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Abstract

The DDα-procedure is a fast nonparametric method for supervised
classification of d-dimensional objects into q ≥ 2 classes. It is based on
q-dimensional depth plots and the α-procedure, which is an efficient
algorithm for discrimination in the depth space [0, 1]q . Specifically, we
use two depth functions that are well computable in high dimensions,
the zonoid depth and the random Tukey depth, and compare their
performance for different simulated data sets, in particular asymmetric
elliptically and t-distributed data.

1 Introduction

Classical procedures for supervised learning like LDA or QDA are op-
timal under certain distributional settings. To cope with more general
data, nonparametric methods have been developed. A point may be
assigned to that class in which it has maximum depth (Ghosh and
Chaudhuri (2005), Hoberg and Mosler (2006)). Moreover, data depth
is suited to reduce the dimension of the data and aggregate their ge-
ometry in an efficient way. This is done by mapping the data to a
depth-depth (DD) plot or, more generally, to a DD-space: a unit cube
of dimension q ≥ 2, where each axis indicates the depth w.r.t. a cer-
tain class (e.g. see Fig. 1, left and middle). A proper classification rule
is then constructed in the DD-space, see Li et al. (2012). In Lange et
al. (2012) the DDα-classifier is introduced, which employs a modified
version of the α-procedure (Vasil’ev (1991), Vasil’ev (2003), Vasil’ev
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and Lange (1998) and Lange and Mozharovskyi (2012)) for classifica-
tion in the DD-space. For other recent depth-based approaches, see
Dutta and Ghosh (2012a), Dutta and Ghosh (2012b), Paindaveine and
Van Bever (2012); all need intensive computations.

However, when implementing the DDα-classifier a data depth has
to be chosen and the so called ’outsiders’ have to be treated in some
way. (An outsider is a data point that has depth 0 in each of the
classes.) The present paper also addresses the question which notion
of data depth should be employed. To answer it we consider two
depth notions that can be efficiently calculated in higher dimensions
and explore their sensitivity to fat-tailedness and asymmetry of the
underlying class-specific distribution. The two depths are the zonoid
depth (Koshevoy and Mosler (1997), Mosler (2002)) and the location
depth (Tukey (1975)). The zonoid depth is always exactly computed,
while the location depth is either exactly or approximately calculated.
In a large simulation study the average error rate of different versions
of the DDα-procedure is contrasted with that of standard classifiers,
given data from asymmetric and fat-tailed distributions. Similarly the
performance of different classifiers is explored depending on the dis-
tance between the classes, and their speed both at the training and
classification stages is investigated. We restrict ourselves to the case
q = 2, see Lange et al. (2012) for q > 2. Outsiders are randomly as-
signed with equal probabilities; for alternative treatments of outsiders,
see Hoberg and Mosler (2006) and Lange et al. (2012).

The rest of the paper is organized as follows. Sect. 2 shortly surveys
the depths notions used in the DDα-procedure and their computation.
In Sect. 3 the results of the simulation studies are presented and ana-
lyzed, regarding performance, performance dynamics and speed of the
proposed classifiers. Sect. 4 concludes.

2 Data depths for the DDα-classifier

Briefly, a data depth measures the centrality of a given point x in a
data set X in R

d; see e.g. Zuo and Serfling (2000) and Mosler (2002)
for properties.

2.1 Zonoid vs. location depth

In the sequel we employ two data depths that can be efficiently com-
puted for high-dimensional data (d = 20 and higher): the zonoid depth
and the location depth. The computational aspect plays a significant
role here as the depths have to be calculated for each point of each
class at the training stage, and they still have to be computed for a
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new point w.r.t. each class at the classification stage.
Zonoid depth. For a point x and a set X = {x1, . . . ,xn} ∈ R

d the
zonoid depth is defined as

ZD(x,X) =

{

sup{α : x ∈ ZDα(X)} if x ∈ ZDα(X) for some 0 < α ≤ 1,

0 otherwise,

(1)
with the zonoid region (2)

ZDα(X) =

{

n
∑

i=1

λix
i : 0 ≤ λi ≤

1

nα
,

n
∑

i=1

λi = 1

}

; (2)

see Koshevoy and Mosler (1997) and Mosler (2002) for properties.
Location depth, also known as halfspace or Tukey depth, is defined
as

HD(x,X) =
1

n
min

u∈Sd−1
♯{i : 〈xi,u〉 ≥ 〈x,u〉}, (3)

where 〈·, ·〉 denotes the inner product. The location depth takes only
discrete values and is robust (having a large breakdown point), while
the zonoid depth takes all values in the set {[ 1

n
, 1]∪{0}}, is maximum

at the mean 1

n

∑

i x
i, and therefore less robust. For computation of the

zonoid depth we use the exact algorithm of Dyckerhoff et al. (1996).

