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Abstract. This article describes five new Stata commands that estimate and pro-
vide statistical inference in nonparametric frontier models. First two commands,
tenonradial and teradial, estimate data envelopment models where nonradial
and radial technical efficiency measures are computed (Färe 1988; Färe and Lovell
1994; Färe et al. 1994a). Technical efficiency measures are obtained by solving lin-
ear programming problems. The rest of the commands, teradialbc, nptestind,
and nptestrts, give tools for making statistical inference regarding radial techni-
cal efficiency measures (Simar and Wilson 1998, 2000, 2002). The article provides
brief overview of the nonparametric efficiency measurement, as well as the descrip-
tion of syntax and options of new commands. Additionally, an example showing
the capabilities of new commands is provided. Finally, a small empirical study of
productivity growth is performed.
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1 Introduction

The concept of efficiency is at the core of production economics. Beginning with the pi-
oneering work by Cobb and Douglas (1928), there were many attempts to parameterize
the production process: e.g., Leontieff, Constant Elasticity of Substitution, transcen-
dental logarithmic production and cost functions. Conceptually, however, researchers
looked at the “average” input-output relationship assuming no inefficiency. Yet, it was
no longer plausible to assume that all units are homogeneous, that is, operating at
the same level of efficiency. Among the first to offer an appropriate modification was
Farrell (1957), who built up on the concept of efficiency postulated by Koopmans (1951)
and Debreu (1951) and put forward a foundation, which has become a distinct field in
economics—the efficiency analysis. Färe (1988); Färe et al. (1994a), Färe and Primont
(1995) provide many insights into nonparametric efficiency measurement.

Data Envelopment Analysis (DEA), a leading analytical technique for measuring
relative efficiency, has been widely used by both academic researchers and practitioners
in evaluating the efficiency of decision making units in terms of converting inputs into
outputs. Researchers choose this technique because it does not impose a priori functional
form and allows for multiple output technologies.

Although the DEA method is typically considered to be deterministic, the efficiency
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2 Nonparametric Frontier Analysis

is still computed relatively to estimated and not true frontier. The efficiency scores ob-
tained from a finite sample are subject to sampling variation of the estimated frontier.
Simar and Wilson (1998, 2000, 2002) have laid out a statistical model and proposed
consistent bootstrap procedures to provide statistical inference regarding technical effi-
ciency measures in nonparametric frontier models.

The estimation of DEA model can be readily performed in Stata using user-written
command dea (Ji and Lee 2010). However, dea is limited in its capability and is slow
with even moderate data sets. We provide time comparison of dea and our command.
The five new Stata commands described here estimate and provide statistical inference
in nonparametric frontier models. tenonradial and teradial estimate data envelop-
ment models where nonradial and radial technical efficiency measures are computed
(Färe 1988; Färe and Lovell 1994; Färe et al. 1994a). teradialbc, nptestind, and
nptestrts allow making statistical inference regarding radial technical efficiency mea-
sures (Simar and Wilson 1998, 2000, 2002).

The remainder of the paper is structured as follows: section 2 provides an overview of
nonparametric frontier models; sections 3–7 contain the syntax and explain the options
of new commands; section 8 illustrates the capabilities of new commands using data set
for Program Follow Through at 70 US Primary Schools and performs the analysis of the
changes in productivity for 52 countries using Penn World Tables; section 9 discusses
the features and limitations of new commands; section 10 emphasizes the difference
between our and dea command, and section 11 concludes.

2 Nonparametric frontier analysis

This section introduces two types of nonparametric efficiency measurement, radial and
nonradial. Further, recent statistical developments regarding radial measure are dis-
cussed. The exposition here has only an introductory nature. For more details refer to
the cited papers and books.

2.1 Radial efficiency analysis

Our measures of technical efficiency for the production data points are conventional
radial Debreu-Farrell measure of efficiency loss (Debreu 1951; Farrell 1957). For each
data point k (k = 1, . . . ,K) vector xk = (xk1, . . . , xkN ) ∈ ℜN denotes N inputs, vector
yk = (yk1, . . . , ykM ) ∈ ℜM denotes M outputs. We assume that under technology T the
data (y, x) are such that outputs are producible by inputs,

T = {(x, y) : y are producible by x} . (1)

The technology is fully characterized by its production possibility set,

P (x) ≡ {y : (x, y) ∈ T} (2)

or input requirement set,
L(y) ≡ {x : (x, y) ∈ T} . (3)
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Conditions (2) and (3) imply that the available outputs and inputs are feasible.
The upper boundary of the production possibility set and lower boundary of the input
requirement set define the frontier. How far a given data point is from the frontier
represents its efficiency. In output-based radial efficiency measurement, the amount of
necessary (proportional) expansion of outputs to move a data point to a boundary of the
production possibility set P (x) serves a measure of technical efficiency. In input-based
radial efficiency measurement, it is the amount of necessary (proportional) reduction of
inputs to move a data point to a boundary of the input requirement set L(y).

