts

(1943). It constructs the separating hyperplane by iteratively correcting an arbitrary linear

rule, which is done in a finite number of steps if the training sample is linearly separable

(Novikoff, 1962). Later, the entire field of methods minimizing empirical risk has been de-

veloped. Below we regard only two techniques directly related to this thesis: support vector

machine and the α-procedure.

Vapnik & Lerner (1963), later Vapnik & Chervonenkis (1974), introduce the generalized

portrait method for linearly separable X0 and X1. It finds the separating hyperplane maxi-

mally distant from the closest points of X0 and X1 by solving the task of constraint quadratic

optimization. This hyperplane can be represented by a weighted sum of so-called support

vectors from X0 ∪ X1, i.e. observations minimally distant from the separating hyperplane.

As the method involves dot products but not the points from Rd, Boser et al. (1992) apply
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the kernel trick, which allows to separate by non-linear rules. Later, Cortes & Vapnik (1995)

develop the soft-margin-hyperplane method, which works also when X0 and X1 are not fault-

lessly separable. This is today known as the support vector machine (SVM). The loss function

minimized in SVM is not the indicator function, for the sake of computational tractability.

Today, SVM together with its modifications constitute a separate field of study. In the book

by Vapnik (1998) SVM is one of the main topics, and the book by Steinwart & Christmann

(2008) contains a complete theoretical workout and regards important practical issues. In this

thesis, it is briefly introduced in Section 3.3.2.

The α-procedure (Vasil’ev, 1991, Vasil’ev & Lange, 1998), having already been used in the

nineteen seventies, constructs the separating hyperplane by iteratively synthesizing the space

of the most informative features. In the first step, it chooses an axis of the property space,

on which separation of X0 and X1 is best. In each of the following steps, it is looking for the

optimal separating rule in all two-dimensional spaces based on the axis from the previous step

and a coordinate axis of the property space, that has not been involved yet. The space which

minimizes empirical risk is then transformed into a one-dimensional feature by projecting onto

the direction which is normal to the optimal separating line. The method proceeds subse-

quently adding new axes from the property space, and stops when no additional classification

approvement is possible. For the general description of the α-procedure the reader is referred

to Vasil’ev (2003) and Lange & Mozharovskyi (2014). Its adaptation to the depth-based clas-

sification in the unit cube can be found in Section 2.3, and in Section 3.2.2 applied to real

data.

Some notions of statistical data depth are directly connected to the task of supervised

classification. Thus, regression depth (Rousseeuw & Hubert, 1999) corresponds to the smallest

empirical risk achievable when separating by a hyperplane (Christmann & Rousseeuw, 2001,

Christmann et al., 2002). Solving this problem exactly has NP-complexity though. This fact

obstructs its application to high-dimensional data. Ghosh & Chaudhuri (2005a) also point

out the relationship between calculating location depth and finding the optimal separating

linear rule. They enlighten this by suggesting a transformation of X0 ∪X1. To circumvent the

NP-completeness, they suggest to smooth the empirical risk functional (as a function of the

parameters of a linear rule). They approximate the indicator function I(u > 0) with the logistic

function 1
1+e−tu . Then a steepest descent numerical optimization is applied. The parameter t

has to be set, and multiple repetition of the optimization starting from different points copes

with the problem of local minima.

Later, a number of plug-in classifiers, where data depth is used to replace πifi, has been

developed, see Section 1.2.1. Combining the plug-in technique with empirical risk minimiza-

tion by applying the latter in a depth space opens new perspectives. Investigation of those

constitutes the main part of this dissertation. A short introduction on this topic is given in

Section 1.2.2.
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1.2.1 Plug-in classifiers

Depth-based classifiers of the plug-in type use an appropriate depth function to reconstruct

πifi for each of the classes. In their näıve form they can be written as

r(x0) = argmax
i∈{0,1}

D(x0|Xi), (1.9)

with D(x0|Xi) being a multivariate depth. The so-called maximum depth classifier (Ghosh &

Chaudhuri, 2005b) is Bayes consistent if the classes originate from the same strictly unimodal

elliptical distribution and have equal priors. That is, the classes’ distributions are equally

probable, have the same, equally scaled structural matrix and the same strictly decreasing

radial density. So, differing in location only, they constitute a location-shift alternative. To

overcome this constraint, more complicated forms than (1.9) have to be considered.

Hoberg (2002) applies the zonoid depth to supervised classification, see also Mosler &

Hoberg (2006). In the classification phase, a point lying beyond the convex hulls of both

classes will have zonoid depth = 0 w.r.t. both classes, and thus cannot be readily classified.

(Recall, the zonoid depth vanishes beyond the convex hull of the data.) Such a point is referred

to as an outsider. To deal with this problem, Mahalanobis depth (positive for the entire Rd) is

applied, scaled in a way that it cannot be larger than zonoid depth, unless the latter is zero.

The classification rule is:

r(x0) = argmax
i∈{0,1}

{
max

{
Dzon(x0|Xi),

1

maxj∈{0,1}{#Xj}
DMah(x0|Xi)

}}
.

The issue of outsiders is thoroughly addressed in Chapters 2 and 3 below. Jörnsten (2004)

employs a maximum depth classifier with L1-depth, which is everywhere positive, so that the

problem of outsiders does not arise.

Ghosh & Chaudhuri (2005b) construct a maximum depth classifier based on location, sim-

plicial, majority, projection, spatial or spatial volume depths. To overcome the location-shift

restriction, the authors apply a kernel density estimator, using the re-scaled Mahalanobis dis-

tance based on location depth. Choosing the scaling constant by means of cross-validation

then makes the classifier Bayes-optimal for strictly unimodal elliptical classes (location-scale

alternative). Note, that the classes may have unknown priors and differing radial densities.

Dutta & Ghosh (2012) similarly employ a robust classifier based on projection depth. Also,

Dutta & Ghosh (2011) suggest a classifier using Lp-depth, which is Bayes-consistent for Lp-

symmetric location-scale alternatives. These classifiers involve scaling constants determined by

means of cross-validation, where projection (Dutta & Ghosh, 2012) and Lp (Dutta & Ghosh,

2011) depth have to be calculated on each iteration. For this reason the classifiers seem to

be computationally expensive. Cui et al. (2008) define an extended projection depth using a

relative dispersion measure based on the product of squared MADs obtained by subsequently

maximizing the latter ones on orthogonal directions. Their classifier of the form (1.9), based

on the extended projection depth, is Bayes optimal for the location-scale alternative.
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The depth-based approaches considered above make use of so-called global depths. These

usually satisfy the postulates (D1) – (D5). They can be expressed as a monotone function of

the population’s density if the density is strictly unimodal elliptical. So they are not able to

properly describe the population if it is not elliptically symmetric (or Lp-symmetric when using

Lp-depth). In practical applications, classes mostly do not possess elliptical symmetry, but are

often asymmetric and may have several modes. In this case the maximum depth classifier is

insufficient to achieve optimal Bayes error. Paindaveine & Van Bever (2012) suggest a depth-

based k-nearest neighbor classifier which is universally consistent. When classifying x0, they

suggest to proceed as follows: First, for each class i ∈ {0, 1}, calculate the depth of each point

of Xi being appended by its centrally symmetric reflection w.r.t. x0, then, apply the kNN-rule

to the obtained depth values. Dutta et al. (2012) construct another universally consistent

classifier by introducing a localized spatial depth based on kernels. Both methods allow for

universal consistency but cause enormous computational burden.

1.2.2 DD-classifier

Li et al. (2012) suggest a new method of depth-based classification exploiting the probabilistic

geometry of data: depth-vs-depth classification (DD-classification). First, for two classes X0

and X1, the DD-plot – a subset of the unit square – is obtained:

Z = {(z0, z1)|z0 = D(xi|X0), z1 = D(xi|X1), i = 1, ..., m+ n}. (1.10)

Then, a polynomial decision rule is constructed that separates the DD-plot and minimizes the

error probability E . This yields a classification rule of the form:

r(x0) = I
(
D(x0|X1) >

k0∑

k=1

akD(x0|X0)
k
)
, (1.11)

with (a1, ..., ak0) ∈ Rk0 being the coefficient vector of the polynomial of degree k0. The constant

a0 is set to zero, as the origin obviously is a separating point. (If the depth of x0 w.r.t. both

classes = 0, no decision can be made: x0 is an outsider.) The DD-classifier based on the

Mahalanobis depth is demonstrated in Figure 1.3 for a normal location-scale alternative. X0

origins from N
([

0
0

]
,
[
1 1
1 4

])
, and X1 origins from N

([
1
1

]
,
[
4 4
4 16

])
, containing 250 points in each

of the classes. The polynomial rule on the DD-plot (right) corresponds to the solid line on the

scatter plot (left). The optimal Bayes rule is marked by the dashed line (left). As every smooth

function can be approximated by a polynomial of suitable degree, an optimal separating line

on the DD-plot can always be found for large enough k0. To eventually achieve the optimal

Bayes error, the DD-transform should not lead to loss of information. Loosely speaking, no

two points in Rd that belong – according to an optimal Bayes rule – to different classes in the

original space, must be projected into the same point of the DD-plot. This can be guaranteed

if the classes are strictly unimodal elliptically distributed. DD-classifiers, as pointed out by Li

et al. (2012), possess a number of advantages: the separating rule is determined automatically
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Figure 1.3: DD-classifier based on the Mahalanobis depth for a normal location-scale al-
ternative: scatter plot with DD- (solid line) and optimal Bayes (dashed line) rule (left) and
corresponding DD-plot with separating second-degree polynomial (right).

based on the data topology, no parametric assumptions are needed, and the separation can be

well visualized.

Determining the optimal polynomial curve in the DD-plot computationally can be a chal-

lenging task though. Li et al. (2012) suggest to minimize the empirical risk for a given degree

of the polynomial k0 by employing numerical optimization. To provide smoothness, they ap-

proximate the indicator function I(x > y) by the logistic function 1
1+e−t(x−y) , reporting that

t = 100 is a good choice. k0 ranges in {1, 2, 3}, and the one delivering the smallest classification

error is chosen by means of cross-validation. Finding the optimal coefficient vector (a1, ..., ak0)

requires solving a rather complicated optimization problem. For the sample in Figure 1.3 the

empirical risk functional (taking k0 = 2) is shown in Figure 1.4, left. For a sample, where X0

and X1 are generated from Cauchy distributions with the same centers and shape matrices as

before, the functional to be minimized (with k0 = 2) is shown in Figure 1.4, right. To deal

with this problem, Li et al. (2012) first pick 1000 polynomial lines passing through k0 points of

Z and the origin. Then, the one delivering the smallest empirical risk is selected as the initial

value for the numerical optimization procedure. Such an approach can be computationally

involved and deliver an unstable solution.

1.3 Functional classification

The need to classify functional data arises in such fields as biology, biomechanics, medicine,

economics. The data on functional values is generally given at some discretization points which

may be neither equidistant nor common. Let F be the space of real functions, defined on a

compact interval, which are continuous and almost everywhere smooth. Consider the setting
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Figure 1.4: Smoothed empirical risk (vertical axis) of DD-classifier based on the Maha-
lanobis depth obtained by the polynomial separating rule r(x0) = I

(
D(x0|X1) > a1D(x0|X0) +

a2D(x0|X0)
2
)
, for normal (left) and Cauchy (right) location-scale alternatives.

of binary supervised functional classification: Given two classes in F , X0 = {x1, ...,xm} and

X1 = {xm+1, ...xm+n}, the task is to construct a rule categorizing a new observation x0 ∈ F .

The wide range of constantly developing approaches can be roughly classified into three

groups:

• approaches applying a finite-dimensional classification technique to projections onto a

finite sub-basis, e.g. principal (Hall et al., 2001) or independent (Huang & Zheng, 2006)

components, wavelets (Wang et al., 2007) or functions of very simple and interpretable

nature (Tian & James, 2013);

• approaches using an – in the classification sense – optimal subset of given or smoothed

functional evaluations (Ferraty et al., 2010, Delaigle et al., 2012);

• approaches exploiting the idea of data depth (López-Pintado & Romo, 2006, Cuevas

et al., 2007, Cuesta-Albertos & Nieto-Reyes, 2010, Sguera et al., 2014).

Advantages and shortfalls of each of them are discussed in Section 4.1. Another cate-

gorization of methods of functional classification can be found in Ferraty & Romain (2010),

Chapter by Báıllo, Cuevas and Fraiman. They distinguish classification techniques based on

linear discrimination rules, k-NN rules, kernel rules, partial least squares, reproducing kernels

and depth measures, but also address some other decision-constructing methods. For general

information on functional data, including discrimination, the reader is referred to Ramsay &

Silverman (2005) and Ferraty & Vieu (2006).
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In this new and rapidly evolving field, this dissertation addresses classification methods

based on the idea of statistical data depth. Different notions of depth for functional data,

which evolved in the last decade and which are relevant for this thesis, are briefly addressed

in Section 1.3.1. Then, some classification techniques exploiting them are described in Sec-

tion 1.3.2.

1.3.1 Functional depths

Regard a real-valued function z : [0, T ] 7→ R, and a random function X with the same support,

distributed as P , in particular empirically on {x1, ...,xn} ⊂ F . Fraiman & Muniz (2001) define

the integrated data depth of z w.r.t. X as the average univariate depth at each argument value:

FDint(z|X) =

∫ T

0

D1
(
z(t)|X(t)

)
dt, (1.12)

with X(t) being a random vector, the evaluation of X at the point t, and D1(·|·) being a

univariate depth. For an appropriate set of functions, they prove the uniform convergence

of the empirical depth to its population version, and derive the strong consistency of the

corresponding α-trimmed mean estimates.

López-Pintado & Romo (2011) define the half-region depth as the smallest of the probabil-

ities of X lying in the hyper- and hypo-graph of z:

FDhr(z|X) = min
{
P
(
z(t) ≤ X(t) ∀ t ∈ [0, T ]

)
, (1.13)

P
(
z(t) ≥ X(t) ∀ t ∈ [0, T ]

)}
.

López-Pintado & Romo (2009) define the band depth as

FDband(z|X) =

J∑

j=2

P
(
z(t) ∈ conv{X1(t), ..., Xj(t)} ∀ t ∈ [0, T ]

)
, (1.14)

where X1, ..., Xj are i.i.d. drawings from P . The same authors also define the generalized

half-region depth and the generalized band depth by averaging the mathematical expectation

of the condition from P (·) over [0, T ]. For the generalized band depth, López-Pintado & Romo

(2009) report J = 2 to be generally sufficient. The two generalized depths correspond to the

integrated depth of Fraiman & Muniz (2001) when taking D1(·|·) to be location and simplicial

depths, respectively.

Mosler & Polyakova (2012) introduce a comprehensive class of functional depths, named Φ-

depth. Consider a Banach space E having a norm ‖ ·‖, and the dual space E ′d of all continuous

linear functionals E 7→ Rd. For z and a sample X = {x1, ...,xn} ∈ E a Φ-depth is defined as:

FDΦ(z|X) = inf
φ∈Φ

Dd
(
φ(z)|φ(x1), ...φ(xn)

)
, (1.15)
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where Dd(·|·) is a d-variate depth, Φ ⊂ E ′d. Φ-depth is the smallest multivariate depth among

those achievable on all considered aspects, which are finite dimensional projections E 7→ Rd.

(It correlates with the weak projection property of Dyckerhoff (2004).) Letting, e.g., Φ = E ′1

and D1 = Dloc one obtains the Tukey functional depth, the natural extension of its finite-

dimensional version.

Mosler & Polyakova (2012) formulate postulates a functional data depth should satisfy, and

prove that any Φ-depth does so. These are analogous to the postulates for finite-dimensional

depths (and differ only in substituting linear by scale invariance): (FD1) translation invariance,

(FD2) scale invariance, (FD3) null at infinity, (FD4) monotonicity on rays (or stronger require-

ment – quasiconcaveness), (FD5) upper semicontinuity. Φ-depth gives substantial freedom

when constructing a functional depth. The authors point out several meaningful subclasses.

Thus, defining Φ as a (sub)set of all evaluations at t ∈ [0, T ], yields the subclass of general

graph depths. These are represented by half-region depth (López-Pintado & Romo, 2011) and

band depth (López-Pintado & Romo, 2009), when taking D1 being location, respectively sim-

plicial, depth for E being a set of real valued functions on [0, T ]. Choosing Φ to be the set

of projections of evaluations at k points onto u ∈ Sk−1, defines the subclass of grid depths. If

Φ is the (sub)set of two-dimensional points consisting of evaluations and their derivatives at

t ∈ [0, T ], the subclass of location-slope graph depths is obtained. This is used as the basic idea

of the location-slope integral depth defined and applied in Chapter 4.

Natural extensions of some finite dimensional depths to their functional versions can be

meaningless. Chakraborty & Chaudhuri (2014) show that the above mentioned Tukey func-

tional depth (see also Dutta et al. (2011)) as well as the projection depth are almost everywhere

zero for a wide class of distributions. These include Gaussian distributions on the space C[0, T ]

of continuous functions on [0, T ] with supremum norm. Also, half-region depth and band depth

show degenerate behavior for some standard probability models, such as certain α-mixing se-

quences and Feller processes with continuous sample paths (Revuz & Yor, 1999). On the other

hand, their generalized versions take depth values in the entire [0, 1] for these settings. Also, the

integrated depth of Fraiman & Muniz (2001), as well as the infinite extension of spatial depth

suggested by Chakraborty & Chaudhuri (2014), do not suffer from this degenerate behavior.

For a d-variate stochastic process z = (z(1), ..., z(d)) with z
(j) : [0, T ] → R continuous for

j = 1, ..., d and a random family of those X distributed as P , Claeskens et al. (2014) define a

multivariate functional depth as

MFD(z|X) =

∫ T

0

Dd
(
z(t)|X(t)

)
· w(t)dt, (1.16)

where z(t) is a d-variate vector which is the process’s cut at the argument value t, X(t) is a

d-variate random vector, and w is a weight function defined on [0, T ] and integrating to one.

The authors show that, if the underlying finite dimensional depth is satisfying the postulates

of Zuo & Serfling (2000), it satisfies the functional version of these postulates. Taking location
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depth as the building block they define the multivariate functional halfspace depth, which has

a number of useful properties.

1.3.2 Discrimination

Data depth continuously proves to be useful in numerous applications, in particular when

classifying multivariate data. Classification of functional data is a rather new, rapidly evolving

field of statistics, finding its applications to data of functional and high-dimensional nature.

Several articles of the last decade fuse both research areas together, employing depth based

classification to functional data. These are briefly regarded below.

López-Pintado & Romo (2006) suggest to classify functional data by its distance to the

trimmed mean and by (trimmed) weighted average distance. When employing classification

based on the distance to the trimmed mean, on the training stage, the α-trimmed mean of each

class mα
i , i ∈ {0, 1} is calculated. Trimming is based on the band depth values FDband(x|Xi),

x ∈ Xi. Then, taking, say, d(x,x′) =
∫ T

0
|x(t) − x′(t)|dt as the distance measure, the classifi-

cation rule is:

r(x0) = argmin
i∈{0,1}

d
(
x0,m

α
i (t)

)
. (1.17)

When classifying by weighted average distance the classification rule looks as:

r(x0) = I
(∑m

i=1 d(x0,xi)FD(xi|X0)∑m
i=1 FD(xi|X0)

(1.18)

>

∑m+n
i=m+1 d(x0,xi)FD(xi|X1)∑m+n

i=m+1 FD(xi|X1)

)
.

When the cardinalities of X0 and X1 are too different, the classification can be inaccurate. In

this case, the authors propose to apply trimmed weighted average distance, i.e. to average over

the k most central functions of each class with k ≤ min{m,n}. Again, the central-outward

order is provided by the data depth.

Cuevas et al. (2007) employ the näıve maximum depth classifier to functional data, with

five notions of data depth: integrated depth of Fraiman & Muniz (2001), h-mode depth, and

three variants of random depths. Integrated depth is taken in its usual form with D1(x|X) =

1 −
∣∣∣ 12 − F (x)

∣∣∣ being the univariate depth, and F being the cumulative distribution function

of a univariate random variable X . h-mode depth is defined as FDh(z|X) = E[Kh(‖z−X‖)],
where ‖ · ‖ is a suitable norm (e.g., L2-norm), and Kh(x) is a re-scaled kernel of type Kh(x) =
1
h
K(x

h
), with K being a kernel function (e.g., Gaussian kernel K(x) = 1√

2π
exp
(−x2

2

)
) and h

being a fixed tuning parameter. The authors use the normalized version of h-mode depth
FDh(z|X)−minFDh(z|X)

maxFDh(z|X)−minFDh(z|X)
. According to the random projection method, in the Hilbert space

L2[0, T ] data depth is averaged over univariate projections on random directions. The authors

generate 50 directions standardized to norm 1, from a Gaussian distribution. Two double

random projection methods are based on mapping the sample into R2 by applying the random
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projection method to functions (1st coordinate) and their derivatives (2nd coordinate). Then,

to the bivariate data, either the random projection method or the h-mode depth is applied.

Together with the random Tukey depth, Cuesta-Albertos & Nieto-Reyes (2008) propose

its infinite-dimensional version (in a separable Hilbert space of square-integrable functions).

They suggest the practitioner to specify a distribution of random directions and their number,

depending on the application. Also Cuesta-Albertos & Nieto-Reyes (2010) work out these

issues, and investigate two strategies: First, random directions are generated from a fixed

distribution, a standard Brownian motion. Second, they are drawn from the two-parameter

distribution family obtained by scaling the standard Brownian motion by the absolute value

of the difference between the classes’ point-wise medians brought to some power. The authors

choose the number of random directions by means of leave-one-out cross-validation, in both

cases. They apply this functional data depth instead of band depth with techniques used

by López-Pintado & Romo (2006).

Sguera et al. (2014) extend the spatial depth to infinite dimensional spaces by mapping the

data to obtain a kernel-based similarity measure. They define the kernelized functional spatial

depth of z w.r.t. X as

FDspt(z|X) = 1− ‖E[v
(
φ(z)− φ(X)

)
]‖, (1.19)

where φ : H 7→ F is an embedding map from the Hilbert space with norm ‖ · ‖ inherited from

the inner product, into an appropriate feature space F, and v(·) as in (1.5). This leads to the

sample version

FDn
spt(z|X) = 1− 1

n

( ∑

xi,xj∈X

K(z, z) +K(xi,xj)−K(z,xi)−K(z,xj)√
K(z, z) +K(xi,xi)− 2K(z,xi)

× 1√
K(z, z) +K(xj ,xj)− 2K(z,xj)

) 1
2
,

where K(·, ·) is an appropriately chosen positive definite and stationary kernel. (A stationary

kernel is a kernel that is translation invariant, also referred to as anisotropic stationary kernel,

see, e.g., Genton (2001).) The authors employ the maximum depth classifier with the kernelized

functional spatial depth, using a Gaussian kernel.

1.4 The structure of the thesis

This thesis consists of four main chapters. The second chapter named Fast nonparametric

classification based on data depth introduces a new depth based classification method based

on the idea of Li et al. (2012). A projective invariant method, the α-procedure (Vasil’ev, 1991,

Vasil’ev & Lange, 1998, Vasil’ev, 2003), is applied in the DD-plot, which is a space of depths

w.r.t. the classes of the training sample. The so-called DDα-classifier possesses a number

of useful properties: it is affine-invariant, robust, very fast, and can be visualized at every

step of the training phase. Here the zonoid depth (Koshevoy & Mosler, 1997, Mosler, 2002)
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is employed, which has attractive properties and can be efficiently computed exactly in higher

dimensions (Dyckerhoff et al., 1996) by means of linear programming. As it vanishes beyond

the convex hull of the data, the zonoid depth produces outsiders which are projected into the

origin of the depth space and require an additional treatment. Several such treatments are

considered in an extensive comparative study. The proposed method is applied to simulated

and benchmark data together with traditional and existing depth-based classifiers. For several

data sets it is contrasted with SVM (Vapnik, 1998) both in terms of performance and speed.

Further, employed with the Tukey depth (Tukey, 1975), the DDα-classifier is experimentally

investigated by means of simulated data regarding performance, performance dynamics and

speed. This chapter is a joint work with Prof. Tatjana Lange and Prof. Karl Mosler. Most

material of the chapter has been published in the journal Statistical Papers ; Section 2.7 con-

cerning the random Tukey depth (Cuesta-Albertos & Nieto-Reyes, 2008), as well as the general

description of the α-procedure with several experimental comparisons, constitute two chapters

of the proceedings of the 36th Annual Conference of the German Classification Society Data

Analysis, Machine Learning and Knowledge Discovery.

The third chapter named Classifying real-world data with the DDα-procedure provides a

broad comparative experience of application of the DDα-classifier to fifty real-data problems

with a number of depths and outsider treatments. Mahalanobis (Mahalanobis, 1936), spa-

tial (Vardi & Zhang, 2000, Serfling, 2002) and projection (Stahel, 1981, Donoho, 1982, Liu,

1992) depths are everywhere positive so that no problem of outsiders arises, and thus every

point of the space can be readily classified. On the other hand their central regions retain

a certain degree of symmetry even if the real data is not symmetric. Tukey depth keeps

the level sets closer to the data geometry, but vanishes beyond the convex hull of the data,

and thus requires an additional outsider treatment. Here, treatments based on LDA, kNN,

maximum Mahalanobis depth are used. As the calculation of projection and Tukey depths is

computationally quite involved, their approximations from above are used, for Mahalanobis

and spatial depth both moment and robust (MCD) estimates are tried. A new outsider treat-

ment based on SVM is proposed, which also speeds up the classification phase enormously. All

considered classifiers, together with the three traditional ones (LDA, QDA and kNN) taken

as a benchmark, are compared. The comparison is based on five indicators, which rank the

techniques w.r.t. their performance on the fifty real-data sets. A further investigation into

the DD-plot features used by the α-procedure shows that in almost all cases two-dimensional

linear separation is sufficient, and in 3/4 of cases no polynomial extension of the DD-plot is

needed. The proposed technique has been implemented as an R-package named ddalpha. The

classification tasks used, together with their descriptions and some statistics, can be accessed

under http://www.wisostat.uni-koeln.de/28969.html. This chapter is a result of a close

cooperation with Prof. Karl Mosler and Prof. Tatjana Lange. The material of the chapter is

about to appear in the journal Advances in Data Analysis and Classification.

The fourth chapter named Fast DD-classification of functional data suggests an extension

of the DD-classifier to the infinite-dimensional data based on the kNN and the α-procedure.
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A new integral location-slope mapping is proposed, which is weakly continuous and preserves

Bayes optimality. This first approximates the functional data with first-order splines, and

then integrates its level (=location) and first derivative (=slope) over L, respectively S for

slope, equally sized intervals. Afterwards, multivariate data depth is applied to this RL+S-

representation. In such a way the entire functional support is considered, and changing of

a function with the argument is accounted for in a nonparametric way. Being able to treat

functional data of either intrinsically discrete or continuous nature, observed at a bunch of

points, neither equidistant nor common ones, it provides the integral location-slope depth

transform. To choose the dimensions of the location-slope space – L and S – a conser-

vative Vapnik-Chervonenkis (Vapnik & Chervonenkis, 1974) bound is applied, followed by

cross-validation over a restricted range of (L, S) pairs. This technique proves to be fast and

efficient, outperforming traditional and maximum-depth classifiers as well as componentwise

space-construction technique of Delaigle et al. (2012) in most of the considered cases. This

chapter has been written commonly with Prof. Karl Mosler.

The fifth chapter named Exact computation of the Tukey depth proposes two algorithms

computing location depth exactly. The first of them is based on the idea of Liu & Zuo (2014a),

who regard successively, by means of a breadth-first spread algorithm, all direction cones, which

are closures of polyhedral cones formed by all directions that maintain the same halfspace-

defined subsets of the sample, and thus yield the same univariate location depth. To deter-

mine the cone’s boundary, Liu & Zuo (2014a) use a vertex-facet enumeration and the qhull

algorithm. Here, this is narrowed down to linear programming, which in this case can be much

faster. Also, as the direction cones are coded with a binary sequence, only a relatively small

number of them has to be stored in the memory. By that the algorithm is substantially faster

than its predecessor and requires less memory. The idea of this algorithm is to regard – based

on the spatial order – all dichotomies yielded by separating the sample with the hyperplane

through the point z for which the depth is calculated. As all these dichotomies are to be

regarded anyway, the second algorithm suggests to use a combinatorial order to do so. It is

sufficient to go through univariate depths on the sample’s projections onto directions that are

orthogonal to hyperplanes containing z and d−1 points from the sample in Rd. This approach is

much less time consuming than the before-mentioned one, does not require memory-expensive

structures, and can be very simply implemented in any programming environment.
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Fast nonparametric classification based

on data depth

2.1 Introduction

A steady interest in statistical learning theory has intensified recently since nonparametric

tools have become available. A new impetus has been given to supervised classification by

employing depth functions such as Tukey’s (1975) halfspace depth or Liu’s (1990) simplicial

depth. In supervised learning a function is constructed from labeled training data that classifies

an arbitrary data point by assigning it one of the labels (Hastie et al., 2009). Given two

or more labeled clouds of training data in d-space, a data depth measures the centrality of

a point with respect to these clouds. For any point in d-space it indicates the degree of

closeness to each label. This can be employed in different ways for solving the classification

task. Many authors have made use of data depth ideas in supervised classification. Liu et al.

(1999) were the first who stressed the usefulness and versatility of depth transformations in

multivariate analysis. They introduced the notion of a DD-plot, that is the two-dimensional

representation of multivariate objects by their data depths regarding two given distributions.

In a straightforward way, an object can be classified to the class where it is deepest, that

is, according to its maximum depth. Jörnsten (2004) and Ghosh & Chaudhuri (2005b) have

followed this and similar approaches; see also Mosler & Hoberg (2006). Dutta & Ghosh (2012,

2011) employ a separator that is linear in a density based on kernel estimates of the projection

depth, respectively Lp-depth. Recently, Li et al. (2012) have used polynomial separators of the

DD-plot to classify objects by their depth representation. These methods differ in the notion

of depth used and allow for adaptive and other extensions.

The quoted literature has in common that a (possibly high-dimensional) space of objects

is transformed into a lower-dimensional space of depth values of these objects and the classifi-

cation task is performed in the depth space. In this context several questions arise:

1. Which particular notion of depth should be employed?

2. Which classification procedure should be applied to the depth-represented data?



Chapter 2 Introduction

3. How extends the procedure to q > 2 classes?

The above literature answers these questions in different ways. Ad (1), halfspace and sim-

plicial depths, among others, have been employed in Ghosh & Chaudhuri (2005a), Li et al.

(2012), Liu et al. (1999). They depend only on the combinatorial structure of the data, be-

ing constant in the compartments spanned by them. Consequently, these depths are rather

robust to outlying data, but calculating them in higher dimensions can be cumbersome if not

impossible. On the other hand Mahalanobis depth (Mahalanobis, 1936), which has also been

used by these authors, is easily calculated but highly non-robust. Moreover, it depends on the

first two moments only and does not reflect any asymmetries of the data. More robust forms

of the Mahalanobis depth remain still insensitive to data asymmetries. L1-depth as used in

Jörnsten (2004) has similar drawbacks. Dutta & Ghosh (2011) employ Lp-depths, which are

easily calculated if p is known, and choose p in an adaptive procedure; however the latter needs

heavy computations. In Mosler & Hoberg (2006) the maximum zonoid depth and a combina-

tion of it with the Mahalanobis depth are used; both can be efficiently calculated also in high

dimensions but lack robustness. Ad (2), Li et al. (2012) solve the classification problem of the

DD-plot by designing a polynomial line that separates the unit square and provides a minimal

average misclassification rate (AMR); the order (up to three) of the polynomial is selected by

cross validation. Similarly, separators are determined in Dutta & Ghosh (2011) and Dutta &

Ghosh (2012) by cross-validation.

Ad (3) with q > 2 classes a given point is usually classified in two steps according to

majority rule: firstly
(
q
2

)
classifications are performed that are restricted to pairs of classes

in the object space, and secondly the point is assigned to that class where it was most often

assigned in step 1.

In this chapter, ad (1), we employ the zonoid depth (Koshevoy & Mosler, 1997, Mosler,

2002), as it can be efficiently calculated also in higher dimensions (up to d = 20 and more)

and has excellent theoretical properties regarding continuity and statistical inference. However

the zonoid depth has a low breakdown point. If, in a concrete application, robustness is an

issue the data have to be preprocessed by some outlier detection procedure. Ad (2), for final

classification in the depth space a variant of the α-procedure is employed. It operates simply

and very efficiently on low-dimensional spaces like the depth spaces considered here. The α-

procedure has been originally developed by Vasil’ev (Vasil’ev, 1991, 2003) and Lange (Vasil’ev

& Lange, 1998). Ad (3) we employ DD-plots if there are two classes and q-dimensional depth

plots if there are q > 2 classes. Assignment of a given point to a class is based on
(
q
2

)
binary

classifications in the q-dimensional depth space plus a majority rule. Note that in each binary

classification the whole depth information regarding all q classes is used.

We call our approach the DDα-approach and apply it to simulated as well as real data.

The results are contrasted with those obtained in Li et al. (2012), Dutta & Ghosh (2011), and

Dutta & Ghosh (2012).

The contribution of this chapter is threefold. A classification procedure is proposed that

1. is efficiently computable for objects of higher dimensions,
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2. employs a very fast classification procedure of the depth-transformed data,

3. uses the full multivariate information when classifying into q > 2 classes.

The rest of the chapter is organized as follows. Section 2.2 introduces the depth trans-

form, which maps the data from the d-dimensional object space to the q-dimensional depth

space, and provides a first discussion of the problem of ‘outsiders’, that are points having a

vanishing depth vector. In Section 2.3 our modification of the α-procedure is presented in

some detail. Section 2.4 provides a number of theoretical results regarding the behavior of

the DDα-procedure on elliptical and mirror symmetric distributions. Section 2.5 contains

extensive simulation results and comparisons. Calculations of real data benchmark examples

are reported in Section 2.6 as well as a comparison of the DDα-procedure with the SVM

approach. In Section 2.7 zonoid and Tukey depths are compared in a simulation study that

involves fat-tailed and skewed distributions. Section 2.8 concludes.

The material of the chapter is based on Lange et al. (2014a), Section 2.7 is based on Lange

et al. (2014b). A general description of the α-procedure can be found in Lange & Mozharovskyi

(2014).

