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General principle

Context
• We observe X1, . . . ,Xn from a common distribution P
• We are interested in θ ∈ Θ, a parameter of P

Goal
To decide whether an assumption on θ is likely (or not)

H0 = {θ ∈ Θ0}

against some alternative

H1 = {θ ∈ Θ1}

Call H0 the null hypothesis, H1 : the alternative
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General principle

Means
Determine a test statistic T (X1, . . . ,Xn) and a region R such that if

T (X1, . . . ,Xn) ∈ R ⇒ we reject H0

In other words the observed data discriminates between H0 and H1
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Hypothesis testing for “heads or tails”

When flipping a coin the model is a Bernoulli distribution with
parameter p, B(p).

Is the coin fair?

H0 = {p = 0.5} against H1 = {p 6= 0.5}

Is the coin possibly unfair?

H0 = {0.45 ≤ p ≤ 0.55} against H1 = {p /∈ [0.45, 0.55]}
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Do we reject or do we accept ?

In most practical situations, H0 is simple, i.e.,

Θ0 = {θ0}

and Θ1 = Θ\Θ0 is large
(H0 is often an hypothesis on which we care particularly, e.g., something acknowledged to

be true, easy to formulate)

We only reject H0

If H0 is not rejected we cannot conclude H0 is true because H1 is too
general

e.g. {p ∈ [0, 0.5[∪]0.5, 1]} can not be rejected!
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2 types of error

H0 H1

H0 is not rejected Correct Wrong (False negative)

H0 is rejected Wrong (False positive) Correct

• Type I: probability of a wrong reject

P(T (X1, . . . ,Xn) ∈ R | H0)

• Type II: probability of wrong non-reject

P(T (X1, . . . ,Xn) /∈ R | H1)
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Significance level and power

Significance level α if

lim sup
n→+∞

P(T (X1, . . . ,Xn) ∈ R | H0) ≤ α

(We speak of 95%-test when α is 0.05%)

Consistency
A test statistics (given by T (X1, . . . ,Xn) and a region R) is said to be
α-consistent if the significant level is α and if the power goes to one, i.e.,

lim sup
n→+∞

P(T (X1, . . . ,Xn) ∈ R | H0) ≤ α

lim
n→∞

P(T (X1, . . . ,Xn) ∈ R | H1) = 1
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Test statistic and reject region

Goal: to build a α-consistent test
(1) Define the test statistic T (X1, . . . ,Xn) and the level α you wish
(2) Do some maths to determine a reject region R that achieves a

significance level α
(3) Prove the consistency

(4) Rule decision: reject whenever Tn(X1, . . . ,Xn) ∈ R
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Famous tests

• Test of the equality of the mean for 1 sample

• Test of the equality of the means between 2 samples

• Chi-square test for the variance

• Chi-square test of independence

• Regression coefficient non-effects test
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Example: Gaussian mean

• Model: Θ = R, Pθ = N (θ, 1)

• Observe (X1, . . . ,Xn) i.i.d. from this model
• Null hypothesis: H0 : {θ = 0}
• Under H0, Tn(X1, . . . ,Xn) = 1√

n

∑
i Xi ∼ N (0, 1)

• Critical region for Tn ? Gaussian quantile:

P(Tn ∈ [−1.96, 1.96] | H0) = 0.95

• Take R =]−∞,−1.96[∪]1.96,+∞[.
• Numerical example: If Tn = 1.5, we do not reject H0 at level

95%
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Usage of the p-value
• The decision to accept or reject H0 is subject to the chosen

significance level α.
• To avoid making this choice in advance, in particular in software,

the notion of the p-value is used to represent the result of a test.
• The p-value is the probability that, under H0, the test

statistic Tn takes a value at least as extreme as its
observed value.

• Relation to the critical region:

• If the test is one-sided with R = {t | t > c}
then for the observed Tn the p-value is P(T > t0 |H0).

• If the test is one-sided with R = {t | t < c}
then for the observed Tn the p-value is P(T < Tn |H0).