Empirically, technical efficiencies are estimated via activity analysis models. These
are widely known as Data Envelopment Analysis (DEA). For K data points, M outputs
and N inputs an estimate of the radial Debreu-Farrell output-based measure of technical
efficiency can be calculated by solving a linear programming problem for each data point
k (k = 1, . . . ,K):

F̂ o
k (yk, xk, y, x|CRS) = max

θ,z
θ (4)

s.t.
K∑

k=1

zkykm ≥ ykmθm,m = 1, · · · ,M,

K∑

k=1

zkxkn ≤ xkn, n = 1, · · · , N,

zk ≥ 0.

y is K×M matrix of available data on outputs, x is K×N matrix of available data on
inputs. The estimate of P (x) is the smallest convex free-disposal hull that envelops the
observed data, and upper boundary of which is a piece-wise linear estimate of the true
best-practice frontier of P (x). Equation (4) gives us constant returns to scale (CRS)
specification. Other returns to scale are modeled by adjusting process operating levels

zk’s; for variable returns to scale (VRS) a convexity constraint
K∑

k=1

zk = 1 is added,1

while for non-increasing returns to scale (NIRS),
K∑

k=1

zk ≤ 1 inequality is added2 to set

of restrictions of linear programming problem in equation (4).

To facilitate the discussion, figures 1 and 2 present hypothetical one-input one-
output production processes with three different technologies CRS, VRS and NIRS.
Conceptually, in figure 1 (2) the vertical (horizontal) distance from a data point (xi, yi)
or (xj , yj) to CRS/VRS/NIRS best-practice frontier stands for output-based (input-
based) technical efficiency under assumption of CRS/VRS/NIRS technology. In a multi-
dimensional case, the required distance is the radial path from a data point that is
parallel to axes along which all outputs (inputs) are measured.

1. This equality ensures that data point k is compared only to data points of similar size; under CRS
assumption, data points of different sizes might be compared to one another.

2. This inequality ensures that data point k is not compared to other data points that are considerably
larger, but maybe compared to smaller data points.
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Figure 1: Output-based technical and scale efficiency
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Figure 2: Input-based technical and scale efficiency
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2.2 Nonradial efficiency analysis

For data point (yk, xk), radial measure expands (shrinks) allM outputs yk = (yk1, . . . , ykM )
(N inputs xk = (xk1, . . . , xkN )) proportionally until the frontier is reached. At the
reached frontier point, some but not all outputs (inputs) can there expanded (shrunk)
while remaining feasible. If such possibility is available for a given data point k for
output m (input n), the reference point F o

k (yk, xk) × ymk (F i
k(yk, xk) × xnk) is said

to have slack in output ym (input xn). Nonradial measure of technical efficiency, the
Russell measure, accommodates such slacks (Färe and Lovell 1994; Färe et al. 1994a).
The output-based nonradial measure for data pointj is defined by

RMo
k (yk, xk, y, x|CRS) = max

⎧
⎨

⎩
M−1

M∑
m=1

θm: (θ1yk1, . . . θMykM ) ∈ P (x),

θm ≥ 0,m = 1, . . . ,M

⎫
⎬

⎭ . (5)

The input-based counterpart is given by

RM i
k(yk, xk, y, x|CRS) = min

⎧
⎨

⎩
N−1

N∑
n=1

λn: (λ1xk1, . . .λNykN ) ∈ L(y),

λn ≥ 0, n = 1, . . . , N

⎫
⎬

⎭ . (6)

The output-based Russell measure can be calculated for positive outputs as a solution
to the linear programming problem

R̂M
o

k(yk, xk, y, x|CRS) = M−1 max
θ,z

M∑

m=1

θm (7)

s.t.
K∑

k=1

zkykm ≥ ykmθm,m = 1, · · · ,M,

K∑

k=1

zkxkn ≤ xkn, n = 1, · · · , N,

zk ≥ 0.

and input-based Russell measure can be calculated for positive inputs as a solution to
the linear programming problem

R̂M
i

k(yk, xk, y, x|CRS) = N−1 min
θ,z

N∑

n=1

λn (8)

s.t.
K∑

k=1

zkykm ≥ ykm,m = 1, · · · ,M,

K∑

k=1

zkxkn ≤ xknλn, n = 1, · · · , N,

zk ≥ 0.
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If output ykm = 0 (xkn = 0), the linear programming problem in 7 (8) is modified and
θm (λn) is set to 1.

The Russell measure allows for nonproportional expansions (reductions) in each
positive output (input). The nonradial output- (input-) based Russell measure collapses
to the radial measure when θm = θ, ∀m, where ykm > 0 (λn = λ, ∀n, where xkn > 0).
However, since the Russell measure can expand (shrink) an output (input) vector at
most (least) as far as the radial measure can, we have the result that

1 ≥ F̂ o
k (yk, xk, y, x|CRS) ≥ R̂M

o

k(yk, xk, y, x|CRS) (9)

and

0 < R̂M
i

k(yk, xk, y, x|CRS) ≤ F̂ i
k(yk, xk, y, x|CRS) ≤ 1. (10)

Technologies under nonincreasing and variable returns to scale can be modeled by
imposing respective restrictions on the intensity vector, z, in the piecewise linear tech-
nology, that is in (7) and (8). Then the Russell measure can be calculated relative to
these technologies.

In case of one input (output), the input (output)-based Russell measure is equal to
Debreu-Farrell radial measure of technical efficiency.

2.3 Statistical inference in radial frontier model

Although the DEA method is typically considered to be deterministic, the efficiency
is still computed relatively to estimated and not true frontier. The efficiency scores
obtained from a finite sample (in equation (4) from K data points) are subject to
sampling variation of the estimated frontier. The estimated technical efficiency mea-
sures are too optimistic, due to the fact that the DEA estimate of the production set
is necessarily a weak subset of the true production set under standard assumptions
underlying DEA. The statistical inference regarding the radial DEA estimates can be
provided via bootstrap technique. The details of the concept and implementation of the
bootstrap mechanism are given in Simar and Wilson (1998, 2000); Kneip et al. (2008).
The bootstrapping procedure allows to estimate the bias and the confidence interval
of the original estimate. Badunenko et al. (2012) study statistical properties of the
bias-corrected estimator in finite samples.