2.2 Depth transform

A data depth is a function that measures, in a certain sense, how close a given point x is

located to the ‘center’ of a finite set X in Rd, that is, how ‘deep’ it is in the set. More precisely,

a data depth is a function

(x, X) 7→ DX(x) ∈ [0, 1] , x ∈ Rd , X ⊂ Rd ,

that satisfies the following restrictions: affine invariant; upper semicontinuous in x; quasicon-

cave in x (that is, having convex upper level sets), vanishing if ||x|| → ∞. Sometimes two

weaker restrictions are imposed: orthogonal invariant; decreasing on rays from a point of maxi-

mal depth (that is, starshapedness of the upper level sets). For surveys of these restrictions and

many special notions of data depth, see e.g. Zuo & Serfling (2000), Mosler (2002), Dyckerhoff

(2004), Serfling (2006), Cascos (2010).

Now, assume that data in Rd are to be classified into q ≥ 2 classes and that X1, . . . , Xq

⊂ Rd are training sets for these classes each having finite size nj = |Xj|. Let D be a data

depth. The function Rd → [0, 1]q mapping

x 7→ d :=
(
DX1(x), . . . , DXq

(x)
)

(2.1)

will be mentioned as a depth representation. Each object is represented by a vector whose q

components indicate its depth or closeness regarding the q classes. In particular, the training

sets Xj ⊂ Rd are transformed to sets in [0, 1]q that represent the classes in the depth space. It

should be noted that ‘closeness’ of points in the original space translates to ‘closeness’ of their
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representations. The classification problem then becomes one of partitioning the depth space

[0, 1]q into q parts.

A simple rule, e.g., is to classify a point to that class where it has the largest depth value; see

Ghosh & Chaudhuri (2005b), Jörnsten (2004). This means that the depth space decomposes

into q compartments which are separated by (parts of) q bisecting hyperplanes. Maximum

depth classification is a linear rule. A nonlinear classification rule is used in Li et al. (2012),

who treat the case q = 2 by constructing a polynomial line up to degree 3 that separates the

depth space [0, 1]2; see also Dutta & Ghosh (2011, 2012).

With several important notions of data depth, DX(x) vanishes outside the convex hull of

X . This is, e.g., the case with the halfspace, simplicial, and zonoid depths, but not with the

Mahalanobis and Lp-depths. A point that is not within the convex hull of at least one training

set then is mapped to the origin in the depth space. Such a point will be mentioned as an

outsider. Of course, it can be neither regarded as correctly classified nor ignored. To classify

this point we may consider three principal approaches, each allowing for several variants.

• Classify randomly, with probabilities equal to the expected proportions of origin of points

to be classified.

• Use the k-nearest neighbors method with a properly chosen distance: Euclidean distance,

Lp-distance, Mahalanobis distance with moment estimates, Mahalanobis distance with

robust estimates (MCD, cf. e.g. Hubert & Van Driessen (2004)).

• Classify with maximum Mahalanobis depth (using moment estimates or MCD) or with

the maximum of another depth that is properly extended beyond the convex hull as e.g.

in Mosler & Hoberg (2006).

In the sequel we will use either random classification, k-nearest neighbors (with different dis-

tances), or maximum Mahalanobis depth (with moment and robust estimates).

2.3 The α-procedure

To separate the q classes in the multi-depth space we use the α-procedure, which has been

developed by Vasil’ev (Vasil’ev, 1991, 2003) and Lange (Vasil’ev & Lange, 1998), see also

Lange et al. (2011). Among others the regression depth method (see Rousseeuw & Hubert

(1999), Christmann & Rousseeuw (2001), Christmann et al. (2002)) or the support vector

machine (see Vapnik (1998) and Christmann et al. (2002)) seem to be good alternatives. In

contrast with those the α-procedure, in application to the current task, is substantially faster

and produces a unique decision rule. Besides that it focuses on features of the extended [0, 1]q,

i.e. depths and their products, which, by their nature, are rather relevant. Moreover, by

selecting a few important features only, the α-procedure yields a rather stable solution.

Let us first present the procedure in the case of q = 2 classes. As above consider two clouds

of training data in Rd, X = {x1, . . . ,xn1} and Y = {y1, . . . ,yn2} and notate xn1+m = ym,
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m = 1, ..., n2. By calculating the depth of all xi with respect to each of the two clouds, their

depth representation, (DX(xi), DY (xi)), is obtained, i = 1, 2, . . . , n1 + n2. The set

D = {di ∈ [0, 1]2|di =
(
DX(xi), DY (xi)

)
, i = 1, . . . , n1 + n2}

is the DD-plot of the data (Liu et al., 1999).

We use a modified version of the α-procedure to construct a nonlinear separator in [0, 1]2

that classifies theD-represented data points. The construction is based on depth values and the

products of depth values up to some degree p that can be either chosen a priori or determined

by cross-validation. For this, a linearized representation of the two classes in a depth feature

space is

Z = {zi | zi =
(
DX(xi), DY (xi), DX(xi) ·DY (xi), D

2
X(xi), D

2
Y (xi)

)
,

i = 1, ..., n1 + n2} .

Each element of the extended D-representation is mentioned as a basic D-feature and the

space [0, 1]r as the feature space. When the maximum exponent is p ≥ 1, zi is a vector in

Rr having components

DX(xi)
kν ·DY (xi)

ℓν , where 1 ≤ kν + ℓν ≤ p , ν = 1, . . . , r . (2.2)

The number of basic D-features, that is the dimension of the feature space, equals r =
(
p+2
2

)
−

1, which is easily seen by induction. We index the basic D-features by ν and notate zi =

(ziν)ν=1,...,r.

The α-procedure now, in a stepwise way, performs linear discrimination in subspaces of

the feature space. It is a bottom-up approach that successively builds new features from the

basic D-features. In each step certain two-dimensional subspaces of Z are considered, and the

projection of Z to each of these subspaces is separated by a straight discrimination line. Out

of these subspaces the α-procedure selects a subspace whose discrimination line provides the

least classification error. Clearly any discrimination line that separates the DD-plot must pass

through the origin since DX(xi) = DY (xi) = 0 implies that the point xi cannot be classified to

either of the two classes. The same must hold for all discrimination lines in subspaces of the

extended depth space.

In a first step a pair (ν1, ν2) of D-features (2.2) is chosen with (k1 + k2)(ℓ1 + ℓ2) > 0. The

latter restriction implies that the two D-features do not solely relate to one of the classes. A

straight discrimination line is calculated in the two-dimensional coordinate subspace defined by

the pair (ν1, ν2). As the line passes through the origin it is characterized by an angle α ∈ [0, 2π[.
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Figure 2.1: α-procedure; step 1 (left) and step 2 (right).

The best discriminating angle αν1,ν2 is determined by minimizing the average misclassification

rate (AMR),

∆(α; ν1, ν2) =
1

n1 + n2

[ n1∑

i=1

I(zi,ν1 cosα + zi,ν2 sinα < 0) (2.3)

+

n1+n2∑

i=n1+1

I(zi,ν1 cosα + zi,ν2 sinα > 0)
]
.

Here I(A) denotes the indicator function of A. If the minimum is attained in an interval, its

middle value is selected for αν1,ν2; see Figure 2.1, left. The same is done for all pairs of D-

features satisfying the above restriction, and the pair (ν∗1 , ν
∗
2) is selected that minimizes (2.3).

If the minimum is not unique the pair with the smallest k and ℓ is chosen. Let α(1) = αν∗1 ,ν
∗

2

and denote the respective AMR by ∆(1). Next the D-features ν∗1 and ν∗2 are replaced by a new

D-feature which is indexed by µ1 and gives value

zi,µ1 = zi,ν1 cosα
(1) + zi,ν2 sinα

(1) , i = 1, . . . n1 + n2 , (2.4)

to each xi. Geometrically the values are obtained by projecting (zi,ν1, zi,ν2) to a straight line

in the (ν1, ν2)-plane that is perpendicular to the discrimination line; see Figure 2.1, left. The

first step results in the new D-feature µ1 and the AMR ∆(1) produced by classifying according

to this feature.

The second step couples the new D-feature µ1 with each of the basic D-features ν that

have not been replaced so far. For each of these pairs of D-features a best discriminating

angle αµ1,ν is determined, and among these the pair of D-features is selected that provides the

minimum AMR. The minimum error is denoted by ∆(2) and the angle at which it is attained
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by α(2). This is visualized in Figure 2.1, right. The best pair of D-features is replaced by a

new D-feature µ2, where the values zi,µ2 are calculated as in (2.4).

The last step is repeated with µ2 in place of µ1, etc. The procedure stops after step t

if either the additional discriminating power ∆(t) − ∆(t+1) = 0 or t = r, that is, all basic

D-features have been replaced. Then the angle α(t) defines a linear rule for discriminating

between two (up to) p-th order polynomials in DX(z) and DY (z), which correspond to the two

finally constructed D-features, according to their sign. This yields a polynomial separation of

the classes in the depth space.

For example, let in step 1 the basic features DX and D2
Y be selected and, consequently,

DX · DY and D2
X be included in steps 2 and 3. If the procedure terminates after step 3, the

result is a polynomial in the two depths DX(x) and DY (x) that has form

aDX(x) + bD2
X(x) + cD2

Y (x) + dDX(x)DY (x).

A given point x of the object space then is classified according to the sign of the polynomial.

If there are more than two classes, say X1, . . . , Xq, each data point xi is represented by

the vector of depth values d =
(
DX1(xi), . . . , DXq

(xi)
)
in [0, 1]q. Again a depth feature space

is considered of some order p; it has dimension r =
(
p+q
q

)
− 1. With q > 2 classes every two

training classes Xj , Xk, j 6= k, are separated by the α-procedure in the same way as above: In

each step a pair of D-features is replaced by a new D-feature as long as the AMR decreases

and basic D-features are left to be replaced. For each pair of classes the procedure results in a

hypersurface that separates the q-dimensional depth space into two sets of attraction. A given

point x is finally assigned to that class to which it has been most often attracted.

2.4 Some theoretical aspects

In order to investigate some properties of the DDα-approach we transfer it to a more general

probabilistic setting and define a depth function as the population version of a data depth.

Let P be a properly chosen set of probability distributions on Rd that includes the empirical

distributions. A depth function D is a function that assigns a value DP (x) ∈ [0, 1] to every

x ∈ Rd and P ∈ P in an affine invariant way (i.e. DAP+b(Ax+ b) = DP (x) for any nonsingular

matrix A ∈ Rd×d and any b ∈ Rd, AP denoting the push-forward measure), and has convex

compact upper level sets. Obviously, the restriction of a depth function D to the class of

empirical distributions is an affine invariant quasiconvex data depth. For details on general

depth functions, see e.g. the above cited surveys (Cascos, 2010, Mosler, 2002, Serfling, 2006,

Zuo & Serfling, 2000).

While data depth is an intrinsically nonparametric notion, the behavior of depth functions

and depth based procedures on parametric classes is of special interest as it indicates how the

nonparametric approach relates to the more classical parametric one. As a generalization of

multivariate Gaussian distributions, spherical and elliptical distributions play an important

role in parametric multivariate analysis. A random vector X in Rd has a spherical distribution
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if X = R ·U, where U is a random vector uniformly distributed on the sphere Sd−1 and R is a

random variable having support [0,∞[ and being independent ofU. A random vector Y has an

elliptical distribution if it is an affine transform of a spherically distributed X, Y = µ + BX.

If R has a density r we notate Y ∼ Ell(µ,BB′, r). As, by definition, a depth function is

affine invariant, it operates on elliptical distributions in a rather simple way. The following

propositions give some insight into the the behavior of depth functions and the DDα-procedure

if the data generating processes are elliptical.

Proposition 2.1. If D is an affine invariant depth function and P an elliptical distribution,

then for every α ∈]0, 1] the upper level set

Dα(P ) = {x ∈ Rd|DP (x) ≥ α}

is an ellipsoid.

Proof. Let P = Ell(µ,BB′, r) and α ∈]0, 1]. Consider P0 = Ell(~0, Id, r). Then, for all β ≥ α,

{x ∈ Rd|DP0(x) = β} is a sphere since D is, in particular, orthogonal invariant. Hence,

Dα(P0) = {x ∈ Rd|DP0(x) ≥ α} is a ball and, by affine transformation with µ and B, Dα(P )

is an ellipsoid.

Proposition 2.2. (i) Let D be the zonoid depth and P a unimodal elliptical distribution, that

is P = Ell(µ,BB′, r). Then, for every non-empty density level set {x ∈ Rd|f(x) ≥ β},
some α = φ(β) exists such that

{x ∈ Rd|f(x) ≥ β} = Dα(P ) .

(ii) If, in addition, r has an interval support then φ is a continuous, strictly increasing func-

tion. It holds DP (x) = φ(f(x)) and therefore

f(x) ≥ f(y) ⇐⇒ DP (x) ≥ DP (y) . (2.5)

Proof. (i): Note that D0 = Rd. Thus, if β ≤ 0, the claim holds with α = 0. Now let β > 0

and assume w.l.o.g. that P is spherical. Then {x ∈ Rd|f(x) ≥ β} is a ball with center at

the origin. Let x∗ be a point on its surface. Also the central regions Dα are balls around

the origin. By Theorems 3.9 and 3.14 in Mosler (2002), the Dα are continuous and strictly

decreasing on the convex hull of the support of P and it holds α∗ := DP (x
∗) > 0. We conclude

Dα∗ = {x ∈ Rd|f(x) ≥ β}.
(ii): Under the additional premise, the density level sets are continuously and strictly decreasing

in β > 0, which yields the result.

Corollary 2.1. Consider a mixture of unimodal elliptical distributions Pj = Ell(µj, BjB
′
j , rj),

j = 1, . . . , q, with mixing probabilities πj and assume that all rj have an interval support. Let

D be the zonoid depth.
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Then, for each j and k exists a strictly increasing function ψjk so that

πj · fj(x) < πk · fk(x) ⇐⇒ DPj
(x) < ψjk(DPk

(x)) .

Proof. From Proposition 2.2 continuous and strictly increasing functions φj and φk are obtained

with DPj
(x) = φj(fj(x)) and DPk

(x) = φk

(
fk(x)

)
. Consequently,

πj · fj(x) < πk · fk(x) ⇔ DXj
(x) < φj

(
πk
πj
φ−1
k

(
DXk

(x)
))

,

which proves the claim by use of the function ψjk(·) = φj

(
πk

πj
φ−1
k (·)

)
.

A similar result holds for other data depths including the halfspace, simplicial, projection

and Mahalanobis depths; see Prop. 1 in Li et al. (2012). In the rest of section we consider the

limit behavior of the DDα-procedure under independent sampling. For this, we assume that

the empirical depth is a consistent estimator of its population version. This is particularly true

for the zonoid, halfspace, simplicial, projection and Mahalanobis depths.

Theorem 2.1 (Bayes rule). Let F and G probability distributions on Rd having densities f and

g, and let H be a hyperplane such that G is the mirror image of F with respect to H and f ≥ g

in one of the half-spaces generated by H. Then based on a 50:50 independent sample from F

and G the DDα-procedure will asymptotically yield the linear separator that corresponds to the

bisecting line of the DD-plot.

Note that the rule given in the theorem corresponds to the Bayes rule, see Hastie et al.

(2009). Especially the requirements of the theorem are satisfied if F and G are mirror sym-

metric and unimodal.

Proof. Due to the mirror symmetry of the distributions in Rd the DD-plot is symmetric as

well. Symmetry axis is the bisector, which is obviously the result of the α-procedure when the

sample is large enough.

Theorem 2.2. Let F,G be unimodal elliptical, F = Ell(µF , BB
′, r), G = Ell(µG, BB

′, r). Then

based on a 50:50 independent sample from F and G the DDα-procedure will asymptotically yield

the linear separator that corresponds to the bisecting line of the DD-plot.

Proof. If F and G are spherically symmetric, they satisfy the premise of the previous theorem.

A common affine transformation of F and G does not change the DD-plot.

2.5 Simulation study

The DDα-procedure has been implemented on a standard PC in an R-environment. To explore

its specific potencies we apply it to simulated as well as to real data. The same data have been

analyzed with several classifiers in the literature. In this section results on simulated data are
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Table 2.1: Distributional settings used in the simulation study.

No. Alternative 1st class 2nd class

1 Normal
N
([

0
0

]
,
[
1 1
1 4

])
N
([

1
1

]
,
[
1 1
1 4

])
location

2 Normal
N
([

0
0

]
,
[
1 1
1 4

])
N
([

1
1

]
,
[
4 4
4 16

])
location-scale

3 Cauchy
Cauchy

([
0
0

]
,
[
1 1
1 4

])
Cauchy

([
1
1

]
,
[
1 1
1 4

])
location

4 Cauchy
Cauchy

([
0
0

]
,
[
1 1
1 4

])
Cauchy

([
1
1

]
,
[
4 4
4 16

])
location-scale

5 Normal Learning sample: 90% as No. 1, as No. 1
contaminated 10% from N

([
10
10

]
,
[
1 1
1 4

])
.

location Testing sample: as No. 1

6 Normal Learning sample: 90% as No. 2, as No. 2
contaminated 10% from N

([
10
10

]
,
[
1 1
1 4

])
.

location-scale Testing sample: as No. 2

7 Exponential (
Exp(1),Exp(1)

) (
Exp(1) + 1,Exp(1) + 1

)
location

8 Exponential (
Exp(1),Exp(1/2)

) (
Exp(1/2) + 1,Exp(1) + 1

)
location-scale

9 Asymmetric (
MixN(0; 1, 2),MixN(0; 1, 4)

) (
MixN(1; 1, 2),MixN(1; 1, 4)

)
location

10 Normal-
N
([

0
0

]
,
[
1 0
0 1

]) (
Exp(1),Exp(1)

)
exponential

presented regarding the average misclassification rate of nine procedures besides the DDα-

classifier (Section 2.5.1). Then the speed of the DDα-procedure is quantified (Section 2.5.2).

The following Section 2.6 covers the relative performance of the the DDα- and other classifiers

on several benchmark data sets.

2.5.1 Comparison of performance

To simplify the comparison with known classifiers, we use the same simulation settings as

in Li et al. (2012). These are supervised classification tasks with two equally sized training

classes. Data are generated by ten pairs of distributions according to Table 2.1. Here N and

Exp denote the Gaussian and exponentional distributions, respectively, and

MixN(µ, σ1, σ2) =





−σ1 ∗ |N(0, 1)|+ µ with probability 1/2,

σ2 ∗ |N(0, 1)|+ µ with probability 1/2.

TheDDα-classifier is contrasted with the following nine classifiers: linear discriminant anal-

ysis (LDA), quadratic discriminant analysis (QDA), k-nearest neighbors classification (k-NN),

maximum depth classification based on Mahalanobis (MM), simplicial (MS), and halfspace

(MH) depth, and DD-classification with the same depths (DM, DS and DH, correspondingly).

For more details about the data and the procedures as well as for some motivation the reader

is referred to Li et al. (2012).
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Figure 2.2: Normal location (left) and location-scale (right) alternatives.

All simulations of Li et al. (2012) are recalculated following their paper as close as possible.

The LDA, QDA and k-NN classifiers are computed with the R-packages “MASS” and “class”,

where the parameter k of the k-NN-classifier is selected by leave-one-out cross-validation over

a relatively wide range. The simplicial, and halfspace depths have been determined by exact

calculations with the R-package “depth”. The zonoid depth has been exactly computed by the

algorithm in Dyckerhoff et al. (1996). Note that the problem of prior probabilities is avoided

by choosing test samples of equal size from both classes.

For the DD-classifiers a polynomial line (up to degree three) is determined to discriminate

in the two-dimensional DD-plot, a tenfold cross-validation is employed to choose the optimal

degree of the polynomial, a smoothing constant t=100 is selected in the logistic function, and

the DD-plot is never rotated. Each experiment includes a training phase and an evaluation

phase: From the given pair of distributions 400 observations (200 of each class) are generated

to train the classifier, and 1000 (500 of each) observations to evaluate its AMR. For each

distribution pair and each classifier 100 experiments are performed, and the resulting sample

of AMRs is visualized as a box-plot; see Figures 2.2 to 2.6.

As we have discussed at the end of Section 2.2, with depths like the simplicial, halfspace

and zonoid depth the problem of outsiders arises. An outsider is, in the DD-plot, represented

by the origin. A simple approach is to assign the outsiders randomly to the two classes.

Throughout our simulation study we have chosen the random assignment rule, which results in

kind of worst case AMR. Observe that this choice of assignment rule discriminates against the

procedures that yield outsiders and advantages those that do not, in particular LDA, QDA,

MM, DM and k-NN for all distribution settings.

The principal results of the simulation study are collected in Figures 2.2 to 2.6. Under the

normal location-shift model (Figure 2.2, left) all classifiers behave satisfactorily, and the DDα-

classifier performs well among them. However LDA, QDA, MM and DM show slightly better

results since they do not have to cope with outsiders like the other depth-based procedures.
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Figure 2.3: Cauchy location (left) and location-scale (right) alternatives.
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Figure 2.4: Normal contaminated location (left) and location-scale (right) alternatives.

Also under the normal location-scale alternative (Figure 2.2, right) the DDα-classifier per-

forms rather well, like all DD-classifiers. A slightly worse performance of the DDα-classifier is

observed when discriminating the Cauchy location alternative (Figure 2.3, left), but it is still

close to the DD-classifiers. This can be attributed to the lower robustness of the zonoid depth.

However, when scaling enters the game (Cauchy location-scale alternative, Figure 2.3, right),

the DDα-classifier again performs quite satisfactorily. The same picture arises when consid-

ering contaminated normal settings (Figure 2.4, left and right). Under a location alternative,

the DDα-classifier is a bit worse than the DD-classifiers, while it slightly outperforms them

in a location-scale setting.

The relative robustness of the DDα-classifier may be explained by two of its features: First

it maps the original data points to a compact set, the q-dimensional unit hypercube. Second,

for classification in the unit hypercube, it employs the α-procedure, which, by choosing a

median angle in each step, is rather insensitive to outliers.
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Figure 2.5: Exponential location (left) and location-scale (right) alternatives.

0.25 0.30 0.35 0.40 0.15 0.20 0.25 0.30

Figure 2.6: Asymmetric location (left) and normal-exponential (right) alternatives.

Under exponential alternatives (Figure 2.5, left and right) the DDα-classifier shows ex-

cellent performance, which is even similar to that of the the k-NN for both location and

location-scale alternatives. Its results for the asymmetric location alternative (Figure 2.6,

left) are somewhat ambiguous, though still close to those of the DD-classifiers. Concerning

the normal-exponential alternative (Figure 2.6, right) the DDα-classifier performs distinctly

better than the others considered here.

On the basis of the simulation study we conclude: The DDα-classifier (1) performs quite

well under various settings of elliptically distributed alternatives, it (2) is rather robust to

outlier prone data, and (3) shows a distinctly good behavior under the asymmetrically dis-

tributed alternatives considered and when the two classes originate from different families of

distributions.
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Table 2.2: Computing times of DDα-classification, in seconds.

N(0d, Id) vs. N(0.25 · 1d, Id)
d = 5 d = 10 d = 15 d = 20

n = 200 0.14 1.55 1.89 2.24
(0.00014) (0.00014) (-) (-)

n = 500 1.04 10.37 12.58 14.14
(0.00046) (0.00052) (0.00062) (-)

n = 1000 5.33 42.54 53.66 59.18
(0.0012) (0.0014) (0.0017) (-)

N(0d, Id) vs. N
(
(0.25 0′

d−1)
′, 5 · Id

)

d = 5 d = 10 d = 15 d = 20

n = 200 0.15 1.62 1.94 2.2
(0.00014) (0.00016) (0.00021) (0.00027)

n = 500 1.09 11.33 14.44 15.18
(0.00044) (0.00059) (0.00079) (0.0010)

n = 1000 5.24 47.63 67.22 74.15
(0.0011) (0.0016) (0.0022) (0.0026)

2.5.2 Speed of the DDα-procedure

To estimate the speed of the DDα-classification we have quantified the total time of training

and classification times under two simulation settings, a shift and a location-shift alternative

concerning d-variate normals (see Table 2.2, header), with various values of dimension d and of

total size of training classes n. An experiment consists of a training phase based on two samples

(each of size n/2) and an evaluation phase, where 2500 points (1250 from each distribution)

are classified. Each experiment is performed 100 times, then the average computation time is

determined. All these computations have been conducted on a single kernel of the processor

Core i7-2600 (3.4 GHz) having enough physical memory.

Table 2.2 exhibits the average computation times (in seconds, with the standard deviations

in parentheses) under the two distributional settings and for different d and n. As it is seen

from the table, the DDα-classifier is very fast, in the learning phase as well as in classifying

high amounts of data. However, computation times increase considerably with the number of

training points, which is due to the many calculations of zonoid depth needed. With dimen-

sion d computation time grows slower, which may be explained as follows. With increasing

dimension of the data space, more points come to lie on the convex hull (thus having depth

= 2/n) or outside it (thus having depth = 0). The algorithm from Dyckerhoff et al. (1996)

computes the depth of such points much faster than that of points having larger depths.

2.6 Benchmark studies

Concerning real data, we take benchmark examples from Li et al. (2012), Dutta & Ghosh (2011,

2012) to compare the performance of the DDα-classifier with respect to AMR (Section 2.6.1).
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Table 2.3: Overview of benchmark examples; dimension (d), number of classes (q), number of
training points (# train), number of testing points (# test), total number of points (# total).

No. Dataset Results q d # train # test # total

1 Biomedical Tables 2.5, 2.4 2 4 150 44 194
Table 2.6 2 4 100 94 194

2 Blood Table 2.6 2 3 374 374 748
Transfusion Table 2.4 2 3 500 248 748

3 Diabetes (1) Table 2.6 3 5 100 45 145
4 Diabetes (2) Table 2.7 2 8 767 1 768
5 Ecoli Table 2.7 3 7 271 1 272
6 Glass Tables 2.5, 2.6 2 5 100 46 146

Table 2.7 2 9 145 1 146
7 Hemophilia Table 2.6 2 2 50 25 75
8 Image Segmentation Table 2.4 2 10 500 160 660
9 Iris Table 2.7 3 4 149 1 150
10 Synthetic Tables 2.5, 2.6 2 2 250 1000 1250

Table 2.4: Benchmark performance with DD- and other classifiers.

Dataset LDA QDA k-NN MM MH DM DH DDα

Biomedical 17.05 13.05 14.32 27.14 18.00 12.25 17.48 24.59
(0.49) (0.38) (0.45) (0.6) (0.49) (0.4) (0.51) (0.63)

Blood 29.49 29.11 29.74 32.56 30.47 26.82 28.26 32.27
Transfusion (0.08) (0.13) (0.13) (0.29) (0.3) (0.19) (0.19) (0.25)

Image 8.17 9.44 5.59 9.12 11.87 9.54 13.98 43.58
Segmentation (0.2) (0.19) (0.19) (0.23) (0.25) (0.2) (0.29) (0.34)

In addition we use four real data sets from the UCI machine learning repository (Asuncion

& Newman, 2007) to contrast the DDα-classifier with the support vector machine (SVM) of

Vapnik (1998) regarding both performance and time (Section 2.6.2).

2.6.1 Benchmark comparisons with nonparametric classifiers

As our benchmark examples are well known, we refer to the literature for their detailed de-

scription and restrict ourselves to mentioning the dimension d, the number of classes q, the

number of points used for training (# train), the number of testing points (# test) and the

total number of points (# total); see Table 2.3.

Tables 2.4, 2.5 and 2.6 exhibit the performance (in terms of AMR, with standard errors

in parentheses) of the DDα-classifier together with the performance of the different classifiers

investigated in Li et al. (2012), Dutta & Ghosh (2011) and Dutta & Ghosh (2012) and based

on the respective benchmark data. When applying the DDα-classifier an auxiliary procedure

has to be chosen by which outsiders are treated. In our benchmark study we employ several

such procedures.
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In Table 2.4 the DDα-procedure is contrasted with the real data results in Li et al. (2012).

Here we use the same settings as in Section 2.5.1 and classify the outsiders on a random basis.

All results in Table 2.4 have been recalculated.

As we see from the Table, the performance of our new classifier is mostly worse than

the classifiers considered in Li et al. (2012). Only in the Blood Transfusion case the AMR

has comparable size. However, in this comparison the eventual presence and treatment of

outsiders plays a decisive role. Observe that Li et al. (2012) in their procedures MH and

DH use the random Tukey depth (Cuesta-Albertos & Nieto-Reyes, 2008) to approximate the

halfspace depth of a data point in dimension three and more. But the random Tukey depth

generally overestimates the halfspace depth so that some of the outsiders remain undetected.

This implies that, in the procedures MH and DH, considerably fewer points (we observed

around 16%, 4% and 11% correspondingly) are treated as outsiders and assigned on a random

basis.

In fact, as exactly determined by calculating the zonoid depth, the rate of outsiders in the

Biomedical Data (with d = 4) totals some 35%, in the Blood Transfusion Data (d = 3) about

11%, and in the Image Segmentation Data with d = 10 about 86%. This is in line with our

expectation: the higher the dimension of the data the higher is the outsider rate. In contrast to

the MH and DH procedures, the DDα-procedure detects all outsiders and, in the comparison

of Table 2.4, assigns them randomly. Obviously the performance of the latter can be improved

with a proper non-random procedure of outsider assignment. In the subsequent benchmark

comparisons several such procedures of non-random outsider assignment are included.

Dutta & Ghosh (2012) introduce classification based on projection depth and compare it

with several variants of the maximum-Mahalanobis-depth (MD)classifier. The same authors

(Dutta & Ghosh, 2011) propose an Lp-depth classifier (with optimized p) and contrast it with

two types of MD. To compare the DDα-classifier on a par with Dutta & Ghosh (2011, 2012)

we implement the following rules for handling outsiders: First, k-nearest-neighbor rules are

used with various k and either Euclidean or Mahalanobis distance, the latter with moment or,

alternatively, MCD estimates. Second, maximum Mahalanobis depth is employed, again based

on moment or MCD estimation. As the k-NN results of the benchmark examples do not vary

much with k, we restrict to k = 1. (However, the performance of the classifiers can be improved

by an additional cross-validation over k.) Consequently, five different rules for treating outsiders

remain for comparison. Tables 2.5 and 2.6 exhibit the performance of the DDα-classifier

vs. the projection-depth classifiers of Dutta & Ghosh (2012) and the Lp-depth classifiers of

Dutta & Ghosh (2011), respectively, regarding the benchmark examples investigated in these

papers. The last five columns of Tables 2.5 and 2.6 report the AMR (standard deviations in

parentheses) of the DDα-classifier when one of the five outsiders treatments is chosen. The

remaining columns are adopted as they stand in Dutta & Ghosh (2012) and Dutta & Ghosh

(2011).

Regarding the Biomedical Data, Dutta & Ghosh (2012) do not specify the sample sizes they

use in training and testing. For theDDα-classifier, we select 100 observations of the larger class
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Table 2.5: Benchmark comparison with projection depth classifiers.

Dataset MD MD MD 3
4

MD 3
4

PD PD

(SS) (MS) (SS) (MS) (SS) (MS)

Synthetic 13.00 11.60 10.30 10.40 10.00 10.50
Glass 26.59 26.14 24.92 24.43 25.70 25.24

(0.25) (0.25) (0.25) (0.25) (0.34) (0.33)
Biomedical 12.44 12.04 14.25 14.03 12.37 12.18

(0.13) (0.12) (0.13) (0.14) (0.14) (0.13)
Dataset DDα-classifier

1-NN Mahalanobis
Eucl. Mah. dist. depth
dist. Mom. MCD Mom. MCD

Synthetic 12.10 11.90 12.00 11.90 12.00
Glass 29.45 25.79 24.73 30.09 35.06

(0.20) (0.17) (0.18) (0.18) (0.22)
Biomedical 13.51 19.59 17.90 12.91 15.23

(0.14) (0.18) (0.17) (0.14) (0.16)

Table 2.6: Benchmark comparison with Lp-depth classifiers.

Data- DDα-classifier
set 1-NN Mahalanobis

MD LpD Eucl. Mah. dist. depth
Mom. MCD Mom. MCD dist. Mom. MCD Mom. MCD

Syn. 10.20 10.60 9.60 10.70 12.10 11.90 12.00 11.90 12.00

Hem. 15.84 17.13 15.39 16.43 16.63 17.98 18.36 18.65 19.39
(0.30) (0.32) (0.32) (0.32) (0.20) (0.20) (0.19) (0.22) (0.22)

Gla. 26.80 24.80 27.64 24.75 30.13 28.37 26.63 32.88 36.82
(0.26) (0.29) (0.29) (0.26) (0.19) (0.22) (0.20) (0.22) (0.23)

Biom. 12.35 14.48 12.68 15.11 13.74 22.09 20.89 14.34 17.28
(0.14) (0.15) (0.15) (0.15) (0.09) (0.16) (0.14) (0.12) (0.14)

Diab. 8.22 11.49 9.39 11.92 10.77 18.36 18.33 12.70 15.90
(0.18) (0.22) (0.21) (0.27) (0.12) (0.18) (0.20) (0.18) (0.19)

B.Tr. 22.75 22.17 22.30 22.06 23.11 22.73 22.92 22.59 22.17
(0.07) (0.08) (0.07) (0.07) (0.06) (0.06) (0.06) (0.06) (0.06)

and 50 of the smaller class to form the training sample; the remaining observations constitute

the testing sample. As it is seen from Table 2.5 the DDα-classifier shows results similar to the

projection-depth classifier (except with the Synthetic Data), while the performance of outsider-

handling methods varies depending on the type of the data. Specifically, with the Glass Data

1-NN based on the Mahalanobis distance (both with the moment and the robust estimate)

performs best in handling outsiders. On the other hand, with the Biomedical Data the same

approach performs quite poorly, while treating outsiders with moment-estimated Mahalanobis

depth or Euclidean 1-NN yields best results.

40



Chapter 2 Benchmark studies

Table 2.6 presents a similar comparison of the DDα-classifier with the Lp-classifier of Dutta

& Ghosh (2011). The same approaches are included to treat outsiders. In all six benchmark ex-

amples the DDα-classifier generally performs worse than the best Lp-depth classifier. However,

its performance substantially depends on the chosen treatment of outsiders. In all examples

the AMR of the DDα-classifier comes close to that of the Lp-depth classifier, provided the

outsider treatment is properly selected. On the Hemophilia Data, e.g., Euclidean 1-NN should

be chosen. On the Glass Data a 1-NN outsider treatment with robust Mahalanobis distance

performs relatively best, etc. On the Blood Transfusion Data all outsider-handling approaches

show equally good performance, which appears to be typical when n is relatively large com-

pared to d.

2.6.2 Benchmark comparisons with SVM

The support vector machine (SVM) is a powerful solver of the classification problem and has

been widely used in applications. However, different from the DDα-classifier, the SVM is

a parametric approach, as in applying it certain parameters have to be adjusted: the box-

constraint and the kernel parameters. The AMR performance of the SVM depends heavily on

the choice of these parameters. In applications, optimal parameters are selected by some cross-

validation, which affords extensive calculations. Once these parameter have been optimized,

SVM-classification is usually very fast and precise.