2.2 Tukey depth vs. random Tukey depth

The location depth can be exactly computed or approximated. Exact
computation is described in Rousseeuw and Ruts (1996) for d = 2 and
in Rousseeuw and Struyf (1998) for d = 3. For bivariate data we em-
ploy the algorithm of Rousseeuw and Ruts (1996) as implemented in
the R-package ’depth’. In higher dimensions exact computation of the
location depth is possible (Liu and Zuo (2012)), but the algorithm in-
volves heavy computations. Cuesta-Albertos and Nieto-Reyes (2008)
instead propose to approximate the location depth, using (3), by min-
imizing the univariate location depth over randomly chosen directions
u ∈ Sd−1. Here we explore two different settings where the set of
randomly chosen u is either generated once and for all or generated
instantly when computing the depth of a given point. By construc-
tion, the random Tukey depth is always greater or equal to the exact
location depth. Consequently, it yields fewer outsiders.

3 Simulation study

A number of experiments with simulated data is conducted. Firstly,
the error rates of 17 different classifiers (see below) are evaluated on
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data from asymmetric t- and exponential distributions in R
2. Then

the performance dynamics of selected ones is visualized as the classi-
fication error in dependence of the Mahalanobis distance between the
two classes. The third study explores the speed of solutions based on
the zonoid and the random Tukey depth.

3.1 Performance comparison

While the usual multivariate t-distribution is elliptically symmetric, it
can be made asymmetric by conditioning its scale on the angle from
a fixed direction, see Frahm (2004). For each degree of freedom, ∞
(= Gaussian), 5 and 1 (= Cauchy), two alternatives are investigated:
one considering differences in location only (with µ1 =

[

0
0

]

, µ2 =
[

1
1

]

and Σ1 = Σ2 =
[

1 1
1 4

]

) and one differing in both location and scale
(with the same µ1 and µ2, Σ1 =

[

1 1
1 4

]

, Σ2 =
[

4 4
4 16

]

), skewing the dis-
tribution with reference vector v+

1
= (cos(π/4), sin(π/4)), see Frahm

(2004) for details. Further, the bivariate Marshall-Olkin exponential
distribution (BOMED) is looked at: (min{Z1, Z3},min{Z2, Z3}) for
the first class and (min{Z1, Z3}+ 0.5,min{Z2, Z3}+ 0.5) for the sec-
ond one with Z1 ∼ Exp(1), Z2 ∼ Exp(0.5), and Z3 ∼ Exp(0.75).
Each time we generate a sample of 400 points (200 from each class) to
train a classifier and a sample containing 1000 points (500 from each
class) to evaluate its performance (= error rate).
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Figure 1: DD-plots using zonoid (left) and location (middle) depth with
black and open circles denoting observations from the two different classes
and combined box-plots (right) for Gaussian location alternative

DD-plots of a training sample for the Gaussian location alternative
using zonoid (left) and location (middle) depth are shown in Fig. 1.
For each classifier, training and testing is performed on 100 simu-
lated data sets, and a box-plot of error rates is drawn; see Fig. 1
(right). The first group of non-depth classifiers includes linear (LDA)
and quadratic (QDA) discriminant analysis and k-nearest-neighbors
classifier (KNN). Then the maximal depth classifiers (MM, MS and
MH; cf. Ghosh and Chaudhuri (2005)) and the DD-classifiers (DM,
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DS and DH; cf. Li et al. (2012)) are regarded. Each triplet uses
the Mahalanobis (Mahalanobis (1936), Zuo and Serfling (2000)), sim-
plicial (Liu (1990)) and location depths, respectively. The remaining
eight classifiers are DDα-classifiers based on zonoid depth (Z-DDα),
exactly computed location depth (H-DDα-e), random Tukey depth
for once-only (H-DDα-♯s) and instantly (H-DDα-♯d) generated direc-
tions, each time using ♯ = 10, 20, 50 random directions, respectively.
The combined box-plots together with corresponding DD-plots using
zonoid and location depth are presented for the Cauchy location-scale
alternative (Fig. 2) and the BOMED location alternative (Fig. 3).

