MS IA : MDI721 Statistical hypothesis testing for linear model

Pavlo Mozharovskyi François Portier Télécom Paris

Septembre 2019

Outline

- Statistical hypothesis testing Definition The *p*-value Tests for linear regression
- 2. Illustration: forward variable selection Data set "diabetes"
- 3. ROC Curve Presentation
 - Examples

1. Statistical hypothesis testing Definition

The *p*-value Tests for linear regression

2. Illustration: forward variable selection

3. ROC Curve

General principle

Context

- We observe X_1, \ldots, X_n from a common distribution $\mathcal P$
- We are interested in $\theta \in \Theta$, a parameter of \mathcal{P}

Goal

To decide whether an assumption on θ is likely (or not)

$$\mathcal{H}_0 = \{ \theta \in \Theta_0 \}$$

against some alternative

$$\mathcal{H}_1 = \{ \theta \in \Theta_1 \}$$

Call \mathcal{H}_0 the null hypothesis, \mathcal{H}_1 : the alternative

General principle

Means

Determine a test statistic $T(X_1, \ldots, X_n)$ and a region R such that if

$$T(X_1,\ldots,X_n) \in R \implies \text{ we reject } \mathcal{H}_0$$

In other words the observed data discriminates between H_0 and H_1

Hypothesis testing for "heads or tails"

When flipping a coin the model is a Bernoulli distribution with parameter p, $\mathcal{B}(p)$.

Is the coin fair?

$$\mathcal{H}_0 = \{p = 0.5\}$$
 against $\mathcal{H}_1 = \{p \neq 0.5\}$

Is the coin possibly unfair?

 $\mathcal{H}_0 = \{0.45 \le p \le 0.55\}$ against $\mathcal{H}_1 = \{p \notin [0.45, 0.55]\}$

Do we reject or do we accept ?

In most practical situations, \mathcal{H}_0 is simple, i.e.,

$$\Theta_0 = \{\theta_0\}$$

and $\Theta_1 = \Theta \setminus \Theta_0$ is large

 $(\mathcal{H}_0$ is often an hypothesis on which we care particularly, e.g., something acknowledged to be true, easy to formulate)

We only reject \mathcal{H}_0

If \mathcal{H}_0 is not rejected we cannot conclude \mathcal{H}_0 is true because \mathcal{H}_1 is too general

e.g. $\{p\in[0,0.5[\cup]0.5,1]\}$ can not be rejected!

$2 \ {\rm types} \ {\rm of} \ {\rm error}$

• Type I: probability of a wrong reject

 $\mathbb{P}(T(X_1,\ldots,X_n)\in R\mid \mathcal{H}_0)$

• Type II: probability of wrong non-reject

 $\mathbb{P}(T(X_1,\ldots,X_n)\notin R\mid \mathcal{H}_1)$

Significance level and power

Significance level α if

$$\limsup_{n\to+\infty} \mathbb{P}(T(X_1,\ldots,X_n)\in R\mid \mathcal{H}_0)\leq \alpha$$

(We speak of 95%-test when α is 0.05%)

Consistency

A test statistics (given by $T(X_1, \ldots, X_n)$ and a region R) is said to be α -consistent if the significant level is α and if the power goes to one, i.e.,

$$\limsup_{n \to +\infty} \mathbb{P}(T(X_1, \dots, X_n) \in R \mid \mathcal{H}_0) \le \alpha$$
$$\lim_{n \to \infty} \mathbb{P}(T(X_1, \dots, X_n) \in R \mid \mathcal{H}_1) = 1$$

Test statistic and reject region

Goal: to build a α -consistent test

- (1) Define the test statistic $T(X_1, \ldots, X_n)$ and the level α you wish
- (2) Do some maths to determine a reject region R that achieves a significance level α
- (3) Prove the consistency
- (4) Rule decision: reject whenever $|T_n(X_1, \ldots, X_n) \in R$

- $\bullet\,$ Test of the equality of the mean for $1\ {\rm sample}$
- Test of the equality of the means between 2 samples
- Chi-square test for the variance
- Chi-square test of independence
- Regression coefficient non-effects test

Example: Gaussian mean

• Model:
$$\Theta = \mathbb{R}, \mathbb{P}_{\theta} = \mathcal{N}(\theta, 1)$$

- Observe (X_1, \ldots, X_n) i.i.d. from this model
- Null hypothesis: $\mathcal{H}_0 : \{\theta = 0\}$
- Under \mathcal{H}_0 , $T_n(X_1, \ldots, X_n) = \frac{1}{\sqrt{n}} \sum_i X_i \sim \mathcal{N}(0, 1)$
- Critical region for T_n ? Gaussian quantile:

$$\mathbb{P}(T_n \in [-1.96, 1.96] \mid \mathcal{H}_0) = 0.95$$

- Take $R =] \infty, -1.96[\cup]1.96, +\infty[.$
- Numerical example: If $T_n = 1.5$, we do not reject \mathcal{H}_0 at level $\overline{95\%}$

