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Binary supervised classification
Notation:

I Given: for the random pair (X ,Y ) in Rd × {0, 1} consisting of a
random observation X and its random binary label Y (class), a
sample of n i.i.d.: (x1, y1), ..., (xn, yn).

I Goal: predict the label of the new (unseen before) observation x .

I Method: construct a classification rule:

g : Rd → {0, 1} , x 7→ g(x) ,

so g(x) is the prediction of the label for observation x .

I Criterion: of the performance of g is the error probability:

P
(
g(X ) 6= Y

)
=

∫
X

1
(
g(x) 6= Y

)
µX (dx) .

where µX is the probability measure of X .

I The best solution: is to know the distribution of (X,Y):

g(x) = E[Y |X = x ] .



Bayes classification rule
Bayes formula for the probability of event A conditioned on event B:

P(A|B) =
P(B|A)P(A)

P(B)
.

In the context of binary supervised classification:

P(Y = 0|X = x) =
P(X = x |Y = 0)P(Y = 0)

P(X = x)

and

P(Y = 1|X = x) =
P(X = x |Y = 1)P(Y = 1)

P(X = x)
.

When deciding which class to assign x we choose “1” if

P(Y = 1|X = x) > P(Y = 0|X = x) or
P(Y = 1|X = x)

P(Y = 0|X = x)
> 1 .

So choose “1” if
P(X = x |Y = 1)P(Y = 1)

P(X = x |Y = 0)P(Y = 0)
=

f1(x)π1

f0(x)π0
> 1 and “0” if not .



Iris data

Fisher’s iris data: is this the same flower?

Iris setosa Iris versicolor



Iris data

Iris setosa

Sepal length (cm) Sepal width (cm)

5.1 3.5
4.9 3
4.7 3.2
4.6 3.1
5 3.6

5.4 3.9
4.6 3.4
5 3.4

4.4 2.9
... ...
... ...
... ...
4.6 3.2
5.3 3.7
5 3.3

Iris versicolor

Sepal length (cm) Sepal width (cm)

7 3.2
6.4 3.2
6.9 3.1
5.5 2.3
6.5 2.8
5.7 2.8
6.3 3.3
4.9 2.4
6.6 2.9
... ...
... ...
... ...
6.2 2.9
5.1 2.5
5.7 2.8



Iris data
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Linear discriminant analysis

I Assumptions: Both classes are normally distributed with the same
covariance matrix, i.e. X |Y = j ∼ N(µj ,Σj) , j = 0, 1 or

fj(x) =
1√

(2π)d det(Σj)
e−

1
2 (x−µj )

T Σ−1
j (x−µj ) , for j = 0, 1

and Σ0 = Σ1 = Σ .

I Plug-in into Bayes:

g(x) =

{
1 if P(Y=1|X=x)

P(Y=0|X=x) > 1 ,

0 else ;

or g(x) = 1
(

log
π1f1(x)

π0f0(x)
> 0
)
.



Linear discriminant analysis

log
π1f1(x)

π0f0(x)
= log

π1

π0
+ log

1√
(2π)d det(Σ1)

e−
1
2 (x−µ1)T Σ−1

1 (x−µ1)

1√
(2π)d det(Σ0)

e−
1
2 (x−µ0)T Σ−1

0 (x−µ0)

= log
π1

π0
+ log

√
det(Σ0)√
det(Σ1)

+
1

2
(x − µ0)TΣ−1

0 (x − µ0)− 1

2
(x − µ1)TΣ−1

1 (x − µ1)

= log
π1

π0
+ log

√
det(Σ0)√
det(Σ1)

+
1

2

(
xTΣ−1

0 x − xTΣ−1
0 µ0 − µT

0 Σ−1
0 x + µT

0 Σ−1
0 µ0

)
− 1

2

(
xTΣ−1

1 x − xTΣ−1
1 µ1 − µT

1 Σ−1
1 x + µT

1 Σ−1
1 µ1

)
= ...

Exploit Σ0 = Σ1 = Σ to simplify.