In comparing the SVM with the DDα-procedure, this step of parameter optimization has

to be somehow accounted for. Here we introduce a two-fold view on the comparison problem:

Two values of the AMR are calculated, first the best AMR when the parameters have been

optimally selected, second the expected AMR when the parameters are systematically varied

over specified ranges. Corresponding training times are also clocked. As ranges we choose the

intervals between the smallest and the largest number that arise as an optimal value in one of

our benchmark data examples. This seems to be a fair and, regarding the parameter ranges,

rather conservative approach.

As benchmark four well-known data sets are employed in the sequel, Diabetes, Ecoli, Glass,

and Iris Data being taken from Asuncion & Newman (2007). Following Dutta & Ghosh (2012)

the two biggest classes of the Glass Data have been selected, and similarly to Dutta & Ghosh

(2011) we have chosen three of the bigger classes from the Ecoli Data. The DDα-classifier

is calculated with the same outsider treatments as above. For the SVM-classifier we use

radial basis function kernels as implemented in LIBSVM with the R-Package “e1071” as an

R-interface. Leave-one-out cross validation is employed for performance estimation of the all

classifiers. The computation has been done on the same PC as in Section 2.5.2.

The results on the best AMR together with time quantities and portions of outsiders are

collected in the Table 2.7. The Iris Data appears twice in the Table. First the original are

used, and second the same data after a preprocessing step. The preprocessing consists in the

exclusion of an obvious outlier in the DD-plot that was identified by visual inspection of the

plot.
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Table 2.7: Benchmark comparison with the support vector machine; γ – kernel parameter, C
– box constraint.

Data- DDα-classifier SVM
set 1-NN Mahalanobis

Eucl. Mah. dist. depth
Legend dist. Mom. MCD Mom. MCD Opt. (CV)

Diab. Error 28.26 30.6 34.51 24.35 31.77 23.18
Time:train 16.63 16.62 16.59 16.58 17.39 0.05 (875)
Time:test 0.033 0.009 0.0092 0.0035 0.0037 0.0023
γ/C 0.056/1
% outsiders 62.24 62.24 62.24 62.24 63.54

Ecoli Error 10.29 11.4 12.13 12.13 16.18 3.68
Time:train 0.26 0.26 0.26 0.26 0.26 0.0077 (105)
Time:test 0.014 0.0026 0.0032 0.001 0.00044 0.0019
γ/C 5.62/1.78
% outsiders 75 75 75 75 75

Glass Error 18.49 26.03 31.51 34.93 34.93 21.23
Time:train 0.31 0.32 0.31 0.32 0.32 0.0082 (36)
Time:test 0.0083 0.0019 0.0016 0.00014 0.00055 0.0024
γ/C 0.56/1
% outsiders 95.89 95.89 95.89 95.89 95.89

Iris Error 37.33 37.33 37.33 36 46.67 4.67
Time:train 0.07 0.07 0.07 0.07 0.07 0.0051 (30)
Time:test 0.0046 0.0018 0.0013 0.00033 0.00047 0.0017
γ/C 0.056/10
% outsiders 50 50 50 50 50

Iris Error 3.36 3.36 4.03 2.68 13.42 2.68
(Pre.) Time:train 0.07 0.07 0.07 0.07 0.07 0.0052 (30)

Time:test 0.0046 0.0011 0.0013 0.0006 0.00027 0.0017
γ/C 0.1/3.16
% outsiders 51.68 51.68 51.68 51.68 51.68

The overall analysis of the Table 2.7 shows that, even if using an arbitrary technique for

handling outsiders, the DDα-classifier mostly performs not much worse than an SVM where

the parameters have been optimally chosen. In contrast, if the SVM is employed with some

non-optimized parameters, its AMR can be considerably larger than that of the DDα-classifier.

For the regarded data sets average errors of the SVM over the relevant intervals varied from

44.99% to 66.67% (not reported in the Table).

The times needed to classify a new object (also given in Table 2.7) are quite comparable.

But as the parameters of the SVM have to be adjusted first by running it many times for

cross-validation, the computational burden of its training phase is much higher than that of

the DDα-classifier, which has to be run only once. Recall that the latter is nonparametric

regarding tuning parameters. For example, in our implementation it took 875 seconds to

determine approximate optimal values of SVM parameters for the Diabetes Data and similarly

substantial times for the others (see Table 2.7, in parentheses).
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2.7 DDα-classification of asymmetric and fat-tailed data

When implementing the DDα-classifier a data depth has to be chosen and the ‘outsiders’ have

to be treated in some way. This section addresses the question which notion of data depth

should be employed. To answer it we consider two depth notions and explore their sensitivity

to fat-tailedness and asymmetry of the underlying class-specific distribution. The two depths

are the zonoid depth (Koshevoy & Mosler, 1997, Mosler, 2002) and the location depth (Tukey,

1975). The zonoid depth is always exactly computed, while the location depth is either exactly

or approximately calculated. In a large simulation study the average error rate of different

versions of the DDα-procedure is contrasted with that of standard classifiers, given data from

asymmetric and fat-tailed distributions. Similarly the performance of different classifiers is

explored depending on the distance between the classes, and their speed both at the training

and classification stages is investigated. In this section, we restrict ourselves to the case q = 2.

2.7.1 Tukey depth vs. random Tukey depth

Location depth, also known as halfspace or Tukey depth, is defined as

HD(x, X) =
1

n
min

u∈Sd−1
♯{i : 〈xi,u〉 ≥ 〈x,u〉}, (2.6)

where 〈·, ·〉 denotes the inner product. The location depth takes only discrete values and is

robust (having a large breakdown point). The location depth can be exactly computed or

approximated. Exact computation is described in Rousseeuw & Ruts (1996) for d = 2 and

in Rousseeuw & Struyf (1998) for d = 3. For bivariate data we employ the algorithm of

Rousseeuw & Ruts (1996) as implemented in the R-package “depth”. In higher dimensions

exact computation of the location depth is possible (Liu & Zuo, 2014a), but the algorithm

involves heavy computations. Cuesta-Albertos & Nieto-Reyes (2008) instead propose to ap-

proximate the location depth, using (2.6), by minimizing the univariate location depth over

randomly chosen directions u ∈ Sd−1. Here we explore two different settings where the set of

randomly chosen u is either generated once and for all or generated instantly when computing

the depth of a given point. By construction, the random Tukey depth is always greater or

equal to the exact location depth. Consequently, it yields fewer outsiders.

2.7.2 Simulation study

A number of experiments with simulated data is conducted. Firstly, the error rates of 17

different classifiers (see below) are evaluated on data from asymmetric t- and exponential

distributions in R2. Then the performance dynamics of selected ones is visualized as the

classification error in dependence of the Mahalanobis distance between the two classes. The

third study explores the speed of solutions based on the zonoid and the random Tukey depth.
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Figure 2.7: DD-plots using zonoid (left) and location (middle) depth with black and open
circles denoting observations from the two different classes and combined box-plots (right) for
Gaussian location alternative

Performance comparison

While the usual multivariate t-distribution is elliptically symmetric, it can be made asymmetric

by conditioning its scale on the angle from a fixed direction, see Frahm (2004). For each degree

of freedom, ∞ (= Gaussian), 5 and 1 (= Cauchy), two alternatives are investigated: one

considering differences in location only (with µ1 =
[
0
0

]
, µ2 =

[
1
1

]
and Σ1 = Σ2 =

[
1 1
1 4

]
) and

one differing in both location and scale (with the same µ1 and µ2, Σ1 =
[
1 1
1 4

]
, Σ2 =

[
4 4
4 16

]
),

skewing the distribution with reference vector v+1 = (cos(π/4), sin(π/4)), see Frahm (2004) for

details. Further, the bivariate Marshall-Olkin exponential distribution (BOMED) is looked at:

(min{Z1, Z3},min{Z2, Z3}) for the first class and (min{Z1, Z3}+0.5,min{Z2, Z3}+0.5) for the

second one with Z1 ∼ Exp(1), Z2 ∼ Exp(0.5), and Z3 ∼ Exp(0.75). Each time we generate a

sample of 400 points (200 from each class) to train a classifier and a sample containing 1000

points (500 from each class) to evaluate its performance (= error rate).

DD-plots of a training sample for the Gaussian location alternative using zonoid (left) and

location (middle) depth are shown in Figure 2.7. For each classifier, training and testing is per-

formed on 100 simulated data sets, and a box-plot of error rates is drawn; see Figure 2.7 (right).

The first group of non-depth classifiers includes linear (LDA) and quadratic (QDA) discrim-

inant analysis and k-nearest-neighbors classifier (KNN). Then the maximal depth classifiers

(MM, MS and MH; cf. Ghosh & Chaudhuri (2005b)) and the DD-classifiers (DM, DS and DH;

cf. Li et al. (2012)) are regarded. Each triplet uses the Mahalanobis (Mahalanobis, 1936, Zuo

& Serfling, 2000), simplicial (Liu, 1990) and location depths, respectively. The remaining eight

classifiers are DDα-classifiers based on zonoid depth (Z-DDα), exactly computed location

depth (H-DDα-e), random Tukey depth for once-only (H-DDα-♯s) and instantly (H-DDα-

♯d) generated directions, each time using ♯ = 10, 20, 50 random directions, respectively. The

combined box-plots together with corresponding DD-plots using zonoid and location depth

are presented for the Cauchy location-scale alternative (Figure 2.8) and the BOMED location

alternative (Figure 2.9).

Based on these results (and many more not presented here) we conclude: In many cases

DDα-classifiers, both based on the zonoid depth and the random Tukey depth, are better than

44



Chapter 2 DDα-classification of asymmetric and fat-tailed data

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Depth w.r.t. the 1st class

D
e
p
th

 w
.r

.t
. 

th
e
 2

n
d
 c

la
s
s

●

●

●

●

●

●

●

●

●
●

● ●● ●●

●

●

●

●

●

●

●

●

●

● ●

●

●
● ●

●

●

●

●
● ●

●

●

●
●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●
●●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●●●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●● ●●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●● ● ●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●
●

0.0 0.1 0.2 0.3 0.4 0.5

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

Depth w.r.t. the 1st class

D
e
p
th

 w
.r

.t
. 

th
e
 2

n
d
 c

la
s
s

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.30 0.35 0.40 0.45 0.50 0.55 0.60

Classification error

Figure 2.8: DD-plots using zonoid (left) and location (middle) depth and combined box-plots
(right) for Cauchy location-scale alternative
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Figure 2.9: DD-plots using zonoid (left) and location (middle) depth and combined box-plots
(right) for BOMED location alternative

their competitors. The versions of the DDα-classifier that are based on the random Tukey

depth are not outperformed by the exact computation algorithm. There is no noticeable

difference between the versions of the DDα-classifier based on the random Tukey depth using

same directions and an instantly generated direction set. The statement “the more random

directions we use, the better classification we achieve” is not necessarily true with the DDα-

classifier based on the random Tukey depth, as the portion of outsiders and their treatment

are rather relevant.

Performance dynamics

To study the performance dynamics of the various DDα-classifiers in contrast with existing

classifiers we regard t-distributions with∞, 5 and 1 degrees of freedom, each in a symmetric and

an asymmetric version. The Mahalanobis distance between the two classes is systematically

varied. At each distance the average error rate is calculated over 100 data sets and five shift

directions in the range [0, π/2]. (As we consider two classes and have one reference vector

two symmetry axes arise.) By this we obtain curves for the classification error of some of the

classifiers considered, namely LDA, QDA, KNN, all DDα-classifiers, and additionally those

using five constant and instantly generated random directions. The results for two extreme
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Figure 2.10: Performance dynamic graphs for Gaussian (left) and asymmetric conditional
scale Cauchy (right) distributions

cases, Gaussian distribution (left) and asymmetric conditional scale Cauchy distribution (right)

are shown in Figure 2.10.

Under bivariate elliptical settings (Figure 2.10, left) QDA, as expected from theory, out-

performs other classifiers and coincides with LDA when the Mahalanobis distance equals 1.

DDα-classifiers suffering from outsiders perform worse but similarly, independent of the num-

ber of directions and the depth notion used; they are only slightly outperformed by KNN for

the ‘upper’ range of Mahalanobis distances. (Note that KNN does not have the ‘outsiders

problem’.) But when considering an asymmetric fat-tailed distribution (Figure 2.10, right),

neither LDA nor QDA perform satisfactorily. The DDα-classifiers are still outperformed by

KNN (presumably because of the outsiders). They perform almost the same for different num-

bers of directions. The DDα-classifier based on zonoid depth is slightly outperformed by that

using location depth, which is more robust.

The speed of training and classification

The third task tackled in this section is comparing the speed of the DDα-classifiers using

zonoid and random Tukey depth, respectively. (For the latter we take 1000 random directions

and do not consider outsiders.) Two distributional settings are investigated: N(0d, Id) vs.

N(0.25 · 1d, Id) and N(0d, Id) vs. N
(
(0.25 0′

d−1)
′, 5 · Id

)
, d = 5, 10, 15, 20. For each pair of

classes and number of training points and dimension we train the classifier 100 times and test

each of them using 2500 points. Average times in seconds are reported in Table 2.8.

Table 2.8 and the distributional settings correspond to those in Section 2.5.2, where a

similar study has been conducted with the zonoid depth. We also use the same PC and testing

environment. Note firstly that the DDα-classifier with the random Tukey depth requires

substantially less time to be trained than with the zonoid depth. The time required for training

increases almost linearly with the cardinality of the training set, which can be traced back to

the structure of the algorithms used for the random Tukey depth and for the α-procedure. The

time decreases with dimension, which can be explained as follows: The α-procedure takes most

of the time here; increasing d but leaving n constant increases the number of points outside
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Chapter 2 Discussion and conclusions

Table 2.8: The average speed of training and classification (in parentheses) using the random
Tukey depth, in seconds

N(0d, Id) vs. N(0.25 · 1d, Id)
d = 5 d = 10 d = 15 d = 20

n = 200 0.1003 0.097 0.0908 0.0809
(0.00097) (0.00073) (0.00033) (0.00038)

n = 500 0.2684 0.2551 0.2532 0.252
(0.00188) (0.00095) (0.00065) (0.00059)

n = 1000 0.6255 0.6014 0.5929 0.5846
(0.00583) (0.00289) (0.00197) (0.00148)

N(0d, Id) vs. N
(
(0.25 0′

d−1)
′, 5 · Id

)

d = 5 d = 10 d = 15 d = 20

n = 200 0.0953 0.0691 0.0702 0.0699
(0.00098) (0.0005) (0.00034) (0.00025)

n = 500 0.2487 0.2049 0.1798 0.1845
(0.0019) (0.00096) (0.00065) (0.00049)

n = 1000 0.5644 0.5476 0.4414 0.4275
(0.0058) (0.00289) (0.00197) 0.00148

the convex hull of one of the training classes, that is, having depth = 0 in this class; these

points are assigned to the other class without calculations by the α-procedure.

2.7.3 Some remarks

The experimental comparison of the DDα-classifiers, using the zonoid depth and the random

Tukey depth, on asymmetric and fat-tailed distributions shows that in general both depths

classify rather well, the random Tukey depth performs not worse than the zonoid depth and

sometimes even outperforms it (cf. Cauchy distribution), at least in two dimensions. Though

both depths can be efficiently computed, also for higher dimensional data, the random Tukey

depth is computed much faster. Still when employing the random Tukey depth the number

of random directions has to be selected; this as well as a proper treatment of outsiders needs

further investigation.

2.8 Discussion and conclusions

A new classification procedure has been proposed that is completely nonparametric. The

DDα-classifier transforms the d-variate data to a q-variate depth plot and performs linear

classification in an extended depth space. The depth transformation is done by the zonoid

depth, and the final classification by the α-procedure. The procedure has attractive properties:

First, it proves to be very fast and efficient in the training as well as in the testing phase; in

this it highly outperforms existing alternative nonparametric classifiers, and also – regarding

the training phase – the support vector machine. Second, in many settings of elliptically
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distributed alternatives, its AMR is of similar size than that of the competing classifiers.

Moreover, it is rather robust to outlier prone data. As a nonparametric approach, the new

procedure shows a particularly good behavior under asymmetrically distributed alternatives

and, in certain cases, when the two classes originate from different families of distributions.

Other than many competitors, it considers all classes in the multi-class classification problem

even when performing binary classification. Different for KNN, SVM and other kernel based

procedures our method does not need to be parametrically tuned. Also several theoretical

properties of the DDα-procedure have been derived: It operates in a rather simple way if the

data generating processes are elliptical, and a Bayes rule holds if q = 2 and the two classes are

mirror symmetric.

The zonoid depth has many theoretical and computational advantages: Most important

here, it is efficiently computed also in higher dimensions. However, as it takes its maximum

at the mean of the data, the zonoid depth lacks robustness. Nevertheless, the DDα-classifier

shows a rather robust behavior. Its relative robustness can be explained as follows: The original

data points are mapped to a compact set, the q-dimensional unit hypercube, and then classified

by the α-procedure. The latter, by choosing a median angle in each step, is rather insensitive

to outliers.

Points that are not within the convex hull of at least one training set must be specially

treated as their depth representation is zero. To classify those so called outsiders several

approaches have been used and compared. Instead of assigning them randomly, which disad-

vantages the DDα-procedure like other procedures based on halfspace or simplicial depth, one

should classify outsiders by 1-NN and some distance or by a properly chosen maximum depth

rule.

To contrast theDDα-procedure with an SVM approach, a novel way of comparison has been

taken: An optimal performance of an SVM has been evaluated, that arises under an optimal

choice of the parameters, as well as an average performance, where the parameters vary over

specified conservative intervals. It came out that, even with an arbitrary handling of outsiders,

the DDα-classifier mostly performs not much worse than an SVM whose parameters have been

optimally chosen. However, if the SVM is employed with some non-optimized parameters, the

AMR can be considerably larger than that of the DDα-classifier.

More investigations are needed on the consistency of the DDα-classifier, its behavior on

skewed or fat-tailed data, the – possibly adaptive – choice of outsider treatments, and the use

of alternative notions of data depth. These are intended for future research.
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Classifying real-world data with the

DDα-procedure

3.1 Introduction

Many statistical procedures have been developed to classify data into two or more given classes.

Generally, if the data arise from a known class of distributions, properties of the classifiers are

established through either theoretical considerations or simulation studies. By this, alterna-

tive classifiers are compared and procedures identified that are optimal under properly chosen

assumptions. However, real-world data do often not fit into standard parametric distribution

models. Classifying them requires nonparametric procedures, while, due to the lack of es-

tablished general properties, selecting a good classifier has to be mainly based on empirical

evidence. Usually such evidence is sought from simulation studies mimicking certain features

of the data that arise in practical applications. At best, in a given field of application so

called ‘stylized facts’ are identified and translated into a simulation setting. But often such

‘stylized facts’ do not exist. Then, we cannot learn much from simulation studies how a sta-

tistical procedure really works in practice. The adequacy and fitness of the procedure can

only be demonstrated when it is applied to real-world data, and its general fitness can be only

established by successful application to a large variety of such data.

In the sequel this is done for a newly developed nonparametric classifier, theDDα-procedure

(Lange et al., 2014a). It is applied to fifty binary classification problems regarding real-world

benchmark data.

The DDα-procedure first transforms the data from their original property space into a

depth space, which is a low-dimensional unit cube, and then separates them by a projective

invariant procedure, called α-procedure. To each data point the transformation assigns its

depth values with respect to the q given classes. The depth coordinates of the data reflect

their degree of centrality w.r.t. each of the classes. This central ordering is carried out using

a properly chosen depth function. The subsequent separation in the depth space accounts

only for differences in the depth values: If q = 2 a binary separator is determined by the

α-procedure. The α-procedure stepwise selects pairs of extended depth properties (that is,
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depth coordinates and powers and products of them) and separates them by a linear rule. The

separator is a hyperplane in the extended depth space, which corresponds to a polynomial line

in the basic depth plane, both containing the origin as an element. With q > 2 classes,
(
q
2

)

such α-separations can be performed and a majority rule applied; alternatively q one-against-

all separators can be used. We restrict the present study to the case q = 2, see Lange et al.

(2014a) for q > 2.

In Lange et al. (2014a) the zonoid depth (Koshevoy & Mosler, 1997, Mosler, 2002) is applied,

which is efficiently computed also in higher dimensions. Here we employ four alternative depths:

the Mahalanobis depth, the spatial depth, the projection depth and the Tukey depth. The first

three depths are positive everywhere, while the Tukey depth (like the zonoid depth) vanishes

outside the convex hull of the data. However, the Tukey depth reflects the shape of the data

much better than the previous three do and it is more robust against outliers than these (and

than the zonoid depth as well). For computational reasons we use the random Tukey depth

(Cuesta-Albertos & Nieto-Reyes, 2008), which approximates the Tukey (= location) depth by

minimizing univariate Tukey depths over a finite number of directions.

When using the random Tukey depth (or another depth that vanishes outside the convex

hull of the data) a first practical question is how outsiders, that is data points having zero depth

in all classes, should be treated. These points are, by construction, represented by the origin of

the depth space and, hence, arbitrarily assigned. With real data, often a large portion of the

data turn out to be such outsiders. As our task is to classify all points, we need either a depth

that does not produce outsiders, or a supplementary treatment of outsiders. By definition, the

DDα-procedure includes a treatment of outsiders if necessary. For the DDα-classifier with

the random Tukey depth, several possible treatments are introduced in the sequel. The paper

considers the respective variants of the DDα-classifier and compares them with the DDα-

classifiers based on Mahalanobis, spatial and projection depths. Recall that the latter depths,

as they are positive on the entire Rd, do not yield outsiders.

A second question is how many directions should be chosen to approximate the Tukey

depth and how they should be generated; it is addressed in Lange et al. (2014b) by means

of a simulation study. (For the random projection depth this question is less important as it

has no outsiders.) Broad numerical experience is provided about the relative usefulness of the

classifiers. Further we investigate how many features in the extended depth space are needed

on an average to satisfactorily separate the data. Finally we demonstrate the robustness of

our procedure when applied to real data containing substantial amounts of outliers.

For comparison several indicators are introduced, two of which refer to a combination of

classical procedures as benchmark. To evaluate the performance of the DDα-procedure under

different depths and outsider treatments (when using the random Tukey depth) we have set

up experiments with a large number of binary classification tasks with real data. These data

sets have been selected from open internet sources and different fields of application. Some

of them have already served as benchmark sets in other classification studies. By this they

are well suited for evaluating and comparing our new approach. The data can be downloaded
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in standardized form from www.wisostat.uni-koeln.de/28969.html. The complete DDα-

procedure is available as an R-package named ddalpha.

The DDα-classifiers are also compared with three traditional procedures: linear (LDA)

and quadratic (QDA) discriminant analysis and the k-nearest-neighbors (KNN) classifier, as in

many cases (including the data sets considered here) at least one of them performs satisfactorily.

We exclude neural network methods because they offer too many possible architectures, among

which it is difficult to select in an automatic and computationally feasible way. While we expect

that, given the specific data set, a properly adapted neural network performs rather well, such

an approach affords a by hand tuning for each data set. Therefore we do not regard neural

networks as fair competitors to the DDα-classifiers. We exclude as well the usual support

vector machine (SVM) as a classifier because for each data set it has to be specially tuned.

Overview: Sect. 3.2 describes the training phase of the DDα-classifier, which consists of

the depth transformation and the α-separation in the extended depth space. The problem of

generating directions for the random Tukey depth is discussed. Sect. 3.3 regards the classifica-

tion phase, where the problem of outsiders arises. Several classical approaches to classify the

outsiders (LDA, maximum Mahalanobis depth, KNN) are introduced, as well as a simplified

SVM approach, which liaises with the DDα-separation in two ways. Sect. 3.4 first describes

the 50 classification tasks, which vary by absolute and relative sizes of training classes and

include different portions of outliers and ties. Then the settings and results of the empirical

study are presented. In Sect. 3.5 further evidence on outsider treatments and the number of

(extended) depth properties needed is discussed. Sect. 3.6 concludes.

The material of the chapter is based on Mozharovskyi et al. (2014).

3.2 Constructing the DDα-classifier

Consider a q-class classification problem, q ≥ 2. The DDα-classifier has been recently pro-

posed by Lange et al. (2014a). Its classification phase consists of two parts: a transformation

of the data from the original space into the depth space (depth transformation) and their sub-

sequent separation using a modified version of the α-procedure (α-separation), see Lange &

Mozharovskyi (2014), Vasil’ev (1991), Vasil’ev (2003), Vasil’ev & Lange (1998). This procedure

is a projective invariant method to separate the depth transformed data.

3.2.1 Depth transformation

The depth transformation maps z ∈ Rd into [0, 1]q, the depth space, where the coordinates

of the transformed data reflect their degree of centrality w.r.t. each of the q classes, so that

the subsequent class separation accounts only for the depth ordering. This central ordering

is carried out using a properly chosen depth function D(·|·). For more information on depth

functions the reader is referred to the literature: e.g. Zuo & Serfling (2000) for properties and

Mosler (2013) for a recent survey. Here we only briefly recall definitions of those used in the

current work. The depth representation of the training sets in [0, 1]q is called the depth plot.

51



Chapter 3 Constructing the DDα-classifier

First we briefly regard three depths whose empirical versions take positive values beyond the

convex hull of the data. For a point z ∈ Rd and a random vector X in Rd (especially one having

an empirical distribution on a set of d-variate observations {x1, . . . ,xn}) the Mahalanobis depth

(Mahalanobis, 1936) of z w.r.t. X is defined as

DMah(z|X) =
(
1 + (z− µX)

′Σ−1
X (z− µX)

)−1
, (3.1)

where µX measures the location (e.g. the mean) of X , and ΣX the scatter (e.g. the covariance

matrix) of X .

The affine invariant spatial depth (Vardi & Zhang, 2000, Serfling, 2002) of z regarding X

is defined as

DSpt(z|X) = 1− ‖EX

[
v(Σ

−1/2
X

(
z−X)

)]
‖ . (3.2)

Here v(y) = ‖y‖−1y for y 6= 0 and v(0) = 0, and ΣX is the covariance matrix of X . As the

Mahalanobis and spatial depths lack robustness when using standard moment estimates for

ΣX and µX , we consider also robustified versions of them, where ΣX and µX are estimated by

MCD (minimum covariance determinant).

The projection depth (Zuo & Serfling, 2000) of z regarding X is given by

DPrj(z|X) =
(
1 + OPrj(z|X)

)−1
, (3.3)

with

OPrj(z|X) = sup
u∈Sd−1

|u′z−m(u′X)|
MAD(u′X)

, (3.4)

where m(u′X) denotes the (univariate) median of m(u′X) and MAD(u′X) the (univariate)

median of the absolute deviation of u′X from its median.

The Tukey depth or location depth (Tukey, 1975, Zuo & Serfling, 2000) of z w.r.t. X is

defined as the minimal probability of X lying in a halfspace bounded by a hyperplane through

z,

Dloc(z|X) = inf {P (H) : H is a closed halfspace containing z}, (3.5)

where P is the probability distribution of X . (A closed halfspace is the set of all points that lie

on one side of a hyperplane including that hyperplane.) If P is an empirical distribution, this

means that Dloc(z|X) is the minimal portion of the data that can be cut off by a hyperplane

through z. Obviously, in general, the Tukey depth vanishes outside the convex hull of the

distributions’ support.

The Mahalanobis, spatial, projection depths are everywhere positive; thus outsiders cannot

occur. However they are not very sensitive to the shape of the underlying distribution, which

is illustrated in Figure 3.1. It exhibits the data of the “non-donating” class in the “blood-

transfusion” task. The Figure shows the level sets of Mahalanobis, spatial, projection and

Tukey depths. Observe that the Mahalanobis depth yield ellipses, while with the spatial and

projection depth rather symmetric, ellipsis-like level sets are obtained. The asymmetric shape
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Figure 3.1: Depth level sets for two dimensions (total number of donations and months
since first donation) of the “blood-transfusion” data set, class of not donating in March 2007.
Top, from left to right: data; spatial depth using moment estimate; projection depth. Bot-
tom: Mahalanobis depth using MCD estimates with robustness parameter 0.75; spatial depth
using the same MCD estimates; Tukey depth. The level sets are pictured for the depth values
1/570, 1/114, 1/57, 2/57, ..., 19/57 for the Tukey depth, and for 0.04, 0.08, ..., 1 for the rest of
the depths.

of the data is much more reflected by the Tukey depth (bottom right); therefore it appears to

be better suited to extracting the relevant information from the training classes. Note that,

by construction, the Mahalanobis depth has exact elliptical regions and the projection depth

contains a symmetric factor, namely MAD, which accounts for the quasi-symmetric shape of

the level sets. Moreover, the projection depth comes with an enormous computational cost.

For these reasons we include the Tukey depth in our study, in spite of its need for extra outsider

treatments.

DMah and DSpt are easily computed. To estimate µX (for DMah) and ΣX we use empiri-

cal moments and minimum covariance determinant (MCD) estimates that have outlyingness

parameter 0.75, see Hubert & Van Driessen (2004), Rousseeuw & Van Driessen (1999). The

Tukey depth as well as the projection depth satisfy the weak projection property Dyckerhoff

(2004), i.e. the depth of a point can be represented as the minimum of the depths on all

unidimensional projections. Based on this we approximate the Tukey depth by the random

Tukey depth (Cuesta-Albertos & Nieto-Reyes, 2008), which is the minimum univariate Tukey

depth over a set of unidimensional projections in randomly selected directions. As the exact

calculation of DPrj is rather elaborate (Liu & Zuo, 2014b), we approximate it in the same way.
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3.2.2 α-separation

For each binary separation the α-procedure constructs a decision hyperplane in the extended

property space E1 = [0, 1]r, r =
(
p+q
q

)
−1. The extended property space includes the powers and

products of objects’ attributes up to some degree p as additional coordinates. We mention the

original depth coordinates as the basic, and the other coordinates as the extended properties.

From all these properties, the relevant ones are stepwise chosen by the α-procedure. The final

separation then is performed by an ‘optimal’ hyperplane in [0, 1]r.

Let X1 and X2 be two training classes in Rd having n1 and n2 elements respectively. Each

data point x ∈ X1 ∪X2 is transformed to (d1, d2) ∈ [0, 1]2, with d1 = D(x|X1), d2 = D(x|X2).

In the first step all pairs of (basic or extended) properties are selected that involve depths

in both classes and the respective two-dimensional coordinate subspaces are considered. In

each of these planes we separate the two classes by a straight line passing through the origin.

The separating line is determined by the angle α (formed with one of the axes) that yields

the minimal empirical misclassification rate (EMR). Among all considered two-dimensional

property spaces we choose the one delivering the smallest EMR; then we project its points

onto a straight line f1 that is orthogonal to the separating one. Now, separation in f1 is

performed by the origin, and f1 becomes the first projection axis of a synthesized space.

We illustrate the procedure with data from the Pima Indians diabetes study; see

www.stats.ox.ac.uk/pub/PRNN/pima.tr2. A subsample consisting of q = 2 classes (68 dis-

eased and 132 not diseased females) has been selected, having seven attributes (number of

pregnancies, 2 hours glucose concentration, blood pressure, triceps skin thickness, body mass

index, diabetes pedigree function, age). The data points are represented in the unit square by

their random Tukey depths regarding the two classes (using 10 000 random directions), and

powers and products of depth values are considered up to degree p = 2; thus the extended

depth space has dimension r = 5.

Figure 3.2 (left) shows the first step applied to the Pima data. Here, after mapping X1∪X2

into [0, 1]2, the depth space was extended up to degree p = 2, which yields the extended depth

space [0, 1]5. With the Pima data the smallest EMR is achieved at the two basic depth

properties d1 and d2.

After the first step the extended space is reduced by removing the two (possibly extended)

properties that have obtained minimal EMR, and a similar second step is performed. In the

second step we consider all planar subspaces based on f1 and one of the properties of [0, 1]r−2

and find a separating straight line minimizing EMR in each of them. Again, among these

planes we choose the one that yields the smallest EMR and obtain the second projection axis

f2. It separates the data at its zero point, as the first axis did in the initial step; see Figure

3.2 (right) for the Pima example. Similarly, after Step 2 the extended space is reduced to an

(r − 3)-dimensional unit hypercube. The steps are iterated, and properties are selected from

the extended space, as long as the minimum EMR decreases and the remaining extended space

is non-void. Note that with the Pima data, the procedure stops after Step 2.
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Figure 3.2: α-separation; step 1 (left) and step 2 (right).

3.2.3 Directions for the random Tukey depth

As mentioned above, we approximate the d-variate Tukey depth by the minimum univariate

depth of the (on lines in several directions) projected data. The random Tukey depth in-

herits the robustness from the Tukey depth. When implementing the random Tukey depth

we have to answer the following questions in a way that makes our classifier reasonable and

computationally feasible.

(1) How should the random directions be generated?

(2) How many directions should we consider?

(3) Shall we generate a new set of directions for each point z?

Ad (1): As in Cuesta-Albertos & Nieto-Reyes (2008) we generate directions that are uniformly

and independently distributed on the unit sphere and independent of the data. Alternatively

we could proceed as in Christmann et al. (2002), Christmann & Rousseeuw (2001), i.e. search

through the normals of randomly formed (d−1)-simplices. However we find it more efficient to

spend computational time on generating random directions and evaluating univariate depths

rather than computing exact directions from the data; moreover, a moderate number of random

directions proves to be enough.

Ad (2): We mention two qualitative arguments concerning this number. Firstly, a larger

dimension of the space needs a larger number of directions, which is obvious from the geometry

of Rd. However, we are not able to indicate the precise dependency of this number on the

dimension d. Secondly, we point out that there exists a trade-off between the number of

directions used for the random Tukey depth and the number of outsiders. A simulation study

that illuminates this trade-off has been conducted in Lange et al. (2014b). If the data stems
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from a centrally symmetric distribution (e.g. Gaussian or another elliptical distribution) the

depth can be rather precisely approximated with a small number of directions. But if the

data exhibit asymmetries and possible outliers, as real-world data mostly do, we need a larger

number of directions to adequately represent them in the depth space. The degree of asymmetry

and fat-tailedness found in the data may guide us in choosing this number; see Lange et al.

(2014b). To be able to compare the procedure on different data sets we have chosen a fixed

number of directions. This number has been set to 10 000 as a practical compromise between

accuracy of the depth calculation and computational load.

It is obvious (see e.g. Liu & Zuo (2014a)) that the random Tukey depth of a point can

widely deviate from the Tukey depth. On the other hand, the α-separation is rather robust,

since the only invariant it uses is whether a point belongs to a class or not. Therefore an

upward bias at a few points does not much influence the final separation. Further, a trade-off

exists between the number of directions used for the random Tukey depth and the number of

effective outsiders, which favors a moderate number of directions.