2.4 Type of the bootstrap for statistical inference

The bootstrapping technique mentioned in the previous section relies on several as-
sumptions. In output-based efficiency measurement, the major assumption depends on
whether the estimated output-based measures of technical efficiency are independent
of the mix of outputs. In input-based efficiency measurement, the major assumption
depends on whether the estimated input-based measures of technical efficiency are in-
dependent of the mix of inputs. This dependency is testable given the assumption of
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returns to scale of the global technology (Wilson 2003). If output-based measures of
technical efficiency are independent of the mix of outputs, the smoothed homogeneous
bootstrap can be used. This type of the bootstrap is not computer intensive. If on
the contrary, output-based measures of technical efficiency are not independent of the
mix of outputs, the heterogenous bootstrap must be used to provide valid statistical
inference. The latter type of bootstrap is quite computer demanding and may take a
while for large data sets.

2.5 Returns to scale and scale analysis

The assumption regarding the global technology is crucial in DEA. Depending on this
assumption equation (4) and resulting measures of technical efficiency will vary. The
assumption about returns to scale should be made using prior knowledge about the
particular industry. If this knowledge does not suffice, or is not conclusive, the returns
to scale assumption can be tested econometrically. Moreover, if technology is not CRS
globally, estimating measure of technical efficiency under CRS will lead to inconsistent
results (Simar and Wilson 2002).

The measures of radial technical efficiency in equation (4) under CRS, NIRS, and
VRS can be used to calculate the measures of scale efficiency, originally proposed by
Färe and Grosskopf (1985),

So
k(yk, xk) =

F̂ o
k (yk, xk, y, x|CRS)

F̂ o
k (yk, xk, y, x|VRS)

, (11)

and

So∗
k (yk, xk) =

F̂ o
k (yk, xk, y, x|NIRS)

F̂ o
k (yk, xk, y, x|VRS)

(12)

for output-based analysis and

Si
k(yk, xk) =

F̂ i
k(yk, xk, y, x|CRS)

F̂ i
k(yk, xk, y, x|VRS)

, (13)

and

Si∗
k (yk, xk) =

F̂ i
k(yk, xk, y, x|NIRS)

F̂ i
k(yk, xk, y, x|VRS)

(14)

for input-based analysis. Scale efficiency, So
k measures how close is the data point (yk, xk)

to potentially optimal scale, also known as maximum productive scale size (MPSS), the
portion of the frontier where CRS and VRS frontiers coincide in figures 1 and 2 (denoted
by SEo and SEi, respectively). If So

k(yk, xk) = 1 (Si
k(yk, xk) = 1 in input-based efficiency

measurement), a data point (yk, xk) is scale efficient. If So
k(yk, xk) > 1 (Si

k(yk, xk) < 1
in input-based efficiency measurement), a data point (yk, xk) is scale inefficient due
to operating under the decreasing returns portion of technology if So∗

k (yk, xk) = 1
(Si∗

k (yk, xk) = 1 in input-based efficiency measurement) or due to operating under the
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increasing returns portion of technology if So∗
k (yk, xk) > 1 (Si∗

k (yk, xk) < 1 in input-
based efficiency measurement).

On the one hand, if global technology T in equation (1) represents CRS, the VRS
estimator is less efficient than CRS. On the other hand, if global technology T in equa-
tion (1) is not CRS at some mix of outputs (inputs), CRS estimator is inconsistent.
Therefore Simar and Wilson (2002) suggest the following tests

Test #1: H0 : T is globally CRS

H1 : T is VRS.

If null hypothesisH0 is rejected, that is, technology is not CRS everywhere, the following
test with less restrictive null hypothesis may be performed

Test #2: H ′

0 : T is globally NIRS

H1 : T is VRS.

Using scale efficiency measures for all K data points, the statistics for testing Test #1
and Test #2 are defined by

Ŝo
2n =

K∑
k=1

F̂ o
k (yk, xk, y, x|CRS)

K∑
k=1

F̂ o
k (yk, xk, y, x|VRS)

(15)

and

Ŝo′
2n =

K∑
k=1

F̂ o
k (yk, xk, y, x|NIRS)

K∑
k=1

F̂ o
k (yk, xk, y, x|VRS)

. (16)

The idea of testing the null hypothesis that the technology is globally CRS versus
the alternative hypothesis that the technology is globally VRS, Test #1, boils down
to testing how far the test statistic (15) is from its bootstrap analog. This statistic
represents the ratio of the average measures of technical efficiency under assumption of
VRS and CRS technologies. If null hypothesis is true, then average distance between
VRS and CRS frontiers is small. If alternative hypothesis is true, then distance between
VRS and CRS frontiers on average is large—the null hypothesis H0 is rejected if Ŝo

2n

is significantly larger than 1 (Ŝi
2n, defined similar to (15) smaller than 1 in input-based

efficiency measurement). If H0 is rejected, Test #2 can be performed to test the null
hypothesis H ′

0 that the technology is globally NIRS versus the alternative hypothesis
that the technology is globally VRS. Analogously to Test #1, if null hypothesis H ′

0 is
true, then average distance between VRS and NIRS frontiers is small. If alternative
hypothesis is true, then distance between VRS and NIRS frontiers on average is large—
the null hypothesis H ′

0 is rejected if Ŝo′
2n is significantly larger than 1 (Ŝi′

2n, defined
similar to (16) smaller than 1 in input-based efficiency measurement).
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Taking into account the importance of returns to scale assumption for DEA estima-
tor, this data-driven test is advised to be performed before applying any DEA model.