Linear discriminant analysis

log
π1f1(x)

π0f0(x)
= log

π1

π0
+ log

√
det(Σ)√
det(Σ)

+
1

2

(
xTΣ−1x − xTΣ−1µ0 − µT

0 Σ−1x + µT
0 Σ−1µ0

)
− 1

2

(
xTΣ−1x − xTΣ−1µ1 − µT

1 Σ−1x + µT
1 Σ−1µ1

)
= log

π1

π0
+

1

2
µT

0 Σ−1µ0 −
1

2
µT

1 Σ−1µ1

+
1

2
xTΣ1−(µ1 − µ0) +

1

2
(µ1 − µ0)TΣ−1x

= log
π1

π0
− 1

2
(µ1 − µ0)TΣ−1(µ1 − µ0)

+ xTΣ−1(µ1 − µ0) .



Linear discriminant analysis (algorithm)

I Learning:

Let
I I0 = {i : yi = 0 , i = 1, ..., n} (n0 = #I0) ;

I I1 = {i : yi = 1 , i = 1, ..., n} (n1 = #I1) .

Estimate
I Priors: p0 = n0

n
, p1 = n1

n
;

I Means: x̄0 = 1
n0

∑
i∈I0 x i , x̄1 = 1

n1

∑
i∈I1 x i , (x̄1 − x̄0) ;

I Common covariance matrix:

S = 1
n−2

(∑
i∈I0 (x i − x̄0)(x i − x̄0)T +

∑
i∈I1 (x i − x̄1)(x i − x̄1)T

)
.

I Classification: For a new observation x

g(x) =


1 if log p1

p0
− 1

2 (x̄1 − x̄0)TS−1(x̄1 − x̄0)

+xTS−1(x̄1 − x̄0) > 0 ,

0 otherwise .



Linear discriminant analysis (iris data)
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Linear discriminant analysis (iris data)
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k-nearest neighbors (algorithm)
For x ∈ Rd and some integer 0 < k < n, let a set Ik(x) index the
k-nearest neighbors of the point x :

Ik(x) = {i(1), ..., i(k)} ,

where ‖x − x i(1)‖ ≤ ‖x − x i(2)‖ ≤ ... ≤ ‖x − x i(n)‖ is an ascending order.
k is to be set, e.g. chosen by the means of cross-validation.

Then the k-nearest neighbors (kNN) algorithm classifies a new
observation as follows:

I Calculate classes’ proportion in the k-neighborhood:

pk(x) =

∑
i∈Ik (x) 1(yi = 1)∑
i∈Ik (x) 1(yi = 0)

.

I Assign the class based on majority:

g
(
x
)

=

{
1 if pk(x) > 1 ,

0 otherwise .

I Deal with ties, e.g. decide randomly, or choose odd ks only.



k-nearest neighbors (iris data, k=9)
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k-nearest neighbors classifier (universal consistency)

Under certain assumptions, kNN is universally consistent, i.e. approaches
the classification error of the Bayes classifier with increasing length of the
training sample n.

Theorem (Stone, 1977)
If k →∞ and k

n → 0 then the kNN in Rd with Euclidean distance is
universally consistent, i.e.

lim
n→∞

E
[∫

X

(
gn(x)− E[Y |X = x ]

)2
µX (dx)

]
= 0 ,

for any probability measure of (X ,Y ).

In general for kernel-based methods with h being the bandwidth:

Theorem (Devroye-Krzyżak, 1989)
If h→ 0 and nhd → +∞ then the kernel-based classifier is universally
consistent.



Rate of convergence

Nonparametric methods suffer from the curse of dimensionality: if the
number of exploratory variables is large, the spherical neighborhood is
filled poorly, which reduces the rate of convergence.

Consider the kNN regression estimate:

f̂ (x) =
1

k

∑
i∈Ik (x)

yi .

Theorem (Gyöfri, Kohler, Krzyżak, Walk, 2002)
If the regression function is Lipschitz continuous then for the kNN
estimator it holds

E
[∫

X

(
f̂n(x)− E[Y |X = x ]

)2
µX (dx)

]
= O(n−

2
d+2 ) .