Ad (3): We use the same set of directions for each data point. Though the generation of

a new set of directions for each point produces different depth values, there is no reason to

expect them to be more precise. By keeping the set of directions constant we increase the

speed of calculations in the training phase. The computations are boosted by avoiding the

generation of the directions and projection of the points onto them. Let k be the number of

random directions. When instantly generating the direction set for each point the complexity

of the depth calculation amounts to O
(
kd(n1 + n2)

2
)
. If the direction set is not constantly

changed, first, the time for their generation is saved. Second, recall that in the training phase

the depth of all points of the training sample w.r.t. each class has to be computed. Hence,

univariate projections are ordered, and all the univariate depths on each projection can be

determined in a single pass. This yields complexity O
(
k(d + log (n1 + n2))(n1 + n2)

)
. Note

that d(n1+n2) > d+ log (n1 + n2) holds. Therefore, for all d, n1 and n2 that are large enough

to suppress eventual constants, the constant direction approach is substantially faster, see also

Lange et al. (2014b). It also enhances the classifier’s stability in the classification phase, as

the same directions are used to approximate the depth of a new point to be classified.

3.2.4 Directions for the projection depth

Exact calculation of the projection depth appears to be a heavy computational task (Liu & Zuo,

2014b). Therefore we approximate the projection depth in the same way as the Tukey depth by

minimizing the univariate depth of projections in randomly drawn directions. Compared with

the Tukey depth, many more directions are needed to produce a reasonable approximation

of the projection depth: When traversing the unit sphere the projection depth (which is a

piecewise linear function) changes direction much more frequently because of the median and

MAD estimates. To be able to compare the procedure on different data sets we have chosen

two fixed numbers of directions. These have been set to 10 000 and 100 000 as a practical

compromise between accuracy of the depth calculation and computational load.
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3.3 Classifying outsiders

The classification phase proceeds as follows. Consider a point z to be classified. First the

depth transform of z is calculated as (d1, d2) =
(
D(z|X1), D(z|X2)

)
. If d1 is zero but not d2,

the point z is assigned to class X2, and viceversa. If both d1 and d2 are non-zero the point is

classified according to the separation rule determined by the α-procedure. This is always the

case when using the Mahalanobis, spatial or projection depths. When employing the random

Tukey depth some z may have (d1, d2) = (0, 0), then z is regarded as an outsider. An outsider,

being represented by the origin of the depth plot, cannot be readily classified but needs some

special treatment. Specifically, a point z that, in the original data space, lies outside the convex

hulls of the two training sets has zero Tukey depth in both classes and, thus, is an outsider.

If a point z is no outsider it is mentioned as an insider. Insiders are instantaneously classified

by the α-procedure.

As in Lange et al. (2014a), outsiders may be classified by determining their nearest neigh-

bors. In doing so, Euclidean and Mahalanobis distances can be employed, the latter to account

for scatter within the classes. Alternatively outsiders can be classified according to their maxi-

mum Mahalanobis depth, which is always positive. Mosler & Hoberg (2006) introduce a depth

function, which is the maximum of the zonoid depth and a properly scaled Mahalanobis depth,

and thus circumvent the outsider problem. Paindaveine & Van Bever (2012) propose an ap-

proach that avoids the outsider problem as well. In the classification phase, for each point z

to be classified, (1) the sample is extended by reflecting the training classes symmetrically at

center z, (2) the depth of points in the extended sample is considered, and (3) a k-nearest-

neighbor rule that uses depth in place of distance is applied for classifying z. Here not only

the classification phase is computationally hard (by instantaneous calculation of the depths of

all data points), but also the training phase, where the classifier has to be validated in order

to determine k. This requires onerous computations.

In the sequel we compare several alternative outsider treatments, which are classifiers ap-

plied to data in the original space. The treatments include three well known classifiers: linear

discriminant analysis, maximum Mahalanobis depth, and k-nearest neighbors as well as a new

one, which we call SVM-simplified. The performance of the DDα-classifier with Mahalanobis,

spatial and projection depth is contrasted as well. Note that all depths (Tukey, Mahalanobis,

spatial and projection) are affine invariant as well as all treatments used (LDA, KNN with

an affine invariant distance, Mahalanobis depth and the support vector machine). Therefore

all considered DDα-classifiers are affine invariant (under appropriate moment assumptions), if

the exact versions of the depths are calculated. Since the random Tukey depth and the ran-

dom projection depth converge to the exact versions, using them makes the DDα-classifiers

approximately affine invariant.

The random Tukey depth (RTD) used for the depth transform is very efficiently calculated,

but yields outsiders. As it approximates the Tukey depth (TD) from above, some TD-outsiders

will have non-zero RTD and, by this, be assigned to one of the classes. A smaller number of

directions yields a worse approximation of the TD, but reduces the number of outsiders. The
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remaining RTD-outsiders still need a special treatment, though. Thus, when using the RTD,

we face a trade-off between the quality of depth approximation and the extent of outsider

treatment needed. As we will see below with real data, choosing a moderate number of random

directions gives best results.

3.3.1 Classical approaches as treatments

Linear discriminant analysis (LDA), introduced in Fisher (1936), separates the classes by a

hyperplane in the original data space; see also Hastie et al. (2009). The LDA classifier is

particularly simple. It is optimal if the data follow a Gaussian or, more general, a unimodal

elliptical distribution and the classes differ by location shifts only. However, in classifying real

data it is often outperformed by other approaches. In many applications, the real data cannot

be assumed to be Gaussian and ask for procedures different from LDA. However, after having

classified the RTD-insiders, the remaining task of classifying the outsiders appears to be a

much less exigent task and may be successfully done by a simple procedure like LDA.

The maximum-Mahalanobis-depth classifier is given by

class = argmax
i

πiD
Mah(z|Xi) , (3.6)

where πi is the prior probability for class i. The priors are estimated by the training class

portions. Again, this classifier has optimality properties under ellipticity. Applied to outsiders

it is expected to perform satisfactorily.

The k-nearest-neighbors classifier is still another option for treating outsiders. Its parameter

k, the number of the nearest neighbors, has to be chosen by cross-validation. Often a relatively

small k is enough; see, e.g., Lange et al. (2014a), where already k = 1 produces satisfying

results. To make the procedure affine invariant we use Mahalanobis distances (based on the

pooled data set) for finding nearest neighbors.

3.3.2 SVM-simplified as an outsider treatment

As another way to handle the outsider problem we propose to supplement the DDα-classifier

by an additional SVM-rule, which is restricted to classifying the outsiders. It has a particularly

simple structure. Recall that the DDα-procedure delivers a separator which is a hyperplane

in the extended depth space. This hyperplane induces a decision rule in the original data

space. Next, we remove all training points which are not correctly classified by this rule (so

that EMR = 0) and subject the remaining points to an additional SVM classification step that

involves determining a single kernel parameter but no box-constraint. This new approach is

named SVM-simplified (SVM-s). As the SVM-s rule is defined on the whole Rd, it is able to

assign points which are outsiders in the DDα-classification.

Figure 3.3, left panel, shows two classes, each containing 250 points, which are simulated

from N
([

0
0

]
,
[
1 1
1 4

])
and N

([
1
1

]
,
[
4 4
4 16

])
, together with the separating lines of the optimal Bayes
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Figure 3.3: Decision rules of different classifiers: optimal Bayes (dashed lines), DDα (left,
solid line), and SVM-simplified (right, solid line) classifiers.

(dashed) and DDα (solid) classifiers. The left panel regards the original data, while the right

panel exhibits the data after the removal step.

The SVM-s step consists in solving the following quadratic programming problem (Cortes

& Vapnik, 1995):

maximize
λ

W (λ) = λ′1− 1

2
λ′Dλ (3.7)

subject to the constraints

λ ≥ 0, (3.8)

λ′y = 0. (3.9)

Here we notate l = n1 + n2, λ = (λ1, ..., λl)
′, 1 = (1, . . . , 1)′ and 0 = (0, . . . , 0)′ ∈ Rl. y stands

for the l-dimensional vector of responses y1, ..., yl ∈ {−1, 1}, and D is a symmetric l× l-matrix

with elements

Dij = yiyjKγ(xi,xj), i, j = 1, ..., l, (3.10)

where Kγ(xi,xj) = exp(−γ‖xi − xj‖2) is a Gaussian kernel. Note that no box-constraint

condition is needed here as the points are separable without error. But still the kernel parameter

γ has to be chosen. For given γ a solution λ0 = (λ01, ..., λ
0
l ) of (3.7) is obtained, provided the

two classes are linearly separable in the reproducing kernel Hilbert space that corresponds to

Kγ(·, ·). Every such solution λ0 determines a margin between the classes ρ0 =
√

2
W (λ0)

and a

number of support vectors, ♯{λ0i |λ0i > 0, i = 1, ..., l}.
In Figure 3.4, depending on γ, the values of ρ0 (dashed line) and the corresponding numbers

of support vectors (solid line) are plotted for the above example. A zero value of the margin ρ0

or of the number of support vectors indicates that with the given γ no errorless discrimination

is possible.
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Figure 3.4: The number of support vectors (solid line, right scale) and the margin between
the classes (dashed line, left scale) for different values of the parameter lg(γ) (logarithm to the
base 10).

Loosely speaking, γ controls the complexity of the SVM-s rule; for small values of γ the

decision rule is not able to separate the classes at all. Therefore it suggests itself to use the

simplest separating rule, i.e. selecting the smallest γ for which the classes are separated without

error (as indicated by the small circle in Figure 3.4). This also comes out as a most stable

decision rule. Figure 3.3 exhibits the corresponding decision rule in its right panel as a solid

line, while the dashed line indicates the same optimal Bayes decision rule as on the left panel

of the Figure; the rules appear to be very similar. Most important, calculating the SVM-s rule

needs no parameter tuning besides selecting the parameter γ, which is a straightforward task.

Needless to say, with the usual support vector machine (SVM) a solution can be obtained

that is at least as good as the one achieved here. However, obtaining this solution needs a

tuning of parameters that is computationally much more intensive.

To summarize the above procedure: The training phase consists of two steps, first deter-

mining the DDα-classifier and then determining an SVM-s rule based on the correctly DDα-

classified points. Note that the classification performance of this procedure is determined by

the DDα-classifier, and the SVM-s step just extrapolates this classifier to treat the outsiders.

In our experiments the whole training phase took between a few seconds and several minutes

of computation time (64-bit, 1 kernel of the iCore 7-2600 having enough operative memory).

The time reached a maximum of 10 minutes with four very large data sets only.

In the classification phase we have two choices: Either using the obtained SVM-s rule for

all points z to be classified, or first check for each z whether it is an insider or an outsider

and then classify it with the DDα-rule if it is an insider and with the SVM-s rule otherwise.

The first choice yields a particularly fast procedure, as the SVM-s rule does not involve any

depth calculations in the classification phase. We choose the second one as it is in line with the
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application of the outsider treatments mentioned above. Its results are presented in column

‘SVM-s’ of Tables 3.3 and 3.4.

3.4 Real data experiments

To evaluate the DDα-procedures with different outsider treatments and to judge their useful-

ness in practical applications we have set up experiments based on a large variety of real data

sets. The methodology is applied to 50 binary classification tasks, which have been obtained

from partitioning 33 freely accessible data sets, see Tables 3.1 and 3.2. The subset of the “Pima

Indian Diabetes” described above is included in the Table as “pima” (No. 35).

The authors and introducers of the accessed data sets are Cox et al. (1982) (“biomed”),

Miller et al. (1979) (“cloud”), Greaney & Kellaghan (1984) (“irish-ed”), McGilchrist & Ais-

bett (1991) (“kidney”), Nierenberg et al. (1989) (“plasma-retinol”), Biblarz & Raftery (1993)

(“socmob”) and Kalbfleisch & Prentice (1980) (“veteran-lung-cancer”); these data sets have

been downloaded from lib.stat.cmu.edu/datasets.Data sets “chemdiab” (Reaven & Miller,

1979) and “hemophilia” (Habemma et al., 1974) have been taken from the R-packages ‘loc-

fit’ and ‘rrcov’ respectively. The “pima” data set constitutes a training subsample of the

“diabetes” (see below) and can be downloaded from www.stats.ox.ac.uk/pub/PRNN (Ripley,

1996).Datasets “baby”, “banknoten” (Flury & Riedwyl, 1988), “crab” (Ripley, 1996), “gem-

sen” , “groessen” (Galton, 1886), “tennis”, “tips” and “uscrime” (Hand et al., 1994) have been

downloaded from the teaching data base stat.ethz.ch/Teaching/Datasets.The rest of the

data sets is taken from archive.ics.uci.edu/ml (Asuncion & Newman, 2007);it in partic-

ular originates from Yeh et al. (2009) (“blood-transfusion”), Wolberg & Mangasarian (1990)

(“breast-cancer-wisconsin”) and Turney (1993) (“vowel”).

Multiclass problems were reasonably split into binary classification problems, and some

of the data sets were slightly processed by removing correlated attributes, by dropping ob-

jects with missing values, and by selecting prevailing classes. For detailed descriptions of

the data considered we refer to the corresponding literature and public repositories; the

fifty tasks together with short descriptions of the data can be found on the web page

www.wisostat.uni-koeln.de/28969.html.

3.4.1 Data

As we see from Tables 3.1 and 3.2, the classification tasks are much different. The Tables

show their basic parameters: dimension d of the original space, log ratio of the cardinalities

n1 and n2 of the training classes (so that the sign reflects which is larger), total sample length

n = n1 + n2, percentages of outliers and outsiders. As we see, up to 13 attribute dimensions

are considered. The total sample sizes range from 47 to 1349, while the relative size of the two

classes varies between 1 and 6.5.

Almost all data contain outliers ; see column ‘% outl.’. In particular “diabetes”, “glass”, and

“segmentation” contain substantial portions of them. The outliers of each data set have been
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Table 3.1: Data set parameters; Part 1.

No. Data set n1 + n2 ln(n1/n2) d (n1 + n2)/d # tied % outl. % outs.

1 baby 247 0.63 5 49.4 0 5.3 31.6
2 banknoten 200 0.00 6 33.3 0 4.5 68.0
3 biomed 194 -0.63 4 48.5 0 4.6 27.8
4 blood-transfusion 748 -1.17 3 249.3 246 5.1 2.9
5 breast-cancer-wisconsin 699 0.64 9 77.7 236 8.3 46.9
6 bupa 345 -0.33 6 57.5 4 8.4 44.3
7 chemdiab 1vs2 112 -0.76 5 22.4 0 2.7 67.9
8 chemdiab 1vs3 69 0.09 5 13.8 0 2.9 81.2
9 chemdiab 2vs3 109 0.83 5 21.8 0 2.8 67.9
10 cloud 108 0.00 7 15.4 0 6.5 91.7
11 crab BvsO 200 0.00 5 40.0 0 2.0 57.5
12 crab MvsF 200 0.00 5 40.0 0 1.5 59.0
13 crabB MvsF 100 0.00 5 20.0 0 4.0 76.0
14 crabF BvsO 100 0.00 5 20.0 0 4.0 71.0
15 crabM BvsO 100 0.00 5 20.0 0 1.0 74.0
16 crabO MvsF 100 0.00 5 20.0 0 1.0 69.0
17 cricket CvsP 156 0.00 4 39.0 7 1.3 26.9
18 diabetes 768 -0.62 8 96.0 0 8.9 56.8
19 ecoli cpvsim 220 0.62 5 44.0 0 5.9 42.3
20 ecoli cpvspp 195 1.01 5 39.0 0 5.1 43.1
21 ecoli imvspp 129 0.39 5 25.8 0 8.5 61.2
22 gemsen MvsF 1349 0.36 6 224.8 27 1.9 32.3
23 glass 146 -0.08 9 16.2 1 11.6 91.1
24 groessen MvsF 230 0.02 3 76.7 0 2.6 20.4
25 haberman 306 1.02 3 102.0 23 2.9 7.5
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Table 3.2: Data set parameters; Part 2.

No. Data set n1 + n2 ln(n1/n2) d (n1 + n2)/d # tied % outl. % outs.

26 heart 270 -0.22 13 20.8 0 4.4 100.0
27 hemophilia 75 -0.40 2 37.5 0 1.3 13.3
28 indian-liver-patient 1vs2 579 0.92 10 57.9 13 7.8 68.4
29 indian-liver-patient MvsF 579 -1.14 9 64.3 13 7.9 54.7
30 iris setosavsversicolor 100 0.00 4 25.0 2 4.0 48.0
31 iris setosavsvirginica 100 0.00 4 25.0 3 4.0 48.0
32 iris versicolorvsvirginica 100 0.00 4 25.0 1 2.0 51.0
33 irish-ed MvsF 500 0.00 5 100.0 44 6.2 14.2
34 kidney 76 -1.02 5 15.2 0 2.6 73.7
35 pima 200 0.66 7 28.6 0 5.0 86.0
36 plasma-retinol MvsF 315 1.87 13 24.2 0 8.3 98.1
37 segmentation 660 0.00 10 66.0 62 9.4 57.7
38 socmob IvsNI 1156 0.00 5 231.2 45 4.2 14.1
39 socmob WvsB 1156 0.00 5 231.2 8 3.0 15.1
40 tae 151 -1.43 5 30.2 43 1.3 26.5
41 tennis MvsF 87 -0.07 15 5.8 0 6.9 100.0
42 tips DvsN 244 0.95 6 40.7 1 5.3 48.8
43 tips MvsF 244 -0.60 6 40.7 1 5.7 37.3
44 uscrime SvsN 47 -0.65 13 3.6 0 0.0 100.0
45 vertebral-column 310 0.74 6 51.7 0 4.8 54.5
46 veteran-lung-cancer 137 0.01 7 19.6 0 8.8 80.3
47 vowel MvsF 990 0.13 13 76.2 0 2.1 99.7
48 wine 1vs2 130 -0.19 13 10.0 0 3.8 100.0
49 wine 1vs3 107 0.21 13 8.2 0 0.9 100.0
50 wine 2vs3 119 0.39 13 9.2 0 3.4 100.0
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identified by cutting moment Mahalanobis regions at a χ2
d(0.975)-quantile as, e.g., in Rousseeuw

& Van Driessen (1999). We take a pure data-analytic view and thus treat a potential outlier in

the same way as any other point. Observe that regarding eventual outliers the DDα-procedure

is highly robust for two reasons: Firstly, the classification is done by the α-procedure – a very

robust approach – in a low-dimensional compact set, the unit cube of Rq. Secondly, a robust

depth like the Tukey depth can be employed.

Nevertheless the Tukey-DD-classifier suffers from the existence of outsiders as the Tukey

depth vanishes outside the convex hulls of the training classes. The performance of this pro-

cedure obviously depends on the portion of outsiders in the data. We measure the outsider

proneness of a training set by the portion of points lying outside the convex hulls of all classes.

I.e. for each point we check (leaving it out) whether it lies inside the convex hull of at least one

class of the remaining training sample. As shown in the two Tables (last column) the portion

of outsiders varies from 0.029 to 1; see Sect. 3.5.1 for discussion.

An important parameter of a data set is the ratio of the sample size over the dimension,

(n1 + n2)/d. It relates to the ability of the trained procedure to classify new data. The ratio

varies from 3.6 to 249.3.

Finally, real data can contain ties, which require additional consideration by learning algo-

rithms like KNN and depth based classifiers, and thus increase computation time. The number

of tied points (in the pooled classes) is shown in column ‘# tied’ of both Tables. It is deter-

mined as the smallest number of points that has to be removed from the training sample to

make the remaining ones pairwise distinct.

3.4.2 Study settings

In constructing the depth transform of the DDα-classifier, the Mahalanobis depth (based

on moment estimates as well as robust MCD estimates with outlyingness parameter 0.75)

is computed exactly, while the projection depth is approximated using 10 000 and 100 000

random directions. Instead of the exact Tukey depth we calculate the random Tukey depth

(RTD) with 10 000 randomly chosen directions which are the same for all points of a given data

set. Since the RTD approximates the Tukey depth from above and points having depth zero in

both classes are treated as outsiders, the number of outsiders is systematically underestimated

when using the RTD. These outsiders are treated with the techniques described in Sect. 3.3.1

and Sect. 3.3.2.

The α-separation is performed in a polynomially extended depth space, where the degree

of the polynomial is chosen by 50-fold cross-validation. The complexity of the separation rule

is, in a natural way, characterized by the dimension of the space needed. See Sect. 3.5.2 for

results on the expected number of such features.

In classifying outsiders by KNN the number k is selected by the same cross-validation

strategy as with the traditional KNN classifier. We determine the number k of neighbors in the

KNN classifier by leave-one-out cross-validation, performed over a wide range of neighborhoods,
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but – to save computation time – not over the whole sample size; the performance is still highly

satisfactory.

The max-Mahalanobis-depth classifier is calculated either with moment or MCD estimates,

setting α = 0.75. As a basis for the SVM-simplified classifier Joachims’s C++ implemen-

tation of SVMlight (Joachims, 1999) is used with slight modifications and interfaced to the

R-environment.

We use an R-implementation for the traditional KNN with ties broken at random; similarly

when treating the outsiders by the affine invariant KNN. In SVM-simplified ties are neglected.

The α-procedure is tie-immune as well, but in contrast to SVM, it accounts for the number of

tied points.

3.4.3 Empirical comparison

We solve the above fifty classification problems by the following fourteen approaches: three

classical approaches (LDA, QDA and KNN), the DDα-classifier with the random Tukey depth

and five outsider treatments from Sect. 3.3 (LDA, KNN, maximum Mahalanobis depth classi-

fier with both moment and robust estimates and SVM-s), the DDα-classifier based on Maha-

lanobis, spatial (both using moment estimates and robust MCD-estimates with outlyingness

parameter equal to 0.75), and projection depth (using 10 000 and 100 000 random directions).

The performance of each classifier is evaluated by leave-one-out cross-validation; we refer to

this as the average error rate (AER). Tables 3.3 and 3.4 exhibit their average error rates for

each of the fifty settings, and for eleven classifiers. (For reasons of space, the DDα-classifiers

based on Mahalanobis and spatial depth with MCD-estimates and the one based on projec-

tion depth with 10 000 random directions are left out; short cumulative results are given in

Table 3.5 and Figure 3.5.)

The results are mixed. Some are surprising, e.g. the classification tasks “bupa”, “glass”,

“indian-liver-patient 1vs2/FvsM” show error rates for QDA that are substantially higher than

those for LDA. We attribute this to the poor estimation of the covariance matrix of the smaller

class.

In Tables 3.3 and 3.4 classification error of the best classifier for each task is printed in

bold. In almost all tasks none of the considered procedures dominates the others. Excep-

tions are “blood-transfusion”, “indian-liver-patient FvsM” and “irish-ed MvsF”, where the

DDα-classifier with the robust Mahalanobis depth (not shown in the Tables) dominates; also

“haberman”, where the DDα-classifier with the projection depth using on 10 000 directions

dominates, and “cricket CvsP”,where they both are prevailing.

While at first sight the error rates of the diverse DDα-classifiers show comparable sizes

among each other and with the classical approaches (LDA, QDA, and KNN), it seems worth-

while to have a closer look at the performance of the different depths and treatments of out-

siders.

Five aggregating measures are used to compare the overall performance of the considered

classifiers. The absolute performance is measured by the average classification error (ACE),

65



Chapter 3 Some evidence from the empirical study

which is the average error of a classifier over all the classification tasks. The relative measure

is the average relative classification edge (ARCE) calculated as the average of
(
(1 − AER) −

(1 − AERtrd)
)
/(1 − AERtrd) over all classification tasks, with AERtrd being the AER of the

best of the three traditional classifiers (LDA, QDA and KNN) for each data set. We mention

it as ARCEtrd. Its negative values relate to the best of the traditional classifiers, i.e. to an

absolute reference. We also use ARCE with a relative reference (AERbest), which is the smallest

AER among all considered classifiers for a given task (the bold values in Tables 3.3 and 3.4);

it depends on the variety of the classifiers chosen. The corresponding measure is mentioned

as ARCEbest, which is always non-positive. Two indicator measures denoted ‘#≥ trd’ and

‘#≥ best’ count how often AER of a classifier is not worse than AERtrd, respectively AERbest.

The five measures are given in Table 3.5, the best classifier w.r.t. each of the measures is

printed in bold. Note, that all proposed classifiers have negative ARCEtrd, i.e. none of them

can outperform (on an average) the best of the traditional triplet. On the other hand, the

traditional classifiers perform mostly not satisfactory as well, although LDA shows favorable

indicator values and competitive ACE.

To visualize the empirical evidence, the measures have been standardized to values in

∈ [0, 1], with larger numbers indicating better performance of the classifier, see Figure 3.5.

Three groups of the classifiers are easily distinguishable. The first group consists mainly of

the DDα-classifier based on spatial depth followed by the one with Mahalanobis depth, both

calculated using moment estimates. These two perform best. They also perform close to the

best of the traditional classifiers (in terms of ARCEtrd, see Table 3.5), and not worse than this

in (approximately) half of the cases (in terms of ‘#≥ trd’, see Table 3.5). Results of the second

group are mixed, only the DDα-classifier based on the random Tukey depth supplemented with

the LDA-treatment lies in parts on the positive border.

The DDα-classifier based on random Tukey depth as transformation and moment-based

Mahalanobis depth as outsider treatment performs worst. Similarly, that based on projection

depth with 10 000 random directions is mostly outperformed; this can be explained by insuf-

ficient approximation. (Note that with 100 000 random directions its performance increases).

3.5 Some evidence from the empirical study

The empirical study sheds light on the nature and possible treatment of potential outsiders. It

also provides practical evidence on the number of features (= extended depth properties) that

is normally needed in the linear separating procedure.

3.5.1 Outsiders

It is seen from Tables 3.1 and 3.2 see that 10 (resp. 20%) data sets contain more than 90%

outsiders, which actually means that less than 10% of the points are classified by the DDα-

procedure, when the Tukey depth is employed. It is clear that this variant of the DDα-

procedure may be not the best solution, as it constructs a separation rule only from a small
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Table 3.3: Comparison of classification performance (average error rate); Part 1.

DDα + random Tukey depth + treatment DDα +
Mah.depth Mah. Spt. Prj.

No. Dataset LDA QDA KNN LDA KNN Moment MCD0.75 SVM-s depth depth depth

1 baby 21.86 22.27 21.86 21.46 25.10 25.51 23.48 21.46 23.89 25.51 24.29
2 banknoten 0.50 0.50 0.50 0.50 1.00 4.00 0.50 2.00 1.00 1.00 1.50
3 biomed 15.98 12.37 11.34 11.34 11.34 13.92 10.82 11.86 12.37 13.40 13.40
4 blood-transfusion 22.86 22.19 22.59 22.33 22.19 21.93 22.86 23.93 20.86 22.06 20.72
5 breast-cancer-wisconsin 4.86 5.01 4.29 4.72 6.87 11.44 6.72 6.72 3.43 3.00 4.43
6 bupa 30.72 40.58 31.30 26.96 28.70 30.43 31.88 26.09 30.72 29.57 32.17
7 chemdiab 1vs2 3.57 7.14 7.14 3.57 5.36 14.29 5.36 0.89 3.57 3.57 8.93
8 chemdiab 1vs3 10.14 8.70 7.25 8.70 8.70 17.39 13.04 2.90 10.14 7.25 10.14
9 chemdiab 2vs3 3.67 0.92 0.92 3.67 6.42 1.83 0.92 0.00 1.83 1.83 1.83
10 cloud 53.70 50.93 66.67 54.63 64.81 40.74 48.15 59.26 51.85 49.07 49.07
11 crab BvsO 0.00 0.00 3.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
12 crab MvsF 4.00 5.00 9.00 4.50 7.00 5.50 5.50 3.50 4.50 3.50 6.00
13 crabB MvsF 9.00 10.00 15.00 8.00 9.00 10.00 8.00 7.00 6.00 6.00 9.00
14 crabF BvsO 0.00 1.00 5.00 0.00 5.00 2.00 1.00 0.00 1.00 1.00 2.00
15 crabM BvsO 0.00 0.00 5.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
16 crabO MvsF 3.00 2.00 7.00 3.00 6.00 3.00 3.00 3.00 2.00 2.00 2.00
17 cricket CvsP 68.59 64.10 59.62 64.74 67.31 64.10 62.82 57.05 61.54 57.69 58.33
18 diabetes 22.53 26.04 24.61 26.04 25.52 29.04 27.21 27.34 23.57 24.22 34.24
19 ecoli cpvsim 1.36 1.82 2.27 1.82 2.73 5.91 1.82 4.55 1.36 1.36 2.73
20 ecoli cpvspp 3.08 4.10 4.10 4.62 4.62 5.64 6.15 9.23 4.62 5.13 5.13
21 ecoli imvspp 5.43 3.88 5.43 5.43 4.65 9.30 6.20 5.43 2.33 3.88 5.43
22 gemsen MvsF 19.13 14.16 14.01 16.46 15.86 16.90 16.53 18.53 14.97 13.94 23.28
23 glass 27.40 39.73 19.18 29.45 27.40 34.93 30.82 28.77 30.14 28.08 39.73
24 groessen MvsF 10.87 10.43 14.35 12.61 13.48 13.48 13.48 13.04 12.61 7.83 7.83
25 haberman 25.16 24.51 25.82 28.43 27.12 28.76 26.80 28.43 26.14 25.16 23.53
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Table 3.4: Comparison of classification performance (average error rate); Part 2.

DDα + random Tukey depth + treatment DDα +
Mah.depth Mah. Spt. Prj.

No. Dataset LDA QDA KNN LDA KNN Moment MCD0.75 SVM-s depth depth depth

26 heart 16.30 16.67 33.70 22.59 21.85 22.96 22.96 24.44 20.37 18.15 27.78
27 hemophilia 14.67 16.00 16.00 16.00 17.33 18.67 18.67 18.67 17.33 16.00 21.33
28 indian-liver-patient 1vs2 29.88 44.56 31.26 30.92 28.15 30.57 31.61 36.96 29.88 28.50 29.19
29 indian-liver-patient FvsM 24.53 63.04 25.39 27.63 26.08 26.60 26.25 33.51 25.39 25.39 24.70
30 iris setosavsversicolor 0.00 0.00 0.00 0.00 0.00 12.00 0.00 0.00 0.00 0.00 0.00
31 iris setosavsvirginica 0.00 0.00 0.00 0.00 0.00 12.00 0.00 0.00 0.00 0.00 0.00
32 iris versicolorvsvirginica 3.00 4.00 3.00 3.00 3.00 6.00 4.00 10.00 3.00 6.00 5.00
33 irish-ed MvsF 45.00 43.40 45.40 42.80 44.60 42.60 42.40 44.60 40.20 43.60 39.60
34 kidney 28.95 28.95 34.21 28.95 28.95 31.58 35.53 30.26 28.95 31.58 28.95
35 pima 24.50 27.50 29.00 26.00 28.50 31.00 31.00 28.00 30.50 30.00 27.50
36 plasma-retinol MvsF 14.29 13.97 13.33 15.24 16.83 16.51 15.24 25.08 15.24 13.97 15.56
37 segmentation 8.33 9.24 4.55 4.55 4.09 7.58 5.30 14.55 7.73 8.79 12.73
38 socmob IvsNI 34.34 34.34 33.48 32.70 33.30 32.61 33.13 33.04 32.09 30.36 34.17
39 socmob WvsB 28.89 29.15 19.12 17.99 17.91 17.65 18.08 18.94 20.16 19.64 21.89
40 tae 17.22 19.87 23.18 11.92 13.91 14.57 17.22 15.89 17.22 16.56 17.22
41 tennis MvsF 41.38 44.83 43.68 45.98 49.43 47.13 39.08 52.87 37.93 36.78 41.38
42 tips DvsN 6.15 3.69 8.20 5.33 6.15 12.70 9.84 8.20 3.28 4.10 9.84
43 tips MvsF 36.48 38.52 32.38 42.21 43.85 40.16 39.34 41.39 38.11 38.11 34.43
44 uscrime SvsN 17.02 19.15 8.51 17.02 6.38 48.94 21.28 2.13 19.15 19.15 6.38
45 vertebral-column 15.81 17.42 15.81 17.10 18.06 21.94 23.55 19.03 14.52 15.16 16.45
46 veteran-lung-cancer 64.23 51.82 51.82 53.28 43.80 48.91 42.34 40.15 47.45 49.64 53.28
47 vowel MvsF 0.10 0.71 0.00 1.41 1.92 11.82 0.00 2.02 0.51 0.51 12.63
48 wine 1vs2 0.00 0.77 6.15 1.54 2.31 5.38 2.31 3.08 1.54 1.54 1.54
49 wine 1vs3 0.00 0.00 11.21 0.00 0.93 0.93 0.00 0.00 0.00 0.00 0.00
50 wine 2vs3 0.84 0.00 23.53 1.68 2.52 5.04 4.20 5.04 0.00 0.00 8.40
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Table 3.5: Comparison of classification indicators: average classification error (ACE); aver-
age relative classification edge (ARCE) w.r.t. the best traditional and the overall best classifier
for a classification task; frequencies of better performance than the best traditional (#≥trd)
and the overall best (#≥bst) classifier.

No. Classifier ACE ARCEtrd ARCEbst #≥trd #≥bst

1 LDA 16.79 -2.95 -4.73 0.52 0.32
2 QDA 18.10 -3.99 -6.28 0.36 0.18
3 KNN 18.00 -3.57 -5.84 0.42 0.16
4 DDα+RTD+LDA 16.58 -2.05 -4.37 0.38 0.22
5 DDα+RTD+KNN 17.16 -2.82 -5.13 0.30 0.12
6 DDα+RTD+Mah.d.(mom.) 19.52 -4.88 -7.27 0.20 0.08
7 DDα+RTD+Mah.d.(MCD 3

4
) 17.22 -2.37 -4.83 0.32 0.14

8 DDα+RTD+SVM-s 17.38 -2.74 -5.18 0.38 0.28
9 DDα+Mah.d.(mom.) 16.02 -1.05 -3.48 0.48 0.28
10 DDα+Mah.d.(MCD 3

4
) 17.43 -2.42 -4.79 0.42 0.28

11 DDα+Spt.d.(mom.) 15.79 -0.68 -3.15 0.52 0.30
12 DDα+Spt.d.(MCD 3

4
) 17.63 -2.83 -5.24 0.30 0.12

13 DDα+Prj.d.(10 000 dirs) 18.39 -4.09 -6.35 0.22 0.12
14 DDα+Prj.d.(100 000 dirs) 17.51 -2.70 -5.12 0.36 0.16
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Figure 3.5: Goodness of the 14 considered classifiers (abscissa) w.r.t. the five performance
measures (ordinate), obtained after standardizing the measures. The classifiers are numerated
as in Table 3.5.

fraction of the training sample. In addition there are data sets (not that rarely encountered),

where the outsider share amounts to 100% so that the pure DDα-approach does not separate

anything. This also explains the result obtained in Section 3.4.3 that the better classifiers are

based on non-vanishing depths.
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3.5.2 Dimension of the depth-feature space

Finally, we come to the question, how many depth features are needed on an average to

satisfactorily separate the data. The DDα-procedure uses the centered version of the α-

procedure (Vasil’ev, 2003, Vasil’ev & Lange, 1998) to separate the classes in the depth space. As

the α-procedure is a heuristic approach, it is of interest how close this separation rule comes to

the optimal one. Such a point of view corresponds to the theoretical assumption that the depth

transformation does not impair the separability of the data set. By its nature the resulting

separating rule is similar to that proposed in Li et al. (2012), where the polynomial degree

is chosen by cross-validating. Other possible approaches are regression depth (Christmann &

Rousseeuw, 2001, Christmann et al., 2002) or SVM (Christmann et al., 2002, Vapnik, 1998). It

is clear that in general the obtained separating hypersurface is not the one minimizing EMR,

if more than two features are needed. But in which of the applications are they really needed?