• If the test is two-sided with R = {t | t ∈]−∞; c1) ∪ (c2; +∞[}
then for the observed Tn the p-value is 2P(T < Tn |H0) if Tn is
smaller than the median, and
2P(T > Tn |H0) if Tn is larger than the median.
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Usage of the p-value: example
• Model: Θ = R, Pθ = N (θ, 1)
• Observe (X1, . . . ,Xn) i.i.d. from this model
• Null hypothesis: H0 : {θ ≤ 5}
• Under H0, Tn(X1, . . . ,Xn) = X n−5

1√
n

∼ N (0, 1)

The test decision:
• Reject H0 if X n > 5 + z1−α

1√
n
.

Using the p-value:
• Assume n = 10 and X n = 5.75.
• The p-value equals P(X > 5.75) with X ∼ N (5, 1

10),
i.e. P(Z > 2.3717) with Z ∼ N (0, 1), which equals 0.0089.

• This indicates directly that one should
reject at a level 0.05 and even 0.01.

• If the test would be two sided, i.e. with H0 : {θ = 5},
the p-value for X n = 5.75 would be 0.0089× 2 = 0.0178
implying reject at a level 0.05 but not 0.01.
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Test of no-effect : Gaussian case
Gaussian Model

yi = θ?0 +

p∑
k=1

θ?kxi ,k + εi

x>i = (1, xi ,1, . . . , xi ,p) ∈ Rp+1 (deterministic)

εi
i .i .d∼ N (0, σ2), for i = 1, . . . , n

Theorem
Let X = (x1, . . . , xn)> ∈ Rn×(p+1) of full rank, and
σ̂2 = ‖y − X θ̂‖22/(n − (p + 1)), then

T̂j =
θ̂j − θ∗j

σ̂
√

(X>X )−1
j ,j

∼ Tn−(p+1)

where Tn−p is a Student law (with n − (p + 1) degrees of freedom)
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Test of no-effect : Gaussian case

Null hypothesis
Aim is to test

H0 : θ∗j = 0

equivalently, Θ0 = {θ ∈ Rp : θj = 0}

Under H0, we know the value of T̂j :

Tj :=
θ̂j

σ̂
√

(X>X )−1
j ,j

∼ Tn−(p+1)

Choosing R = [−t1−α/2, t1−α/2]c with t1−α/2 the 1− α/2-quantile of
Tn−(p+1), we decide to reject H0 whenever

|T̂j | > t1−α/2
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Test of no-effect : Random-design case

Random design Model

yi = θ?0 +

p∑
k=1

θ?kxi ,k + εi

x>i = (1, xi ,1, . . . , xi ,p) ∈ Rp+1

(εi , xi )
i .i .d∼ (ε, x), for i = 1, . . . , n

E(ε|x) = 0, Var(ε|x) = σ2

Theorem
If var(x) has full rank, then

T̂j =
θ̂j − θ∗j

σ̂
√

(X>X )−1
j ,j

d−→ N (0, 1)
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Test of no-effect : Random-design case

Null hypothesis
Aim is to test

H0 : θ∗j = 0

equivalently, Θ0 = {θ ∈ Rp : θj = 0}

Under H0, we know the value of T̂j :

Tj :=
θ̂j

σ̂
√

(X>X )−1
j ,j

d−→ N (0, 1)

Choosing R = [−z1−α/2, z1−α/2]c with z1−α/2 the 1− α/2-quantile of
N (0, 1)), we decide to reject H0 whenever

|T̂j | > z1−α/2
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Link between IC and test

Reminder (Gaussian model):

ICα :=

[
θ̂j − t1−α/2σ̂

√
(X>X )−1

j ,j , θ̂j + t1−α/2σ̂
√

(X>X )−1
j ,j

]
is a CI at level α for θ∗j . Stating “0 ∈ ICα” means

|θ̂j | ≤t1−α/2σ̂
√

(X>X )−1
j ,j ⇔

|θ̂j |

σ̂
√

(X>X )−1
j ,j

≤ t1−α/2

It is equivalent to accepting the hypothesis θ∗j = 0 at level α. The
smallest α such that 0 ∈ ICα is called the p-value.