In practice non-parametric estimators possess poor performance in
high-dimensional spaces.



Possible solution: aggregation methods

Aggregation methods allow, to a certain extent, deal with

1. curse of dimensionality;

2. sensibility of the method w.r.t. the choice of parameters;

3. preserve previous properties while being computationally
tractable.

These proposed approaches are based on the aggregation, i.e.:

1. construct an ensemble of g1, ..., gB of weak learning algorithms;

2. aggregate them into the final classifier

g(x) =
1

B

B∑
k=1

gk(x) .

The key concepts:

I bagging and random forests;

I boosting.
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Classification tree (algorithm)
Growing a tree (training)
Input:

I Training sample
(
(x1, y1), ..., (xn, yn)

)
= Dn ∈ Rd × {0, 1}.

I Measure of impurity Q(m)(T ) for node m of tree T .
I Stopping criteria S (m)(T ) for node m of tree T .

1. Define the root node by the region R(0) containing the entire
sample, set m = 0.

2. If S (m)(T ) is fulfilled then stop for this node.

3. Find a split (one-variable threshold) diving node region R(m) into
two nodes with subregions R(mL) and R(mR ) to minimize Q(m)(T ).

4. Repeat steps 2–3 for all leaves till global stopping.

Output: The tree T .

Descending the tree (classification)
I Descend the tree till a terminal node, in each node m classify the

new observation x ∈ Rd to class k(m)

k(m) = argmax
j∈{0,1}

∑
i∈R(m)

I (yi = j) .



Classification tree (illustration)
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Classification tree (illustration)
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Classification tree (illustration)
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Classification tree (illustration)
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Classification tree (illustration)
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Classification tree (illustration)
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Classification tree (illustration)
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Classification tree (illustration)
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Classification tree (illustration)
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Classification tree: choice of impurity measure
Let n(m) = #{x | x ∈ R(m)} be the number of observations in region
R(m). Then the classification accuracy of node m classifying to class k is

p̂
(m)
k =

1

n(m)

∑
x i∈R(m)

I (yi = k) .

Possible choices for Q:
I Misclassification error:

Q(m)(T ) =
n(mL)

n(m)
(1− p̂

(mL)
k(mL)) +

n(mR )

n(m)
(1− p̂

(mR )
k(mR )) ,

I Gini index:

Q(m)(T ) =
n(mL)

n(m)
2p̂

(mL)
k (1− p̂

(mL)
k ) +

n(mR )

n(m)
2p̂

(mR )
k (1− p̂

(mR )
k ) ,

I Cross-entropy (deviance):

Q(m)(T ) = −
(n(mL)

n(m)

(
p̂

(mL)
k log p̂

(mL)
k + (1− p̂

(mL)
k ) log(1− p̂

(mL)
k )

)
+
n(mR )

n(m)

(
p̂

(mR )
k log p̂

(mR )
k + (1− p̂

(mR )
k ) log(1− p̂

(mR )
k )

))
.



Classification tree: iris data
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Classification tree: iris data

Minimum size of splittable node = 25

|

Sepal.Length>=6.15

Sepal.Length>=7.05

Sepal.Width>=2.4

Sepal.Length< 6.95

Sepal.Length< 6.15

Sepal.Length< 7.05

Sepal.Width< 2.4

Sepal.Length>=6.95

0
44/44

0
34/15

0
12/0

0
22/15

0
22/13

0
22/12

1
0/1

1
0/2

1
10/29



Classification tree: iris data
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Classification tree: iris data
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Classification tree: iris data
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Classification tree: iris data
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Classification tree: iris data
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Classification tree: iris data
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Classification tree: iris data
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Classification tree: iris data
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Classification tree: iris data
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Classification tree: iris data
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Classification tree: iris data
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Classification tree: iris data
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Classification tree: iris data
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Classification tree: iris data
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Reminder: classification tree

s 1

s 2

s 3

s 4

x  1

x  2

x < s 2 2

x < s 1 1 x ≥ s 1 1

x ≥ s 2 2

x < s 3 1 x ≥ s 3 1

x < s 4 2 x ≥ s 4 2



Regression tree

I Regression tree is grown in a (very) similar to the classification
tree manner with slight changes:

I Suppose that a partition into M regions R1,R2, ...,RM is given.