Additionally, this testing procedure can be used to perform the scale analysis for each
data point. The CRS assumption is only feasible when all data points are operating at
an optimal scale: i.e., when scale efficiency is unity. However, for many reasons (e.g.,
imperfect competition, financial constraints) it is more appropriate to assume variable
returns to scale (see Coelli et al. 2002, for history and development of the this stream).
Assuming CRS when VRS should be assumed in reality overestimates technical efficiency
estimate exactly by scale efficiency. Therefore, performing the individual returns to scale
test is fairly important in case of scale efficiency analysis.

First, for each data point k, the null hypothesis of Test #1k that measures of tech-
nical efficiency are equal under constant and variable returns to scale or So

k(yk, xk) = 1
against an alternative hypothesis that So

k(yk, xk) > 1 (Si
k(yk, xk) < 1 in input-based

case) is tested.3 Since by definition So
k(yk, xk) ≥ 1 (Si

k(yk, xk) ≥ 1 in input-based case),
such null hypothesis is rejected if So

k(yk, xk) is significantly greater than 1 (Si
k(yk, xk) ≤ 1

in input-based case). The data point So
k(yk, xk), for which this null hypothesis is re-

jected, So
k(yk, xk) > 1 (Si

k(yk, xk) < 1 in input-based case), is said to be scale inefficient.
Second, for all scale inefficient data points a null hypothesis of Test #2k that the mea-
sures of technical efficiency are equal under nonincreasing and variable returns to scale
or So∗

k (yk, xk) = 1 (Si∗
k (yk, xk) = 1 in input-based case) against an alternative hypoth-

esis that So∗
k (yk, xk) > 1 (Si∗

k (yk, xk) < 1 in input-based case) can be performed. The
Test #2k concludes that data point (yk, xk) is operating under increasing returns to
scale (such as a data point (xi, yi) in terms of figure 1 or 2) if So∗

k (yk, xk) is significantly
larger than 1 (Si∗

k (yk, xk) < 1 in input-based case), or is operating under decreasing
returns to scale (such as a data point (xj , yj) in terms of figure 1) otherwise. All tests
in this subsection are tests based on bootstrap techniques mentioned in the previous
section.

3 The tenonradial command

tenonradial uses reduced linear programming to compute the nonradial output- or
input-based measure of technical efficiency, which is known as the Russell measure. In
input-based nonradial efficiency measurement, this measure allows for non-proportional
(different) reductions in each positive input, and this is what permits it to shrink an
input vector all the way back to the efficient subset. In output-based nonradial efficiency
measurement, the Russell measure allows for non-proportional (different) expansions of
each positive output

3. Note, that So
k
(yk, xk) is the test statistic of Test #1k.
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3.1 Syntax

tenonradial outputs = inputs
[

(ref outputs = ref inputs)
] [

if
] [

in
] [

,

rts(string) base(string) ref(varname) tename(newvarname) noprint
]

Specification

outputs is the list of output variables.

inputs is the list of input variables.

3.2 Options for tenonradial

Technology

rts(rtsassumption) specifies returns to scale assumption.

Specifying rts(crs) requests that measure of technical efficiency is computed under
the assumption of constant returns to scale. rts(crs) is the default.

Specifying rts(nrs) requests that measure of technical efficiency is computed under
the assumption of non-increasing returns to scale.

Specifying rts(vrs) requests that measure of technical efficiency is computed under
the assumption of variable returns to scale.

base(basetype) specifies type of optimization.

Specifying base(output) requests that output-based measure is computed. base(output)
is the default.

Specifying base(input) requests that input-based measure is computed.

Reference Set

ref outputs is the optional list of output variables for the reference set.

The number of variables in ref outputs must be equal to the number of variables in
outputs.

If ref outputs is specified ref inputs must also be specified.

If ref outputs is not specified ref inputs must also not be specified.

ref outputs = ref inputs must be enclosed in parentheses: (ref outputs = ref inputs).

ref inputs is the optional list of input variables for the reference set.

The number of variables in ref inputs must be equal to the number of variables in
inputs.

If ref inputs is specified ref outputs must also be specified.

If ref inputs is not specified ref outputs must also not be specified.
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ref outputs = ref inputs must be enclosed in parentheses: (ref outputs = ref inputs).

ref(varname) specifies the indicator variable varname that defines which data points
of outputs and inputs form the technology reference set. If ref outputs and ref inputs
are specified varname defines which data points of ref outputs and ref inputs form
the technology reference set.

Variable generation

tenames(newvarname) creates newvarname containing the nonradial measures of tech-
nical efficiency.

Miscellaneous

noprint suppresses the estimation details, description of the data and reference set.

