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Confidence interval

• Context: regard an estimator ĝ(y1, . . . , yn) for the value g .
We would like to have an interval Î around ĝ which contains g with
high probability.

• We construct Î = [C ,C ] based on the observations (y1, . . . , yn):
confidence interval is a random variable

P(Î contains g) = P(C ≤ g et C ≥ g) = 95%
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Confidence interval of level α

Confidence interval
A confidence interval of level α for a value g is a function of the sample

Î : (y1, . . . , yn) 7→ Î =
[
C (y1, . . . , yn),C (y1, . . . , yn)

]
such that

P
[
g ∈ Î (y1, . . . , yn)

]
≥ 1− α

Rem: usual choices α = 5%, 1%, 0.1%, etc. Defined often by the
consideration data complexity / number of observations.

Rem: In the following we will denote confidence interval by CI.
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Example: survey

• Election survey with two candidates: A and B. Choice of the ith
respondent follows Bernoulli distribution having parameter p, with
yi = 1 if he votes for A and 0 otherwise.

• Aim: estimate p.
• Sample of size n (e.g. n = 1000, i.e. 1000 asked): a reasonable

estimator is then

p̂ =
1
n

n∑
i=1

yi = yn .

• What is the confidence interval for p?
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Survey: confidence interval
• Search for an interval Î = [p̂ − δ, p̂ + δ] such that P(p ∈ Î ) ≥ 0.95⇔

search for δ such that P [ |p̂ − p| > δ] ≤ 0.05
• Constituent: Tchebyschev inequality

∀ δ > 0, P(|X − E(X )| > δ) ≤ Var(X )

δ2

For X = p̂ = 1
n

∑n
i=1 Yi we know that E(p̂) = p and Var(p̂) = p(1−p)

n :

∀p ∈ (0, 1), ∀δ > 0, P(|p̂ − p| > δ) ≤ p(1− p)

nδ2
≤ 1

4nδ2

Application: for a CI of 95%, find δ such that
1

4nδ2 = 0.05 , i.e. δ = (0.2n)−1/2. For n = 1000, p̂ = 55%:

δ = 0.07 ; Î = [0.48, 0.62]
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Central limit theorem

• y1, y2, . . . , i.i.d. square integrable random variables.
• µ and σ2 their theoretical mean and variance.

Central limit theorem (CLT)

Properly normalized average
√
n

(
ȳn − µ
σ

)
converges towards a

standard normal distribution N (0, 1).
• σ is known.

Slutsky lemma

Distribution of the “studentized” average
√
n

(
ȳn − µ
σ̂

)
converges

towards a standard normal distribution N (0, 1) when σ̂ → σ

Reformulation: ȳn ' N (µ, σ̂2/n)
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Illustration
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Asymptotic confidence intervals
• The survey example: yi ∈ {0, 1}, n = 1000,

p̂ = n−1
n∑

i=1

yi = 0.55

• We assume that n is sufficiently large, such that
√
n

(
p̂ − p

σ̂

)
∼ N (0, 1)

σ̂2 = n−1
n∑

i=1

(yi − p̂)2 = p̂ − p̂2

• We know the quantiles of the normal distribution (numerically)
q(1− 0.05/2) ' 1.96

• Following the CLT and approximation of the Gaussian quantiles

P
[
−1.96 <

√
n

0.55− p

σ̂
< 1.96

]
≈ 0.95

new CI: Î = [0.52, 0.58]: better! (more optimistic)
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In Python
Data generation

import numpy as np
from scipy.stats import norm

n = 1000
x = np.random.binomial(1, .5, n)

Computation of the CI

pchap = np.mean(x)
sig = np.sqrt(pchap * (1 - pchap))
alpha = .05
q = norm.ppf(1 - alpha/2)
borneinf = pchap - sig * q / np.sqrt(n)
bornesup = pchap - sig * (1 - q) / np.sqrt(n)
print('IC = [' + str(borneinf) +

',' + str(bornesup) + ']')
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CI for the regression coefficients (I)

Reminder: given X ∈ Rn×p, then σ̂2 = ‖y − X θ̂‖22/(n − rang(X )) is the
unbiased estimator for the variance. In addition (cf. Poly):

If ε ∼ N (0, σ2 Idn), then Tj =
θ̂j − θ∗j

σ̂
√

[(X>X )−1]j ,j
∼ Tn−rang(X )

where Tn−rang(X ) is a Student-t distribution with n − rang(X ) degrees of
freedom.