I The response is then modeled as a constant cm in each region:

f (x) =
M∑

m=1

cm1(x ∈ Rm) .

I Adopt sum of squares as impurity measure:

Q(m)(T ) =
n(mL)

n(m)

∑
x i∈RmL

(yi − ĉmL
)2 +

n(mR )

n(m)

∑
x i∈RmR

(yi − ĉmR
)2 .

I One can check that the optimal choice of ĉm for region Rm is the
average over Rm:

ĉm =
1

n(m)

∑
x i∈Rm

yi ,

with n(m) being the number of observations x i ∈ Dn in region Rm.



Regression tree (illustration)
Function surface
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Regression tree (illustration)
Sample points
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Regression tree (illustration)
Regression tree surface, maxdepth = 1
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Regression tree (illustration)
Regression tree surface, maxdepth = 2
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Regression tree (illustration)
Regression tree surface, maxdepth = 3
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Regression tree (illustration)
Regression tree surface, maxdepth = 4
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Classification tree: tuning and properties

I A possible (and wide-spread) choice for the stopping criteria S is to
restrict the number of points in region R(m) to be split to some
constant nmin:

S (m)(T ) = I (n(m) < nmin) .

I Often the classification tree is constructed in two stages:

1. nmin is set very small and the tree is grown.
2. Pruning of tree is conducted based on some parameter α, which

consists in choosing a subtree that minimizes a cost-complexity
criterion, e.g.

Q(m)(T ) =

#T∑
m=1

n(m)Q(m)(T ) + α#T ,

where #T stands for the number of nodes in the tree.
Pruning parameter α is chosen by the means of cross-validation.

I The key advantage of the classification tree is its interpretability,
as the feature space partition is fully described by a single tree.
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The key idea

I The “Wisdom of Crowds” (Surowiecki, 2004): The collective
knowledge of a diverse and independent body of people typically
exceeds the knowledge of any single individual, and can be harnessed
by voting.

I Bagging implements this way of thinking standing for a range of
methods following the general idea introduced by Léo Breiman
(1996).

I Bagging is a shortcut for Bootstrap Aggregating.

I The main idea is to construct a single estimator that consists of a
number of basic classifiers (weak learners) (taught on a
bootstrapped samples) aggregated by averaging (voting).



Motivation (regression)

I Consider the standard regression setting

Y = g(X ) + ε.

I The single bagged estimator

ĝB(x) =
1

B

B∑
k=1

gk(x)

is the estimator of g obtained by aggregating estimators g1, ..., gB .

I gk(x) = gk(x ; (X1,Y1), ..., (Xn,Yn)) as well as
ĝB(x) = ĝB(x ; (X1,Y1), ..., (Xn,Yn)) are random variables.

I One can measure the improvement of aggregating by comparing
performance of ĝB(x) and those of gk(x), k = 1, ...,B in terms of
bias and variance.



Bias and variance (regression)

I Assumption: Random variables g1, ..., gB are i.i.d.

I Bias:
E[ĝB(x)] = E[gk(x)] .

Conclusion
Aggregation does not modify the bias.

I Variance:

V[ĝB(x)] =
1

B
V[gk(x)] .

Conclusion
Aggregation reduces the variance.



Motivation (classification)
I Let g1, ..., gB be an ensemble of basic classifiers.
I Assumption: Each basic classifier has an independent error ε < 0.5

for some observation x (let y = 1 being the correct decision):

P
(
gk(x) 6= 1

)
= ε < 0.5 for k = 1, ...,B ,

g1(x), ..., gB(x) are i.i.d .

I Further, let the aggregated classifier be

g agg (x) = 1
( 1

B

∑
k

gk(x) > 0.5
)
.