3.3 Output, generated variable, and saved results

If noprint is not specified, tenonradial produces the summary of the model, data,
and note about the reference set. Specifying tenames(newvarname) will generate new-
varname containing the nonradial measures of technical efficiency in the current data
set.

tenonradial stores the following to e():

Macros
e(title) title in estimation output e(outputs) the list of output variables
e(cmd) tenonradial e(inputs) the list of input variables
e(cmdline) command as typed e(ref outputs)the list of output variables
e(rts) CRS, NRS, or VRS e(ref inputs) the list of input variables
e(base) output or input

Scalars
e(K) number of data points e(Kref) number of data points in the ref-

erence set
e(M) number of outputs e(N) number of inputs
e(reps) number of bootstrap replications

Matrices
e(te) Kx1 matrix with measures of

technical efficiency

Functions
e(sample) marks estimation sample

4 The teradial command

The syntax, options, output, generated variable, and saved results are identical to those
of tenonradial.
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5 The teradialbc command

teradialbc performs statistical inference about the radial measure of technical effi-
ciency

5.1 Syntax

teradialbc outputs = inputs
[

(ref outputs = ref inputs)
] [

if
] [

in
] [

,

rts(string) base(string) ref(varname) subsampling kappa(#) smoothed

heterogeneous reps(#) level(#) tename(newvarname) tebc(newvarname)

biasboot(newvarname) varboot(newvarname) biassqvar(newvarname)

telower(newvarname) teupper(newvarname) noprint nodots
]

5.2 Options for teradialbc

Technology

identical to those of tenonradial.

Reference Set

identical to those of tenonradial.

Bootstrap

subsampling requests that the reference set is bootstrapped with subsampling. If
subsampling is not specified, bootstrap with smoothing is used.

kappa(#) sets the size of the subsample as Kkappa, where K is the number of data
points in the original reference set. The default value is 0.7. # may be between 0.5
and 1.

smoothed requests that the reference set is bootstrapped with smoothing. Option
smoothed must not be satisfied: if subsampling is not specified, bootstrap with
smoothing is used. This option is rather for keeping track of the bootstrap type.

heterogeneous requests that the reference set is bootstrapped with heterogeneous
smoothing. If heterogeneous is not specified, homogeneous smoothed bootstrap
is used.

reps(#) specifies the number of bootstrap replications to be performed. The default
is 999. The minimum is 200. Adequate estimates of confidence intervals using
bias-corrected methods typically require 1,000 or more replications.

Statistical inference

level(#) sets confidence level; default is level(95).
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Variable generation

tenames(newvarname) creates newvarname containing the radial measures of technical
efficiency.

tebc(newvarname) creates newvarname with bias-corrected radial measures of techni-
cal efficiency.

biasboot(newvarname) creates newvarname with bootstrap bias estimate for the orig-
inal radial measures of technical efficiency.

varboot(newvarname) creates newvarname with bootstrap variance estimate for the
radial measures of technical efficiency.

biassqvar(newvarname) creates newvarname with three times the ratio of bias squared
to variance for radial measures of technical efficiency.

telower(newvarname) creates newvarname with the lower bound estimate for radial
measures of technical efficiency.

teupper(newvarname) creates newvarname with the upper bound estimate for radial
measures of technical efficiency.

Miscellaneous

noprint suppresses display of the log.

nodots suppresses display of the replication dots. One dot character is displayed for
each successful replication.

5.3 Details

teradialbc performs bias correction of the radial output- or input-based measure of
technical efficiency under the assupmtion of constant, non-increasing, or variable returns
to scale technology, computes bias and constructs confidence intervals.

If reference set is not specified, the reference set is formed by data points, for which
measures of technical efficiency are computed.

Statistical inference (computation of bias, variance, and confidence interval) is per-
formed for data points where the real number of bootstrap replications is at least 100.
Matrix e(realreps) saves real number of bootstrap replications, which may be smaller
than reps(#).

If at least one input-based bias-corrected Farrell measure of technical efficiency is
negative, the analysis and statistical inference is performed in terms of Shephard dis-
tance functions, a reciprocal of the Debreu-Farrell measure.
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5.4 Dependency of teradialbc

teradialbc depends on mata functions kdens_bw() and mm_quantile(). If not in-
stalled, install by typing -net install kdens.pkg- and -ssc install moremata-.

5.5 Output, generated variables, and saved results

If noprint and nodots are not specified, teradialbc produces the summary of the
model, data, note about the reference set, and dislays replication dots. Several variables
related to statistical inference can be generated in the current data set. For example,
specifying tenames(newvarname) will generate newvarname containing the nonradial
measures of technical efficiency. Options above describe creating other variables.

teradialbc stores the following to e():

Macros
e(title) title in estimation output e(outputs) the list of output variables
e(cmd) teradialbc e(inputs) the list of input variables
e(cmdline) command as typed e(ref outputs)the list of output variables for

the reference set
e(rts) CRS, NRS, or VRS e(ref inputs) the list of input variables for the

reference set
e(base) output or input

Scalars
e(K) number of data points e(Kref) number of data points in the ref-

erence set
e(M) number of outputs e(reps) number of bootstrap replications
e(N) number of inputs

Matrices
e(te) Kx1 matrix with measures of

technical efficiency
e(telow) Kx1 matrix with the lower

bound estimate for radial mea-
sures of technical efficiency

e(tebc) Kx1 matrix with bias-corrected
radial measures of technical effi-
ciency

e(teupp) Kx1 matrix with the upper
bound estimate for radial mea-
sures of technical efficiency

e(biasboot) Kx1 matrix with bootstrap bias
estimate for the original radial
measures of technical efficiency

e(biassqvar) Kx1 matrix with three times the
ratio of bias squared to variance
for radial measures of technical
efficiency

e(varboot) Kx1 matrix with bootstrap vari-
ance estimate for the radial mea-
sures of technical efficiency

e(realreps) Kx1 matrix with number of
bootstrap replications that were
used for statistical inference

Functions
e(sample) marks estimation sample

6 The nptestind command

nptestind performs nonparametric test of independence.
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6.1 Syntax

nptestind outputs = inputs
[
if
] [

in
] [

, rts(string) base(string) reps(#)

alpha(#) noprint nodots
]

6.2 Options for nptestind

Technology

identical to those of tenonradial.

