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Outline of the course

Format: 6 × 3.5 hours + exam

I Class 1: Introduction to robust statistics

I Class 2: Lab session I

I Class 3: Data depth

I Weeks 4: Extreme value statistics

I Week 5 : Multi-dimensional setting

I Week 6: Lab session II

Programming language: R

Grading: Exam
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Observations in the tail of a distribution

Given observations in the tail of a distribution,
there are two statistical points of view:

I The observations are contaminating the data and should be ignored:
outliers.

Robust statistics

I The observations are (even more) of interest (than the “normal”
data itself) and thus their modeling should be studied in detail:
extreme values.

Extreme value theory



What is an outlier?

Definition
An outlier is an observation that deviates from the (model fit suggested
by the) majority of the observations.



What is robust statistics?

I Often, real data contain outliers. Results of most statistical methods
are (highly) influenced by these outliers.

I Robust statistical methods try to fit the model imposed by the
majority of the data. They aim to find a robust fit, which is possibly
close to the fit one would have found without outliers.

I This further allows outlier detection: flagging those observations
deviating from the robust fit.



Assumptions
I One often assumes that the majority of observations follow a specific

(parametric) model and one is interested in estimating parameters of
this model.

E .g . : xi ∼ N (µ, σ2)

x i ∼ N (µ,Σ)

yi = β0 + β1xi + εi with εi ∼ N (0, σ2) .

I Further, one assumes that some observations might not follow this
specified model.

I !!! But, the model of outlier(s) generating process(es) is unknown.

I !!! Also, the portion of outliers is unknown.

I An example is the Huber contamination model:

X ∼ (1− poutliers)Fnormal + poutliersFoutliers ,where

Fnormal is the probability distribution of “normal” observations,
Foutliers is the probability distribution of the outlying observations,
poutliers is the prior probability of outliers.



A simple example
Consider the 10 most recent observations from the data set on Nuclear
power plant accidents with available and positive accident cost. The
logarithm of the total accident cost is presented in the table below:

Date Power plant log(Cost)
2011-03-11 Fukushima Prefecture, Japan 12.02
2011-08-23 Mineral, Virginia, US 3.875
2011-09-12 Marcoule, France 2.549
2012-01-30 Rock River, Illinois, US 0.742
2012-03-12 Wanli, Taiwan 1.163
2012-04-05 Dieppe, France 2.549
2013-06-21 Wanli, Taiwan 1.459
2013-07-15 Shimen, Taiwan 3.157
2014-02-14 Waste Isolation Pilot Plant, New Mexico, US 2.104
2014-08-11 Lancashire, UK 2.833

Assume the Gaussian model for “normal” data:

xi ∼ N (µ, σ2) for i = 1, ..., 10.



A simple example: QQ-plot

A normal QQ-plot is a plot of the observations versus theoretical
quantiles of the Gaussian distribution: ideal fit should give a straight line.

●

●

●

●
●

●

●

●

●

●

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

2
4

6
8

10
12

Normal QQ−plot

Theoretical quantiles

lo
g(

C
os

t i
n 

m
ill

io
ns

 U
S

D
)

●

●

●

●

●

●

●

●

●

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

Normal QQ−plot without outlier

Theoretical quantiles

lo
g(

C
os

t i
n 

m
ill

io
ns

 U
S

D
)

For the 9 observations (i.e. except for the Fukushima accident) the
Gaussianity cannot be rejected.
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Classical versus robust estimators: location

Classic estimator: arithmetic mean.

µ̂ = X̄n =
1

n

n∑
i=1

xi .

Value for the given sample: X̄n = 3.245 .

Robust estimator: sample median.

µ̂ = med(Xn) =

{
x( n+1

2 ) if n is odd ,
1
2

(
x( n

2 ) + x( n
2 +1)

)
if n is even .

where x(1) ≤ x(2) ≤ · · · ≤ x(n−1) ≤ x(n) are the ordered observations.

Value for the given sample: med(Xn) = 2.549 .



Classical versus robust estimators: scale

Classic estimator: standard deviation.