I Then
∑

k gk(x) will have binomial distribution∑
k

gk(x) ∼ Bin(B, 1− ε)

and classification error of x will decrease with increasing B:

P
(
g agg (x) 6= 1

)
=

B/2∑
k=1

(
B

k

)
(1− ε)kεB−k −−−−→

B→∞
0 .



Motivation (classification)
Theorem (Chernoff-Hoeffding, Bernoulli scheme)
If X1, ...,Xn are i.i.d. random variables taking values in {0, 1}, then for
any η > 0 it holds

P
(

E[Xi ]−
1

n

n∑
i=1

Xi > η
)
< exp(−2η2n) .

One can express classification error as

P
(
g agg (x) 6= 1

)
= P

( 1

B

B∑
k=1

gk(x) < 0.5
)
.

By a sequence of simple transformations we obtain

(1− ε)︸ ︷︷ ︸
E[g1(x)]

− 1

B

B∑
k=1

gk(x) > 0.5− ε .

Applying the Chernoff-Hoeffding inequality gives

P
(
g agg (x) 6= 1

)
< exp

(
−1

2
B(1− 2ε)2

)
.



Motivation

I The derivations from above exploit the assumption that random
variables g1(x), ..., gB(x) are independent and identically
distributed.

I As the classifiers g1, ..., gB are constructed using the same training
sample Dn, the assumption of independence is not really credible.

I The idea is thus to introduce a source of randomness into the
sample used to train each single classifier gk , k = 1, ...,B.

I Resort to the idea of the bootstrap.



Bagging (algorithm)

Training
Input:

I Training sample
(
(x1, y1), ..., (xn, yn)

)
= Dn ∈ Rd × {0, 1}.

I Basic classifier g(·).

I Number of estimators to aggregate B.

For k = 1, ...,B

1. Draw a sample Dk
n from Dn using bootstrap.

2. Learn gk on Dk
n .

Output: The aggregated classifier g agg (·) = 1
(

1
B

∑B
k=1 gk(·) > 0.5

)
.

Classification
I Classify the new observation x as

g agg (x) = 1
( 1

B

B∑
k=1

gk(x) > 0.5
)
.



Drawing bootstrap samples

I Bootstrap is a technique based on random sampling, which allows
for estimating the sampling distribution of almost any statistics.

I Bootstrap drawings are represented by B random variables θk ,
k = 1, ...,B.

I Bootstrap drawings are usually conducted with the same
distribution independently, i.e. θ1, ..., θB are i.i.d. according to the
same distribution θ.

I In general for the sample consisting of n observations, two
techniques are used to draw bootstrap samples:

I draw (choose randomly) n observations with replacements,
I draw (choose randomly) l < n observations without replacement.

I Thus aggregated classifiers contain two sources of randomness:
I due to the Dn being a random draw from distribution of (X ,Y ),
I due to the bootstrap drawing.



Choice of the parameters

I There are two choices to be done:
I base classifier g(·),
I number of bootstrap iterations B.

I W.r.t. the law of large numbers we have

lim
B→∞

g agg (x) = lim
B→∞

1
( 1

B

B∑
k=1

gk(x) > 0.5
)

= 1
(

lim
B→∞

1

B

B∑
k=1

g(x , θk ,Dn)
)

= 1
(
Eθ[g(x , θ,Dn)]

)
.

I So g agg stabilizes with increasing B converging to the bagging
estimator 1

(
Eθ[g(x , θ,Dn)]

)
.

I Thus, B should be chosen as large as possible, regarding
computational capabilities.



Bagging classification tree: iris data
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Bagging classification tree: iris data
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Bagging classification tree: iris data
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Bagging classification tree: iris data
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Bagging classification tree: iris data
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Properties and recommendations

I Bagging a good classifier can make it better, bagging a bad classifier
can make it worse.

I Bagging may substantially improve performance of (unstable)
order-correct base classifiers, i.e. those for which holds

argmax
y

P
(
g(x) = y

)
= argmax

y
P(y | x) .

I Significant improvement by bagging is not expected on large data
sets because there bootstrap samples are very similar.

I Bagging reduces interpretability of the classifier because any simple
structure in the model is lost.