1. Statistical hypothesis testing

Definition The *p*-value Tests for linear regression

2. Illustration: forward variable selection

3. ROC Curve

Usage of the *p*-value

- The decision to accept or reject \mathcal{H}_0 is subject to the chosen significance level α .
- To avoid making this choice in advance, in particular in software, the notion of the p-value is used to represent the result of a test.
- The *p*-value is the probability that, under \mathcal{H}_0 , the test statistic \mathcal{T}_n takes a value at least as extreme as its observed value.
- Relation to the critical region:
 - If the test is one-sided with $R = \{t \mid t > c\}$ then for the observed T_n the *p*-value is $\mathbb{P}(T > t_0 \mid \mathcal{H}_0)$.
 - If the test is one-sided with $R = \{t \mid t < c\}$ then for the observed T_n the *p*-value is $\mathbb{P}(T < T_n \mid \mathcal{H}_0)$.
 - If the test is two-sided with $R = \{t \mid t \in] -\infty; c_1\} \cup (c_2; +\infty[\}$ then for the observed T_n the *p*-value is $2\mathbb{P}(T < T_n \mid H_0)$ if T_n is smaller than the median, and

 $2\mathbb{P}(T > T_n | H_0)$ if T_n is larger than the median.

Usage of the p-value: example

• Model:
$$\Theta = \mathbb{R}, \mathbb{P}_{\theta} = \mathcal{N}(\theta, 1)$$

- Observe (X_1, \ldots, X_n) i.i.d. from this model
- Null hypothesis: $\mathcal{H}_0: \{\theta \leq 5\}$
- Under \mathcal{H}_0 , $T_n(X_1, \ldots, X_n) = \frac{\overline{X}_n 5}{\frac{1}{\sqrt{n}}} \sim \mathcal{N}(0, 1)$

The test decision:

• Reject
$$\mathcal{H}_0$$
 if $\overline{X}_n > 5 + z_{1-\alpha} \frac{1}{\sqrt{n}}$

Using the *p*-value:

- Assume n = 10 and $\overline{X}_n = 5.75$.
- The *p*-value equals $\mathbb{P}(\overline{X} > 5.75)$ with $\overline{X} \sim \mathcal{N}(5, \frac{1}{10})$, *i.e.* $\mathbb{P}(Z > 2.3717)$ with $Z \sim \mathcal{N}(0, 1)$, which equals 0.0089.
- This indicates directly that one should reject at a level 0.05 and even 0.01.
- If the test would be two sided, *i.e.* with $\mathcal{H}_0 : \{\theta = 5\}$, the *p*-value for $\overline{X}_n = 5.75$ would be $0.0089 \times 2 = 0.0178$ implying **reject** at a level 0.05 but **not** 0.01.

1. Statistical hypothesis testing

Definition The *p*-value Tests for linear regression

2. Illustration: forward variable selection

3. ROC Curve

Test of no-effect : Gaussian case Gaussian Model

$$y_{i} = \theta_{0}^{\star} + \sum_{k=1}^{p} \theta_{k}^{\star} x_{i,k} + \varepsilon_{i}$$
$$x_{i}^{\top} = (1, x_{i,1}, \dots, x_{i,p}) \in \mathbb{R}^{p+1} \text{ (deterministic)}$$
$$\varepsilon_{i} \stackrel{i.i.d}{\sim} \mathcal{N}(0, \sigma^{2}), \text{ for } i = 1, \dots, n$$

Theorem

Let
$$X = (x_1, \dots, x_n)^\top \in \mathbb{R}^{n \times (p+1)}$$
 of full rank, and $\widehat{\sigma}^2 = \|\mathbf{y} - X\widehat{\theta}\|_2^2 / (n - (p+1))$, then

$$\widehat{T}_{j} = \frac{\widehat{\theta}_{j} - \theta_{j}^{*}}{\widehat{\sigma}_{\sqrt{\left(X^{\top}X\right)_{j,j}^{-1}}}} \sim \mathcal{T}_{n-(p+1)}$$

where \mathcal{T}_{n-p} is a Student law (with n - (p+1) degrees of freedom)

16/36

Test of no-effect : Gaussian case

Null hypothesis

Aim is to test

$$\mathcal{H}_0: \theta_j^* = 0$$

equivalently, $\Theta_0 = \{ \theta \in \mathbb{R}^p : \theta_j = 0 \}$

Under \mathcal{H}_0 , we know the value of $\widehat{\mathcal{T}}_j$:

$$T_j := \frac{\widehat{\theta}_j}{\widehat{\sigma}\sqrt{(X^\top X)_{j,j}^{-1}}} \sim \mathcal{T}_{n-(p+1)}$$