σ̂ = sd(Xn) =

√√√√ 1

n − 1

n∑
i=1

(xi − X̄n)2 .

Value for the given sample: sd(Xn) = 3.226.

Robust estimator: interquantile range.

σ̂ = IQR(Xn) = x{0.75} − x{0.25} ,

where x{q} is the q-th empirical quantile for q ∈ [0, 1].

Value for the given sample: IQR(Xn) = 1.456.



Classical versus robust estimators: comparison

Compare the estimates excluding (only 9 “normal” observations) and
including (all 10 observations) the Fukushima accident.

9 “normal” observations all 10 observations

X̄n 2.27 3.245

med(Xn) 2.549 2.549

sd(Xn) 1.005 3.226

IQR 1.375 1.456

I The classic estimators are highly influenced by the outlier.

I The robust estimators are less influenced by the outlier.

I The robust estimates computed from the 9 “normal” observations
only are comparable with the estimates obtained using all 10
observations.



Classical versus robust estimators

I Robustness: Being less influenced by outliers.

I Efficiency: Being precise on uncontaminated data.

One requires from robust estimators being both:

robust and efficient.



Outlier detection

Usual rule: an outlier has high z-score (standardized residual).

Using classic estimates:

ri =
xi − X̄n

sd(Xn)
= 2.72 .

One flags an observation as outlier if |ri | > 3.

For the Fukushima accidnet: |r1| = 2.72; conclusion: ?

Using robust estimates:

ri =
xi −med(Xn)

IQR(Xn)
.

For the Fukushima accidnet: |r1| = 6.504; conclusion: an outlier.
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Breakdown value

Definition
Given an estimator T a data set Xn consisting of n observations. Let m
be an integer such that:

I the estimator T stays in a fixed bounded set if m − 1 observations
are replaced by any outliers;

I this does not hold anymore if m observations are replaced by any
outliers.

The breakdown value of the estimator T at the data set Xn is m
n .

I Notation:
ε∗n(Tn,Xn) =

m

n
.

I Typically, the breakdown value does not depend (much) on the data
set.

I Often, it is a fixed constant as long as the (original) data set
satisfies certain weak condition(s), e.g. the absence of ties.



Breakdown value: arithmetic mean

Example (Arithmetic mean)
Given:

I A univariate data set Xn = {x1, ..., xn}.
I The estimator T (Xn) = 1

n

∑n
i=1 xi .

I Replace one (arbitrary) observation from Xn by any value x∗,
yielding a new data set X ∗n .

I If x∗ = +∞, then T (X ∗n ) = +∞ as well.

I Thus, the breakdown value of Tn being the arithmetic mean at Xn is:

ε∗n(T ,Xn) =
1

n
· 1 =

1

n
.

I The limit — if n→∞ — of the finite sample breakdown value is
called the asymptotic breakdown value:

lim
n→∞

ε∗n(T ,Xn) = lim
n→∞

1

n
= 0 .
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Sensitivity curve

I Now, we study the behavior of the estimator when adding one
observation to the sample.

Definition
Given an estimator T and a data set Xn−1 = {x1, ..., xn−1} consisting of
n − 1 observations. For x ∈ R, let Xn = {x1, ..., xn−1, x} be the
completed data set. Then, the sensitivity curve is defined as:

SC (x ,T ,Xn−1) =
T (Xn)− T (Xn−1)

1
n

.

Remarks:

I The sensitivity curve measures the effect of a single outlier on the
estimator.

I The sensitivity curve depends strongly on the data set.



Sensitivity curve: arithmetic mean
Example (Arithmetic mean)
Given:

I A univariate data set of “normal” observations X9.

I The estimator T (Xn).

I For the arithmetic mean T (Xn−1) =
∑n−1

i=1 xi (using notation from
above) we obtain:

SC (x ,T ,Xn−1) =
T (Xn)− T (Xn−1)

1
n

=
1
n

(∑n−1
i=1 xi + x

)
− 1

n−1

∑n−1
i=1 xi

1
n

=
n−1
n X̄n−1 + 1

nx − X̄n−1

1
n

=
1
nx −

1
n X̄n−1

1
n

= x − X̄n−1 .
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Influence function

I The influence function can be seen as the asymptotic version of the
influence curve.