Normal2 data
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Normal2 data
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Bagging LDA: Normal2 data
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Bagging classification tree: Normal2 data
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Bagging classification tree: Normal2 data
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Bagging classification tree: Normal2 data
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Bagging classification tree: Normal2 data
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The key idea

I Random forest is a collection of trees.

I Random forests have been introduced by Léo Breiman in the early
2000s. The following web-page is dedicated to random forests:
http://www.stat.berkeley.edu/~breiman/RandomForests/

I Random forests can be seen as a modified version of bagging as
they also aggregate trees taught on the bootstrap samples.

I Let Tk(x), k = 1, ...,B be tree-similar classifiers
(Tk : Rd → {0, 1}). The random forest classifier assigns new
observation x by aggregating these:

TRF (x) = 1
( 1

B

B∑
k=1

Tk(x) > 0.5
)
.

http://www.stat.berkeley.edu/~breiman/RandomForests/


The key idea

s 1

s 2

s 3

s 4

x  1

x  2

x < s 2 2

x < s 1 1 x ≥ s 1 1

x ≥ s 2 2

x < s 3 1 x ≥ s 3 1

x < s 4 2 x ≥ s 4 2

I To reduce correlation between trees Breiman proposes to select
the best variable when splitting each node among m randomly
chosen variables out of all d variables.



Random forests (algorithm)
Training
Input:

I Training sample
(
(x1, y1), ..., (xn, yn)

)
= Dn ∈ Rd × {0, 1}.

I Number of trees B; minimum number of observations for a node to
be split nmin; impurity criterion Q.

I number of variables to use when splitting m ∈ {1, ..., d}.
For k = 1, ...,B

1. Draw a sample Dk
n from Dn using bootstrap.

2. Learn the classification tree Tk on Dk
n ; each time when splitting a

node, search optimal variable among m variables randomly chosen
out of all d variables.

Output: The aggregated classifier TRF (·) = 1
(

1
B

∑B
k=1 Tk(·) > 0.5

)
.

Classification
I Classify the new observation x as

TRF (x) = 1
( 1

B

B∑
k=1

Tk(x) > 0.5
)
.



Random forest (regression): illustration
Sample points
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Random forest (regression): illustration
Random forest surface, B = 10
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Random forest (regression): illustration
Random forest surface, B = 50
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Random forest (regression): illustration
Random forest surface, B = 100
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Random forest (regression): illustration
Random forest surface, B = 500
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Random forests: spam data
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Properties
I There are two introduced sources of randomness:

I B bootstrap samples,

I m variables randomly chosen out of d when splitting each tree
node.

I The method is simple, implementations are available in numerous
software.

I The classifier is known for relatively high speed of training and
classification.

I The classifier is known for its relatively precise prediction on
complex data, i.e. those including many variables, missing entries,
etc.

I Classifier has limited sensibility w.r.t. to the choice of
parameters: B, m, nmin.



Choice of number m of variables for a node
I Parameter m is related to the dependence between single trees.

I The lower is m:

I to larger extent the variables at which to split each node are chosen
randomly,
thus the more different are single trees,
thus the more independent are single trees,

I the lower is the prediction accuracy of each single tree,
and thus of the entire forest as well.

I The higher is m: vice versa.

I It is recommended to check the performance of the random forests
for different choices of m.

I The inventors recommend m = b
√
dc

(the default value in R-package randomForest).



Random forests: spam data
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Performance and interpretation
I It is desirable to measure the performance of the random forests, as

of any other classification technique, in terms of the error probability:

R(X ,Y ) = P
(
TRF (X ) 6= Y

)
.

I As usual, the error can be measured:

I For a probability distribution: by a simulation study, i.e. train TRF

and measure its classification error for a number of simulated data
sets.

I For given data: by splitting data into training and test subsets, by
iterating this splitting if data are small, or by cross-validation.

I Random forests offer an additional possibility to directly estimate
classification error exploiting the out-of-bag (OOB) principle.

I The same idea can be extended from sample points to variables
allowing to measure variable importance.