Tables 3.6 and 3.7 exhibit the relative frequency of feature numbers, as they are selected

by α-separation and leave-one-out cross-validation. Surely these tables cannot be regarded as

histograms (since we would need some bootstrap for that), but it can be concluded that (on an

average) in 99% of the cases two features are sufficient for the separating rule. Note that the

two-feature separators may include depth features of the extended type. Such a two-feature

rule clearly minimizes the EMR in the relevant plane. Of course it may be possible to find

a hyperplane in a more extended space, delivering a smaller EMR than that obtained by the

α-separation. On the other hand, no space extension is needed in around 78% of the cases. In

these cases no polynomial products of depths are involved and the resulting separating rule is

linear.

3.6 Conclusions

A fast classification procedure, the DDα-procedure, has been introduced that is essentially

nonparametric, robust, and computationally feasible for any dimension d of attributes. The

DDα-procedure is available in the R-package ddalpha. The DDα-classifier is particularly ro-

bust for two reasons: first, as the classification is done by the α-procedure, which is per se

robust; second, as the data are transformed into a low-dimensional compact space. Generally,

two cases are to be distinguished with the depth transform: non-vanishing depth or depth

vanishing beyond the convex hulls of the training classes. Non-vanishing depths, e.g. Maha-

lanobis or spatial, often induce a spurious symmetry and are intrinsically non-robust (though,

can be robustified). The projection depth, which is non-vanishing, also produces ellipsis-like

regions. It is robust, but computationally inefficient when d ≥ 3. The last problem is faced by

the Tukey depth, which best reflects the shape of the data. In place of the exact versions of

projection and Tukey depth we employ their random versions by minimizing univariate depths

in directions that are uniformly distributed on the sphere. A very large number of these direc-

tions is needed for the calculation of the projection depth, while for the random Tukey depth
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Table 3.6: Numbers of features selected by the α-separation; Part 1.

No. Dataset 2, % 3, % ≥ 4, %

1 baby 99.19 0.81 0.00
2 banknoten 100.00 0.00 0.00
3 biomed 100.00 0.00 0.00
4 blood-transfusion 91.31 1.34 7.35
5 breast-cancer-wisconsin 97.57 2.43 0.00
6 bupa 100.00 0.00 0.00
7 chemdiab 1vs2 100.00 0.00 0.00
8 chemdiab 1vs3 100.00 0.00 0.00
9 chemdiab 2vs3 100.00 0.00 0.00
10 cloud 100.00 0.00 0.00
11 crab BvsO 100.00 0.00 0.00
12 crab MvsF 100.00 0.00 0.00
13 crabB MvsF 100.00 0.00 0.00
14 crabF BvsO 100.00 0.00 0.00
15 crabM BvsO 100.00 0.00 0.00
16 crabO MvsF 100.00 0.00 0.00
17 cricket CvsP 98.72 1.28 0.00
18 diabetes 99.61 0.13 0.26
19 ecoli cpvsim 100.00 0.00 0.00
20 ecoli cpvspp 100.00 0.00 0.00
21 ecoli imvspp 100.00 0.00 0.00
22 gemsen MvsF 99.85 0.07 0.07
23 glass 100.00 0.00 0.00
24 groessen MvsF 99.57 0.00 0.43
25 haberman 100.00 0.00 0.00

Average 99.08 0.65 0.27

the number of directions can be kept low, as there is a tradeoff between this number and the

number of points being classified by their depth values.

On the other hand the random Tukey depth yields outsiders when classifying, i.e. points

lying outside the convex hulls of all classes, which cannot be readily classified and need ad-

ditional treatment. In real data applications the percentage of outsiders can be large (see

the introduced measure of outsider proneness) and thus substantially influence the classifi-

cation performance. Therefore, the choice of the treatment is important when applying the

random Tukey depth. The treatments considered subject the outsiders either to linear dis-

criminant analysis (LDA), classification according to k-nearest neighbors (KNN), maximum

Mahalanobis depth classification based on moment or MCD estimates, or the newly introduced

SVM-simplified procedure (SVM-s). The latter is very fast as it needs no tuning of a box-

constraint; only the smallest separating γ has to be computed. Additional calculations (not

included here, see also Lange et al. (2014a)) show, that regarding the other possible outsider

treatments, the choices of number k in KNN as well as of the covering parameter in MCD do

not much influence their performance.
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Table 3.7: Numbers of features selected by the α-separation; Part 2.

No. Dataset 2, % 3, % ≥ 4, %

26 heart 100.00 0.00 0.00
27 hemophilia 100.00 0.00 0.00
28 indian-liver-patient 1vs2 99.48 0.52 0.00
29 indian-liver-patient MvsF 98.96 1.04 0.00
30 iris setosavsversicolor 100.00 0.00 0.00
31 iris setosavsvirginica 100.00 0.00 0.00
32 iris versicolorvsvirginica 100.00 0.00 0.00
33 irish-ed MvsF 99.60 0.20 0.20
34 kidney 98.68 1.32 0.00
35 pima 93.00 5.50 1.50
36 plasma-retinol MvsF 99.37 0.63 0.00
37 segmentation 93.48 4.85 1.67
38 socmob IvsNI 99.57 0.35 0.09
39 socmob WvsB 99.83 0.09 0.09
40 tae 93.38 6.62 0.00
41 tennis MvsF 100.00 0.00 0.00
42 tips DvsN 99.59 0.41 0.00
43 tips MvsF 100.00 0.00 0.00
44 uscrime SvsN 100.00 0.00 0.00
45 vertebral-column 98.39 1.61 0.00
46 veteran-lung-cancer 100.00 0.00 0.00
47 vowel MvsF 94.75 3.43 1.82
48 wine 1vs2 100.00 0.00 0.00
49 wine 1vs3 100.00 0.00 0.00
50 wine 2vs3 100.00 0.00 0.00

Average 99.08 0.65 0.27

Thus the DDα-procedure needs practically no parameter tuning. The degree of the sepa-

rating polynomial is chosen by cross-validation within the depth representation only, where the

modified α-procedure, on each of the planar subspaces considered, has a quick sort complexity,

O
(
(n1 + n2) log(n1 + n2)

)
, and by that is very fast.

The above introduced variants of the DDα-procedure are challenged by 50 binary classifi-

cation problems that arise from a broad range of real data. The tasks are complicated by the

presence of outliers and ties. As competitors of the DDα-procedure three traditional classifi-

cation methods (LDA, QDA, and KNN) are evaluated with the same data. Naturally, none of

the classifiers is best at all tasks in terms of the average error rate, but each classifier is best at

some of them. Our results also show that no single depth or outsider treatment dominates the

others. Just for almost all data sets the classification of outsiders according to their maximum

moment-Mahalanobis depth is outperformed by the same with the MCD-Mahalanobis depth.

This can be explained by the outliers present.

Five goodness measures are introduced aggregating performance of the classifiers over the 50

classification tasks w.r.t. different aspects and allowing for direct comparison of the classifiers.
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Clearly, classification performance greatly depends on the choice of the depth and, if needed,

the outsider treatment. The measures point out two DDα-classifiers (starting with the best):

based on spatial and Mahalanobis depth (both using moment estimates). The rest of the

classifiers show varying performance for different goodness measures, which is demonstrated

by the goodness visualization.

The experience with real-data problems tells us further that, in most practical cases, the

separation procedure in the depth space stops after a few steps. In most cases the subspace

spanned by the depth features needed has dimension two, which points out the high stability

of the separating rule.

The problems and solutions investigated in this study are also of interest in more general

settings: The problem of coping with outsiders is common to any statistical procedure that is

based on depth plots and involves a notion of depth vanishing outside the convex hull. Using

the random Tukey depth as an efficient approximation of the Tukey depth and selecting the

random directions has many applications. Available algorithms for exactly calculating the

Tukey depth (Rousseeuw & Struyf, 1998, Liu & Zuo, 2014a) are computationally expensive,

but can serve as a benchmark. Finally, the SVM-simplified method is introduced and appears

as a simple and efficient way to avoid the computational burden of tuning the SVM.
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Chapter 4

Fast DD-classification of functional
data

4.1 Introduction

The problem of classifying objects that are represented by functional data arises in many

fields of application like biology, biomechanics, medicine and economics; Ramsay & Silverman

(2005) and Ferraty & Vieu (2006) contain broad overviews of functional data analysis and the

evolving field of classification. The data are either genuine functional data or high-dimensional

data representing functions at discretization points. At the very beginning of the 21st century

many classification approaches have been extended from multivariate to functional data: lin-

ear discriminant analysis (James & Hastie, 2001), kernel-based classification (Ferraty & Vieu,

2003), k-nearest-neighbors classifier (Biau et al., 2005), logistic regression (Leng & Müller,

2006), neural networks (Ferré & Villa, 2006), support vector machines (Rossi & Villa, 2006).

Transformation of functional data into a finite setting is done by using principal and inde-

pendent (Huang & Zheng, 2006) component analysis, principal coordinates (Hall et al., 2001),

wavelets (Wang et al., 2007) or functions of very simple and interpretable structure (Tian

& James, 2013), or some optimal subset of initially given evaluations (Ferraty et al., 2010,

Delaigle et al., 2012).

Generally, functional data is projected onto a finite dimensional space in two ways: by either

fitting some finite basis or using functional values at a set of discretization points. The first

approach accounts for the entire functional support, and the basis components can often be

well interpreted. However, the chosen basis is not per se best for classification purposes, E.g.,

principal component analysis (PCA) maximizes dispersion but does not minimize classification

error. Moreover, higher order properties of the functions, which are regularly not incorporated,

may carry information that is important in the classification phase; see Delaigle & Hall (2012)

for discussion. The second approach appears to be natural as the finite-dimensional space

is directly constructed from the observed values. But any selection of discretization points

restricts the range of the values regarded, so that some classification-relevant information may

be lost. Also, the data may be given at arguments of the functions that are neither the same

nor equidistant nor enough frequent; then some interpolation is needed and interpolated data
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instead of the original one are analyzed. Another issue is the way the space is synthesized. If it is

a heuristics (as in Ferraty et al. (2010)), a well classifying configuration of discretization points

may be missed: To see this, consider three discretization points in R3 which jointly discriminate

well, but which cannot be chosen subsequently because each of them has a relatively small

discrimination power compared to some other available discretization points. To cope with

this problem, Delaigle et al. (2012) consider (almost) all sets of discretization points that have

a given cardinality; but this procedure involves an enormous computational burden, which

restricts its practical application to rather small data sets.

Several authors López-Pintado & Romo (2006), Cuevas et al. (2007), Cuesta-Albertos &

Nieto-Reyes (2010), Sguera et al. (2014) employ nonparametric notions of data depth for func-

tional data classification. A data depth measures how close a given object is to an – implicitly

given – center of a class of objects; that is, if objects are functions, how central a given function

is in an empirical distribution of functions.

Specifically, the band depth (López-Pintado & Romo, 2006) of a function x in a class X

of functions indicates the relative frequency of x lying in a band shaped by any J functions

from X , where J is fixed. Cuevas et al. (2007) examine five functional depths for tasks of

robust estimation and supervised classification: the integrated depth of Fraiman & Muniz

(2001), which averages univariate depth values over the function’s domain; the h-mode depth,

employing a kernel; the random projection depth, taking the average of univariate depths in

random directions; and the double random projection depths that include first derivatives and

are based on bivariate depths in random directions. Cuesta-Albertos & Nieto-Reyes (2010)

classify the Berkeley growth data (Tuddenham & Snyder, 1954) by use of the random Tukey

depth (Cuesta-Albertos & Nieto-Reyes, 2008). Sguera et al. (2014) introduce a functional

spatial depth and a kernelized version of it.

There are several problems connected with the depths mentioned above. First, besides

double random projection depth, the functions are treated as multivariate data of infinite

dimension. By this, the development of the functions, say in time, is not exploited; these depth

notions are invariant with respect to an arbitrary rearrangement of the functions. Second,

several of these notions of functional depth break down in standard distributional settings, i.e.

the depth functions vanish almost everywhere; see Chakraborty & Chaudhuri (2014), Kuelbs

& Zinn (2013). Eventually, the depth takes empirical zero values if the function’s hyper-graph

has no intersection with the hypo-graph of any of the sample functions or vice versa, which is

the case for both half-graph and band depths and their modified versions, as well as for the

integrated depth. If a function has zero depth with respect to each class it is mentioned as an

outsider, because it cannot be classified immediately and requires an additional treatment (see

Chapters 2 and 3).
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Figure 4.1: Growth of 54 girls (solid) and 39 boys (dashed) (left); 35 observations of medflies
fertility (right). The fat curve indicates a single member of each class.

4.1.1 Two benchmark problems

Naturally, the performance of a classifier and its relative advantage over alternative classifiers

depend on the actual problem to be solved. Therefore we start with two benchmark data

settings, one fairly simple and the other one rather involved.

First, a popular benchmark set is the growth data of the Berkeley Growth Study (Tud-

denham & Snyder, 1954). It comprises the heights of 54 girls and 39 boys measured at 31

non-equally distant time points, see Figure 4.1, left. This data was extensively studied in

Ramsay & Silverman (2005). After having become a well-behaved classic it has been consid-

ered as a benchmark in many works on supervised and unsupervised classification, by some

authors also in a data depth context. Based on the generalized band depth López-Pintado

& Romo (2006) introduce a trimming and weighting of the data and classify them by their

(trimmed) weighted average distance to observation or their distance to the trimmed mean.

Cuevas et al. (2007) classify the growth data by their maximum depth, using the five above

mentioned projection-based depths and kNN as a reference; see also Cuesta-Albertos & Nieto-

Reyes (2010). Recently, Sguera et al. (2014) apply functional spatial depth to this data set.

Second, we consider a much more difficult task: classifying the medflies data of Carey et al.

(1998), where 1000 30-day (starting from the fifth day) egg-laying patterns of Mediterranean

fruit fly females are observed. The classification task is to explain longevity by productivity. For

this a subset of 534 flies living at least 34 days is separated into two classes: 278 living 10 days

or longer after the 34th day (long-lived), and 256 those have died within these 10 days (short-

lived), which are to be distinguished using daily egg-laying sequences (see Figure 4.1 (right)

with the linearly interpolated evaluations). This task is taken from Müller & Stadtmüller

(2005), who demonstrate that the problem is quite challenging and cannot be satisfactorily

solved by means of functional linear models.

4.1.2 The new approach

We shall introduce a new methodology for supervised functional classification covering the

mentioned issues and validate it with the considered real data sets as well as with simulated

76



Chapter 4 Introduction

data. Our approach is completely non-parametric, oriented to work with raw and irregularly

sampled functional data, and does not involve heavy computations.

Clearly, as any statistical methodology for functional data, our classification procedure has

to map the relevant features of the data to some finite dimensional setting. For this we map the

functional data to a finite-dimensional location-slope space, where each function is represented

by a vector consisting of integrals of its levels (‘location’) and first derivatives (‘slope’) over

L resp. S equally sized subintervals. Thus, the location-slope space has dimension L + S.

The functions are linearly interpolated; hence their levels are integrated as piecewise-linear

functions, and the derivatives as piecewise constant ones. Then we classify the data within the

location-slope space using a proper depth-based technique. We restrict L + S by a Vapnik-

Chervonenkis bound and determine it finally by cross-validation over the restricted set, which

is very quickly done. The resulting functional data depth will be mentioned as the integral

location-slope depth.

We suggest the following two depth-based classification techniques: (1) After a DD-

transform (Li et al., 2012), we apply the k-nearest neighbors (kNN) classifier in the depth-

space, which has been first suggested by Vencálek (2011). This is a computationally tractable

alternative to the polynomial separating rule used in Li et al. (2012) and yields the same asymp-

totic result. (2) Alternatively we employ the DDα-classifier, which has a heuristic nature and

is often much faster than the kNN approach.

The new approach is presented here for q = 2 classes, but it is not limited to this case.

If q > 2, kNN is applied in the q-dimensional depth space without changes, and the DDα-

classifier is extended by either constructing q one-against-all or
(
q
2

)
pair-wise classifiers in

the depth space, and finally performing some aggregation in the classification phase; see also

Chapter 2.

We contrast our approach with several existing procedures applied to the data as they

are represented in the location-slope space: a kNN classifier, three naive maximum-depth

classifiers (Ghosh & Chaudhuri, 2005b) employing different depths, linear and quadratic dis-

criminant analysis. Our space selection technique (incomplete cross-validation, restricted by

a Vapnik-Cervonenkis bound) is compared, both in terms of error rates and computational

time, with a full cross-validation as well as with the componentwise space synthesis method

of Delaigle et al. (2012). We do this for all variants of the classifiers. For simulated data

highly satisfactory results are obtained. Further, as we will see below in detail, our approach

reaches substantially lower error rates for the growth data than those obtained in the literature.

Even more important, we are able to give further insights regarding the medflies’ classification

problem, which could not be tackled so far.

4.1.3 Overview

The rest of the paper is organized as follows: Section 4.2 reviews the use of data depth

techniques in classifying finite-dimensional objects. Section 4.3 presents the new two-step

representation of functional data, first in a finite-dimensional Euclidean space (the location-
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slope space), and then in a depth-to-depth plot (DD-plot). In Section 4.4 we introduce two

alternative classifiers that operate on the DD-plot, a nearest-neighbor procedure and an α-

procedure. Section 4.5 provides an approach to bound and select the dimension of the location-

slope space. In Section 4.6 our procedure is applied to simulated data and compared with other

classifiers. Also, the above two real data problems are solved and the computational efficiency

of our approach is discussed. Section 4.7 concludes. Theoretical properties of the developed

methodology, implementation details and additional experimental results are collected in the

Appendix.

4.2 Depth based approaches to classification in Rd

For data in Euclidean space Rd many special depth notions have been proposed in the literature;

see, e.g., Zuo & Serfling (2000) for definition and properties. Here we mention three depths,

Mahalanobis, spatial and projection depth, which we will use later in defining notions of

functional depth. These depths are everywhere positive. Hence they do not produce outsiders,

that is, points having zero depth in both training classes. The no-outsider property appears

to be essential for obtaining nontrivial functional depths.

For a point y ∈ Rd and a random vector Y having an empirical distribution on {y1, . . . ,yn}
in Rd the Mahalanobis depth (Mahalanobis, 1936) of y w.r.t. Y is defined as

DMah(y|Y ) =
(
1 + (y − µY )

′Σ−1
Y (y − µY )

)−1
, (4.1)

where µY measures the location of Y , and ΣY the scatter.

The affine invariant spatial depth (Vardi & Zhang, 2000, Serfling, 2002) of y regarding Y

is defined as

DSpt(y|Y ) = 1− ‖EY

[
v
(
Σ

−1/2
Y (y − Y )

)]
‖ , (4.2)

where v(w) = ‖w‖−1w for w 6= 0 and v(0) = 0, and ΣY is the covariance matrix of Y . DMah

and DSpt can be efficiently computed in Rd.

The projection depth (Zuo & Serfling, 2000) of y regarding Y is given by

DPrj(y|Y ) = inf
u∈Sd−1

(
1 +OPrj(y|Y,u)

)−1
, (4.3)

with

OPrj(y|Y,u) = |y′u−m(Y ′u)|
MAD(Y ′u)

, (4.4)

where m denotes the univariate median and MAD the median absolute deviation from the

median. Exact computation of DPrj is, in principle, possible (Liu & Zuo, 2014b) but practi-

cally infeasible when d > 2. Obviously, DPrj is approximated from above by calculating the

minimum of univariate projection depths in random directions. However, as DPrj is piece-wise

linear (and, hence, attains its maximum on the edges of the direction cones of constant lin-

earity), a randomly chosen direction yields the exact depth value with probability zero. For
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a sufficient approximation one needs a huge number of directions, each of which involves the

calculation of the median and MAD of a univariate distribution.

To classify objects in Euclidean space Rd, the existing literature employs depth functions

in principally two ways:

1. Classify the original data by their maximum depth in the training classes.

2. Transform the data by their depths into a low-dimensional depth space, and classify them

within this space.

Ad 1: In Ghosh & Chaudhuri (2005a) the supervised learning task is restated in terms

of data depth and this measure of centrality is adopted to the construction of classifiers. In

Ghosh & Chaudhuri (2005b) the same authors propose the maximum depth classifier, which

assigns an object to that class in which it has maximum depth. In its naive form this classifier

yields a linear separation. Maximum-depth classifiers have a plug-in structure; thus their scale

parameters need to be tuned (usually by some kind of cross-validation) over the whole learning

process. For this, Ghosh & Chaudhuri (2005b) combine the naive maximum-depth classifier

with an estimate of the density. A similar approach is pursued with projection depth in Dutta

& Ghosh (2012) and lp depth in Dutta & Ghosh (2011), yielding competitive classifiers.

Ad 2: Depth notions are also used to reduce the dimension of the data. Li et al. (2012)

employ the DD-plot, which represents all objects by their depth in the two training classes,

that is, by points in the unit square. (The same for q training classes in the q-dimensional

unit cube.) To solve the classification task, some separation rule has to be constructed in

the unit square. They minimize the empirical risk, that is the average classification error on

the training classes, by smoothing it with a logistic sigmoid function and, by this, obtain a

polynomial separating rule; they show that their approach (with Mahalanobis, projection and

other depths) asymptotically achieves the optimal Bayes risk if the training classes are strictly

unimodal elliptically distributed. However, in practice the choice of the smoothing constant

and non-convex optimization, potentially with many local minima, encumber its application.

In Chapter 2 these problems are addressed via the α-procedure, which is very fast and speeds

up the learning phase enormously. With some depth notions, e.g. location (Tukey, 1975)

and zonoid (Koshevoy & Mosler, 1997) depths, outsiders occur, as they vanish outside the

convex hull of the distribution’s support. In case of many outsiders the error rate of the DD-

classifier can increase. This problem is discussed in Chapters 2 and 3, where several alternative

treatments are proposed and compared. If a distribution has more than one mode, classical

depth notions may be inappropriate as they refer to a single center. Multimodality of the

underlying distributions is coped with by means of ‘local’ approaches (see, e.g., Paindaveine &

Van Bever (2012), Dutta et al. (2012)), however at the price of onerous computations.

4.3 A new depth transform for functional data

Let F be the space of real functions, defined on a compact interval, which are continuous and

almost everywhere smooth. The data may be given either as observations of complete functions
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in F or as functional values at some discretization points, in general neither equidistant nor

common ones. If the functional data is given in discretized form, it is usually interpolated by

splines of some order (see Ramsay & Silverman (2005)), so that sufficiently smooth functions

are obtained. Here we use linear interpolation (that is splines of order 1) for the following

reasons. Firstly, with linear interpolation, neither the functions nor their derivatives need

to be smoothed. Thus almost any raw data can be handled. E.g., the medflies data, as to

the egg-laying process, is naturally discrete; see Figure 4.1 (right). Secondly, higher order

splines increase the computational load, especially when the number of knots or the smoothing

parameter are to be determined as part of the task. Thirdly, splines of higher order may

introduce spurious information.

We construct a depth transform as follows: In a first step, the relevant features of the

functional data are extracted from F into a finite-dimensional Euclidean space RL+S, which

we call the location-slope space (Section 4.3.1). Then an (L+S)-dimensional depth is applied to

the transformed data yielding aDD-plot in the unit square (Section 4.3.2), which represents the

two training classes. Finally the separation of the training classes as well as the classification

of new data is done on the DD-plot (Section 4.4).

4.3.1 The location-slope transform

We consider two classes of functions in F , X0 = {x̃1, . . . , x̃m} and X1 = {x̃m+1, . . . , x̃m+n},
which are given as measurements at ordered points ti1 ≤ ti2 ≤ ... ≤ tiki, i = 1, ..., m+ n,

[x̃i(ti1), x̃i(ti2), ..., x̃i(tiki)] .

Assume w.l.o.g. mini ti1 = 0 and notate T = maxi tiki. From x̃i a function xi : [0, T ] → R

is obtained as follows: connect the points (tij , x̃i(tij)), j = 1, . . . , ki, with line segments and

set xi(t) = x̃i(ti1) when 0 ≤ t ≤ ti1 and xi(t) = x̃i(tiki) when tiki ≤ t ≤ T . By this, the

data become piecewise linear functions on [0, T ], and their first derivatives become piecewise

constant ones, see Figure 4.2, left.

A finite-dimensional representation of the data is then constructed by integrating the in-

terpolated functions over L subintervals (location) and their derivatives over S subintervals

(slope), see Figure 4.2 (left). It delivers the following transform,

xi 7−→ yi =
[∫ T/L

0

xi(t)dt, . . . ,

∫ T

T (L−1)/L

xi(t)dt, (4.5)

∫ T/S

0

x′
i(t)dt, . . . ,

∫ T

T (S−1)/S

x′
i(t)dt

]
.

That is, the L+S average values and slopes constitute a point yi in RL+S. Either L or S must

be positive, L + S ≥ 1. In case L = 0 or S = 0 the formula (4.5) is properly modified. Put

together we obtain a composite transform φ : F → RL+S,

x̃i 7→ [x̃i(ti1), . . . , x̃i(tiki)] 7→ xi 7→ yi , (4.6)

80



Chapter 4 A new depth transform for functional data

Figure 4.2: Example: Transformation of a single growth function into the integral location-
slope space with L = 0 and S = 2. Function(s) and first derivative(s) (left); corresponding
two-dimensional space (0, 2) (right).

which we call the location-slope (LS-) transform.

For example, choose L = 0 and S = 2 for the growth data. Then they are mapped into

the location-slope space RL+S = R2, which is shown in Figure 4.2 (right). Here the functions’

first derivatives are averaged on two half-intervals. That is, for each function two integrals

of the slope are obtained: the integral over [1; 9.5] and that over [9.5; 18]. Here, the location

is not incorporated at all. Figure 4.2, left, exhibits the value (height) and first derivative

(acceleration) of a single interpolated function, which is then represented by the average slopes

on the two half-intervals, yielding the rectangular point in Figure 4.2 (right).

Proposition 4.1. The location-slope transform (4.6) is a weakly continuous functional F →
RL+S.

Note that the first of the sequential transforms is continuous in the weak topology of F ,

and the others are continuous. Thus, the LS-transform is weakly continuous. Consequently,

our procedure is stable against perturbations or contaminations of the data.

Further, given the data, L and S can be chosen large enough to reflect all relevant informa-

tion about the functions. (Note that the computational load of the whole remaining procedure

is linear in dimension L + S.) If L and S are properly chosen, under mild assumptions, the

LS-transform preserves asymptotic Bayes optimality, thus allowing for procedures that achieve

error rates close to minimum. This issue is treated in Appendix 1.

Naturally, only part of these L+ S intervals carries the information needed for separating

the two classes. Delaigle et al. (2012) propose to determine a subset of points (not intervals)

in [0, T ] based on which the training classes are optimally separated. However they do not

provide a practical procedure to select these points; in applications they use cross-validation.

Moreover, intervals whose information does not much contribute to the training phase may

be important in the classification phase. So, we have generally no prior reason to weight the

intervals differently. Therefore we use intervals of equal length, but possibly different ones for

location and slope.

The question remains how many equally sized subintervals, L for location and S for slope,

should be taken. We will see later in Section 5.4 that our classifier performs similar with the

three depths when the dimension is low. In higher dimensions the projection depth cannot
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Figure 4.3: DD-plots for growth data with (L, S) = (0, 2) using Mahalanobis (left), spatial
(middle) and projection (right) depths.

be computed precisely enough, so that the classifier becomes worse. The performance is most

influenced by the construction of the location-slope transform, that is, by the choice of the

numbers L and S. We postpone this question to Section 4.5.

4.3.2 The DD-transform

Denote the location-slope-transformed training classes in RL+S by Y0 = {y1, . . . ,ym} and

Y1 = {ym+1, . . . ,ym+n}. The DD-plot is then

Z = {zi = (zi0, zi1) | zi0 = DL+S(yi|Y0), zi1 = DL+S(yi|Y1), i = 1, ..., m+ n} .

Here DL+S is an (L+S)-dimensional depth. In particular, DL+S may be DMah, DSpt or DPrj,

each of which does not produce outsiders. The DD-plots of these three for growth data, taking

L = 0 and S = 2, are pictured in Figure 4.3. Clearly, in this case, almost faultless separation is

achievable by drawing a straight line through the origin. Note that in general any separating

line in [0, 1]2 should pass the origin, as a point having both depths = 0 cannot be readily

classified.

4.4 DD-plot classification

The training phase of our procedure consists in the following: After the training classes have

been mapped from F to the DD-plot as described in Section 4.3, a selector is determined in the

DD-plot that separates the DD-transformed data. For the latter, we consider two classifiers

operating on the DD-plot, and compare their performance. Firstly we propose the kNN

classifier. It has the same asymptotic behavior as the polynomial rule suggested in Li et al.

(2012), i.e. converges to the Bayes rule when the distributions are strictly unimodal elliptical;

see Section 4.4.1. As kNN needs to be cross-validated over the entire learning process, it is

computationally expensive. Therefore, secondly, we employ the DDα-procedure, which is a

very fast heuristic; see Section 4.4.2. Although its theoretical convergence is not guaranteed

(see Section 2.4), the DDα-classifier performs very well in applications.
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4.4.1 kNN-classification on the DD-plot

When applied to multivariate data, (under mild assumptions) kNN is known to be a consistent

classifier. By multiplying all distances with the inverse covariance matrix of the pooled data

an affine invariant version is obtained. In our procedure we employ an affine-invariant kNN

classifier on the DD-plot. It will be shown (Appendix 1) that, if the underlying distribution

of each class is strictly unimodal elliptical, the kNN classifier, operating on the DD-plot,

achieves asymptotical optimal Bayes risk.

Given a function x0 ∈ F to be classified, we represent x0 (according to Section 4.3) as

y0 ∈ RL+S and then as z0 =
(
DL+S(y0|Y0), DL+S(y0|Y1)

)
. According to kNN on the DD-plot

x0 is classified as follows:

class(x0) = I

(
m∑

i=1

I(zi ∈ Rβ(k)
z0

) <

m+n∑

i=m+1

I(zi ∈ Rβ(k)
z0

)

)
, (4.7)

where I(S) denotes the indicator function of a set S, and R
β(k)
z0 is the neighborhood of z0

defined by the k-closest observations, i.e. having the smallest L∞ distances ‖z − z0‖∞. In

other words, the k-neighborhood R
β(k)
z0 of z0 in the DD-plot is the smallest rectangle centered

at z0 that contains k training observations. (Note that any norm on LS-space could be used.)

In applications k has to be chosen, usually by means of cross-validation.

4.4.2 DDα-classification

The second classification approach is the DDα-classifier, introduced in Chapter 2. It uses

a projective-invariant method called the α-procedure (Vasil’ev & Lange, 1998), which is a

heuristic classification procedure that iteratively decreases the empirical risk. We employ three

depths (Mahalanobis, spatial, and projection depths), which are positive on the whole RL+S

and thus do not produce outsiders. It is known that the DDα-classifier is asymptotical Bayes-

optimal for the location-shift model (see Theorem 2.1) and performs well for broad classes of

simulated distributions and a wide variety of real data (see Sections 2.5–2.7 and Section 3.4).

The main advantage of the DDα-classifier is its high training speed, as it contains the α-

procedure, which, on the DD-plot, has the quick-sort complexity O
(
(m+ n) log(m+ n)

)
and

proves to be very fast. The separating polynomial is constructed by space extensions of the

DD-plot (which is of low dimension q) and cross-validation.

4.5 Choosing the dimensions L and S

Clearly, the performance of our classifier depends on the choice of L and S, which has still

to be discussed. In what follows we assume that the data is given as functional values at a

(usually large) number of discretization points. Let M denote the number of these points.

Delaigle et al. (2012) propose to perform the classification in a finite-dimensional space

that is based on a subset of discretization points selected to minimize the average error. But
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these authors do not offer a construction rule for the task but rely on multi-layer leave-one-out

cross-validation, which is very time-consuming. Having recognized this problem they suggest

some time-saving modifications of the cross-validation procedure. Clearly, the computational

load is then determined by the cross-validation scheme used. It naturally depends on the size

of the data sample, factored with the training time of the finite-dimensional classifier, which

may also include parameters to be cross-validated.

The Delaigle et al. (2012) approach (abbreviated crossDHB for short) suggests a straight-

forward procedure for our problem of constructing an LS-space: allow for a rich initial set

of possible pairs (L, S) and then use cross-validation in selecting a pair that (on an average)

performs best. The initial set shall consist of all pairs (L, S), say, satisfying 2 ≤ L+S ≤M/2.

(Other upper bounds may be used, e.g. if M/2 exceeds the number of observations.) In ad-

dition, a dimension-reducing technique like PCA or factor analysis may be in place. But

this cross-validation approach (crossLS for short), similar to the one of Delaigle et al. (2012),

is still time-consuming; see Section 4.6.4 for computing times. The problem of selecting an

appropriate pair (L⋆, S⋆) remains challenging.

In deciding about L and S, we will consider the observed performance of the classifier

as well as some kind of worst-case performance. Fortunately, the conservative error bound

of Vapnik and Chervonenkis (Vapnik & Chervonenkis, 1974), see also Devroye et al. (1996),

provides some guidance. The main idea is to measure how good a certain location-slope space

can be at all, by referring to the worst-case empirical risk of a linear classifier on the training

classes. Clearly, the class of linear rules is limited, but may be regarded as an approximation.

