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Abstract

A procedure, called α-procedure, for the efficient automatic clas-
sification of multivariate data is described. It is based on a geometric
representation of two learning classes in a proper multi-dimensional
rectifying feature space and the stepwise construction of a separating
hyperplane in that space. The dimension of the space, i.e. the number
of features that is necessary for a successful classification, is deter-
mined step by step using 2-dimensional repères (linear subspaces). In
each step a repère and a feature are constructed in a way that they
yield maximum discriminating power. Throughout the procedure the
invariant, which is the object’s affiliation with a class, is preserved.

1 Introduction

A basic task of pattern recognition consists in constructing a decision
rule by which objects can be assigned to one of two given classes. The
objects are characterized by a certain number of real-valued proper-
ties. The decision rule is based on a trainer’s statement that states for
a training sample of objects, whether they belong to class V1 or class
V2. Many procedures are available to solve this task, among them bi-
nary regression, parametric discriminant analysis, and kernel methods
like the SVM; see e.g. Hastie et al. (2009).

A large part of nonparametric approaches search for a separat-
ing (or rectifying) hyperplane dividing the two training classes in a
sufficiently high-dimensional feature space. In doing so we face the
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problem that the ‘competencies’ of measured properties (forming the
axes of the original space) are unknown. Even more, we also do not
know the correct scale of a property.

Figure 1: Instable solution for the separation of the classes (left). The
selection of an informative property (right).

Very often these uncertainties lead to a situation where the com-
plete separation of the patterns (or classes) of a training sample be-
comes difficult (Fig. 1, left). All these factors can cause a very com-
plex separating surface in the original space which correctly divides
the classes of the training sample but works rather poorly in case of
new measured data. The selection of a more ‘informative’ property
(Fig. 1, right) can give less intricate and thus more stable decisions.

The α-procedure (Vasil’ev (2003), Vasil’ev (2004), Vasil’ev (1969),
Vasil’ev (1996) and Vasil’ev and Lange (1998)) uses the idea of a
general invariant for stabilizing the selection of the separating plane.
The invariant is the belonging of an object to a certain class of the
training sample. The α-procedure - using repères - performs a step-
by-step search of the direction of a straight line in a given repère that
is as near as possible to the trainer’s statement, i.e. separates best the
training sample. It is completely nonparametric. The properties of
the objects which are available for the recognition task are selected in
a sequence one by one. With the most powerful properties a new space
of ‘transformed features’ is constructed that is as near as possible to
the trainer’s statement.

2 The α-procedure

First, we perform some pre-selection, taking into further considera-
tions only those properties pq, q = 1, . . . ,m, whose values are com-
pletely separated or have some overlap as shown in Fig. 2. Next, we

2



define the discrimination power or separating power of a single prop-
erty pq as

Figure 2: Classification by a single property pq, with l = 15, cq = 6.

F (pq) =
cq
l
, (1)

where l is the length of the training sample (= number of objects) and
cq is the number of correctly classified objects.

We set a minimum admissible discrimination power Fmin, and at
the first step select any property as a possible feature whose discrimi-
nation power exceeds the minimum admissible one:

F (pq) > Fmin (2)

For the synthesis of the space, we select step-by-step those features
that have best discrimination power. Each new feature shall increase
the number of correctly classified objects. For this, we use the follow-
ing definition of the discrimination power of a feature, selected at step
k:

F (xk) =
ωk − ωk−1

l
=

∆ωk

l
, ω0 = 0, (3)

where ωk−1 is the accumulated number of correctly classified objects
before the k-th feature was selected and ωk is the same after it was
selected.

At Stage 1 we select a property having best discrimination power
as a basis feature f0 (= first axis) and represent the objects by their
values on this axis; see Fig. 3.

At Stage 2 we add a second property pk to the coordinate system
and project the objects to the plane that is spanned by the axes f0
and pk. In this plane a ray originating from the origin is rotated up
to the point where the projections of the objects onto this ray provide
the best separation of the objects. The resulting ray, characterized
by its rotation angle α, defines a possible new axis. We repeat this
procedure for all remaining properties and select the property that
gives the best separation of the objects on its rotated axis, which is
denoted as f̃1. This axis is taken as the first new feature, and the
respective plane as the first repère; see Fig. 4.
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Minimum of misclassifications of objects !

Figure 3: α-procedure, Stage 1.

Figure 4: α-procedure, Stage 2.

At Stage 3 we regard another property pj that has not been used
so far and define the position of the objects in a new plane that is built
by the axes f̃1 and pj. Again we consider a ray in this plane and turn
it around the origin by the angle α until the projections of the objects
onto this axis give the best separation. We repeat this procedure for
all remaining properties and select the best one, which, together with
f̃1 forms the second repère (Fig. 5). In our simple example this feature
already leads to a faultless separation of the objects.

If all properties have been used but no complete separation of all
objects reached, a special stopping criterion as described in Vasil’ev
(1996) is to be used.