Out-of-bag error

I For each pair (x i , yi ) from Dn, let Ii be the set of indices of trees
whose bootstrap samples D·n do not contain this observation.

I By these trees, observation x i is then classified as

ŷi =
1

#Ii

∑
k∈Ii

Tk(x i ) .

I Averaging over all observations x i , i = 1, ..., n from Dn gives the
out-of-bag estimate of the error rate:

ROOB =
1

n

n∑
i=1

1
(
ŷi 6= yi

)
.



Random forests: spam data
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Importance of a variable
I For a bootstrap sample Dk

n associated with the kth tree, let Dk−
n be

the subset of training sample not contained in Dk
n , i.e. it holds

Dk
n ∪ Dk−

n = Dn and Dk
n ∩ Dk−

n = ∅.
I Then, let ROOB(k) be the classification error estimated on this subset

Dk−
n :

ROOB(k) =
1

#Dk−
n

∑
x∈D−k

n

1
(
Tk(x) 6= yi

)
.

I Further, let Dk−
n (j) be the same subset Dk−

n where the values of
variable j ∈ {1, ..., d} have been randomly perturbed, and
measure the error from above on this perturbed subset:

ROOB(k,j) =
1

#Dk−
n (j)

∑
x∈D−k

n (j)

1
(
Tk(x) 6= yi

)
.

I The importance of variable j can thus be measured (by averaging
over all B trees) as:

Imp(Xj) =
1

B

B∑
k=1

(ROOB(k,j) − ROOB(k)) .



Random forests: spam data
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Consistency of the purely random forest classifier

Define the purely random tree classifier T pr as follows:

I The support of X (and thus the root node of T pr ) is [0, 1]d .

I At each step, the leaf is chosen uniformly at random among all
existing leaves.

I At each node, the split variable j is chosen uniformly at random
among 1, ..., d .

I The selected cell is split at a random location, chosen according to a
uniform random variable on the length of the chosen side of the
selected cell.

I The procedure is repeated k times where k ≥ 1 is fixed in advance.

I The only data driven element is the class label of the leaf, chosen
due to the majority of the observations contained in it.

Theorem (Biau, Devroye, Lugosi, 2008)
Assume that the distribution of X is supported on [0, 1]d . Then the

purely random forest classifier T prRF
B = 1

(
1
B

∑B
k=1 T

pr (·,Dn)
)

(as well as

limB→∞ T prRF
B ) is consistent whenever k →∞ and k

n → 0 as k →∞.



Consistency of the scale-invariant random forest classifier

Define the scale-invariant random tree classifier T si as follows:

I Take the purely random tree classifier.

I Let the root node be the entire space Rd .

I Define the node-cutting procedure as follows:
if the cell (node) m contains nm points x1, ..., xnm , then the random
index I is chosen uniformly from the set {0, 1, ..., nm}, and the cut is
performed in the chosen variable between the points x I and x I+1.

Theorem (Biau, Devroye, Lugosi, 2008)
Assume that the distribution of X has non-atomic marginals in Rd . Then
the scale-invariant random forest classifier T siRF

B = 1
(

1
B

∑B
k=1 T

si (·,Dn)
)

(as well as limB→∞ T siRF
B ) is consistent whenever k →∞ and k

n → 0 as
k →∞.



Consistency of bagging

Remind:

I Bagging classifier:

g agg
B (x) = 1

( 1

B

B∑
k=1

gk(x , θk ,Dn) > 0.5
)
.

I Averaged classifier (the limit of the bagging classifier):

lim
B→∞

g agg
B (x) = 1

(
Eθ[g(x , θ,Dn)]

)
.

with θ being a random variable delivering a bootstrap sample of size
Bin(n, qn) (without replacement), and qn ∈ [0, 1].

Theorem (Biau, Devroye, Lugosi, 2008)
Assume that the classifier g is consistent for a certain distribution
(X ,Y ). Then the bagging classifier g agg

B and its limit 1
(
Eθ[g(x , θ,Dn)]

)
are also consistent if nqn →∞ as n→∞.



Thank you for your attention!

Thank you for your attention!
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