Also, this limitation keeps the deviation of ∆ǫ from empirical risk small and allows for its

implicit comparison with the empirical risk ǫ itself. Moreover, in choosing the dimension of the

location-slope space we may adjust for the required complexity so that finally the separation

rule is close to a linear rule.

Here, linear discriminant analysis (LDA) is used for the linear classification. Although other

approaches like perceptron, regression depth, support vector machine, or α-procedure can be

employed instead, we choose LDA as it behaves very similar to the depth-based classifiers we

use. In fact, LDA is the simplest discriminator of the plug-in type, that is, it delivers a linear

separation rule and can be regarded as a Bayes classifier with a plugged-in density estimator.

Given Y0 and Y1 ∈ RL+S, let N be the number of all different separations of Y0∪Y1 into two

subsets, which is achieved by using any classification rule from some class of rules L. Then, if
a separation rule yields empirical risk ǫ, it will, with some reliability η, yield an error rate not

worse then ǫmax = ǫ+∆ǫ. It holds (Theorem 5.1 in Vapnik & Chervonenkis (1974))

∆ǫ =

√
lnN − ln η

2(m+ n)
. (4.8)

Now, let L be the class of linear rules. Unlike Vapnik & Chervonenkis (1974), we use a tighter

bound on N , which looks theoretically not as nice but is still computationally convenient.

Let C(N, d) = 2
∑d−1

k=0

(
N−1
k

)
be the number of possible different separations of N points in Rd,
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Figure 4.4: Average misclassification error (ordinate) to maximal risk (abscissa) of the DDα-
classifier based on Mahalanobis depth for Model 1 (left) and Model 2 (right) of Cuevas et al.
(2007).
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Figure 4.5: Average misclassification rate (ordinate) to maximal risk (abscissa) of the DDα-
classifier based on Mahalanobis depth for growth data (left) and medflies data (right).

achievable by a hyperplane containing the origin. Avoiding the origin restriction by introducing

an additional coordinate and with η = 1
m+n

we obtain

ǫmax = ǫ+

√
lnC(m+ n, L+ S + 1) + ln (m+ n)

2(m+ n)
. (4.9)

Here, ǫ refers to empirical risk, while the second term penalizes the dimension, which balances

fit and complexity.

To find out whether the proposed bound really helps in finding proper dimensions L and

S, we first apply our approach to two simulated data settings of Cuevas et al. (2007), called

“Model 1” and “Model 2” (both M = 51). The data generating process of Cuevas et al.

(2007) is described in Section 4.6.2 below. We determine L and S, use the Mahalanobis depth

to construct a DD-plot and apply the DDα-classifier, which is abbreviated in the sequel as

DDα-M . For each pair (L, S) with L + S ≥ 2 and L + S ≤ 26, the risk bound ǫmax and the

average classification error (ACE) are calculated by averaging over 100 takes and plotted in

Figure 4.4. Note that these patterns look similar when spatial or projection depth is used.

Further, for the two benchmark data problems, we estimate ACE by means of leave-one-out

85



Chapter 4 Experimental comparisons

cross-validation (see Figure 4.5). Here all (L, S)-pairs are considered with L + S ≥ 2 and

L+ S ≤ 16.

As expected, Figures 4.4 and 4.5 largely support the statement “the less ǫmax the smaller

the ACE”. Although for the challenging medflies data (Figure 4.5, right) the plot remains a

fuzzy scatter, it still guides us in configuring the location-slope space, as it is affirmed by our

experimental results in Section 4.6.3 below. Computing ǫmax involves a single calculation of

the LDA-classifier (viz. to estimate ǫ), which is done in negligible time. Then, not taking

the (L, S)-pair with the smallest ǫmax, but cross-validating over a bunch of those, gives best

results. This technique is employed here for space building. We abbreviate it as VCcrossLS.

4.6 Experimental comparisons

To evaluate the performance of the proposed methodology we compare it with several classifiers

that operate either on the original data or in a location-slope space. After introducing those

competitors (Section 4.6.1) we present a simulation study (Section 4.6.2) and a benchmark

study (Section 4.6.3), including a discussion of computation loads (Section 4.6.4). Implemen-

tation details of the experiments are provided in Appendix 2.

4.6.1 Competitors

The new classifiers are compared with six classification rules: linear (LDA) and quadratic

(QDA) discriminant analysis, k-nearest-neighbors (kNN) classification and the maximum-

depth classification (employing the three depth notions), all operating in a properly chosen

location-slope space that is constructed with the bounding technique VCcrossLS of Section 4.5.

(One may argue that the ǫmax-based choice of (L, S) is not generally suited for kNN , but

it delivers comparable results in reasonable time, much faster than cross-validation over all

(L, S)-pairs.) Also, the six classifiers mentioned above, together with the two new ones (with

all three depths), are used when the dimension of the location-slope space is determined by

non-restricted cross-validation crossLS. For further comparison, all 12 classifiers are applied in

the finite-dimensional space constructed according to the methodology crossDHB of Delaigle

et al. (2012).

LDA and QDA are calculated with classical moment estimates, and priors are estimated by

the class portions in the training set. We include kNN in our competitors as it is Bayes-risk

consistent in the finite-dimensional setting and generally performs very well in applications.

The kNN-classifier is applied to the location-slope data in its affine invariant form. It is then

defined as in (4.7), but with the Mahalanobis distance (determined from the pooled data) in

place of the L∞-distance. k is selected by cross-validation.

As further competitors we consider three maximum depth classifiers. They are defined as

class(x) = argmax
i

πiD(y|Yi) , (4.10)
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Figure 4.6: Synthetic data: Model 1 (left) and Model 2 (right) of Cuevas et al. (2007).

with D being either Mahalanobis depth DMah (4.1), or spatial depth DSpt (4.2), or projection

depth DPrj (4.3). πi denotes the prior probability for class i. The priors are estimated by the

class portions in the training set. This classifier is asymptotically optimal regarding Bayes risk

if the data comes from an elliptical location-shift model with known priors. For technical and

implementation details the reader is referred to Appendix 2.

4.6.2 Simulation settings and results

Next we explore our methodology by applying it to the simulation setting of Cuevas et al.

(2007). Their data are generated from two models, each having two classes. The first model is

Model 1:

X0 = {x0(t)|x0(t) = 30(1− t)t1.2 + u(t)} ,
X1 = {x1(t)|x1(t) = 30(1− t)1.2t+ u(t)} ,

where u(t) is a Gaussian process with E[u(t)] = 0 and Cov[u(s), u(t)] = 0.2e−
1

0.3
|s−t|, discretized

at 51 equally distant points on [0, 1] (M = 51), see Figure 4.6 (left) for illustration. The

functions are smooth and differ in mean only, which makes the classification task rather simple.

We take 100 observations (50 from each class) for training and 100 (50 from each class)

for evaluating the performance of the classifiers. Training and classification are repeated 100

times to get stable results. Figure 4.7 (left) presents boxplots (over 100 takes) of error rates

of twelve classifiers applied after mapping the data to properly constructed finite-dimensional

spaces. The top panel refers to a location-slope space, where L and S are selected by Vapnik-

Chervonenkis restricted cross-validation (VCcrossLS), the middle panel to a location-slope

space whose dimensions are determined by mere, unrestricted cross-validation (crossLS), the

bottom panel to the finite-dimensional argument subspace constructed by the componentwise

method crossDHB of (Delaigle et al., 2012). The classifiers are: linear (LDA) and quadratic

(QDA) discriminant analysis, k-nearest neighbors classifier (kNN), maximum depth classifier

with Mahalanobis (MD-M), spatial (MD-S) and projection (MD-P) depth, DD-plot classifier

with kNN rule based on L∞ distance (DDk-M, DDk-S, DDk-P), and DDα-classifier (DDα-

M, DDα-S, DDα-P), both with the three depths, correspondingly. The last approach (cross-
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DHB) has not been combined with the projection depth for two reasons: First, performing the

necessary cross-validations with the projection depth becomes computationally infeasible; for

computational times see Table 4.14 in Appendix 3. Second, the quality of approximation of

the projection depth differs between the tries, and this instability is possibly misleading when

choosing the optimal argument subspace, thus yielding rather high error rates; compare, e.g.,

the classification errors for growth data, Table 4.1 in Section 4.6.3.

As expected, allDD-plot-based classifiers, applied in a properly chosen location-slope space,

show highly satisfactory performance, which is in line with the best result of Cuevas et al.

(2007). The location-slope spaces that have been selected for the different classifiers, viz. the

corresponding (L, S)-pairs, do not much differ; see Table 4.3 in Appendix 3. The picture

remains the same when the location-slope space is chosen using unrestricted cross-validation

crossLS, which yields no substantial improvement.

On the other hand, classifiers operating in an optimal argument subspace (crossDHB) are

outperformed by those employed in the location-slope space (crossLS, VCcrossLS ), although

their error rates are still low; see Figure 4.7 (left). A plausible explanation could be that

differences between the classes at each single argument point are not significant enough, and a

bunch of them has to be taken for reasonable discrimination. But the sequential character of the

procedure (as discussed in the Introduction and in Appendix 2) prevents from choosing higher

dimensions. Most often the dimensions two or three are chosen; see Table 4.11 in Appendix 3.

Our procedure appears to be better, as by integrating more information is extracted from the

functions, so that they become distinguishable.

Next we consider an example, where averaging comes out to be rather a disadvantage.

Model 2 of Cuevas et al. (2007) looks as follows:

X0 = {x0(t)|x0(t) = 30(1− t)t2 + 0.5|sin(20πt)|+ u(t)}

with u(t) and M = 51 as before. X1 is an 8-knot spline approximation of X0. See Figure 4.6

(right) for illustration.

The corresponding boxplots of the error rates are depicted in Figure 4.7 (right). The re-

sults for individual classifiers are different. When the location-slope space is chosen using

Vapnik-Chervonenkis bound (VCcrossLS ), LDA, kNN and all maximum depth classifiers per-

form poorly, while the DDk-classifiers with Mahalanobis and spatial depths perform better.

The DDα-classifiers perform comparably. The last two lack efficiency when employed with

projection depth; as seen from Table 4.4 in Appendix 3, the efficient location-slope spaces are

of substantially higher dimension (8 and more). Thus, the larger error rates with projection

depth are explained by the insufficient number of random directions used in approximating this

depth. Also, with projection depth, different to Mahalanobis and spatial depth, less efficient

(L, S)-pairs are preferred; see Tables 4.4 and 4.8 in Appendix 3.

Choosing the location-slope space by unrestricted cross-validation (crossLS ) does not

change a lot. The error rates obtained with this location-slope space are larger than those

obtained with the synthesized space (crossDHB), although with QDA and DD-plot-based
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Figure 4.7: Boxplots of error rates for Model 1 (left) and Model 2 (right), using Vapnik-
Chervonenkis bound (VCcrossLS, top), cross-validation (crossLS, middle) and componentwise
method (crossDHB, bottom).

classifiers they stay reasonable. In Model 2, taking several extreme points would be enough

for distinguishing the classes, and the finite-dimensional spaces have most often dimension

four, and sometimes three. (Note, that all DD-plot-based classifiers regard these dimensions
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Table 4.1: Error rates (in %) when selecting a proper location-slope dimension.

Data set growth data medflies data
Classifier VCcrossLS crossLS crossDHB VCcrossLS crossLS

LDA 4.3 4.3 3.23 39.33 41.01
QDA 4.3 5.38 7.53 38.58 42.7
kNN 3.23 3.23 4.3 41.39 44.76
MD-M 5.38 5.38 5.38 38.95 40.64
MD-S 7.53 7.53 7.53 38.2 38.01
MD-P 8.6 7.53 9.68 44.01 43.82
DDk-M 5.38 5.38 5.38 43.26 41.39
DDk-S 4.3 4.3 7.53 39.33 41.95
DDk-P 5.38 3.23 8.6 42.32 41.57
DDα-M 5.38 5.38 3.23 37.83 38.58
DDα-S 5.38 5.38 6.45 38.95 40.26
DDα-P 6.45 6.45 6.45 35.02 35.96

as sufficient, and, together with QDA, deliver best results.) On the other hand, the classifiers

operating in some location-slope space select efficient dimension 8 and higher, which is also

seen from Tables 4.4 and 4.8.

4.6.3 Comparisons on benchmark data

Now we come back to the two benchmark problems given in the Introduction. The growth

data have been already analyzed by several authors. López-Pintado & Romo (2006) achieve a

best classification error of 16.13 % when classifying with the L1 distance from the trimmed

mean and trimming is based on the generalized band depth with trimming parameter α = 0.2.

Cuesta-Albertos & Nieto-Reyes (2010) use an average distance weighting with the random

Tukey depth and get classification error 13.68 %. Cuevas et al. (2007) obtain mean error rate

of 9.04 % when using the double random projection depth and 4.04 % with kNN , dividing

the sample into 70 training and 23 testing observations over 70 tries. Sguera et al. (2014) get

error rates of 3.45 % when classifying using kernelized functional spatial depth and choosing

kernel parameter by means of cross-validation.

Table 4.1 (columns growth data) provides errors, estimated by leave-one-out cross-

validation, of different classification techniques. In this, either a proper location-slope space is

based on Vapnik-Chervonenkis bound (column VCcrossLS ), on unrestricted cross-validation

(crossLS ), or an optimal argument subset is chosen by the componentwise technique of De-

laigle et al. (2012) (crossDHB). Note that with VCcrossLS classification by kNN is best. It

achieves error rate 3.23 %, which means here that only three observations are misclassified.

Both DD-plot-based classifiers perform well with all three depths, while the maximum depth

classifiers MD-S and MD-P perform worse.

The Vapnik-Chervonenkis restricted cross-validation VCcrossLS seems to perform not much

worse than the unrestricted cross-validation crossLS, and it mostly outperforms the componen-
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twise approach crossDHB. The latter is particularly bad when the projection depth is involved.

Tables 4.5, 4.9 and 4.13 in Appendix 3 exhibit how often various (L, S)-pairs and dimensions

of optimal argument subspace are chosen.

In general, all three space-constructing techniques allow for very low error rates, producing

as little as three misclassifications if the classifier is properly chosen. The DD-classifiers on

LS-spaces yield at most six misclassifications.

Compared to López-Pintado & Romo (2006) and Cuesta-Albertos & Nieto-Reyes (2010),

the better performance of our classifiers appears to be due to the inclusion of average slopes.

Observe that the acceleration period starting with approximately nine years discriminates

particularly well between girls and boys; see Figure 4.2. Note that also the componentwise

method prefers (location) values from this interval.

A much more involved real task is the classification of the medflies data. In Müller &

Stadtmüller (2005) these data are analyzed by generalized functional linear models. The au-

thors employ logit regression and semi-parametric quasi-likelihood regression; they get errors

of 41.76 % and 41.2 %, respectively, also estimated by leave-one-out cross-validation.

We apply all classifiers to the same data in properly constructed location-slope spaces.

With our procedure we are able to point out the differential between long- and short-lived flies.

Especially, with the DDα-classifier based on projection depth an error of 35.02 % is obtained

(see Table 4.1, columns captioned medflies data for the errors). The role of the derivatives in

building the location-slope space is emphasized in Tables 4.6 and 4.10 in Appendix 3, which

show the frequencies at which the various (L, S)-pairs are selected. crossLS is outperformed in

most of the cases. We were not able to compare the componentwise approach crossDHB as the

computational load is too high. On an average, DDα-classifiers perform very satisfactory. LDA

and QDA with Vapnik-Chervonenkis bound, and maximum-depth classifiers with Mahalanobis

and spatial depth (MD-M, MD-S), also deliver reasonable errors.

Note that, in configuring the location-slope space with crossLS, lower errors could be ob-

tained by using finer (e.g. leave-one-out) cross-validations. To make componentwise clas-

sification feasible and the comparison fair, we have used only 10-fold cross-validation in all

procedures besides kNN . (k in kNN and DD-plot-based kNN has been determined by

leave-one-out cross-validation.) For exact implementation details the reader is referred to Ap-

pendix 2.

4.6.4 Computational loads

Most methods of functional classification tend to be time consuming because of their needs for

preprocessing, smoothing and parameter-tuning, but the literature on such methods usually

does not discuss computation times. Nevertheless this is an important practical issue. Our

procedure comes out to be particularly efficient due to three main reasons: Firstly, an eventual

cross-validation is restricted to very few iterations. Secondly, the depth space, where the final

classification is done, has low dimension, which equals the number of classes. Thirdly, the

linear interpolation requires no preprocessing or smoothing of the data.
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To illustrate this we briefly present the durations of both training and classification phases

for the two real data sets and the twelve classification techniques in Table 4.2. (Classification

time of a single object is reported in parentheses below.) As the times depend on implemen-

tation and platform used, we also report (in square brackets) the numbers of cross-validations

done, as this measure is independent of the eventual classification technique. The training

times have been obtained as the average over all runs of leave-one-out cross-validation (thus

using 92, respectively 533, observations for growth and medflies data). This comes very close

to the time needed to train with the entire data set, as the difference of one observation is negli-

gible. The classification times in Table 2 have been obtained in the same way, i.e. averaging the

classification of each single observation over all runs of the leave-one-out cross-validation. The

same holds for the number of cross-validating iterations. For the componentwise classifiers the

averages have been replaced by the medians for the following reason. The sequential character

of the procedure causes an exponential increase of time with each iteration (in some range; see

Appendix 2 for implementation details). Therefore, occasionally the total computation time

can be outlying. (In our study, once the time exceeded four hours, viz. when classifying growth

data with the DD-plot-based kNN -classifier and projection depth, which required 20450 iter-

ations to cross-validate.) On the other hand, when employing faster classifiers (which usually

require stronger assumption on the data) the training phase can take less than two minutes.

(This has been pointed by Delaigle et al. (2012) as well.)

With growth data training times are substantially higher when choosing an (L, S)-pair by

unrestricted cross-validation than when the Vapnik-Chervonenkis bound is employed. Though,

for the fast maximum depth classifier (with Mahalanobis or spatial depth) computation times

appear quite comparable. Application of the componentwise method causes an enormous

increase in time (as well as in the number of cross-validations needed). For medflies data, as

expected, VCcrossLS is faster than crossLS. We were not able to perform the leave-one-out

cross-validation estimation for the componentwise method for this data set, because of its

excessive computational load.

See also Table 4.14 for the same experiment regarding simulated data. Here, the projection-

depth-based classifiers have not been implemented at all, as they need too much computation

time.

4.7 Conclusions

An efficient nonparametric procedure has been introduced for binary classification of functional

data. It extends to q > 2 classes in the usual way. The procedure consists of a two-step

transformation of the original data plus a classifier operating on the unit square. The functional

data are first mapped into a finite-dimensional location-slope space and then transformed by

a multivariate depth function into the DD-plot, which is a subset of the unit square. Three

alternative depth functions are employed for this, as well as two rules for the final classification

on the q-dimensional unit cube.
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Table 4.2: Average (median for componentwise classification=crossDHB) training and clas-
sification (in parentheses) times (in seconds), and numbers of cross-validations performed (in
square brackets), estimated by leave-one-out cross-validation.

Data set growth data medflies data
Classifier VCcrossLS crossLS crossDHB VCcrossLS crossLS

LDA 2.73 12.42 150.78 9.87 29.36
(0.002) (0.0019) (0.002) (0.0021) (0.0023)
[5.39] [150] [3110] [5] [150]

QDA 2.73 12.23 48.45 9.77 29.12
(0.0017) (0.0017) (0.0019) (0.0016) (0.0027)
[5.39] [150] [1020] [5] [150]

kNN 2.91 26.38 213.36 23.87 814.46
(0.001) (0.001) (0.0011) (0.0024) (0.0028)
[5.39] [150] [2576] [5] [150]

MD-M 2.49 2.77 65.82 9.46 9.86
(0.0009) (0.0009) (0.0004) (0.0007) (0.0007)
[5.39] [150] [6920] [5] [150]

MD-S 2.63 5.47 168.14 10.04 35.89
(0.0016) (0.0017) (0.0017) (0.0017) (0.0018)
[5.39] [150] [6940] [5] [150]

MD-P 4.51 78.32 1795.86 19.86 439.03
(0.0398) (0.0481) (0.0392) (0.2247) (0.2233)
[5.39] [150] [4699] [5] [150]

DDk-M 3.06 17.31 299.3 20.53 335.48
(0.0012) (0.0011) (0.0012) (0.002) (0.002)
[5.39] [150] [2856] [5] [150]

DDk-S 3.61 36.31 631.97 24.13 551.36
(0.0022) (0.0021) (0.0019) (0.003) (0.0033)
[5.39] [150] [3135] [5] [150]

DDk-P 6.65 143.42 3103.57 41.56 1145.16
(0.0308) (0.0308) (0.03) (0.1995) (0.1987)
[5.39] [150] [4115] [5] [150]

DDα-M 3.42 24.7 182.03 14.98 174.56
(0.0009) (0.0009) (0.0011) (0.001) (0.001)
[5.39] [150] [1020] [5] [150]

DDα-S 4 42.49 860.14 18.71 392.61
(0.0018) (0.0017) (0.0017) (0.0018) (0.0019)
[5.39] [150] [3135] [5] [150]

DDα-P 7.02 154.24 2598.38 36.04 983.61
(0.0306) (0.0309) (0.0298) (0.2) (0.1995)
[5.39] [150] [3135] [5] [150]

Our procedure outperforms existing approaches on simulated as well as on real benchmark

data sets. The results of the DD-plot-based kNN and the DDα-procedure are generally good,

although, occasionally (cf. Model 2) they are slightly outperformed by the componentwise

classification method of Delaigle et al. (2012).
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As the raw data are linearly interpolated neither information is lost nor spurious one is

added. The core of our procedure is the data-dependent construction of the location-slope

space. Its dimension L + S is bounded by a Vapnik-Chervonenkis bound. The subsequent

depth transformation into the unit hypercube makes the procedure rather robust since the

final classification is done on a low-dimensional compact set.

Our use of statistical data depth functions demonstrates the variety of their application

and opens new prospects when considering the proposed location-slope space. To reflect the

dynamic structure of functional data, the construction of this space, in a natural way, takes

levels together with derivatives into account. As it has been shown, efficient information

extraction is done via piece-wise averaging of the functional data in its raw form, while the

changing of the functions with their argument is reflected by their average slopes.

The finite-dimensional space has to be constructed in a way that respects the important

intervals and includes most information. Here, equally spaced intervals are used that cover

the entire domain but have possibly different numbers for location and slope. This gives

sufficient freedom in configuring the location-slope space. Note, that in view of the simulations

as well as the benchmark results, choosing a particular depth function is of limited relevance

only. While, depending on given data, different intervals are differently relevant, location and

slope may differ in information content as well. The set of reasonable location-slope spaces

is enormously reduced by application of the Vapnik-Chervonenkis bound, and the selection

is done by fast cross-validation over a very small set. The obtained finite-dimensional space

can be augmented by coordinates reflecting additional information on the data, that may

be available. Obviously, higher order derivatives can be involved, too. But obtaining those

requires smooth extrapolation, which affords additional computations and produces possibly

spurious information.

In future research comparisons with existing functional classification techniques as well

as the use of other finite-dimensional classifiers on the DD-plot are needed. Refined data-

dependent procedures, which size the relevant intervals and leave out irrelevant ones, may be

developed to configure the location-slope space. However such refinements will possibly conflict

with the efficiency and generality of the present approach.

4.8 Appendix

4.8.1 Appendix 1 – Bayes optimality

Denote by F the space of real functions, defined on the finite interval [0, T ], which are contin-

uous and almost everywhere smooth.

Theorem 4.1. (LS-transform preserves Bayes optimality).
Assume that x̃1, . . . , x̃m+n are independently sampled from two stochastic processes that have
a.s. paths in F , x̃1, . . . , x̃m ∼ G0 and x̃m+1, . . . , x̃m+n ∼ G1. Let T = {tj |j = 1, ..., ℓ} ∈ [0, T ]
be some finite set of discretization points, and for each x̃ ∈ F let x be its linear interpolation
based on x̃(t1), . . . , x̃(tℓ), as described in Section 4.3, and construct its transformation to a
proper LS-space. Consider a class C of decision rules Rℓ → {0, 1} and assume that C contains
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a sequence converging to a Bayes rule. Then there exists a pair (L, S) so that the same class
of decision rules operating on the location-slope-transformed data in RL+S contains a sequence
converging to a Bayes rule as well.

The proof is obvious: We have a sample X0 of independent random vectors [xi(t1), . . . ,

xi(tℓ)] in Rℓ, all distributed as F0, i = 1, . . . , m, and a second sample X1, independent from

the first, consisting of independent random vectors [xi(t1), . . . ,xi(tℓ)] in Rℓ, all distributed as

F1, i = m + 1, . . . , m + n. Choose S = 0 and L > T/mini=1,...,n−1{ti+1 − ti}. Then the

location-slope transform is continuous, linear and injective, hence preserves information.

Consequently, all properties of the above employed classifiers Rℓ → {0, 1} regarding Bayes

optimality carry over to our whole procedure if the discretization points are fixed and L is

chosen large enough. However note that Theorem 4.1 does not refer to Bayes optimality of

classifying the underlying process, but just of classifying the ℓ-dimensional marginal distribu-

tion corresponding to T . (In particular, if two processes have equal marginal distributions on

T , no discrimination is possible.)

Corollary 4.1. If G0 and G1 are Gaussian processes and the priors of class membership
are equal, then optimal Bayes risk is achieved by the following rules operating on the LS-
transformed data (L being large enough):

(i) quadratic discriminant analysis (QDA),

(ii) linear discriminant analysis (LDA), if G0 and G1 have the same covariance function.

As the processes are Gaussian, we obtain that

xi(t1), . . . ,xi(tℓ) ∼ (i.i.d.)N(µ0,Σ0) , i = 1, . . . , m ,

xi(t1), . . . ,xi(tℓ) ∼ (i.i.d.)N(µ1,Σ1) , i = m+ 1, . . . , m+ n .

If L is large enough, our LS transformation preserves all information and thus the standard

results of Fisher (see, e.g., Devroye et al. (1996), Ch. 4.4) apply; hence Corollary 4.1 holds.

The following proposition is taken from Chapter 2.

Proposition 4.2 (Theorem 2.1). Let F and G be probability distributions in Rd having den-
sities f and g, and let H be a hyperplane such that G is the mirror image of F with respect
to H and f ≥ g in one of the half-spaces generated by H. Then based on a 50:50 independent
sample from F and G the DDα-procedure will asymptotically yield the linear separator that
corresponds to the bisecting line of the DD-plot.

Due to the mirror symmetry of the distributions in Rd the DD-plot is symmetric as well.

Symmetry axis is the bisector, which is obviously the result of the α-procedure when the sample

is large enough. This rule corresponds the Bayes rule. In particular, the requirements of the

proposition are satisfied if F and G are mirror symmetric and unimodal.

A stochastic process is mentioned as a strictly unimodal elliptical process if all its finite-

dimensional marginals are elliptical with the same strictly decreasing radial density.
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Corollary 4.2. Assume that the processes G0 and G1 are strictly unimodal elliptical and have
the same radial density and the same structural matrices, Σ0(T ) = Σ1(T ) for all T . If priors
of class membership are equal (and L is large enough), then the risk of

(i) the maximum-depth rule,

(ii) the DDα-x rules, x ∈ {M,S, P},

achieves asymptotically the optimal Bayes risk.

Part (ii) of Corollary 4.2 follows from Theorem 4.1 and Proposition 4.2, part (i) from

Theorem 4.1 and Ghosh & Chaudhuri (2005b), who demonstrate that the maximum-depth

rule is asymptotically equivalent to the Bayes rule if the two distributions have the same prior

probabilities and are elliptical in Rℓ with only a location difference.

Corollary 4.3. Assume that the processes G0 and G1 are strictly unimodal elliptical and have
the same radial density. Then the above procedures DDk-x, x ∈ {M,S, P}, (with large enough
L) are asymptotically Bayes-risk efficient, that is, if m,n, k → ∞, k

m
→ 0 and k

n
→ 0, then

the risk of each of the three rules DDk-M , DDk-S, and DDk-P converges in probability to
the optimal Bayes risk.

This follows from the above Theorem 4.1 and Theorem 3.5 by Vencálek (2011).

Corollary 4.4. The above kNN-classifier (with large enough L) is asymptotically Bayes-risk
efficient.

This follows from Theorem 4.1 and the universal consistency of the kNN rule; see Devroye

et al. (1996), Ch. 11.

4.8.2 Appendix 2 – Implementation details

In calculating the depths, µY and ΣY for the Mahalanobis depth have been determined by

the usual moment estimates and similarly, ΣY for the spatial depth. The projection depth

has been approximated by drawing 1 000 directions from the uniform distribution on the unit

sphere. Clearly, the number of directions needed for satisfactory approximation depends on

the dimension of the space. Observe that for higher-dimensional problems 1 000 directions are

not enough, which becomes apparent from the analysis of Model 2 in Section 4.6.2. There the

location-slope spaces chosen have dimension eight and higher; see also Tables 4.4 and 4.8 in

Appendix 3. On the other hand, calculating the projection depth even in one dimension costs

something. Computing 1 000 directions to approximate the projection depth takes substantially

more time than computing the exact Mahalanobis or spatial depths (see Tables 4.2 and 4.14

in Appendix 3).

LDA and QDA are used with classical moment estimates, and priors are estimated by

the class portions in the training set. The kNN-classifier is applied to location-slope data

in its affine invariant form, based on the covariance matrix of the pooled classes. For time

reasons, its parameter k is determined by leave-one-out cross-validation over a reduced range,

viz. k ∈ {1, . . . ,max{min{10(m+ n)1/d + 1, m+ n− 1}, 2}}. The α-procedure separating the
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DD-plot uses polynomial space extensions with maximum degree three; the latter is selected

by cross-validation. To keep the training speed of the depth-based kNN -classifier comparable

with that of the DDα-classifier, we also determine k by leave-one-out cross-validation on a

reduced range of k ∈ {1, . . . ,max{min{10√m+ n+ 1, (m+ n)/2}, 2}}.
Due to linear interpolation, the levels are integrated as piecewise-linear functions, and the

derivatives as piecewise constant ones. If the dimension of the location-slope space is too large

(in particular for inverting the covariance matrix, as it can be the case in Model 2), PCA is used

to reduce the dimension. Then ǫmax is estimated and all further computations are performed

in the subspace of principal components having positive loadings.

To construct the location-slope space, firstly all pairs (L, S) satisfying 2 ≤ L + S ≤ M/2

are considered. (M/2 amounts to 26 for the synthetic and to 16 for the real data sets.) For

each (L, S) the data are transformed to RL+S, and the Vapnik-Chervonenkis bound ǫmax is

calculated. Then those five pairs are selected that have smallest ǫmax. Here, tied values of

ǫmax are taken into account as well, with the consequence that on an average slightly more

than five pairs are selected; see the growth data in Table 4.2 and both synthetic models in

Table 4.14 of Appendix 3. Finally, among these the best (L, S)-pair is chosen by means of

cross-validation. Note that the goal of this cross-validation is not to actually choose a best

location-slope dimension but rather to get rid of obviously misleading (L, S)-pairs, which may

yield relatively small values of ǫmax. This is seen from Figures 4.4 and 4.5. When determining

an optimal (L, S)-pair by crossLS, the same set of (L, S)-pairs is considered as with VCcrossLS.

In implementing the componentwise method of finite-dimensional space synthesis (cross-

DHB) we have followed Delaigle et al. (2012) with slight modifications. The original approach

of Delaigle et al. (2012) is combined with the sequential approach of Ferraty et al. (2010).

Initially, a grid of equally (∆t) distanced discretization points is built. Then a sequence of

finite-dimensional spaces is synthesized by adding points of the grid step by step. We start

with all pairs of discretization points that have at least distance 2∆t. (Note that Delaigle et al.

(2012) start with single points instead of pairs.) The best of them is chosen by cross-validation.

Then step by step features are added: In each step, that point that has best discrimination

power (again, in the sense of cross-validation) when added to the already constructed set is

chosen as a new feature. The resulting set of points is used to construct a neighborhood of

combinations to be further considered. As a neighborhood we use twenty 2∆t-distanced points

in the second step, and ten in the third; from the fourth step on the sequential approach is

applied only.

All our cross-validations are ten-fold, except the leave-one-out cross-validations in deter-

mining k with both kNN -classifiers. Of course, partitioning the sample into ten parts only

may depreciate our approach against a more comprehensive leave-one-out cross-validation. We

have chosen it to keep computation times of the crossDHB approach (Delaigle et al., 2012)

in practical limits and also to make the comparison of approaches equitable throughout our

study.
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The calculations have been implemented in an R-environment, based on the R-package

“ddalpha” (Chapter 3), with speed critical parts written in C++. The R-code implementing

our methodology as well as that performing the experiments can be obtained upon request

from the authors. In all experiments, one kernel of the processor Core i7-2600 (3.4GHz) hav-

ing enough physical memory has been used. Thus, regarding the methodology of Delaigle

et al. (2012) our implementation differs from their original one and, due to its module-based

structure, may result in larger computation times. For this reason we provide the number of

cross-validations performed; see Tables 4.2 and 4.14 of Appendix 3. The comparison appears to

be fair, as we always use ten-fold cross-validation together with an identical set of classification

rules in the finite-dimensional spaces.

98



Chapter 4 Appendix

4.8.3 Appendix 3 – Additional tables

Table 4.3: Frequency (in %) of selected location-slope dimensions using the Vapnik-
Chervonenkis bound; Model 1.

Max.depth DD-kNN DDα
(L, S) LDA QDA kNN Mah. Spt. Prj. Mah. Spt. Prj. Mah. Spt. Prj.

(2,1) 65 64 55 58 63 54 65 63 47 49 51 50
(3,1) 15 23 29 34 23 29 16 24 34 29 26 31
(2,0) 14 7 7 3 9 11 7 3 5 11 12 10
(2,2) 1 2 5 0 1 3 4 2 6 3 1 6
(3,0) 2 1 4 1 1 1 2 1 3 4 5 3
Others 3 3 0 4 3 2 6 7 5 4 5 0

Table 4.4: Frequency (in %) of selected location-slope dimensions using the Vapnik-
Chervonenkis bound; Model 2.

Max.depth DD-kNN DDα
(L, S) LDA QDA kNN Mah. Spt. Prj. Mah. Spt. Prj. Mah. Spt. Prj.