Bootstrap

reps(#) specifies the number of bootstrap replications to be performed. The default
is 999. The minimum is 200. Adequate estimates of confidence intervals using
bias-corrected methods typically require 1,000 or more replications.

Statistical inference

alpha(#) sets significance level; default is alpha(0.05).

Miscellaneous

identical to those of teradialbc.

6.3 Dependency of nptestind

nptestind depends on mata function kdens_bw(). If not installed, install by typing
-net install kdens.pkg-.

6.4 Output and saved results

If noprint and nodots are not specified, nptestind produces the summary of the model,
data, note about the reference set, and dislays replication dots. Several variables related
to statistical inference can be generated in the current data set.

nptestind stores the following to e():
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Macros
e(title) title in estimation output e(cmd) teradialbc
e(cmdline) command as typed e(reps) number of bootstrap replications
e(rts) CRS, NRS, or VRS e(outputs) the list of output variables
e(base) output or input e(inputs) the list of input variables

Scalars
e(K) number of data points e(t4n) T4n statistic
e(M) number of outputs e(pvalue) p-value of the test that the mea-

sure of technical efficiency and
mix of inputs (or outputs) are in-
dependent

e(N) number of inputs

Matrices
e(t4nboot) reps x 1 matrix with bootstrap

values of the T4n statistic

7 The nptestrts command

nptestrts performs nonparametric test of returns to scale.

7.1 Syntax

nptestrts outputs = inputs
[
if
] [

in
] [

, rts(string) base(string)

ref(varname) heterogeneous reps(#) alpha(#) testtwo

tecrsname(newvarname) tenrsname(newvarname) tevrsname(newvarname)

sefficiency(newvarname) psefficient(newvarname)

sefficient(newvarname) nrsovervrs(newvarname) pineffdrs(newvarname)

sineffdrs(newvarname) noprint nodots
]

7.2 Options for nptestrts

Technology

identical to those of tenonradial, except for rts.

Reference Set

identical to those of tenonradial.

Bootstrap

heterogeneous requests that the reference set is bootstrapped with heterogeneous
smoothing. If heterogeneous is not specified, homogeneous smoothed bootstrap
is used.

reps(#) specifies the number of bootstrap replications to be performed. The default
is 999. The minimum is 200. Adequate estimates of confidence intervals using
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bias-corrected methods typically require 1,000 or more replications.

Statistical inference

alpha(#) sets significance level; default is alpha(0.05).

testtwo specifies that the Test #2 is performed.

If testtwo is not specified, nptestrts performs only Test #1, which consists of two
parts. First, the null hypothesis that the technology is globally CRS (vs VRS) is
tested. Second, the null hypothesis that the data point is scale efficient is tested.

If testtwo is specified, nptestrts may perform Test #2. If the null hypothesis that
the technology is CRS is rejected, testtwo requests that nptestrts tests the null
hypothesis that the technology is NIRS (vs VRS). If not all data points are scale
efficient, nptestrts tests that the reason for scale inefficiency is operating under
decreasing returns to scale (DRS). If the null hypothesis that the technology is CRS
is not rejected and all data points are scale efficient, nptestrts will not perform
Test #2 even if testtwo is specified.

Variable generation

tenames(newvarname) creates newvarname containing the radial measures of technical
efficiency.

tecrsnames(newvarname) creates newvarname containing the radial measures of tech-
nical efficiency under the assumption of CRS.

tenrsnames(newvarname) creates newvarname containing the radial measures of tech-
nical efficiency under the assumption of NIRS.

tevrsnames(newvarname) creates newvarname containing the radial measures of tech-
nical efficiency under the assumption of VRS.

sefficiency(newvarname) creates newvarname containing scale efficiency, the ratio
of measures of technical efficiency under CRS and VRS.

psefficient(newvarname) creates newvarname containing p-value of the test that
data point is statistically scale efficient.

sefficient(newvarname) creates indicator newvarname equal one if statistically scale
efficient.

nrsovervrs(newvarname) creates newvarname containing the ratio of measures of
technical efficiency under NIRS and VRS.

pineffdrs(newvarname) creates newvarname containing p-value of the test that data
point is scale inefficient due to operating under DRS.

sineffdrs(newvarname) creates indicator newvarname equal one if statistically scale
inefficient due to operating under DRS.

Miscellaneous
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noprint suppresses display of the log.

nodots suppresses display of the replication dots. One dot character is displayed for
each successful replication.

7.3 Details

nptestrts performs nonparametric test of returns to scale.

If testtwo is not specified, nptestrts performs only Test #1, which consists of two
parts. First, the null hypothesis that the technology is globally CRS (vs VRS) is tested.
Second, the null hypothesis that the data point is scale efficient is tested.

If testtwo is specified, nptestrts may perform Test #2. If the null hypothesis
that the technology is CRS is rejected, opt testtwo requests that nptestrts tests the
null hypothesis that the technology is NIRS (vs VRS). If not all data points are scale
efficient, nptestrts tests that the reason for scale inefficiency is operating under DRS.
If the null hypothesis that the technology is CRS is not rejected and all data points are
scale efficient, nptestrts will not perform Test #2 even if testtwo is specified.