Choosing $R = [-t_{1-\alpha/2}, t_{1-\alpha/2}]^c$ with $t_{1-\alpha/2}$ the $1 - \alpha/2$ -quantile of $\mathcal{T}_{n-(p+1)}$, we decide to reject \mathcal{H}_0 whenever

$$|\widehat{T}_j| > t_{1-\alpha/2}$$

Test of no-effect : Random-design case

Random design Model

$$y_{i} = \theta_{0}^{\star} + \sum_{k=1}^{p} \theta_{k}^{\star} \mathbf{x}_{i,k} + \varepsilon_{i}$$

$$\mathbf{x}_{i}^{\top} = (1, \mathbf{x}_{i,1}, \dots, \mathbf{x}_{i,p}) \in \mathbb{R}^{p+1}$$

$$(\varepsilon_{i}, \mathbf{x}_{i}) \stackrel{i.i.d}{\sim} (\varepsilon, \mathbf{x}), \text{ for } i = 1, \dots, n$$

$$\mathbb{E}(\varepsilon | \mathbf{x}) = 0, \text{ Var}(\epsilon | \mathbf{x}) = \sigma^{2}$$

Theorem

If $var(\mathbf{x})$ has full rank, then

$$\widehat{T}_{j} = rac{\widehat{ heta}_{j} - heta_{j}^{*}}{\widehat{\sigma}\sqrt{(X^{ op}X)_{j,j}^{-1}}} \overset{\mathrm{d}}{\longrightarrow} \mathcal{N}(0,1)$$

Test of no-effect : Random-design case

Null hypothesis

Aim is to test

$$\mathcal{H}_0: \theta_j^* = 0$$

equivalently, $\Theta_0 = \{ \theta \in \mathbb{R}^p : \theta_j = 0 \}$

Under \mathcal{H}_0 , we know the value of $\widehat{\mathcal{T}}_j$:

$$T_j := rac{\widehat{ heta}_j}{\widehat{\sigma} \sqrt{(X^ op X)_{j,j}^{-1}}} \stackrel{ ext{d}}{\longrightarrow} \mathcal{N}(0,1)$$

Choosing $R = [-z_{1-\alpha/2}, z_{1-\alpha/2}]^c$ with $z_{1-\alpha/2}$ the $1 - \alpha/2$ -quantile of $\mathcal{N}(0, 1)$, we decide to reject \mathcal{H}_0 whenever

$$|\widehat{T}_j| > z_{1-\alpha/2}$$

Link between IC and test

<u>Reminder</u> (Gaussian model):

$$IC_{\alpha} := \left[\widehat{\theta}_{j} - t_{1-\alpha/2}\widehat{\sigma}\sqrt{(X^{\top}X)_{j,j}^{-1}}, \widehat{\theta}_{j} + t_{1-\alpha/2}\widehat{\sigma}\sqrt{(X^{\top}X)_{j,j}^{-1}}\right]$$

is a CI at level α for θ_i^* . Stating " $0 \in IC_{\alpha}$ " means

$$|\widehat{\theta}_{j}| \leq t_{1-\alpha/2} \widehat{\sigma} \sqrt{(X^{\top} X)_{j,j}^{-1}} \quad \Leftrightarrow \quad \frac{|\widehat{\theta}_{j}|}{\widehat{\sigma} \sqrt{(X^{\top} X)_{j,j}^{-1}}} \leq t_{1-\alpha/2}$$

It is equivalent to accepting the hypothesis $\theta_j^* = 0$ at level α . The smallest α such that $0 \in IC_{\alpha}$ is called the *p*-value.

<u>Rem</u>: Taking α close to zero IC_{α} covers the full space, hence one can find (by continuity) an α achieving equality in the aforementioned equations.

Outline

 Statistical hypothesis testing Definition The *p*-value Tests for linear regression

2. Illustration: forward variable selection Data set "diabetes"

3. ROC Curve

Presentation Examples 1. Statistical hypothesis testing

2. Illustration: forward variable selection Data set "diabetes"

3. ROC Curve

"Diabetes" data set

	age	sex	bmi	$^{\mathrm{bp}}$		Serun	n mea	asurei	ments		Resp
patient	x1	x2	$\mathbf{x3}$	x4	x5	x6	$\mathbf{x7}$	x8	x9	x10	у
1	59	2	32.1	101	157	93	38	4	4.9	87	151
2	48	1	21.6	87	183	103	70	3	3.9	69	75
441	36	1	30.0	95	201	125	42	5	5.1	85	220
442	36	1	19.6	71	250	133	97	3	4.6	92	57

n = 442 patients having diabetes, p = 10 variables "baseline" body mass index (bmi), average blood pressure (bp), *etc...* have been measured. **Goal:** predict disease progression one year in advance after the "baseline" measurement [EHJT04].