(5,4) 41 51 27 39 31 0 40 37 0 37 37 1
(0,8) 19 23 24 31 40 20 13 12 30 16 10 23
(1,8) 4 4 13 9 10 23 8 6 18 3 4 21
(2,8) 8 8 3 1 0 7 15 14 4 12 8 4
(4,8) 1 4 5 1 1 6 6 9 4 8 6 6
(3,8) 7 4 3 0 1 8 0 3 6 7 5 4
(6,4) 2 2 4 3 3 0 7 6 0 8 12 0
(6,8) 3 2 1 1 0 4 1 1 6 0 3 4
(5,8) 2 0 1 0 1 3 2 3 7 0 4 2
(10,8) 2 1 3 2 1 5 0 0 5 0 2 2
(7,8) 2 0 0 0 0 0 2 0 6 3 0 5
(12,8) 1 0 1 1 0 5 1 1 3 0 0 3
(18,8) 1 0 0 0 0 2 0 0 0 0 0 5
Others 7 1 15 12 12 17 5 8 11 6 9 20

Table 4.5: Frequency (in %) of selected location-slope dimensions using the Vapnik-
Chervonenkis bound; growth data.

Max.depth DD-kNN DDα
(L, S) LDA QDA kNN Mah. Spt. Prj. Mah. Spt. Prj. Mah. Spt. Prj.

(0,2) 87.1 94.62 64.52 46.24 45.16 23.66 27.96 3.23 41.94 72.04 66.67 36.56
(1,2) 12.9 5.38 35.48 6.45 19.35 0 17.20 89.25 32.26 24.73 26.88 39.78
(0,3) 0 0 0 24.73 4.30 68.82 27.96 2.15 3.23 0 0 1.08
(2,2) 0 0 0 21.51 30.11 1.08 1.08 3.23 11.83 1.08 0 17.20
(1,3) 0 0 0 0 1.08 1.08 23.66 2.15 9.68 0 5.38 4.30
(4,0) 0 0 0 1.08 0 0 2.15 0 1.08 2.15 1.08 1.08
(0,4) 0 0 0 0 0 5.38 0 0 0 0 0 0
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Table 4.6: Frequency (in %) of selected location-slope dimensions using the Vapnik-
Chervonenkis bound; medflies data.

Max.depth DD-kNN DDα
(L, S) LDA QDA kNN Mah. Spt. Prj. Mah. Spt. Prj. Mah. Spt. Prj.

(1,1) 1.87 0 3.18 0.75 93.45 80.34 11.42 8.05 70.04 74.91 87.64 98.13
(2,1) 84.27 0 63.48 0 0 0 64.42 79.96 0.19 24.53 12.17 0
(0,2) 9.18 100 32.58 99.25 6.55 18.54 23.97 10.11 27.34 0.56 0.19 1.31
(1,2) 1.12 0 0 0 0 1.12 0.19 0.19 2.43 0 0 0.56
(3,1) 3.56 0 0.75 0 0 0 0 1.69 0 0 0 0

Table 4.7: Frequency (in %) of selected location-slope dimensions using cross-validation;
Model 1.

Max.depth DD-kNN DDα
(L, S) LDA QDA kNN Mah. Spt. Prj. Mah. Spt. Prj. Mah. Spt. Prj.

(2,1) 47 49 34 43 41 31 45 42 35 50 42 31
(3,1) 14 21 17 11 22 15 13 14 14 17 12 15
(4,1) 8 1 7 6 4 6 1 7 3 3 7 8
(2,0) 6 2 3 5 5 1 5 1 5 3 4 4
(2,2) 0 1 9 1 2 4 6 5 1 5 4 2
(5,1) 1 0 2 6 4 3 2 3 2 1 1 3
(2,3) 2 1 6 2 4 0 1 4 0 2 3 0
(3,2) 0 4 5 3 1 3 3 2 2 0 2 0
(3,0) 1 0 2 0 0 1 3 0 2 1 1 1
Others 21 21 15 23 17 36 21 22 36 18 24 36

Table 4.8: Frequency (in %) of selected location-slope dimensions using cross-validation;
Model 2.

Max.depth DD-kNN DDα
(L, S) LDA QDA kNN Mah. Spt. Prj. Mah. Spt. Prj. Mah. Spt. Prj.

(5,4) 38 56 27 42 35 0 41 47 0 44 36 0
(0,8) 17 6 14 21 33 6 5 2 11 3 5 14
(6,4) 6 7 11 3 5 0 11 13 0 10 17 0
(10,0) 0 11 0 0 0 3 17 15 0 20 16 0
(2,8) 4 8 4 2 0 8 6 14 1 11 11 8
(1,8) 7 2 6 9 9 10 2 1 11 1 1 10
(3,8) 7 1 9 0 0 8 3 2 8 1 0 7
(4,8) 1 1 2 0 0 9 5 1 8 1 8 6
(5,8) 1 0 2 1 0 9 0 0 4 1 0 9
(6,8) 1 0 3 1 2 8 0 0 3 0 1 6
(7,8) 0 0 1 0 1 5 0 0 8 0 0 6
(9,0) 0 6 0 0 0 0 5 2 0 2 2 0
(5,7) 2 0 2 7 5 0 0 0 0 0 0 0
(16,8) 0 0 1 0 0 5 0 0 5 0 0 4
(12,8) 1 0 1 0 0 1 0 0 7 0 0 4
(8,8) 3 0 1 0 0 2 0 0 6 0 0 1
(17,8) 0 0 0 0 0 2 0 0 3 0 0 8
(13,8) 0 0 1 0 0 3 0 0 2 0 0 6
(10,8) 2 0 0 0 0 0 0 0 6 0 0 3
(18,8) 0 0 0 0 0 5 0 0 3 0 0 1
Others 10 2 15 14 10 16 5 3 14 6 3 7
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Table 4.9: Frequency (in %) of selected location-slope dimensions using cross-validation;
growth data.

Max.depth DD-kNN DDα
(L, S) LDA QDA kNN Mah. Spt. Prj. Mah. Spt. Prj. Mah. Spt. Prj.

(0,2) 87.1 93.55 64.52 44.09 44.09 0 25.81 3.23 19.35 68.82 60.22 3.23
(1,2) 12.9 5.38 35.48 6.45 19.35 0 17.20 70.97 12.90 24.73 25.81 17.20
(0,3) 0 0 0 21.51 4.30 29.03 26.88 2.15 1.08 0 0 1.08
(2,2) 0 0 0 11.83 29.03 1.08 1.08 2.15 8.60 1.08 0 7.53
(4,0) 0 0 0 13.98 2.15 0 5.38 1.08 4.30 5.38 10.75 5.38
(1,3) 0 0 0 0 1.08 0 21.51 2.15 5.38 0 2.15 0
(4,2) 0 0 0 0 0 0 0 7.53 1.08 0 0 9.68
(2,3) 0 0 0 0 0 1.08 2.15 5.38 1.08 0 0 1.08
(4,5) 0 0 0 0 0 0 0 0 2.15 0 0 7.53
(4,6) 0 0 0 0 0 0 0 0 0 0 0 6.45
(7,1) 0 0 0 0 0 5.38 0 0 0 0 0 0
Others 0 1.07 0 2.14 0 63.43 0 5.36 44.08 0 1.07 40.84

Table 4.10: Frequency (in %) of selected location-slope dimensions using cross-validation;
medflies data.

Max.depth DD-kNN DDα
(L, S) LDA QDA kNN Mah. Spt. Prj. Mah. Spt. Prj. Mah. Spt. Prj.

(1,1) 0 0 0.75 0.56 89.89 77.72 0.37 0 64.98 71.54 79.59 98.31
(0,2) 7.68 0 14.23 91.39 4.12 19.66 1.87 0 24.34 0.37 0.19 1.69
(2,1) 57.87 0 47.00 0 0 0 0 1.87 0 0 0 0
(0,6) 0 0 4.68 0 0 0 32.02 14.23 5.24 0.37 7.49 0
(2,1) 0 0 0 0 0 0 6.55 0 0 22.28 10.86 0
(7,5) 30.90 0 0 0 0 0 0 0 0 0 0 0
(2,6) 0 0 21.16 0 0 0 0.19 0.75 0 0 0 0
(14,2) 0 18.35 0 0 0 0 0.75 2.06 0 0 0.19 0
(2,12) 0 9.36 0 0 0 0 3.75 3.75 0 0 0 0
(13,3) 0 12.55 0 0 0 0 0.94 1.69 0 0.56 0 0
(1,12) 0 0 0 0 0 0 12.17 3.37 0.19 0 0 0
(3,9) 0 0.37 0 0 0 0 7.49 6.74 0 0 0 0
(7,6) 0 3.93 0 0 0 0 3.18 7.30 0 0 0 0
(11,2) 0 8.24 0 0 0 0 3.56 1.50 0 0.56 0 0
(0,5) 0 0 0 7.49 5.99 0 0 0.19 0 0 0 0
(3,12) 0 0 0 0 0 0 4.49 8.61 0 0 0 0
(4,3) 0 0 0.19 0 0 0 0.56 11.80 0 0 0 0
(7,3) 0 10.49 0 0 0 0 0.94 0 0 0 0 0
(4,6) 0 10.86 0 0 0 0 0 0.19 0 0 0 0
(11,5) 0 6.55 0 0 0 0 0.19 1.50 0 0 0 0
(4,10) 0 0 0 0 0 0 2.81 5.06 0 0 0 0
(15,0) 0 6.74 0 0 0 0 0.37 0.19 0 0 0 0
(1,3) 0 0 0.19 0 0 0 0 6.74 0.19 0 0 0
Others 3.55 12.56 11.80 0.56 0 2.62 17.80 22.46 5.06 5.44 0.56 0
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Table 4.11: Frequency (in %) of selected dimensions using componentwise method; Model 1.

Max.depth DD-kNN DDα
dim LDA QDA kNN Mah. Spt. Mah. Spt. Mah. Spt.

2 50 55 45 45 50 46 47 50 64
3 41 38 46 46 43 48 40 42 27
4 9 7 9 9 7 6 13 8 9

Table 4.12: Frequency (in %) of selected dimensions using componentwise method; Model 2.

Max.depth DD-kNN DDα
dim LDA QDA kNN Mah. Spt. Mah. Spt. Mah. Spt.

3 11 14 14 8 14 20 13 17 18
4 89 86 51 54 60 79 85 83 81
5 0 0 26 35 23 1 2 0 1
6 0 0 9 3 2 0 0 0 0
7 0 0 0 0 1 0 0 0 0

Table 4.13: Frequency (in %) of selected dimensions using componentwise method; growth
data.

Max.depth DD-kNN DDα
dim LDA QDA kNN Mah. Spt. Prj. Mah. Spt. Prj. Mah. Spt. Prj.

2 100.00 92.47 45.16 12.90 3.23 41.94 88.17 50.54 39.78 100.00 96.77 60.22
3 0 6.45 30.11 62.37 60.22 52.69 7.53 44.09 53.76 0 2.15 38.71
4 0 1.08 24.73 24.73 36.56 5.38 4.30 5.38 6.45 0 1.08 1.08
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Table 4.14: Average (median for componentwise classification=crossDHB) training and clas-
sification (in parentheses) times (in seconds), and numbers of cross-validations performed (in
square brackets), over 100 tries.

Data set Model 1 Model 2

Classifier VCcrossLS crossLS crossDHB VCcrossLS crossLS crossDHB

LDA 7.61 40.59 547.5 6.83 30.3 392.16
(0.0011) (0.0011) (0.001) (0.0012) (0.0012) (0.001)
[5.55] [375] [10759.5] [8.58] [375] [7648.5]

QDA 7.59 39.44 503.5 6.74 29.72 411.23
(0.0011) (0.0011) (0.001) (0.0011) (0.0011) (0.001)
[5.53] [375] [9628] [8.32] [375] [8009]

kNN 7.86 133.77 1263.76 7.63 63.16 489.18
(0.0012) (0.0012) (0.0011) (0.0013) (0.0014) (0.0011)
[5.27] [375] [12996] [8.8] [375] [4886]

MD-M 7.38 7.53 101.05 6.22 7.11 58.45
(0.0011) (0.0011) (0.001) (0.0011) (0.0011) (0.001)
[5.46] [375] [10344.5] [9.05] [375] [5884.5]

MD-S 7.48 16.98 259.75 6.38 14.36 169.54
(0.0012) (0.0012) (0.0011) (0.0012) (0.0012) (0.0011)
[5.51] [375] [10113] [8.35] [375] [6518.5]

MD-P 9.58 245.52 10.76 195.61
(0.0017) (0.0018) — (0.002) (0.0021) —
[5.56] [375] [8.96] [375]

DDk-M 7.99 50.69 1421.2 7.26 48.95 601.2
(0.0012) (0.0013) (0.0011) (0.0013) (0.0013) (0.001)
[5.49] [375] [11909.5] [9.1] [375] [5491]

DDk-S 8.63 119.84 2493.52 8.71 102.75 1296.86
(0.0013) (0.0014) (0.0012) (0.0014) (0.0014) (0.0012)
[5.44] [375] [10873] [9.68] [375] [5715.5]

DDk-P 12.16 453.28 14.42 383.15
(0.0016) (0.0016) — (0.0017) (0.0018) —
[5.62] [375] [8.06] [375]

DDα-M 8.13 34.55 1866.99 7.93 76.58 995.68
(0.0012) (0.0012) (0.001) (0.0012) (0.0012) (0.001)
[5.57] [375] [10113] [9.43] [375] [5182]

DDα-S 8.68 104.71 2840.91 9.06 128.62 1860.12
(0.0012) (0.0013) (0.0011) (0.0013) (0.0013) (0.0012)
[5.51] [375] [9774] [8.99] [375] [6124]

DDα-P 12.19 466.76 16.02 410.66
(0.0015) (0.0016) — (0.0017) (0.0017) —
[5.45] [375] [8.92] [375]
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Exact computation of the Tukey depth

5.1 Introduction

Determining the representativeness of a point within a bunch of data or a probability measure

has recently become a desirable task in multivariate analysis. It finds applications in different

domains of economics, biology, geography, medicine, cosmology and many others. A statistical

data depth is a function determining how centrally a point is located in a data cloud. The

upper-level sets it generates – trimmed regions – are set-valued statistics. They trim data

w.r.t. degree of centrality. One of the most important depth notions is the Tukey (=halfspace,

location) depth. The Tukey depth of a point z w.r.t. a data cloud X , DTukey(z|X), further

simply D(z|X), is defined as the smallest fraction of X to be cut off by a hyperplane through

z so that the remaining points lie in an open halfspace not containing z. For a population

distributed with probability measure P the Tukey depth of a point z ∈ Rd is defined as:

D(z|P ) = inf{P (H) |H closed half-space, z ∈ H}. (5.1)

For a data set X = {x1,x2, ...,xn} ∈ Rd it holds:

D(z|X) =
1

n
min

r∈Sd−1
#{i |x′

ir ≥ z′r, xi ∈ X}. (5.2)

The Tukey depth possesses many desirable properties: it is affine invariant, tends to zero at

infinity, is monotone on rays from any deepest point, quasiconcave and upper semicontinuous.

By that it satisfies all the postulates imposed on a depth function (Zuo & Serfling, 2000,

Dyckerhoff, 2004, Mosler, 2013). If P is absolutely continuous, the Tukey depth is a continuous

function of z achieving maximum value of 1
2
, for angularly symmetric distributions at the

center of symmetry (Zuo & Serfling, 2000). If P has no Lebesgue density, the Tukey depth is a

discrete function of z and can have a non-unique maximum. By definition, its empirical version

vanishes beyond the convex hull of the data. The Tukey depth determines uniquely an empirical

distribution (Struyf & Rousseeuw, 1999, Koshevoy, 2002), taking a finite number of values in

the interval from 0 (for the points lying outside the convex hull of the data) to 1
2
, increasing by

a multiple of 1
n
. Naturally, it has attractive breakdown properties and converges for a sample

from P almost surely to the depth w.r.t. P (Donoho & Gasko, 1992). The Tukey depth has a
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direct connection to such concepts as regression depth of Rousseeuw & Hubert (1999) and the

separating hyperplane delivering smallest empirical risk in supervised classification; it can be

extended to functional settings (López-Pintado & Romo, 2011, Claeskens et al., 2014).

The exact calculation of the Tukey depth and its trimmed regions is a computationally

challenging task. For this reason, great part of the literature on the Tukey depth concerns its

computational aspects. An overview of the most important sources follows in Section 5.1.1.

Computing the Tukey depth exactly is a problem of non-polynomial (NP) complexity (Johnson

& Preparata, 1978); thus a reasonable approximation can be of use. Some important works on

this topic are briefly regarded in Section 5.1.2.

5.1.1 Previous approaches to calculation of the Tukey depth

1975 John W. Tukey introduced a new concept of data picturing, which later crystalized into

the Tukey depth (Tukey, 1975). A similar mechanism of cutting by hyperplanes (lines in the

two-dimensional case) has also been used for bivariate sign test by Hodges (1955). During the

last several decades, a variety of attempts have been taken to compute the Tukey depth and

its trimmed regions.

Rousseeuw & Ruts (1996) pioneered in calculating the Tukey depth exactly for bivari-

ate data clouds and constructing its contours (Ruts & Rousseeuw (1996a,b), algorithm

ISODEPTH) exploiting the idea of the circular sequence (Edelsbrunner, 1987). Here, the

depth of a point is computed with complexity O(n logn), and a single depth region is con-

structed with complexity O(n2 log n), both essentially determined by the complexity of the

QUICK-SORT procedure. Johnson et al. (1998) suggest to account for a small subset of points

only when constructing the first k depth contours, which yields a better complexity for small

k (algorithm FDC). The Tukey depth describes a data cloud by a finite number of depth con-

tours. Miller et al. (2003) compute all these with complexity O(n2), by which the depth of a

single point can be calculated with complexity O(log2 n) afterwards.

Rousseeuw & Struyf (1998) introduce an algorithm computing the Tukey depth for d = 3

with complexity O(n2 log n). They project points onto hyperplanes orthogonal to the lines

connecting each of the points from X with z and then calculate Tukey depth in these hyper-

planes using the algorithm from Rousseeuw & Ruts (1996). Bremner et al. (2006) calculate

Tukey depth with primal-dual algorithm by successively updating upper and lower bounds

by means of a heuristic till they coincide. Bremner et al. (2008) design an output-sensitive

depth-calculating algorithm that represents the task as two maximum subsystem problems for

d > 2. The latter ones are then run in parallel.

When calculating depth trimmed regions, first the extension to d > 2 has been made

by Mosler et al. (2009), for zonoid depth (Mosler, 2002). Here, Sd−1 is segmented according to

direction domains – polyhedral cones defining the region’s facets. These cones are all regarded

sequentially by wavelike spreading using the breadth-first search algorithm. The idea has been

exploited in later algorithms for computing depth and regions, among others for the Tukey

depth.
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An interesting issue of depth maintenance when points continuously appear, is handled by

Burr et al. (2011) for bivariate depth and contours.

Kong & Mizera (2012) employ direction quantiles defined as halfspaces corresponding to

quantiles on univariate projections and prove their envelope to coincide with the correspond-

ing Tukey depth trimmed region. Hallin et al. (2010) establish a direct connection between

multivariate quantile regions and Tukey depth trimmed regions. The multivariate directional

quantile for one direction corresponds to a hyperplane that may carry a facet of a depth

trimmed region. More than that, the authors define a polyhedral cone containing all directions

yielding the same hyperplane; the union of the finite set of all these cones fills the Rd. So, by the

breadth-first search algorithm a family of hyperplanes, each defining a halfspace, is generated,

and the intersection of these halfspaces forms the Tukey-trimmed region (see also Paindaveine

& Šiman (2012a,b)).

Also, based on a similar idea, using (similar to Hallin et al. (2010)) breadth-first search

algorithm to cover Rd, and QHULL to define the direction cones, Liu & Zuo (2014a) compute

the Tukey depth exactly. Currently, this seems to be the only known implementation of the

Tukey depth computation that works for d > 3.

5.1.2 Approximation of the Tukey depth

As even with the fastest available algorithm the exact calculation of the Tukey depth is very

elaborate, and amounts to exponential complexity in n and d, one tries to save computation

expenses by approximating the depth. Following Dyckerhoff (2004), the Tukey depth satisfies

the weak projection property, i.e. it is the smallest achievable depth on all one-dimensional

projections, and thus can be estimated from above by univariate depths.

Rousseeuw & Struyf (1998), when suggesting the algorithm computing Tukey depth for

d = 3, explored 4 algorithms differing in how the directions to project the data are generated.

They offer to take a random subset of: (1) all lines connecting z and a point from X , (2)

all lines connecting two points from X , (3) all lines normal to hyperplanes based on z and

d− 1 pairwise distinct points from X , (4) all lines normal to hyperplanes based on d pairwise

distinct points from X , and claim the last variant to function best. Cuesta-Albertos & Nieto-

Reyes (2008) suggest to generate directions uniformly on Sd−1. This method proves to be

useful in classification. Afshani & Chan (2009) present a randomized data structure keeping

the approximated depth value in some range of deviations from its real value.

The latter work of Chen et al. (2013) determines the number of tries needed to achieve

required precision exploiting the third approximation method of Rousseeuw & Struyf (1998).

The authors also present its generalization by projecting z and X onto affine spaces of di-

mension > 1. The approximated depth values are exact in most of the experiments and the

approximation errors achieved are never larger than 2
n
.
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5.1.3 Proposal

In this work we propose and treat theoretically and practically two algorithms for computing

the Tukey depth exactly. First, an algorithm based on application of linear programming

only is presented in Section 5.2. It exploits the same idea as Liu & Zuo (2014a) do, but

the application of the simplex method and binary coding of the direction cones allow for

simplification and acceleration. Then, Section 5.3 suggests an exact, theoretically grounded

version of the approximating algorithm used by Rousseeuw & Struyf (1998) and Chen et al.

(2013). This new version is faster than the first algorithm, thanks to its combinatorial nature.

Finer speed differences between the presented algorithms become evident after the experimental

study in Section 5.4. Section 5.5 summarizes.

5.2 Computing Tukey depth via linear programming

In this section we present an algorithm for exact calculation of the Tukey depth, that is based

on linear programming. Essentially the algorithm proceeds similar to Liu & Zuo (2014a), i.e. it

minimizes the univariate depth over all possible permutations of points in the projection onto

a univariate direction. All directions yielding the same permutation are gathered in a direction

(polyhedral) cone. To determine this cone, Liu & Zuo (2014a) use the vertex-facet enumeration

and the QHULL algorithm. We employ exclusively linear programming, coding the direction

cones by binary sequences. This increases the speed, and reduces the RAM usage by utilizing

the special spread structure of the breadth-first search algorithm. It is also interesting that

the algorithm exploits the connection between the Tukey depth and supervised classification

in an elegant way.

First, in Section 5.2.1, under the assumption of general position of {z} ∪X , we introduce

some convenient notation, and give the main theoretical results allowing for linear program-

ming. This is followed by the suggestion of a simplification of the breadth-first search algorithm

and time- and RAM-saving lemmas. Section 5.2.2 successively weakens the general position

assumption. The algorithm itself is given in Section 5.2.3.

5.2.1 Theoretical background of the algorithm

Given a data sample X = {x1, ...,xn} ∈ Rd, d < n, and a point z ∈ Rd, the Tukey depth of z

w.r.t. X shall be calculated. Here, in Section 5.2.1, we assume w.l.o.g. that z = 0 and that

{z}∪X are in general position, i.e., every subset of k+1 points spans a subspace of dimension

min{k, d}. Violation of these assumptions can be compensated by a slight perturbation of the

data and a location shift. The Tukey depth is discrete, so such a perturbation can be harmful,

as only a small shift of one point can move the border of a depth-trimmed region and thus

change the depth value of z in a non-continuous way. Before performing such a perturbation,

we suggest to first check whether z ∈ conv(X) (if not, D(z|X) = 0), and only then calculate the

depth of z using perturbed data. When having enough points in X and specially treating the

zero-depth case as above, possible perturbation damage is negligible. Further, in Section 5.2.2,
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xi

00

Figure 5.1: A cone’s facet defined by a point.

we propose a set of modifications for the algorithm to deal with the situation of non-general

position.

Consider a direction, i.e., a point on the unit sphere r ∈ Sd−1. It yields an ordered

sequence, a permutation πr on N = {1, ..., n}, such that x′
πr(1)

r ≤ x′
πr(2)

r ≤ ... ≤ x′
πr(n)

r. If

the data are in general position a vector r can be found such that all inequalities hold strictly

x′
πr(1)

r < x′
πr(2)

r < ... < x′
πr(n)

r, and x′
πr(i)

r 6= 0, i = 1, ..., n. Then such r splits X into two

disjoint subsets (by its normal hyperplane Hr through 0 yielding two open halfspaces H+
r
and

H−
r

in Rd), X+
r

and X−
r
, containing points with positive, respectively negative, projections

on all r giving the strictly ordered and non-zero projection. Let us call the closure of the

set of all λr, λ ≥ 0, maintaining the same X+
r

and X−
r
, a direction cone C (yielding X+

C

and X−
C respectively). This is because its form constitutes an infinite polyhedral cone with

the apex in the origin. The entire Rd is then filled by the set of all direction cones, say

C(X), while each cone C ∈ C(X) defines some portion of the sample. Denote this portion

DC(0|X) = 1
n
min{♯X+

C , ♯X
−
C } (♯ stands for the set’s cardinality), then the Tukey depth is

D(0|X) = minC∈C(X)DC(0|X). Below C(X) will be mentioned as cone segmentation.

The further task is then to go through all such cones and to find the one(s) delivering

the smallest 1
n
min{♯X+

C , ♯X
−
C }, i.e., the Tukey depth. Starting with Mosler et al. (2009),

when constructing depth regions (see also Paindaveine & Šiman (2012a,b), Bazovkin & Mosler

(2012)) and calculating depths (see Liu & Zuo (2014a,b)), the usual way to proceed is: (1)

choose an arbitrary direction cone and – using (3) breath-first search – (2) move from each

directional cone to the neighbors, covering the entire Rd. Doing that a check whether a direction

cone has already been considered is needed, so (4) ‘all proceeded direction cones (facets)’ are

saved, in a binary search tree – a structure maintaining fast search.

Ad (1), the task is trivial: a direction r ∈ Sd−1 maintaining the ordering with strict

inequalities x′
πr(1)

r < x′
πr(2)

r < ... < x′
πr(n)

r and no projection coinciding with z′r = 0 has to

be generated. When drawing r randomly, the theoretical probability of this event = 1. As in

practice draw concerns only a finite number of digits, it can (though rarely) happen that one

needs more than one draw.
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Figure 5.2: A direction cone in R3 defined by the points x1, x2 and x3, halfspaces formed by
x4 and x5 are not directly involved (left); arbitrary cutting hyperplane h visualizing how the
hyperplanes are involved (right).

Identification of adjacent cones

Ad (2), identifying neighboring direction cones (2a) and transition to each of them if new (2b)

is to be done. Let us take a closer look at the direction cone. Two different cones C1 and C2

differ in their corresponding sets (X+
C1
, X−

C1
) and (X+

C2
, X−

C2
). So, if a point r on Sd−1 moves

from one direction cone to another, projections of one or more points on r ‘migrate passing the

origin’, i.e., change the sign. Let C1 and C2 be two cones, such that a direct (i.e., not crossing

other cones) rotational movement of r from C1 to C2 (and vice-versa) is possible. That means

that C1 and C2 have an intersection of affine dimension between 1 and d− 1. If a transition of

r from C1 to C2 involves changing the halfspace (from H+
r

to H−
r

or vice versa) by one point

∈ X only (correspondingly changing the sign of the projection on r), then C1 and C2 intersect

in affine dimension d−1. This intersection constitutes the cones’ common facet. We call these

two cones neighboring cones.

So, the transition of a single point xi ∈ X from X+
C1

to X−
C2

means traversing from C1

to a neighboring cone C2 through a facet, and thus the facet is defined by this point xi, see

Figure 5.1. Naturally, given a cone C, any facet of C lies in a hyperplane, normal to the line,

connecting a point ∈ X with z = 0, as it is shown in Figure 5.1, but not each point ∈ X

generates a facet of C, see Figure 5.2. A direction cone C is defined by the intersection of

closed halfspaces {y|y′(x − z) ≥ 0,x ∈ X+
C } and {y|y′(x − z) ≤ 0,x ∈ X−

C }. Hyperplanes

directly involved in the intersection (generated by points x1,x2,x3) contain the cone’s facets

and those outside (generated by points x4,x5) do not (see Figure 5.2). Thus, given a direction

cone, a natural question is which points ∈ X define its facets, and which do not. This is

summarized in Theorem 5.1.

Theorem 5.1. Given a finite set of points X ∈ Rd, assume that {0} ∪ X are in general
position, and let C be a direction cone. Also, for a point x ∈ X let XHx

be the orthogonal
projection of X onto the hyperplane Hx normal to x, and X+

Hx,C
and X−

Hx,C
be the two subsets

of XHx
\ {0} corresponding to X+

C and X−
C , respectively. Then:
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(i) Hx contains a facet of C if and only if X+
Hx,C

and X−
Hx,C

are linearly strictly separable
through 0, i.e., can be separated by a (d-2)-hyperplane ⊂ Hx containing the origin and
no points from XHx

\ {0},

(ii) if r ∈ Sd−1 moves from C to a neighboring direction cone, there exists exactly one point
x ∈ X, which defines the facet, so that the projection of x on the line through r changes
sign.

Proof. (i) “=⇒”: If x ∈ X defines a facet of C, then Hx contains this facet, and thus
there should exist some direction r ∈ Sd−1 ∩ Hx such that X+

C and X−
C projected onto

r maintain their signs, except for the single point x being projected into 0. So, these
projections of X+

C \ {x} and X−
C (or X+

C and X−
C \ {x}) are separated in Hx by the

hyperplane normal to r through 0.

“⇐=”: Strict linear separability of X+
Hx,C

and X−
Hx,C

through 0 means that there exists

some r ∈ Sd−1 ∩ Hx, such that x′r > 0 ∀ x ∈ X+
Hx,C

and x′r < 0 ∀ x ∈ X−
Hx,C

.
Then a slight infinitesimal rotation of r towards (and inside of) the cone does not cause
projections to change sign, and thus maintains X+

C and X−
C .

(ii) Let x ∈ X define a common facet of C1 and C2. It follows from (i) that, when r moves
from C1 to C2, the projection of x on r changes sign. The question is: which points
(potentially) can also change sign? We first distinguish the special case that points lie
on the line through 0 and x. Generally, we consider the case that points from X+

Hx,C

and X−
Hx,C

lie in the (d − 2)-dimensional space separating them, i.e., when no (d − 2)-

hyperplane containing 0 but not containing any points from them can separate X+
Hx,C

from X−
Hx,C

.

In the first case, at least three points lie on one line, so the assumption of general position
of {0} ∪ X is violated. In the second case, if in a (d − 1)-dimensional linear subspace
(namely Hx) two sets can only be separated by a (d − 2)-hyperplane containing 0 and
also points from these sets, then at least d points from XHx

\ {0} lie in this separating
(d− 2)-hyperplane. But this means that, together with x, d+1 points ∈ X should lie in
a (d− 1)-hyperplane. This violates as well the general position assumption of X .

Optimization of the breadth-first search algorithm

Having addressed (2a), (2b) can be drawn trivially from Theorem 5.1. From the first part,

one can easily find out which points define the cone’s facets. Then, following the second part,

moving the direction r to the neighboring cone traversing their common facet means changing

the sign of the projection on r of the point which defines this facet.

Ad (3), we use the results from above to describe the breadth-first search algorithm: generate

an initial direction cone (ad (1)) and move to the neighboring cones (ad (2)), calculating the

depth in each of them, till the entire Rd is covered. Note, that these operations are general for

many depth-calculating algorithms (Liu & Zuo (2014a,b)), algorithms constructing trimmed

regions (Mosler et al. (2009), Paindaveine & Šiman (2012a,b), Bazovkin & Mosler (2012)), as

well as arbitrary algorithms exploiting cone segmentation of Rd.

Algorithm 5.1. The breadth-first search algorithm on a cone segmentation of Rd proceeds as
in the following steps:
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a) Draw an initial cone and store it in a queue.

b) Pop one cone from the head of the queue, process it, remember it, and for each of its
neighboring cones do:

c) If the cone has not been processed till now push it into the tail of the queue.

d) If the queue is not empty, go to Step b.

Further, let us introduce the notion of the cone’s generation, a number given to each cone

(in Step c) when it is processed. The initially drawn cone (in Step a) is given the initial number,

say 1. The generation can be thought of as the ‘depth’ of the current searching path of the

algorithm. When covering a cone segmentation, only a few generations have to be remembered

(i.e., held in the memory).

In algorithms of the combinatorial nature, the number of the direction cones to be processed

usually depends exponentially on n and d, so that even for moderately n and d it can be

enormously large. All these processed cones (or their facets) are usually to be stored (in the

RAM), to check whether the current one has already been processed. The next observation and

the following lemma give some insights how to reduce the number of the cones to be stored. The

observation 5.1 is applicable to most algorithms on the convex polytopes including Mosler et al.

(2009), Paindaveine & Šiman (2012a,b), Bazovkin & Mosler (2012), Liu & Zuo (2014a,b). It

follows from the stepwise nature of the algorithm and the symmetry of the cone-neighborhood

relationship.

Observation 5.1. When covering a cone segmentation of Rd with Algorithm 5.1 starting at
an arbitrary initial cone, for processing cones of the i-generation, only cones of the (i− 1)-, i-
and (i+ 1)-generation have to be remembered.

While on starting (low) generations the number of the cones from one generation to another

grows rapidly, on close to ‘equatorial’ generations (these basically constitute the segmentation)

the increase is much less. It amounts to 5-15% compared to the previous generation, when

n and d are moderate. Also, though the store-search structure for the cones is a binary tree,

the computational time for search can be saved either, especially when the search is frequently

performed.

Ad (4): When calculating the Tukey depth under the general position assumption of {z}∪X ,

one can step much further in this direction, than Observation 5.1 does. First, to simplify further

presentation, let us code the cones. As mentioned above, the interior of each cone C maintains

the disjoint division of X into X+
C and X−

C according to the signs in X ’s projection onto any

of its directions, and thus is uniquely defined by this division. So, binary identifiers for the

cones can be used: a cone is coded by a binary sequence (“0” and “1” say), where each bit is

responsible for a point ∈ X w.r.t. some initial arbitrary ordering that is kept constant during

the entire procedure. Then, points belonging to X+
C are coded by “1”, those belonging to X−

C

by “0”.

After coding the initial cone this way, other cones can be coded either the same way, or by

another binary sequence identifying whether a point has changed the sign (“1”) or not (“0”).
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Then any cone’s code can be obtained as the code of the initial cone with those bits inverted

that have been switched on in this last sequence. This leads to Lemma 5.1.

Lemma 5.1. Let us start Algorithm 5.1 with an arbitrary initial cone, and in stage b regard
only neighboring cones defined by points which have not changed their sign in the projection
onto r yet. Then in processing cones of the i-th generation, only cones of the i-th generation
have to be remembered to seek for neighbors and of the (i+1)-th generation to check for newness.