I It is computed given an estimator T and a distribution F .

I The influence function measures how T (F ) changes with
contamination added in one point x .

Definition
Given an estimator T and a distribution F . For x ∈ R, let the
contaminated distribution be defined as:

Fε,x = (1− ε)F + ε∆x

for ε > 0, where ∆x is the Dirac distribution at x .
Then, the influence function is defined as:

IF (x ,T ,F ) = lim
ε→0

T (Fε,x)− T (F )

ε
=

∂

∂ε
T (Fε,x) |ε=0 .



Influence function: arithmetic mean

Example (Arithmetic mean)
Given:

I A distribution: N (0, σ2).

I The estimator T (Xn).

I For this purpose, the estimator should be written as a function of
distribution F .

I For the sample mean we obtain T (F ) = EF [X ].

I For the standard normal distribution we obtain:

IF (x ,T ,F ) =
∂

∂ε
EF [(1− ε)F + ε∆x ] |ε=0

=
∂

∂ε
(1− ε)EF [F ] + εEF [∆x ] |ε=0

= EF [∆x ]− EF [F ] = x − EF [F ] = x .

I One prefers estimators with a bounded influence function.
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Sample median

Definition (Sample median)
For a univariate data set Xn = {x1, ..., xn} the sample median is defined
as follows:

µ̂ = med(Xn) =
x(b n+1

2 c)
+ x(d n+1

2 e)

2
=

{
x( n+1

2 ) if n is odd ,
1
2

(
x( n

2 ) + x( n
2 +1)

)
if n is even .

where x(1) ≤ x(2) ≤ · · · ≤ x(n−1) ≤ x(n) are the ordered observations,
bxc is the “floor” function bxc = max{y : y ∈ Z, y ≤ x}, and
dxe is the “ceiling” function dxe = min{y : y ∈ Z, y ≥ x}.

For med(Xn), let us study:

I (asymptotic) breakdown value,

I sensitivity curve (for the “normal” nuclear accident sample X9),

I influence function (for the standard normal distribution Φ).



Sample median: breakdown value

Assume n is odd, then T (Xn) = x( n+1
2 ).

I Replace n−1
2 observations from Xn by any values, which yields a data

set X ∗n .

I Then, T (X ∗n ) belongs to the interval [x(1), x(n)], hence T (X ∗n ) is
bounded.

I Replace n+1
2 observations by ∞.

I Then, T (X ∗n )=∞.

The (finite-sample) breakdown value ε∗n of T (X ∗n ) is

ε∗n(T ,Xn) =
1

n

⌊
n + 1

2

⌋
≈ 0.5 .

The asymptotic breakdown value is:

lim
n→∞

ε∗n(T ,Xn) =
1

n

⌊
n + 1

2

⌋
= 0.5 (= 50%) .



Sample median: sensitivity curve

For Xn−1 (= X9),
assume n − 1 is odd, then T (Xn−1) = x( n

2 ).

SC (x ,T ,Xn−1) =


n
(

x( n
2
−1)+x( n

2
)

2 − x n
2

)
if x < x( n

2−1) ,

n
(

x+x( n
2

)

2 − x n
2

)
if x( n

2−1) ≤ x ≤ x( n
2 +1) ,

n
(

x( n
2

)+x( n
2

+1)

2 − x n
2

)
if x > x( n

2 +1) .

For the nuclear accidents data we obtain:
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Sample median: influence function

For some F , assume that fX (x) > 0∀ x ∈ R and is continuous at xq.

IF (x ,T ,F ) =


q−1
fX (xq) if x < xq ,

0, if x = xq ,
q

fX (xq) if x > xq ,

where xq is the qth quantile of F : xq = inf{x : F (x) ≥ q}.