Its density, quantiles, etc..., can be computed numerically and are
accessible in any software.
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CI for the regression coefficients (II)

Under the Gaussian assumption, since

Tj =
θ̂j − θ∗j

σ̂
√

(X>X )−1
j ,j

∼ Tn−rang(X )

and noting t1−α/2 a quantile of order 1− α/2 of the distribution
Tn−rang(X ), the following confidence interval is of level 1− α[

θ̂j − t1−α/2σ̂
√

(X>X )−1
j ,j , θ̂j + t1−α/2σ̂

√
(X>X )−1

j ,j

]
for the quantity θ∗j .

Rem: P(|Tj | < t1−α/2) = 1− α since the Student-t distribution is
symmetric.
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CI for the predicted values

Now we would like to construct a CI for the predicted value at a single
(new) given point x = (1, x1, ..., xp)> ∈ Rp+1.

The predicted value at x (under the true model) is defined as

y∗ = x>θ∗ .

Under the Gaussian assumption, with the same notation, the following
confidence interval is of level 1− α

[
x>θ̂ − t1−α/2σ̂

√
x>(X>X )−1x , x>θ̂ + t1−α/2σ̂

√
x>(X>X )−1x

]
for the quantity y∗.

15/23



CI for the new predicted values
The CI from above is for the regression hyperplane, i.e. it is reflecting
uncertainty of the fitted values.

How to build a CI for a new predicted predicted value at a single (new)
given point x = (1, x1, ..., xp)> ∈ Rp+1?

A new predicted value at x (under the true model) is defined as

y = y∗ + ε .

where ε ∼ N (0, σ2).

One can show that, in this case, and with the same notation, the
following confidence interval is of level α

[
x>θ̂ − t1−α/2σ̂

√
1 + x>(X>X )−1x , x>θ̂ + t1−α/2σ̂

√
1 + x>(X>X )−1x

]
for the quantity y .
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Example: Investment data (I)

Following classical example follows Greene (2012).

Regard the the data of the nominal investment and nominal gross
national product records for 15 years.

First, we apply the logarithmic transform to both variables.

Then, we try to explain (the logarithm of) the nominal investment Y by
(the logarithm of) the nominal gross national product X .

We also would like to provide inference about the estimated coefficient
as well as the newly predicted values, at a 95% level.
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Example: Investment data (II)
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CI when no Gaussian assumption (I)

Regard now the random design model, where the aim is to estimate the
best linear approximation of Y1 made up with X1 in terms of L2-risk.

In this case we can still provide a CLT.

Reminder: Suppose that E[X1X
>
1 ] and E[Y 2

1 ] exist and that E[X1X
>
1 ] is

invertible. Then we have (cf. Poly):

Tj =
θ̂j − θ∗j

σ̂
√

[(X>X )−1]j ,j
 N (0, 1)

This can be directly used to construct the CI.
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CI when no Gaussian assumption (II)
If no normality of the noise term ε is assumed, the confidence interval
from above is not reliable.

It remains valid asymptotically if we assume E[X 2
1,j ] <∞ and

E[Y 2
1 ] <∞ though, which is indicated by the following result.

The following confidence interval is of level 1− α

Îj(1− α) =

[
θ̂j − q1−α/2σ̂

√
(X>X )−1

j ,j , θ̂j + q1−α/2σ̂
√

(X>X )−1
j ,j

]
asymptotically for the quantity θ∗j (with qα being the α-quantile of
N (0, 1)), i.e.

lim inf
n→∞

P
(
θ∗j ∈ Îj(1− α)

)
≥ 1− α .
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Limitations of the CI previously seen

In the previous part, the reasoning is based on the Gaussian
assumption, even if using asymptotic approximation.

Attention: if the model is (very) wrong or the sample is very small, the
obtained CIs will not necessarily be valid.

Possible alternative: bootstrap, a non-parametric method based on the
resampling, well suited (theoretically) for regular statistics like the
average, the quantiles, etc... (but not for max or min!).

For further material see: Efron and Tibshirani (1994).
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