Based on these results (and many more not presented here) we
conclude: In many cases DDα-classifiers, both based on the zonoid
depth and the random Tukey depth, are better than their competi-
tors. The versions of the DDα-classifier that are based on the random
Tukey depth are not outperformed by the exact computation algo-
rithm. There is no noticeable difference between the versions of the
DDα-classifier based on the random Tukey depth using same direc-
tions and an instantly generated direction set. The statement ’the
more random directions we use, the better classification we achieve’
is not necessarily true with the DDα-classifier based on the random
Tukey depth, as the portion of outsiders and their treatment are rather
relevant.
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Figure 2: DD-plots using zonoid (left) and location (middle) depth and
combined box-plots (right) for Cauchy location-scale alternative

3.2 Performance dynamics

To study the performance dynamics of the various DDα-classifiers in
contrast with existing classifiers we regard t-distributions with ∞, 5
and 1 degrees of freedom, each in a symmetric and an asymmetric ver-
sion (see Sect. 3.1). The Mahalanobis distance between the two classes
is systematically varied. At each distance the average error rate is cal-
culated over 100 data sets and five shift directions in the range [0, π/2].
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Figure 3: DD-plots using zonoid (left) and location (middle) depth and
combined box-plots (right) for BOMED location alternative

(As we consider two classes and have one reference vector two sym-
metry axes arise.) By this we obtain curves for the classification error
of some of the classifiers considered in Sect. 3.1, namely LDA, QDA,
KNN, all DDα-classifiers, and additionally those using five constant
and instantly generated random directions. The results for two ex-
treme cases, Gaussian distribution (left) and asymmetric conditional
scale Cauchy distribution (right) are shown in Fig. 4.
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Figure 4: Performance dynamic graphs for Gaussian (left) and asymmetric
conditional scale Cauchy (right) distributions

Under bivariate elliptical settings (Fig. 4, left) QDA, as expected
from theory, outperforms other classifiers and coincides with LDA
when the Mahalanobis distance equals 1. DDα-classifiers suffering
from outsiders perform worse but similarly, independent of the num-
ber of directions and the depth notion used; they are only slightly
outperformed by KNN for the ’upper’ range of Mahalanobis distances.
(Note that KNN does not have the ’outsiders problem’.) But when
considering an asymmetric fat-tailed distribution (Fig. 4, right), nei-
ther LDA nor QDA perform satisfactorily. The DDα-classifiers are
still outperformed by KNN (presumably because of the outsiders).
They perform almost the same for different numbers of directions.
The DDα-classifier based on zonoid depth is slightly outperformed by
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that using location depth, which is more robust.

3.3 The speed of training and classification

The third task tackled in this paper is comparing the speed of the
DDα-classifiers using zonoid and random Tukey depth, respectively.
(For the latter we take 1000 random directions and do not consider
outsiders.) Two distributional settings are investigated: N(0d, Id) vs.
N(0.25·1d, Id) and N(0d, Id) vs. N((0.25 0′d−1

)′, 5·Id), d = 5, 10, 15, 20.
For each pair of classes and number of training points and dimension
we train the classifier 100 times and test each of them using 2500
points. Average times in seconds are reported in Table 1.

Table 1: The average speed of training and classification (in parentheses)
using the random Tukey depth, in seconds

N(0d, Id) vs N(0.25 · 1d, Id) N(0d, Id) vs N((0.25 0
′

d−1
)′, 5 · Id)

d=5 d=10 d=15 d=20 d=5 d=10 d=15 d=20

n = 200 0.1003 0.097 0.0908 0.0809 0.0953 0.0691 0.0702 0.0699
(0.00097) (0.00073) (0.00033) (0.00038) (0.00098) (0.0005) (0.00034) (0.00025)

n = 500 0.2684 0.2551 0.2532 0.252 0.2487 0.2049 0.1798 0.1845
(0.00188) (0.00095) (0.00065) (0.00059) (0.0019) (0.00096) (0.00065) (0.00049)

n = 1000 0.6255 0.6014 0.5929 0.5846 0.5644 0.5476 0.4414 0.4275
(0.00583) (0.00289) (0.00197) (0.00148) (0.0058) (0.00289) (0.00197) (0.00148)

Table 1 and the distributional settings correspond to those in
Lange et al. (2012), where a similar study has been conducted with
the zonoid depth. We also use the same PC and testing environment.
Note firstly that the DDα-classifier with the random Tukey depth
requires substantially less time to be trained than with the zonoid
depth. The time required for training increases almost linearly with
the cardinality of the training set, which can be traced back to the
structure of the algorithms used for the random Tukey depth and for
the α-procedure. The time decreases with dimension, which can be
explained as follows: The α-procedure takes most of the time here;
increasing d but leaving n constant increases the number of points
outside the convex hull of one of the training classes, that is, having
depth = 0 in this class; these points are assigned to the other class
without calculations by the α-procedure.

4 Conclusions

The experimental comparison of the DDα-classifiers, using the zonoid
depth and the random Tukey depth, on asymmetric and fat-tailed
distributions shows that in general both depths classify rather well,
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the random Tukey depth performs not worse than the zonoid depth
and sometimes even outperforms it (cf. Cauchy distribution), at least
in two dimensions. Though both depths can be efficiently computed,
also for higher dimensional data, the random Tukey depth is com-
puted much faster. Still when employing the random Tukey depth
the number of random directions has to be selected; this as well as a
proper treatment of outsiders needs further investigation.
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