For the median q = 0.5, and with F being c.d.f. of N (0, σ2), we obtain:
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Interquantile range
Definition (Interquantile range)
For a univariate data set Xn = {x1, ..., xn} the q-interquantile range is
defined as follows:

σ̂ = IQRq(Xn) = x{1−q} − x{q} .

I A special case in common use is the 0.25-interquantile range, so
that σ̂ is the difference between the 0.75 and the 0.25 quantiles.

I Using similar considerations as those for the median, its asymptotic
breakdown point is limn→∞ ε∗n(T ,Xn) = 0.25.

I For the “normal” part of the nuclear accidents data set the
sensitivity curve looks as follows:
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Interquantile range: influence function
For F , assume that fX (x) > 0∀ x ∈ R and is continuous at xq and x1−q.

IF (x ,T ,F ) =


1

fX (xq) − C if x < xq ,

−C , if xq ≤ x ≤ x1−q ,
1

fX (xq) − C if x > x1−q ,

where

C = q
( 1

fX (xq)
+

1

fX (x1−q)

)
.

For the median q = 0.25, and with F being c.d.f. of N (0, σ2), we obtain:
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IQR and boxplot
I The boxplot is a useful tool for exploratory data analysis.

I Among others, it flags the outliers as the observations beyond the
“whiskers”.

Regard a data set of the length of stay (in days) for 201 patients at the
University Hospital of Lausanne during the year 2000; see [RPM00] and
R-package robustbase [MRC+19, TF09] for a reference.

Histogram

Length of stay in the hospital

F
re

qu
en

cy

0 20 40 60 80 100

0
20

40
60

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

0
20

40
60

80
10

0

Standard boxplot

Le
ng

th
 o

f s
ta

y 
in

 th
e 

ho
sp

ita
l



Medcouple

Definition (Medcouple)
For a univariate data set Xn = {x1, ..., xn} the medcouple is defined as
follows:

γ̂ = MC (Xn) = med
(
{h(xi , xj) : xi < Q2 < xj}

)
,

where

h(xi , xj) =
(xj − Q2)− (Q2 − xi )

xj − xi

and Q2 = med(Xn).

I Medcouple is sensitive to asymmetry, and thus is well suited for
measuring deviations of the data from symmetry in practice.

I It has asymptotic breakdown value 0.25.



Adjusted boxplot
I Using medcouple we can define a boxplot adjusted to asymmetry.

I For this, one can define “whiskers” as:

[Q1 − 1.5 e−4 MC(Xn)IQR(Xn), Q3 + 1.5 e3 MC(Xn)IQR(Xn)] ,

where Q1 = x0.25 and Q3 = x0.75 are 1st and 3rd quartiles of Xn.

For the length of stay data one can compare:
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Multivariate data

I In most cases, data are multivariate, i.e. X = {x1, ..., xn} where the
observations x i for i = 1, ..., n are d-variate (column) vectors.

I Their coordinates can be summarized as a n × d matrix:

X = (x1, ..., xn)> =


x11 x12 ... x1d

x21 x22 ... x2d

... ... ... ...
xn1 xn2 ... xnd

 .

I The model for the observations is the multivariate normal
distribution:

X ∼ Nd(µX ,ΣX ) ,

where µX ∈ Rd and ΣX is a positive semi-definite d × d matrix.

I More generally, one can assume that the data are generated from an
elliptical distribution; the contours of an elliptical distribution are
d-variate ellipsoids as well.



Affine equivariance
I Being unknown, in practice one evaluates µX and ΣX as estimators

of location (µ̂) and scatter (Σ̂).

I We often require from estimators µ̂ and Σ̂ affine equivariance.

Definition (Affine equivariance)
Location and scatter estimators µ̂ and Σ̂ are affine equivariant if the
satisfy:

µ̂({Ax1 + b, ...,Axn + b}) = Aµ̂({x1, ..., xn}) + b ,

Σ̂({Ax1 + b, ...,Axn + b}) = AΣ̂({x1, ..., xn})A>,

for any non-singular d × d matrix A and any vector b ∈ Rd .

I Affine invariance implies that the estimator “follows” any linear
non-singular transformation/reparametrization of Rd .