Proof. If the cones defined by already processed points, i.e. those having changed their sign in
the projection, are not considered, then only cones of the (i + 1)-th generation can be taken
into account, and no cones of the (i − 1)-th or i-th generation. Then one can go through all
the cones of the i-th generation, and add those newly found from the (i+ 1)-th generation to
the queue.

Theorem 5.1 (ii) and Lemma 5.1 lead to Lemma 5.2. Note that ⌊u⌋ stands for the largest

integer ≤ u.

Lemma 5.2. When starting Algorithm 5.1 with an arbitrary initial cone, and in stage b regard
only neighboring cones defined by points which have not changed their sign in the projection
onto r yet, only ⌊n+2

2
⌋ generations have to be considered.

Proof. From Theorem 5.1 (ii), each point may define a cone’s facet, changing its sign in pro-
jections on all directions of the neighboring cone. If, following Lemma 5.1, on each new step
only not yet considered points are taken into account, then in each new generation exactly
one point more has its sign on projection changed (compared to the initial cone). Then the
maximum generation (if the initial cone is the 1st generation) will be (n + 1)-th generation.

Each cone has its mirror-copy cone, where projections of X on all directions have exactly
opposite signs; these cones need not be considered, of course. Then, if n is odd, exactly n+1

2

generations have to be considered, if n is even, ⌊n+1
2
⌋ +1 generations have to be considered, as

the mirror-copy cones of the ‘equatorial’ (having number ⌊n+1
2
⌋+ 1) generation also belong to

the equatorial generation. Thus, at most ⌊n+2
2
⌋ generations have to be regarded.

5.2.2 Weakening assumptions

Here we sequentially weaken the assumption that {z} ∪X are in general position. We do it in

three steps:

a) allow point(s) ∈ X to exactly coincide with z;

b) additionally, allow > 1 point(s) ∈ X to lie in {z+ λ(xi − z) : λ ∈ R} for some xi ∈ X ;

c) allow an arbitrary position of {z} ∪X .

Ad (a), assume that the subset Xz = {x|x = z,x ∈ X} is not empty. After removing Xz

from X , {z}∪ (X \Xz) is in general position, and thus all the results of Section 5.2.1 are valid.

Then D(z|X \Xz) is calculated under the general position assumption of {z} ∪ (X \Xz), and

D(z|X) is obtained as D(z|X\Xz)(n−♯Xz)+♯Xz

n
.

Ad (b), let X i
z
be the set X ∩ {z+ λ(xi − z) : λ ∈ R} for some xi ∈ X . All X i

z
, i = 1, ..., n

are singletons in the case when the general position assumption of {z} ∪ X is satisfied. If
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♯X i
z
> 1 for at least one i, a facet can be defined by each X i

z
, and the results of Section 5.2.1

should be reconsidered.

First, part (ii) of Theorem 5.1 affects the entire set X i
z
, defining the corresponding hy-

perplane as described in part (i) of the Theorem (the change in proof is straightforward), i.e.

all points ∈ X i
z
should change sign in the projection when traversing a facet of two cones.

Lemma 5.1 is not valid any more, as when moving from i-generation cones through facets de-

fined by X i
z
with ♯X i

z
> 1 the breadth-first search algorithm can ‘jump forward’, changing sign

of more than one point at once, and thus can reach an already processed neighbor. Lemma 5.2

holds, although some extra cones (e.g., mirror but not equatorial ones) can be processed.

Ad (c), points from X+
Hx,C

or X−
Hx,C

can lie on the – separating them – (d− 2)-plane con-

taining the origin. Regarding part (ii) of Theorem 5.1, all these should change sign in the

corresponding projection when moving to a neighboring cone (the change of proof is straight-

forward). The remaining stays as above.

5.2.3 Algorithm based on linear programming

For the sake of simplicity in this section we assume the general position of {z} ∪ X , z = 0,

and thus calculate D(0|X). Further, one can also act as in the beginning of Section 5.2.1, or

extend the algorithm given below for arbitrarily positioned data as described in Section 5.2.2.

Basically, Algorithm 5.2 is the application of the breadth-first-search algorithm (Algo-

rithm 5.1) for searching over the direction cones covering the entire Rd. We will need some

notation. As above, let C be the binary sequence of length n coding a direction cone con-

taining some interior direction r ∈ Rd \ {0}: Cj = 1 ∀ j ∈ {j|r′xj > 0, j = 1, ..., n} and

Cj = 0 ∀ j ∈ {j|r′xj < 0, j = 1, ..., n}, where Cj denotes the j-th bit of C. Also, let Ij

be the zero-filled binary sequence with the j-th bit set to “1”, ⊕ denote the binary ‘exclu-

sive disjunction’=“XOR” operation and
∑
C be the number of “1”s in C (Hamming distance

between C and the zero-filled binary sequence).

Algorithm 5.2. Input: X = {x1, ...,xn} ∈ Rd, d < n, {0} ∪X in general position.

1. Initialization: calculate XHxi
, i = 1, ..., n, set D = n, draw r ∈ Sd−1 maintaining strict

order of X’s projection and let C0 be its binary code, initialize a queue Ctopical containing
C0 only and an empty searchable storage (e.g., binary tree) Cfuture.

2. For i = 1 : ⌊n+2
2
⌋ do:

(a) pop C = head of Ctopical, D = min{D,∑C, n−∑C},
(b) if i = ⌊n+2

2
⌋, then go to Step 2d,

(c) for j = 1 : n do:
- if (i) (C ⊕ C0)j = 0, and (ii) ∃ r ∈ Sd−1 ∩ Hxj

such that r′x > 0 ∀ x ∈ X+
Hxj

,C

and r′x < 0 ∀ x ∈ X−
Hxj

,C, and (iii) C ⊕ Ij /∈ Cfuture, then add C ⊕ Ij to Cfuture,
(d) if Ctopical 6= ∅, then go to Step 2a, else Ctopical = Cfuture, Cfuture = ∅.

3. Return: D/n.
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Nontrivial is the check of condition (ii) in Step 2c, i.e. to find out whether there ∃ r ∈
Sd−1 ∩Hxj

such that r′x > 0 ∀ x ∈ X+
Hxj

,C and r′x < 0 ∀ x ∈ X−
Hxj

,C. This is the same as to

check whether two sets X+
Hxj

,C and X−
Hxj

,C are linearly separable via the origin, i.e. separable

by a (d− 2)-hyperplane ∈ Hxj
containing 0. In fact this corresponds to determining whether

0 ∈ conv(X+
Hxj

,C ∪−X−
Hxj

,C) (or −X+
Hxj

,C ∪X−
Hxj

,C). If it does, the sets X
+
Hxj

,C and X−
Hxj

,C are

not linearly separable, the direction r ∈ Sd−1 ∩ Hxj
separating the projections of X+

Hxj
,C and

X−
Hxj

,C on it by 0 cannot be found, and thus xj generates no facet of the direction cone.

Let Y = X+
Hxj

,C ∪ −X−
Hxj

,C for some C ∈ C(0, X) and some j ∈ {1, ..., n}, represented as

an (n − 1) × (d − 1) matrix Y = (y1, ...,yn−1)
′ with rows being the points ∈ Hxj

. The task

from above narrows down to finding a feasible solution satisfying the constraints:

Y′Λ = 0d−1,

Λ′1n−1 = 1,

Λ ≥ 0n−1,

with Λ = (λ1, ..., λn−1)
′ and 0k (1k) being a vector-column of k zeros (ones). This is what is

done in the first phase of the usual simplex algorithm.

If the assumption of the general position of {0}∪X is violated, it can happen that for some

C ∈ C(0, X) and j ∈ {1, ..., n}, 0 lies on a facet of conv(X+
Hxj

,C ∪ −X−
Hxj

,C) that has affine

dimension d−2 or lower. Then, all the points generating this (sub)facet define the cone’s facet

(at once), and their projections all change sign when r traverses this cone’s facet.

5.3 Computing Tukey depth via combinatorial approach

In this section, a combinatorial approach is presented. It accounts for a sufficient set of point

combinations to determine the Tukey depth, and is an exact version of the third approximation

method proposed by Rousseeuw & Struyf (1998) and the first approximation method of Chen

et al. (2013).

First, some combinatorial issues are regarded in Section 5.3.1. Then in Section 5.3.2 the

algorithm is presented and the main theoretical results of its sufficiency are proven.

5.3.1 Intuition behind the approach

The Tukey depth is the smallest fraction ofX lying in a closed halfspace with z on its boundary

such that the remaining open halfspace does not contain z, i.e. the portion of points lying on

the dividing hyperplane or in the outer open halfspace. For simplicity, assume that z = 0 and

{0} ∪ X are in general position. Then a hyperplane containing 0 and no points ∈ X with a

normal vector r ∈ Sd−1, together with its perturbations in some range of angles, maintains

certain dichotomy of points X+
r

= {x|x′r > 0} and X−
r

= {x|x′r < 0} that corresponds to

division of X by positive and negative halfspaces (while X0
r
= {x|x′r = 0} = ∅). Taking X+

r
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as a candidate for a separating halfspace determining the Tukey depth, it can be then obtained

as D(0|X) = minr∈Sd−1 #X+
r
.

W.r.t. r, this is an optimization problem which is neither convex nor linear or continuous.

For its exact solution all possible variants are to be considered. Computationally that means

to regard all possible dichotomies (X+
r
, X−

r
), i.e. all reachable permutations of projection

of X onto r. This is what is eventually done in the exact algorithms for the Tukey depth.

Each (X+
r
, X−

r
) is a distinct separation of X by the hyperplane containing 0. The number of

such separations, and thus the number of variants to be regarded by the algorithm, under the

assumption of general position of {0}∪X , is determined by n = #X and d only, independently

of the position of the points ∈ X : C(n, d) = 2
∑d−1

i=0

(
n−1
i

)
. If general position of {0}∪X is not

assured, C(n, d) is the upper bound on the number of achievable separations. Clearly, a pair of

such (mirror) dichotomies can be regarded at once by taking min {X+
r
, X−

r
} as a candidate for

determining the Tukey depth, so only half of this number has to be processed. This amounts

to the complexity O(nd−1).

In the algorithms of Liu & Zuo (2014a) and in Section 5.2, the first-breadth search over Sd−1

is used to fully address all such dichotomies. The idea of the combinatorial algorithm is: as

all the combinations have to be regarded anyways, why not go through all of them chaotically,

i.e. using some order that has nothing to do with any space ordering, but is of combinatorial

nature? This brings an enormous acceleration and requires minimum memory, see Section 5.4

for computation times. The approach is especially efficient when the relation n/d is small, as

in this case no high-dimensional memory-consuming structures have to be created.

5.3.2 Combinatorial algorithm

The following algorithm calculates the exact Tukey depth of 0 ∈ Rd w.r.t. X =

{x1,x2, ...,xn} ∈ Rd under the assumption that X ∩ {0} = ∅ and X has affine dimension

d. If the point to calculate the depth for 6= 0, X can be shifted correspondingly. If the affine

dimension of X is < d, X should be projected onto the space of its dimension. Then, the depth

is calculated in this lower-dimensional space. Note, that the assumption of general position is

not required here, and points coinciding with 0 can be separated from X before Step 2 of the

algorithm, and their number should be added to the result afterwards. ǫ is a precision con-

stant that has to be chosen, and x⊥
rc

denotes the projection of x onto the hyperplane through

0 normal to rc.

Algorithm 5.3. Input: X = {x1,x2, ...,xn} ∈ Rd with X ∩{0} = ∅, X has affine dimension
d.

1. If d = 1, then compute nmin = n ·D1(0|X), return: nmin, else nmin = n.

2. C = {j1, ..., jd−1|j1, ..., jd−1 distinct, j1, ..., jd−1 ∈ {1, ..., n}}.

3. For each c ∈ C do:

(a) if affine dimension of {xj1, ...,xjd−1
, 0} < d− 1, then go to next iteration,
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(b) compute rc ∈ Rd \ {0} normal to the hyperplane Hc ∋ {xj1, ...,xjd−1
, 0},

(c) P = {p|p = x′
irc, i = 1, ..., n}, P+ = {p|p > ǫ, p ∈ P}, P− = {p|p < −ǫ, p ∈ P},

P 0 = {p||p| ≤ ǫ, p ∈ P},
(d) ñmin = min{#P+,#P−},
(e) if #P 0 > d − 1, then X⊥

rc
= {x⊥

rc
||x′rc| ≤ ǫ,x ∈ X} ∈ Rd−1, ñmin = ñmin+

Algorithm 5.3(X⊥
rc
),

(f) if ñmin < nmin, then nmin = ñmin.

4. Return: nmin.

To prove the correctness of the algorithm we will need several lemmas.

Lemma 5.3. Given X = {x1,x2, ...,xn} ∈ Rd with X ∩ {0} = ∅ and r ∈ Rd \ {0}, let
X+

r
= {x ∈ Rd|x′r > 0}, X−

r
= {x ∈ Rd|x′r < 0} and X0

r
= {x ∈ Rd|x′r = 0} be disjoint

subsets of X lying in the positive and negative open half-spaces generated by the linear subspace
normal to r, and in the hyperplane itself, correspondingly. Then a slight perturbation of r can
be found yielding r̃ with X+

r
⊆ X+

r̃
, X−

r
⊆ X−

r̃
and X0

r̃
= ∅.

Proof. We prove the existence of such r̃ by construction.
Without loss of generality we consider the projection of X and Hr = {x ∈ Rd|x′r = 0}

onto Sd−1. The projection of X will be just n points, name them XSd−1, and that of Hr will
be some Sd−2

r
= Hr ∩ Sd−1. Now, the task is to find some Sd−2

r̃
with XSd−1 ∩ Sd−2

r̃
= ∅.

Given any Sd−2
r

and some (d − 2)-dimensional rotation axis containing Sd−3
r,̃r ∈ Sd−2

r
with

Sd−3
r,̃r ∩ XSd−1 = ∅, one can always slightly rotate Sd−2

r
around Sd−3

r,̃r in a 2-dimensional plane

orthogonal to Sd−3
r,̃r , obtaining Sd−2

r̃
such that XSd−1 ∩ Sd−2

r̃
= ∅ holds. (Sd−3

r,̃r = Sd−2
r

∩ Sd−2
r̃

defines the axis around which a slight rotation of Sd−2
r

yields Sd−2
r̃

.) Now it suffices to construct
this Sd−3

r,̃r satisfying XSd−1 ∩ Sd−3
r,̃r = ∅. But this task is identical to the one being solved, just

in dimension lowered by one.
If d = 3, the task degenerates to finding a line l with {0} ∈ l, intersecting a unit circle Sd−2

on the unit sphere Sd−1 satisfying XSd−1 ∩ l = ∅, which is always doable. Further, recursively,
any d > 3 will be consequently reduced to d = 3. For d = 2 the construction is trivial as well,
and for d = 1 of no need.

Straightforward corollary.

Corollary 5.1. Under the conditions of Lemma 5.3 it holds: min{#X+
r̃
,#X−

r̃
} ≤

min{#(X+
r
∪X0

r
),#(X−

r
∪X0

r
)}.

Lemma 5.4. Given X = {x1,x2, ...,xn} ∈ Rd, assume that X ∩ {0} = ∅, X has affine
dimension d. Let a vector r ∈ Rd \ {0} generate the normal hyperplane H with 0 ∈ H
and H ∩ X = ∅, and denote X+

r
= {x ∈ Rd|x′r > 0}, X−

r
= {x ∈ Rd|x′r < 0} and

X0
r
= {x ∈ Rd|x′r = 0} = ∅. Then a slight perturbation of r can be found yielding r̃ and the

corresponding normal zero-hyperplane H̃ with #X0
r̃
≥ d − 1, X+

r̃
⊆ X+

r
and X−

r̃
⊆ X−

r
, i.e.

H can be rotated to some H̃ containing 0 and at least d− 1 points ∈ X, so that no point ∈ X
changes the side of the hyperplane.

Proof. We prove the existence of such r̃ by construction.
Set H0 = H . We rotate H0 consequently laying it on d − 1 points ∈ X . Define A = {0},

which is the axis set. Choose an arbitrary (d − 2)-dimensional subspace O1 with A ∈ O1.
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Rotate H0 in the plane orthogonal to O1, till it ‘meets’ (at least) one of the points ∈ X \H0,
obtain H1. Append A with one of the new points X ∩ (H1 \ H0). Continue, till (after step
d − 1) A contains d − 1 points ∈ X (and {0}), i.e. Hd−1 = H̃ , #(X ∩ H̃) ≥ d − 1. This is
ensured by the affine dimension d of X .

Based on the last lemma one can derive the following corollary.

Corollary 5.2. Under the conditions of Lemma 5.3, if additionally {0} ∪ X are in general
position, it holds:
min{#X+

r
,#X−

r
} = min

r̃∈R̃{#X+
r̃
,#X−

r̃
},

where R̃ = {r̂|X+
r
⊆ X+

r̂
, X−

r
⊆ X−

r̂
, r̂ ∈ Rd \ {0}}.

Now we can state and prove the main result.

Theorem 5.2. Given X = {x1,x2, ...,xn} ∈ Rd, assume X ∩ {0} = ∅ and that X has affine
dimension d. Then Algorithm 5.3 returns nD(0|X).

Proof. Let r ∈ Rd \ {0} be an arbitrary direction, let X+
r

= {x ∈ Rd|x′r > 0}, X−
r

= {x ∈
Rd|x′r < 0} and X0

r
= {x ∈ Rd|x′r = 0} be disjoint subsets of X lying in the positive and

negative open half-spaces generated by the zero-hyperplane normal to r, and in the hyperplane
itself, correspondingly. Then, according to Lemma 5.3, a slight perturbation of r can be found
yielding r̃ with X+

r
⊆ X+

r̃
, X−

r
⊆ X−

r̃
and X0

r̃
= ∅. Consider a set of all such dichotomies

SX = {s|s = (X+
r̃
, X−

r̃
)}, each characterized by r̃, and by ns

min = min{#X+
r̃
,#X−

r̃
}. From

Corollary 5.1, r̃ is at least as good a candidate for the Tukey depth as r, because points lying
in the closed half-space are accounted for, too. Then, it suffices to show that Algorithm 5.3
regards all s ∈ SX , i.e. that Algorithm 5.3 ensures nmin ≤ ns

min∀s ∈ SX .
Consider some s = (X+

r̃
, X−

r̃
) ∈ SX . According to Lemma 5.4, a rotation of r̃ to r̂, and

corresponding normal hyperplane Hr̂ containing at least d − 1 points ∈ X , can be found
yielding X+

r̂
= {x ∈ Rd|x′r̂ > 0}, X−

r̂
= {x ∈ Rd|x′r̂ < 0} and X0

r̂
= {x ∈ Rd|x′r̂ = 0}. As

#X0
r̂
≥ d− 1, all such Hr̂ are regarded by Algorithm 5.3 at least once.

We have X+
r̂

⊆ X+
r̃
, X−

r̂
⊆ X−

r̃
, and let ñmin = min{#X+

r̂
,#X−

r̂
}. Then ñmin should be

augmented by ñ+
min, the smallest number of points ∈ X0

r̂
one can get on one side – namely this

yielding ñmin – of Hr̂ by slight perturbation of r̂. ñmin + ñ+
min ≤ ns

min, because ñmin + ñ+
min is

the smallest number of points one can get on one side of the hyperplane preserving X+
r̂
⊆ X+

r̃

and X−
r̂
⊆ X−

r̃
, i.e. essentially almost the same hyperplane, just slightly rotated.

If X ∪ {0} are in general position then #X0
r̂
= d − 1, and the entire X0

r̂
can occur on the

side of a slightly rotated hyperplane Hr̂, that is opposite to the ñmin-side, and thus ñ+
min = 0.

If X ∪ {0} is not in general position, #X0
r̂
can be > d − 1, then ñ+

min = D(0|X0
r̂
). In this

case Algorithm 5.3 proceeds recursively till in each considered, possibly lower-dimensional,
hyperplane points are in general position or the trivial case of D1(0|·) is reached.

Based on Corollary 5.2, and due to the fact that, if {0} ∪ X are in general position the

condition on Step 3e is never true, one can derive the following corollary:

Corollary 5.3. Under conditions of Theorem 5.2, if additionally {0} ∪ X are in general
position, no recursion is needed in Algorithm 5.3.

From Theorem 5.2 it is clear that it is sufficient to regard all the hyperplanes based on 0

and d−1 points from X . There are
(

n
d−1

)
such hyperplanes. For each of them the normal vector

has to be found, which amounts to complexity O(d3). Then the data should be projected on

it, with complexity O(nd). This gives the complexity of the algorithm: O
(
nd−1(d3 + nd)

)
.
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Chapter 5 Experiments

Table 5.1: Computational times of the algorithm of Liu & Zuo (2014a) when calculating the
Tukey depth of the origin w.r.t. a sample of cardinality n in R3 drawn from the standard
normal distribution, in seconds.

d\n 40 80 160 320 640 1280 2560

3 0.935 3.675 15.493 74.148 449.614 3681.818 42116.390

5.4 Experiments

One of the most important characteristics of any algorithm is its execution time. Here we

compare the time consumption of both presented algorithms, and of that designed by Liu &

Zuo (2014a). The experiment is set similar to Liu & Zuo (2014a): the Tukey depth of z = 0

w.r.t. a d-variate sample of cardinality n drawn from the standard normal distribution is

computed. Liu & Zuo (2014a) also suggest to calculate the depth of other points. Here it

is not done for the following reason. If z ∈ conv(X), all the dichotomies are to be regarded

anyways. Thus, as long as the data are in general position, independent of where z is located,

the same number of algorithmic steps has to be performed. If z /∈ conv(X), its depth = 0,

and this can be assured by means of linear programming as described in Section 5.2.3. Also,

for time saving reasons, different to Liu & Zuo (2014a), we conduct only 10 executions of

the algorithm, as, to our experience, deviation of the execution time is negligible, also for the

above mentioned reasons. On the other hand, an experiment for one pair (n, d) and for one

algorithm never lasts longer than 24 hours (i.e., e.g., for n = 40 and d = 13 only two executions

of the combinatorial algorithm have been performed). We use processor Core i7-2600 (3.4 GHz)

having enough physical memory.

In Table 5.1 the execution times (in seconds) for d = 3 and n = 40, 80, 160, 320, 640, 1280,

2560 of the algorithm of Liu & Zuo (2014a) are reported. They are obtained using Matlab

source code kindly sent by Prof. Yijun Zuo and Dr. Xiaohui Liu. Table 5.2 presents execution

times (in seconds) of the linear algorithm from Section 5.2 (top) and of the combinatorial

algorithm from Section 5.3 (bottom). The sign “—” in the Tables means that the depth is not

computable at least once in 24 hours. Similarly this is not possible for d = 3 and n ≥ 5120

with the algorithm of Liu & Zuo (2014a), see Table 5.1 (but also with the proposed linear

algorithm, see Table 5.2). One can conclude that both presented algorithms are faster than

the algorithm of Liu & Zuo (2014a). The combinatorial algorithm is very efficient, especially

in higher dimensions. Note that for moderate n the growth of computational time decreases

with increasing dimension, which can be explained by the dominating combinatorial term in

the algorithmic complexity.

5.5 Concluding remarks

The paper presents two algorithms for computing the Tukey depth by finding a global minimum

over a finite range of variants. The task of computing the Tukey depth is NP-complete while all

separations of X by hyperplanes through z are regarded. The algorithms reflect two different
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Table 5.2: Computational times of the two proposed algorithms when calculating the Tukey depth of the origin w.r.t. a sample of cardinality
n in Rd drawn from the standard normal distribution, in seconds. Time for the linear algorithm is the upper number, for the combinatorial
algorithm it is the lower one.

d\n 40 80 160 320 640 1280 2560 5120 10240 20480

3 0.028 0.228 1.888 17.371 174.744 1789.335 18436.420 — — —
0.002 0.005 0.019 0.119 0.902 7.405 73.496 512.250 4124.849 32936.300

4 0.403 7.022 119.010 2035.505 35924.400 — — — — —
0.011 0.109 1.213 15.607 229.467 3627.886 60243.800 — — —

5 4.752 174.848 5974.114 — — — — — — —
0.125 2.619 59.017 1502.102 42874.300 — — — — —

6 48.170 3877.931 — — — — — — — —
1.159 51.062 2337.476 — — — — — — —

7 368.112 67897.800 — — — — — — — —
8.625 789.074 71564.600 — — — — — — —

8 2441.332 — — — — — — — — —
51.127 10358.740 — — — — — — — —

9 12703.730 — — — — — — — — —
261.044 — — — — — — — — —

10 58767.700 — — — — — — — — —
1156.536 — — — — — — — — —

11 — — — — — — — — — —
4262.319 — — — — — — — — —

12 — — — — — — — — — —
13547.800 — — — — — — — — —

13 — — — — — — — — — —
38890.400 — — — — — — — — —
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views at the depth’s calculation. First of them, the one based on the linear programming,

follows the traditions of cone segmentation of a finite-dimensional space and regards candidate

hyperplanes for the Tukey depth according to a first-breadth order on the unit sphere. It

employs the initial idea of Liu & Zuo (2014a) by identifying a facet using linear programming,

and by exploiting the fact that each point ∈ X changes the halfspace only once during the entire

execution of the breadth-first search algorithm. This yields a substantial acceleration. The

second algorithm makes use of the combinatorial nature of the depth regarding all candidates

chaotically, and by this it is fast.

Both algorithms require neither a general position assumption on the data, nor their pertur-

bation. Their straightforward modifications allow to account for weighted observations. The

linear algorithm saves memory by storing only two layers of the direction cones in RAM, and

the combinatorial one needs no huge storing structures at all. Because the hyperplane candi-

dates for the Tukey depth can be looked through independently, the combinatorial algorithm

can be parallelized in a very efficient way.

Both algorithms presented here can be modified to solve related tasks, such as computing

regression depth (Rousseeuw & Hubert, 1999) or finding a linear classification rule separating

two training classes with a minimal number of errors (=empirical risk), e.g. on the plane in the

α-procedure (Vasil’ev, 2003). Ghosh & Chaudhuri (2005a) investigate the connection between

Tukey (also regression) depth and binary supervised classification. In a different way, either of

the algorithms can be used for finding a hyperplane through a fixed point minimizing empirical

risk. When adding an artificial coordinate equaling zero for all observations and letting the

hyperplane go through (0′
d, 1)

′, say, its (d− 1)-dimensional trace corresponds to the risk mini-

mizing separation. After removing erroneous points, an optimal margin classifier (Boser et al.,

1992) can be applied to find the optimal separation hyperplane. High parallelization abilities

allow for finding the separating hyperplane that minimizes the empirical risk exactly, while by

a (say, polynomial) extension of the space nonlinear classification rules may be involved.

The ideas considered in this paper can be applied to a wider range of tasks. Thus, the

way of covering the space by a breadth-first search algorithm can be applied to many tasks

involving a cone segmentation. Application of the linear programming, used here, can be

a good alternative to the QHULL algorithm (used by Hallin et al. (2010), Paindaveine &

Šiman (2012a,b), Liu & Zuo (2014a,b)), while it allows to check whether a single point is a

vertex of the convex hull of a data cloud. For instance, in the linear algorithm, close to the

equatorial generations, after filtering already seen points and unreachable neighbors (of the

same generation), the number of points to be checked is halved. The approaches can be tried

to be extended for computing other depths of combinatorial nature and possessing the weak

projection property (Dyckerhoff, 2004), which is common for many depths.
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Chapter 6

Outlook

This dissertation covers depth-based classification in Chapters 2 through 4 and exact calcu-

lation of location depth in Chapter 5. Of course, many problems remain unsolved, and the

presented methods may be extended in several directions.

The key constituent of the DDα-classifier, which has been developed and investigated in

Chapters 2 through 4, is the α-separator, an adaptation of the α-procedure to the DD-plot.

Due to the fact that it is reasonable for the separating line in the DD-plot to contain the

origin, the time complexity of the α-separator in each DD-plane equals the time complexity of

quick sorting, and thus amounts to O
(
(m+ n) log(m+ n)

)
, i.e. it is very fast. It also inherits

desirable robustness from the α-procedure. The α-procedure, introduced by Vasil’ev (1991),

was designed to construct a small-dimensional space of highly efficient – in sense of supervised

classification – features, see Vasil’ev (2003). It is an inductive heuristic based on the principles

of reduction theory. During the last years similar ideas have been used, e.g., by Ferraty et al.

(2010) for choosing an optimal subset of arguments in functional classification and Croux et al.

(2013) to search for robust principle components. Different to the α-separator, and in absence

of the depth transform, the α-procedure is not quick, and in some cases can be computationally

quite involved. The reasons are: the hyperplane separating the DD-plot is anchored at a fixed

point, the origin, while this is not the case with the α-procedure; the dimension of the initial

space is usually > 2, in some cases polynomial extension is needed to fit the nonlinearity of the

separating rule. Theoretical properties of the α-procedure also constitute an area of further

research and are not less intriguing. Still to investigate is the Bayes optimality for continuous

and empirical distributions and precise cases and reasons for its violation.

Statistical depth functions find further applications in unsupervised classification. Jörnsten

et al. (2002) introduce the relative L1-depth (ReD), which is the difference between the depths

of an observation w.r.t. the own cluster and the highest among the others. The authors sug-

gest a clustering method based on the multivariate L1-median and use ReD to determine the

number of clusters. Jörnsten (2004) combines ReD with the silhouette width, i.e. the nor-

malized difference between the distance to the center of the closest among competing clusters

and that of the own. Application of this method together with a depth notion of local nature

may make it possible to allocate nonconvex clusters. The extension of clustering approaches

to functional data constitutes a rapidly developing field of study, see, e.g., Ferraty & Romain
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(2010), chapter by Báıllo, Cuevas and Fraiman for a survey. Using functional data depths,

clustering can be extended to infinite settings. On the other hand, a distance based clustering

algorithm, partition around medoids (PAM) say, can be applied by exploiting appropriately

defined distances between functions. For example, the Hausdorff distance between the func-

tions’ hypographs (Cuevas et al., 2013) is a promising measure of closeness; robustness and

computational issues are to be solved though. Using it in PAM together with the data depth

for determining the number of clusters, similar to Jörnsten et al. (2002), seems to be a rea-

sonable approach. In such a way the geometry of functions can be captured, and a notion of

functional depth, chosen and (or) adjusted for specific application, can make the data tell the

number of clusters.

In Chapter 4 a methodology of DD-plot-based classification of functional data is presented

and its efficiency is explored in a comparative study. The data sets used, though covering a

range of different problems connected with supervised functional classification, have a rather

demonstrative character. To distinguish more special application areas for classifiers of this

kind, further research could start from real problems for which the presented methodology

has a substantial edge over competitors. Besides that, our notion of functional data depth,

which can be adjusted for a particular application, needs additional theoretical development

and practical investigation. In particular, derivatives of higher order, possibly needing less

nodes, may be considered to extend deepness of consideration of functional dynamics with the

argument. Attention should also be payed to finding alternative ways of defining the numbers

of intervals to integrate over, and to size these. This information can be obtained from the

functions’ paths, based on functions’ variability or dispersion say, but also taking into account

application’s peculiarity.

Chapter 5 suggests two algorithms for exact computation of the location depth, exploiting

different principles. The first principle consists in the cone segmentation of the space and

subsequent application of the breadth-first search algorithm. It can be employed to calculate

any depth which – for each direction cone – possesses a known analytical form. This can also

be used for construction of depth-trimmed regions. The examples are: zonoid-depth trimmed

regions (Mosler et al., 2009), location-depth trimmed regions (Hallin et al., 2010, Paindaveine

& Šiman, 2012a,b), location depth (Liu & Zuo, 2014a), projection depth and its regions (Liu

& Zuo, 2014b). The principle can be applied to compute further depths and their central

regions, too. The second principle, regarding all combinations of some kind, can be modified

to compute another depth of combinatorial nature, say simplicial depth. Calculating location

depth in a (d + 1)-dimensional space may be modified to find the smallest number of errors

by a linear separation of two classes in Rd. After removing the errors, an optimal margin

classifier (Boser et al. (1992), or the generalized portrait algorithm of Vapnik & Chervonenkis

(1974)) can find the hyperplane itself in polynomial time. Thus, these algorithms can be

used to find the optimal risk-minimizing hyperplane in classification algorithms, for instance,

in the two- (or more)- dimensional linear spaces iterated by the projective invariant method

α-procedure (Vasil’ev, 2003).
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Chapter 6 Outlook

Based on the idea of Rousseeuw & Struyf (1998), Rainer Dyckerhoff developed an algorithm

computing the location depth in any dimension. This proceeds recursively projecting data on

the lower-dimensional subspaces till the two-dimensional space is achieved, and then applying

the algorithm of Rousseeuw & Ruts (1996) for the bivariate location depth, which amounts

to the complexity O(nd−1 logn) for a sample of size n in Rd. (Recall, the complexity of the

combinatorial algorithm is O
(
nd−1(d3 + nd)

)
.) Latest comparative studies have shown, that

this algorithm is particularly efficient when n >> d, while for moderate ratio n
d
, vice versa, the

combinatorial algorithm demonstrates high computational speed. This points onto developing

a hybrid algorithm, choosing one of the two depending on n and d. The ongoing work by

Dyckerhoff & Mozharovskyi (2014) regards these issues.

Some depths, having attractive properties, such as robustness or the ability to reflect asym-

metricities of a distribution, etc., cause substantial computational burden. The examples are

location or projection depth. Dyckerhoff (2004) introduced the weak projection property : a

depth possessing this equals the minimum univariate depth over projections onto lines. Depths

satisfying it, e.g. Mahalanobis, location, projection depth, can be approximated from above by

minimizing univariate depths in projections on randomly drawn directions. Cuesta-Albertos

& Nieto-Reyes (2008) investigate this for the location depth, using uniform distribution on the

unit sphere for the random directions. Here the so-called random Tukey depth is applied in

Section 2.7 and in Chapter 3. Further questions arise: In which way should the directions be

generated? How many of them are needed? How can their depths be distributed? Instead of

the random search, data depth satisfying the weak projection property can also be approxi-

mated by means of nonconvex minimization on the unit sphere. The fact that for many depth

notions computation time increases rapidly with the number of observations, gives rise to an-

other idea. The depth may be computed exactly in the same space for a random subsample

of smaller cardinality. The decision about the exact depth can then be made based on the

obtained distribution of the subsamples’ depths. The advantages of this approach are that

the depth is approximated via exactly computed depths and the values obtained during the

approximation can lie both above and below the real depth.
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López-Pintado, S. and Romo, J. (2011). A half-region depth for functional data. Compu-

tational Statistics and Data Analysis 55 1679–1695.
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