7.4 Dependency of nptestrts

nptestrts depends on mata function kdens_bw(). If not installed, install by typing
-net install kdens.pkg-.

7.5 Output, generated variables, and saved results

If noprint and nodots are not specified, nptestrts produces the summary of the model,
data, note about the reference set, and dislays replication dots. Several variables re-
lated to nonparametric test can be generated in the current data set. For example,
specifying tecrsnames(newvarname) will generate newvarname containing the nonra-
dial measures of technical efficiency under the assumption of constant returns to scale.
Options above describe creating other variables.

teradialbc stores the following to e():
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Macros
e(title) title in estimation output e(cmd) nptestrts
e(cmdline) command as typed e(base) output or input
e(outputs) the list of output variables e(inputs) the list of input variables
e(smoothtype) homogeneous or heterogenous

Scalars
e(K) number of data points e(sefficiencyMean) ratio of means of technical

efficiency measures under CRS
and VRS

e(M) number of outputs e(pGlobalCRS) p-value of the test that the tech-
nology is globally CRS

e(N) number of inputs e(nsefficient)number of scale efficient data
points

e(nrsOVERvrsMean) ratio of means of technical
efficiency measures under NIRS
and VRS (if opt testtwo)

e(pGlobalNRS) p-value of the test that the tech-
nology is globally NIRS (if opt
testtwo)

e(reps) number of bootstrap replications

Matrices
e(tecrsname) Kx1 matrix with measures of

technical efficiency under the as-
sumption of CRS

e(sefficiency)Kx1 matrix containing scale effi-
ciency

e(tenrsname) Kx1 matrix with measures of
technical efficiency under the as-
sumption of NIRS

e(psefficient)Kx1 matrix containing p-value of
the test that data point is statis-
tically scale efficient

e(tevrsname) Kx1 matrix with measures of
technical efficiency under the as-
sumption of VRS

e(sefficient) Kx1 matrix containing ones if
statistically scale efficient

e(pineffdrs) Kx1 matrix containing p-value of
the test that data point is scale
inefficient due to DRS (if opt
testtwo)

e(sineffdrs) Kx1 matrix containing ones if
statistically scale inefficient due
to DRS (if opt testtwo)

e(nrsovervrs) Kx1 matrix containing the ra-
tio of measures of technical effi-
ciency under NiRS and VRS (if
opt testtwo)

Functions
e(sample) marks estimation sample

8 Empirical application

In this section, we show how to use new commands and interpret the output based on
two widely used data sets.

8.1 Data: CCR81

The first dataset comes from Charnes et al. (1981). The data were originally used to
evaluate the efficiency of public programs and their management. In what follows, we
stick to output-based efficiency measurement.

We artificially create a variable dref to illustrate the capabilities of new commands.
We do not suppress the estimation details, description of the data and reference set
for output-based radial measure of technical efficiency under the assumption of CRS
technology. We do so for the remaining of radial and all of nonradial measures. Finally,
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we list the measures for first 7 observations:

. use ccr81, clear
(Program Follow Through at 70 US Primary Schools)

. generate dref = x5 != 10

. teradial y1 y2 y3 = x1 x2 x3 x4 x5, r(c) b(o) ref(dref) tename(TErdCRSo)

Radial (Debreu-Farrell) output-based measures of technical efficiency under assumption
of CRS technology are computed for the following data:

Number of data points (K) = 70
Number of outputs (M) = 3
Number of inputs (N) = 5

Reference set is formed by 68 provided reference data points

. teradial y1 y2 y3 = x1 x2 x3 x4 x5, r(n) b(o) ref(dref) tename(TErdNRSo) nopr
> int

. teradial y1 y2 y3 = x1 x2 x3 x4 x5, r(v) b(o) ref(dref) tename(TErdVRSo) nopr
> int

. tenonradial y1 y2 y3 = x1 x2 x3 x4 x5, r(c) b(o) ref(dref) tename(TEnrCRSo) n
> oprint

. tenonradial y1 y2 y3 = x1 x2 x3 x4 x5, r(n) b(o) ref(dref) tename(TEnrNRSo) n
> oprint

. tenonradial y1 y2 y3 = x1 x2 x3 x4 x5, r(v) b(o) ref(dref) tename(TEnrVRSo) n
> oprint

. list TErdCRSo TErdNRSo TErdVRSo TEnrCRSo TEnrNRSo TEnrVRSo in 1/7

TErdCRSo TErdNRSo TErdVRSo TEnrCRSo TEnrNRSo TEnrVRSo

1. 1.087257 1.032294 1.032294 1.11721 1.05654 1.05654
2. 1.110133 1.109314 1.109314 1.383089 1.277123 1.277123
3. 1.079034 1.068429 1.068429 1.17053 1.116582 1.116582
4. 1.119434 1.107413 1.107413 1.489086 1.471301 1.471301
5. 1.075864 1.075864 1 1.196779 1.196779 1

6. 1.107752 1.107752 1.105075 1.380214 1.378378 1.378378
7. 1.125782 1.119087 1.119087 1.575288 1.547186 1.547186

teradial and tenonradial compute measures of technical efficiency for all 70 data
points using the reference set based on the restriction x5 != 10, which leaves two data
points out. As expected, the radial measures are at least not worse than nonradial mea-
sures for each of returns to scale assumption. Figure 3 visualizes this observation. This
indicates that there are slacks in outputs. Besides, for radial and nonradial measures,
the measures under VRS are at least not worse than those under NIRS. The measures
under NIRS are at least not worse that those under CRS. For data points 1, 2, 3, 4, and
7, measures under NIRS and VRS are equal. For data points 5 and 6, measures under
NIRS and CRS are equal. We come back to scale analysis shortly when we discuss
nptestrts command.