I The data can thus be translated, rotated or rescaled (e.g. due to the
change of the measurement unit) without changing the order
statistics, and thus without influencing the outlier detection
diagnostics.



Breakdown value

I A location estimator µ̂ “breaks down” if it can be contained beyond
any bounded set.

I The breakdown value of a scatter estimator Σ̂ is defined as the
smallest of the explosion and implosion breakdown values.

I Explosion of a scatter estimator Σ̂ occurs when its largest eigenvalue
becomes arbitrary large.

I Implosion of a scatter estimator Σ̂ occurs when its smallest
eigenvalue becomes arbitrary small.

Definition (General position)
A data set X = {x1, ..., xn} is in general position if at most p
observations from X lie in any affine subspace of dimension p − 1 for
p = 1, ..., d .



Breakdown value

I Any affine equivariant location estimator µ̂ satisfies:

ε∗n(µ̂,X ) ≤ 1

n

⌊
n + 1

2

⌋
.

I If X is in general position, then any affine equivariant scatter
estimator Σ̂ satisfies:

ε∗n(Σ̂,X ) ≤ 1

n

⌊
n − d + 1

2

⌋
.
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Detection of multivariate outliers
Regard two measurements during a test:
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Detection of multivariate outliers
Regard two measurements during a test:
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Detection of multivariate outliers
Regard two measurements during a test:
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Detection of multivariate outliers
Regard two measurements during a test:
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I Checking for minimum and maximum in each test result.
I Label observation x as outlier if:

x /∈ [min(Test1),max(Test1)]× [min(Test2),max(Test2)] .



Detection of multivariate anomalies
Regard two measurements during a test:
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I Checking for minimum and maximum in each test result.
I Label observation x as outlier if:

x /∈ [min(Test1),max(Test1)]× [min(Test2),max(Test2)] .

I !!! Not all anomalies can be detected.



Mahalanobis distance
I Regard a data set X = {x1, , ..., xn} ⊂ Rd and a point x ∈ Rd .
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Mahalanobis distance
I Regard a data set X = {x1, ..., xn} ⊂ Rd and a point x ∈ Rd .
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I Euclidean distance from x to µX :

d2
Eucl(x ,µX ) = (x − µX )>(x − µX ) .

I Sample mean: µX = 1
n

∑n
i=1 x i .



Mahalanobis distance
I Regard a data set X = {x1, ..., xn} ⊂ Rd and a point x ∈ Rd .
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I Euclidean distance from x to µX :

d2
Eucl(x ,µX ) = (x − µX )>(x − µX ) .

I Sample mean: µX = 1
n

∑n
i=1 x i .



Mahalanobis distance
I Regard a data set X = {x1, ..., xn} ⊂ Rd and a point x ∈ Rd .
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I Euclidean distance from x to µX :

d2
Eucl(x ,µX ) = (x − µX )>(x − µX ) .

I Sample mean: µX = 1
n

∑n
i=1 x i .



Mahalanobis distance
I Regard a data set X = {x1, ..., xn} ⊂ Rd and a point x ∈ Rd .
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dMah

I Mahalanobis distance: d2
Mah(x ,µX ; ΣX ) = (x −µX )>Σ−1

X (x −µX ).

I Sample mean: µX = 1
n

∑n
i=1 x i .

I Sample covariance matrix: ΣX = 1
n−1

∑n
i=1(x i − µX )(x i − µX )>.



Mahalanobis depth (Mahalanobis, 1936)
I Regard a data set X = {x1, ..., xn} ⊂ Rd and a point x ∈ Rd .
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I Mahalanobis depth of x = a centrality measure:

DMah(n)(x |X ) =
1

1 + d2
Mah(x ,µX ; ΣX )

=
1

1 + (x − µX )>Σ−1
X (x − µX )



Mahalanobis distance: detection of multivariate outliers
I Regard a data set X = {x1, ..., xn} ⊂ Rd and a point x ∈ Rd .
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min(Test1) max(Test1)

m
in

(T
es

t2
)

m
ax

(T
es

t2
)

I Label x as outlier dMah(x |X ) > max(dMah) .
I A reasonable (and often acceptable) choice is to take max(dMah to

be a quantile of the χ2 distribution, e.g. max(dMah) =
√
χ2
d,0.975.