3 Some formulae

As we see from the description of the idea, the procedure is the same
at each step except for the first basic step defining f0.

Let us assume that we have already selected k−1 features. We will
use the symbol x̃i,(k−1), i = 1, ..., l, for the projections of the objects
onto the feature fk−1 and ωk−1 as the number of already correctly
classified objects (Fig. 6). For the next step k we have to compute
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Figure 5: α-procedure, Stage 3.

the projection x̃i,(k) = ρi cos(βi + αq) for all remaining properties
pq, where x̃i,(k−1) is the value of feature k − 1 for object i, xiq is

the value of property q for object i, ρi =
√

x̃2
i,(k−1) + x2iq , βi =

arctan(xiq/x̃i,(k−1)) .

Figure 6: Calculating the value of feature k − 1 for object i.

After n steps the normal of the separating hyperplane is given by

(
n∏

k=2

cosα0
k, sinα

0
2

n∏

k=3

cosα0
k, ..., sinα

0
n−1 cosα

0
n, sinα

0
n

)
, (4)

where α0
k denotes the angle α that is best in step k, k = 2, ..., n.

Due to the fact that (4) is stepwise calculated, the underlying features
must be assigned backwards in practical classification. For example,
the separation decision plane and the decomposition of its normal
vector are shown in Fig. 7 and 8.
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Note: If the separation of objects is not possible in the original
space of properties, the space can be extended by building additional
properties using products of the type xsiq · x

t
ir for all q, r ∈ {1, ...,m}

and i and some (usually small) exponents s and t. The solution is
then searched in the extended space.

Figure 7: The separating decision plane.

Figure 8: The separating decision plane with its defining vector.
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4 Simulations and applications

To explore the specific potentials of the α-procedure we apply it to
simulated data. Besides the application to the original data, the α-
procedure can also be applied to properly transformed data; in partic-
ular, it has been successfully used to classify data on the basis of their
so called DD-plot (DDα-classifier), see Lange et al. (2012a), Lange et
al. (2012b). The α-procedure (applied in the original space (α-pr.(1))
and the extended space using polynomials of degree 2 (α-pr.(2)) and 3
(α-pr.(3))) is contrasted with the following nine classifiers: linear dis-
criminant analysis (LDA), quadratic discriminant analysis (QDA), k-
nearest neighbors classification (KNN), maximum depth classification
based on Mahalanobis (MM), simplicial (MS), and halfspace (MH)
depth, and DD-classification with the same depths (DM, DS and DH,
correspondingly; see Li et al. (2012) for details), and to the DDα-
classifier.

Six simulation alternatives are used; each time a sample of 400 ob-
jects (200 from each class) is used as a training sample and 1000 ob-
jects (500 from each class) to evaluate the classifier’s performance (=
classification error). First, normal location (two classes originate from
N(
[
0
0

]
,
[
1 1
1 4

]
) and N(

[
1
1

]
,
[
1 1
1 4

]
), see Fig. 9, left) and normal location-

scale (the second class has covariance
[
4 4
4 16

]
, see Fig. 9, middle) alter-

natives are tried.
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Figure 9: Boxplots of the classification error for normal location (left) and
location-scale (middle), and normal contaminated location (right) alterna-
tives over 100 takes.

To test the proposed machinery for robustness properties we chal-
lenge it using contaminated normal distribution, where the first class
of the training sample of the normal location and location-scale al-
ternatives considered above contains 10% objects originating from
N(
[
10
10

]
,
[
1 1
1 4

]
) (see Fig. 9, right and Fig. 10, left correspondingly).

Other robustness aspects are demonstrated with a pair of Cauchy
distributions forming a similar location-scale alternative, see Fig. 10,
middle. Settings with exponential distributions ((Exp(1),Exp(1)) vs.
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(Exp(1) + 1,Exp(1) + 1), see Fig. 10, right) conclude the simulation
study.
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Figure 10: Boxplots of the classification error for normal contaminated
location-scale (left), and Cauchy location-scale (middle), and exponential
(right) alternatives over 100 takes.

The α-procedure performs fairly well for normal alternatives and
shows remarkable performance for the robust alternatives considered.
Though it works well on exponential settings as well, its goodness
appears to depend on the size of the extended feature space. The
last choice can be made by using either external information or cross-
validation techniques.

5 Conclusion

The α-procedure calculates a separating hyperplane in a (possibly
extended) feature space. In each step a two-dimensional subspace is
constructed where, as the data points are naturally ordered, only a
circular (that is, linear) search has to be performed. This makes the
procedure very fast and stable. The classification task is simplified
to a stepwise linear separation of planar points, while the complexity
of the problem is coped with by the number of features constructed.
The angle α of the plane at step (k − 1) defines a basic vector of the
following repère at step k. Finally, the α-procedure is coordinate-free
as its invariant is the belonging of an object to a certain class only.
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