- Each variable of the data set from *sklearn* has been previously standardized.
- We apply an "expensive" version of the **forward variable selection** method (see, *e.g.*, [Zha09])

"Diabetes" data set

• We define a vector of covariates with intercept $\tilde{X} = (1, x_1, \dots, x_{10})$.

Step 0

• for each variable \tilde{X}_k , k = 1, ..., 11, we consider the model

 $\mathbf{y} \simeq \beta_k \mathbf{x}_k$

• we test whether its regression coefficient equals zero, *i.e.*

 $H_0:\beta_k=0$

using the statistic $\frac{\widehat{\beta}_k}{\widehat{s}_k}$ with \widehat{s}_k being the estimated standard deviation.

• we compare all of the p-values, and keep the one possessing the smallest p-value. We save the residuals in the vector \mathbf{r}_0 .

"Diabetes" data set

Step ℓ

We have selected ℓ variable(s) : $\tilde{X}^{(\ell)} \in \mathbb{R}^{\ell}$. Those not selected are noted $\tilde{X}^{(-\ell)} \in \mathbb{R}^{p-\ell}$. We possess the vector of residuals $\mathbf{r}_{\ell-1}$ calculated on the previous step.

• for each variable \mathbf{x}_k in $\tilde{X}^{(-\ell)}$, we consider the model

$$\mathbf{r}_{\ell-1} \simeq \beta_k \mathbf{x}_k$$

• we test if its regression coefficient equal zero, *i.e.*

$$H_0:\beta_k=0$$

using the test statistic $\frac{\hat{\beta}_k}{\hat{s}_k}$ with \hat{s}_k being the estimated standard deviation.

• we compare all of the *p*-values, and keep the one possessing the smallest *p*-value. We save the residuals in the vector \mathbf{r}_{ℓ} .

Values of the test statistics at each step

- $\bullet\,$ The test statistic of the selected variable is 0 on the following steps.
- The intercept is the first selected variable, then x_3 , *etc...*

Values of the test statistics at each step

• Sequence of the selected variables wit the test size 0.1 :

[0, 3, ,9 ,5 ,4 ,2 ,7]

Outline

 Statistical hypothesis testing Definition The *p*-value Tests for linear regression

2. Illustration: forward variable selection Data set "diabetes"

3. ROC Curve

Presentation Examples

- 1. Statistical hypothesis testing
- 2. Illustration: forward variable selection
- 3. ROC Curve Presentation Examples

Medical context

- A group of patients i = 1, ..., n is followed for disease screening.
- For each individual, the test relies on a random variable $X_i \in \mathbb{R}$ and a threshold $q \in \mathbb{R}$

as soon as	$X_i > q$	the test is positive
O.W.		the test is negative

Set of possible configurations

	Normal H_0	Sick H_1
negative	true negative	false negative
positive	false positive	true positive

Sensitivity - Specificity

- $\bullet\,$ Assumption: Normal individuals have the same c.d.f. F
- Assumption: Sick individual have the same c.d.f ${\cal G}$

Definition

- Sensitivity : Se(q) = 1 G(q) (1- type 2nd error)
- Specificity : Sp(q) = F(q) (1- type 1st error)

ROC curve

Definition

The ROC curve is the curve described by $(1 - \mathsf{Sp}(q), \mathsf{Se}(q))$, when $q \in \mathbb{R}$. Hence, it is the function $[0, 1] \rightarrow [0, 1]$

$$ROC(t) = 1 - G(F^{-}(1-t))$$

where $F^{-}(1-t) = \inf\{x \in \mathbb{R} : F(x) \ge 1-t\}.$

- 1. Statistical hypothesis testing
- 2. Illustration: forward variable selection
- 3. ROC Curve Presentation Examples

ROC curves for bi-normal case

- F and G are Gaussian with parameter μ_0,σ_0 and $\mu_1,\sigma_1,$ respectively.
- Here $\mu_0 = 0$, $\sigma_0 = \sigma_1 = 1$, and μ_1 varies

Estimation-application

ROC curve estimation

- Maximum likelihood
- Non-parametric
- Bayesian with latent variables
- Estimation of the area under the ROC curve (AUC)

Application

- To compare different statistic tests
- To compare different (supervised) learning algorithm
- To compare variable selection methods (e.g. Lasso, OMP, etc.)

nb: ROC = Receiver Operating Characteristic

References I

- [EHJT04] B. Efron, T. Hastie, I. M. Johnstone, and R. Tibshirani. Least angle regression. Ann. Statist., 32(2):407–499, 2004. With discussion, and a rejoinder by the authors.
 - [Zha09] Tong Zhang. Adaptive forward-backward greedy algorithm for sparse learning with linear models. In Advances in Neural Information Processing Systems, pages 1921–1928, 2009.