I This is called classical tolerance allipsoid.



Mahalanobis distance: robustness
I Since µX and ΣX are both affine equivariant estimators, the

Mahalanobis distance is affine invariant, i.e.:

dMah(x |{Ax1+b, ...,Axn+b}) = dMah(x |{x1, ..., xn}) = dMah(x |X ) .

I Nevertheless, Mahalanobis distance dMah is not robust, neither are
estimators µX and ΣX :

I their breakdown value is 0;
I their influence function is not bounded.

I With less available data, e.g. at the beginning of the production
process, when abnormal behavior is in addition more likely:
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Stahel-Donoho estimator: idea behind

I The Stahel-Donoho estimator is the first affine-equivariante
estimator of location and scatter with 50% asymptotic breakdown
value [Sta81, Don82].

I It is based on the projection pursuit principle:
“A multivariate outlier should be outlier in at least one direction,
but not necessarily the direction(s) of the coordinate axes”.

The algorithm of the Stahel-Donoho estimator is the following:

1. Data X are projected on a direction u ∈ Sd−1, with
Sd−1 = {y : y ∈ Rd , ‖y‖ = 1} being the unit hypersphere.

2. For each data point, its robustly standardized distance to the
median is computed of its projection x>i u.

3. For each data point, the largest distance over all directions is
retained. This distance is called outlyingness of x i .

4. The Stahel-Donoho estimator of location and scatter is the weighted
mean and covariance matrix, where the weight function W (t) is a
strictly positive and weakly decreasing function of the outlyingness
of x i .



Stahel-Donoho estimator: definition

Definition
For a multivariate data set X = {x1, ..., xn} ⊂ R, the Stahel-Donoho
outlyingness of a point x i is given by:

OSD(x i ) = sup
u∈Sd−1

|x>i u −med(x>1 u, ..., x>n u)|
MAD(x>1 u, ..., x>n u))

,

where

MAD(Xn) = med(|x1 −med(Xn)|, ..., |xn −med(Xn)|)

is the absolute median deviation from the median — a robust univariate
measure of scale.
A typical weight function is

W (t) = min
(

1,
χ2
d,0.95

t2

)
.

Then, the estimator itself is defined as the weighted mean or weighted
covariance matrix of the data with weights wi = W

(
OSD(x i )

)
.



Stahel-Donoho estimator: illustration
Regard again the two measurements during a test:
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I Stahel-Donoho outlyingness of x w.r.t. X = {x i}ni=1:

OSD(x |X ) = max
u∈Sd−1

|x>u −med(Xu)|
MAD(Xu)

.

where ‘med’ and ‘MAD’ are median and median absolute deviation
from it.



Stahel-Donoho estimator: illustration
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OSD(x |X ) = max
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|x>u −med(Xu)|
MAD(Xu)

.

where ‘med’ and ‘MAD’ are median and median absolute deviation
from it.



Stahel-Donoho estimator: illustration
Regard again the two measurements during a test:
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OSD(x |X ) = max
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|x>u −med(Xu)|
MAD(Xu)

.

where ‘med’ and ‘MAD’ are median and median absolute deviation
from it.



Stahel-Donoho estimator: illustration
Regard again the two measurements during a test:
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MAD(Xu)

.

where ‘med’ and ‘MAD’ are median and median absolute deviation
from it.



Stahel-Donoho estimator: illustration
Regard again the two measurements during a test:
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|x>u −med(Xu)|
MAD(Xu)

.

where ‘med’ and ‘MAD’ are median and median absolute deviation
from it.
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.

where ‘med’ and ‘MAD’ are median and median absolute deviation
from it.



Stahel-Donoho estimator: illustration
Regard again the two measurements during a test:
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.

where ‘med’ and ‘MAD’ are median and median absolute deviation
from it.