Rem: Taking α close to zero ICα covers the full space, hence one can find
(by continuity) an α achieving equality in the aforementioned equations.
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“Diabetes” data set
age sex bmi bp Serum measurements Resp

patient x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 y
1 59 2 32.1 101 157 93 38 4 4.9 87 151
2 48 1 21.6 87 183 103 70 3 3.9 69 75
· · · · · · · · ·
· · · · · · · · ·
441 36 1 30.0 95 201 125 42 5 5.1 85 220
442 36 1 19.6 71 250 133 97 3 4.6 92 57

n = 442 patients having diabetes, p = 10 variables “baseline” body mass
index (bmi), average blood pressure (bp), etc. . .have been measured.
Goal: predict disease progression one year in advance after the
“baseline” measurement [EHJT04].

• Each variable of the data set from sklearn has been previously
standardized.

• We apply an “expensive” version of the forward variable
selection method (see, e.g., [Zha09])
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“Diabetes” data set

• We define a vector of covariates with intercept X̃ = (1, x1, . . . , x10).

Step 0

• for each variable X̃k , k = 1, . . . , 11, we consider the model

y ' βkxk

• we test whether its regression coefficient equals zero, i.e.

H0 : βk = 0

using the statistic β̂k
ŝk

with ŝk being the estimated standard
deviation.

• we compare all of the p-values, and keep the one possessing the
smallest p-value. We save the residuals in the vector r0.
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“Diabetes” data set
Step `

We have selected ` variable(s) : X̃ (`) ∈ R`. Those not selected are noted
X̃ (−`) ∈ Rp−`. We possess the vector of residuals r`−1 calculated on the
previous step.

• for each variable xk in X̃ (−`), we consider the model

r`−1 ' βkxk

• we test if its regression coefficient equal zero, i.e.

H0 : βk = 0

using the test statistic β̂k
ŝk

with ŝk being the estimated standard
deviation.

• we compare all of the p-values, and keep the one possessing the
smallest p-value. We save the residuals in the vector r`.
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Values of the test statistics at each step

0 2 4 6 8

features

0

10

20

30

40

values of the t-stat at each steps

step 0

step 1

step 2

• The test statistic of the selected variable is 0 on the following steps.
• The intercept is the first selected variable, then x3, etc. . .
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Values of the test statistics at each step
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steps
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plot of the pvalues

• Sequence of the selected variables wit the test size 0.1 :

[ 0, 3, ,9 ,5 ,4 ,2 ,7 ]
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Medical context

• A group of patients i = 1, . . . , n is followed for disease screening.
• For each individual, the test relies on a random variable Xi ∈ R and

a threshold q ∈ R

as soon as Xi > q the test is positive
o.w. the test is negative

Set of possible configurations
Normal H0 Sick H1

negative true negative false negative
positive false positive true positive
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False positive vs. false negative
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Sensitivity - Specificity

• Assumption: Normal individuals have the same c.d.f. F
• Assumption: Sick individual have the same c.d.f G

Definition
• Sensitivity : Se(q) = 1− G (q) (1− type 2nd error)

• Specificity : Sp(q) = F (q) (1− type 1st error)
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ROC curve
Definition
The ROC curve is the curve described by (1− Sp(q), Se(q)), when
q ∈ R. Hence, it is the function [0, 1]→ [0, 1]

ROC(t) = 1− G (F−(1− t))

where F−(1− t) = inf{x ∈ R : F (x) ≥ 1− t}.

0 1 2 3 4 5 6 7

0.0

0.1

0.2

0.3

0.4

1−G(q)

1−F(q)

q= 2.5

H0

H1
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ROC Curve
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ROC curves for bi-normal case
• F and G are Gaussian with parameter µ0, σ0 and µ1, σ1,

respectively.
• Here µ0 = 0, σ0 = σ1 = 1, and µ1 varies

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

µ1 = 0.0

µ1 = 0.6

µ1 = 1.2

µ1 = 1.9

µ1 = 2.5
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Estimation–application

ROC curve estimation
• Maximum likelihood
• Non-parametric
• Bayesian with latent variables
• Estimation of the area under the ROC curve (AUC)

Application
• To compare different statistic tests
• To compare different (supervised) learning algorithm
• To compare variable selection methods (e.g. Lasso, OMP, etc.)

nb: ROC = Receiver Operating Characteristic
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