Stahel-Donoho estimator: illustration
Regard again the two measurements during a test:
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MAD(Xu)

.

where ‘med’ and ‘MAD’ are median and median absolute deviation
from it.
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The minimum covariance determinant estimator

I The minimum covariance determinant (MCD) estimator [Rou84] is a
widely used high-breakdown and affine equivariant estimator of
location and scatter:

Definition (Minimum covariance determinant estimator)
For a multivariate data set X = {x1, ..., xn} ∈ Rd and for fixed h, with
bn+d+1c

2 ≤ h ≤ n, let

H0 ∈ argmin
H⊂{1,...,n},#H=h

det(ΣXH)

where XH is the subset of observations from X whose indices are in H.
The minimum covariance determinant estimator is then defined as
follows:

I µ0 = µXH0
, i.e. it is the mean of the h observations for which the

determinant of the covariance matrix is minimal;

I Σ0 = ΣXH0
, i.e. it is the covariance matrix of the h observations for

which the determinant of the covariance matrix is minimal
(multiplied by the consistency factor).



Robustness of the MCD estimator

Properties of the MCD estimator:

I The influence function of MCD is bounded.

I The value h determines the breakdown value.

I For samples in general position

ε∗n = min
(n − h + 1

n
,
h − d

n

)
.

I The maximal breakdown value is achieved by taking

h =
bn + d + 1c

2
.

I Usually one speaks about the robustness parameter of the MCD
estimator α = h

n ∈ [0, 0.5].

I Typical choices of α = 0.5 or α = 0.75, which yields a breakdown
value of 50% and 25% respectively.



Computation of the MCD estimator

Exact algorithm:

I Consider all possible XH with H ⊂ {1, ..., n},#H = h.

I For each of them, compute the mean and the covariance matrix.

I Retain the subset and the values for the mean and the (consistency
corrected) covariance matrix with the smallest value of the
covariance determinant.

! Infeasible for large n and even moderate d ...

Approximate algorithm:

I Consider only a selected set of subsets of cardinality h of X , starting
from random subsets of size d + 1.

I The most used algorithm is FAST-MCD by [RD99].



The FAST-MCD algorithm

1. For m = 1 to 500:

1.1 From {1, ..., n}, draw a random subset Hm of size d + 1 and
compute µXHm

and ΣXHm
.

1.2 Apply a C-step:

1.2.1 For i = 1, ...n, compute robust Mahalanobis distances based on
µXHm

and ΣXHm
:

rdMah(x i ,µXHm
; ΣXHm

) =
√

(x i − µXHm
)>Σ−1

XHm
(x i − µXHm

) .

1.2.2 Denote H̃ the subset of {1, ..., n} with the h smallest
rdMah(xi ,µXHm

; ΣXHm
)s.

1.2.3 Compute µXH̃m
and ΣXH̃m

.

1.3 Apply a second C-step.

2. Retain the 10 subsets with the smallest covariance determinant.

3. Apply C-step on these subsets until convergence.

4. Retain the subset with the smallest covariance determinant.

5. Return the average and the (consistency corrected) covariance
matrix for the retained subset.



MCD estimator: Animals example

I Regard a data set consisting of the pairs of logarithms of the weight
of the brain and of teh body for 28 animal species.
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I Regard a data set consisting of the pairs of logarithms of the weight
of the brain and of teh body for 28 animal species.
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I Tolerance ellipsoid using moment estimates.



MCD estimator: Animals example

I Regard a data set consisting of the pairs of logarithms of the weight
of the brain and of teh body for 28 animal species.
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I Tolerance ellipsoid using MCD estimates.
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Classical PCA

I Consider a data set X = {x1, ..., xn} ⊂ Rd .

I We assume that the variables are continuous.

I The main objective of principal component analysis (PCA) is to
reduce the dimension of the data set without losing too much
information.

I One looks for a k-dimensional subspace of Rd (with k � min{n, d})
such that the projection of the data on this subspace contains most
of the information of the original d-dimensional data.

I We thus search for a center µ and a loading matrix Pd,k (of size
d × k) such that the k-dimensional scores ti

ti = P>d,k(x i − µ)

are the most informative.



Classical PCA

I Classical principal component analysis (classical PCA, or CPCA)
seeks the directions of maximum variability of the data.

I In particular, it computes the loading matrix

Pd,k = [p1, ...,pk ] ,

I where the first column is chosen as

p1 = argmax
‖p‖=1

var{p>(x1 − µ),p>(x2 − µ), ...,p>(xn − µ)} ,

I and all the following columns are chosen sequentially by

pj+1 = argmax
‖p‖=1,p⊥p1,...,p⊥pj

var{p>(x1−µ),p>(x2−µ), ...,p>(xn−µ)} .



Classical PCA

I The solution of this maximization problem yields the loading matrix
as the matrix containing the k dominant eigenvectors of the
covariance matrix ΣX of the data points.

I In particular, the spectral decomposition of ΣX yields

ΣX = PΛP>

I with P the d × d orthogonal matrix containing all d eigenvectors of
ΣX and Λ the diagonal matrix with the d eigenvalues l1, ..., ld in
decreasing order.

I The classical PCA loading matrix is the matrix Pd,k which contains
the first k columns of P.

I The eigenvalues lj equal

Ij = var{p>j (x1 − µ),p>j (x2 − µ), ...,p>j (xn − µ)} ,



Robust PCA based on a robust covariance estimator

General idea:

I Replace the covariance matrix ΣX of X by a robust covariance
estimate, such as, e.g., MCD. Let us denote it ΣX ,MCD .

I The robust center corresponds to the robust location estimate
associated with ΣX ,MCD .

I The k robust eigenvalues then correspond to the k largest
eigenvalues of ΣX ,MCD .

I Take the k corresponding eigenvectors.

This approach can only be used when n is sufficiently larger than d (at
least n > 2d).



Robust covariance-based PCA: example
I Hawkins-Bradu-Kass data set (n = 75, d = 4) [HBK84].

I This is an artificial data set with two groups of outliers: observations
1− 10 and 11− 14.

I We apply classical PCA and robust PCA based on the MCD
estimator with α = 0.5 (breakdown value).

I This yields the following eigenvalues.
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Robust covariance-based PCA: example
I Hawkins-Bradu-Kass data set (n = 75, d = 4) [HBK84].

I This is an artificial data set with two groups of outliers: observations
1− 10 and 11− 14.

I We apply classical PCA and robust PCA based on the MCD
estimator with α = 0.5 (breakdown value).

I This yields the following score distances.
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Robust covariance-based PCA: example
I Hawkins-Bradu-Kass data set (n = 75, d = 4) [HBK84].

I This is an artificial data set with two groups of outliers: observations
1− 10 and 11− 14.

I We apply classical PCA and robust PCA based on the MCD
estimator with α = 0.5 (breakdown value).

I This yields the following scores.

●●
●

●

●
●

●●

●

●

● ●●

●

●

●

●
●
●

●

●

●

●

●
●

●
●

●●

●●

●
●

●
●

●●

●

●

●

●

●

●
●

● ●
●

●
●

●

●

●

●

●

●●

●

●
●

●●

●

●
●

●

●●

●

● ●

●
●

●

●

●

−10 0 10 20 30 40

−
10

−
8

−
6

−
4

−
2

0
2

4

Classical PCA

scores.pca1[, 1]

sc
or

es
.p

ca
1[

, 2
]

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●
●

● ●

● ●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

0 10 20 30 40

0
5

10
15

Robust (MCD) PCA

scores.rPca1[, 1]

sc
or

es
.r

P
ca

1[
, 2

]



Contents

A very brief intro

Measures of robustness
Breakdown value
Sensitivity curve
Influence function

Univariate robust estimators
Estimation of location
Estimation of scale
Estimation of skewness

Multivariate estimators
Mahalanobis distance
Stahel-Donoho estimator
The minimum covariance determinant estimator

Robust principal component analysis

References



Thank you for your attention! Questions?
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