Before teradialbc is run, we need to know what type of bootstrap to employ. We
perform therefore the nonparametric test of independence by running the new command
nptestind. For illustration purposes, we run the test for all returns to scale assumption
for both output- and input-based frontier models. We show the output only for the
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Figure 3: Scatterplot of Debreu-Farrell and Russell measures of technical efficiency
under the assumption of CRS (left panel) and under the assumption of VRS (right
panel)

output-based model under the assumption of CRS technology. We suppress the log for
the remaining five models:

. matrix testsindpv = J(2, 3, .)

. matrix colnames testsindpv = CRS NiRS VRS

. matrix rownames testsindpv = output-based input-based

. nptestind y1 y2 y3 = x1 x2 x3 x4 x5, r(c) b(o) reps(999) a(0.05)

Radial (Debreu-Farrell) output-based measures of technical efficiency under
assumption of CRS, NIRS, and VRS technology are computed for the following
data:

Number of data points (K) = 70
Number of outputs (M) = 3
Number of inputs (N) = 5

Reference set is formed by 70 data points, for which measures of technical
efficiency are computed.

Test

Ho: T4n = 0 (radial (Debreu-Farrell) output-based measure of technical
efficiency under assumption of CRS technology and mix of outputs are
independent)

Bootstrapping test statistic T4n (999 replications)

1 2 3 4 5
.................................................. 50
(dots omitted)
.................................................. 950
.................................................

p-value of the Ho that T4n = 0 (Ho that radial (Debreu-Farrell) output-based
measure of technical efficiency under assumption of CRS technology and mix of
outputs are independent) = 0.0621:

hat{T4n} = 0.0310 is not statistically greater than 0 at the 5% significance
level
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Heterogeneous bootstrap should be used when performing output-based technical
efficiency measurement under assumption of CRS technology

. matrix testsindpv[1,1] = e(pvalue)

. nptestind y1 y2 y3 = x1 x2 x3 x4 x5, r(n) b(o) reps(999) a(0.05) noprint

. matrix testsindpv[1,2] = e(pvalue)

. nptestind y1 y2 y3 = x1 x2 x3 x4 x5, r(v) b(o) reps(999) a(0.05) noprint

. matrix testsindpv[1,3] = e(pvalue)

. nptestind y1 y2 y3 = x1 x2 x3 x4 x5, r(c) b(i) reps(999) a(0.05) noprint

. matrix testsindpv[2,1] = e(pvalue)

. nptestind y1 y2 y3 = x1 x2 x3 x4 x5, r(n) b(i) reps(999) a(0.05) noprint

. matrix testsindpv[2,2] = e(pvalue)

. nptestind y1 y2 y3 = x1 x2 x3 x4 x5, r(v) b(i) reps(999) a(0.05) noprint

. matrix testsindpv[2,3] = e(pvalue)

. matrix list testsindpv

testsindpv[2,3]
CRS NiRS VRS

output-based .06206206 .21921922 .03803804
input-based .02402402 .00500501 .24624625

Depending on the assumption about the technology and base of measurement, the
nptestind concludes differently about the type of the bootstrap. In output-based
efficiency measurement, the independence assumption is rejected at the 5% significance
level only for VRS technology. In input-based efficiency measurement, it is only for VRS
technology that the independence assumption is not rejected at the 5% significance level.

teradialbc can provide statistical inference for three types of bootstrap: (i) smoothed
homogeneous, (ii) smoothed heterogenous, and (iii) subsampling [heterogeneous] boot-
strap.

We performed each of these types under the assumption of VRS technology. The
results of nptestind indicate that the heterogeneous bootstrap should be used, so the
results for the homogeneous bootstrap cannot be trusted. We report them here for
illustration purposes only. By using options tebc, biassqvar, telower, and teupper,
we generate new variables in the current data set that contain bias-corrected output-
based measure of technical efficiency, the statistic that compares bias and variance of
the bootstrap (we also report its summary right after the command), and lower and
upper bounds of 95% confidence interval for each of three types of bootstrap. Table 1
lists the measures for the first 34 data points. We let teradialbc output the log and
bootstrap dots for the first type, but suppress them for other two:

. teradialbc y1 y2 y3 = x1 x2 x3 x4 x5, r(v) b(o) ref(dref) reps(999) tebc(TErd
> VRSoBC1) biassqvar(TErdVRSoBC1bv) telower(TErdVRSoLB1) teupper(TErdVRSoUB1)

Radial (Debreu-Farrell) output-based measures of technical efficiency under
assumption of VRS technology are computed for the following data:

Number of data points (K) = 70
Number of outputs (M) = 3
Number of inputs (N) = 5

Reference set is formed by 68 provided reference data points.



Badunenko and Mozharovskyi 23

Bootstrapping reference set formed by 68 provided reference data points and
computing radial (Debreu-Farrell) output-based measures of technical efficiency
under assumption of VRS technology for each of 70 data points relative to the
bootstrapped reference set

Smoothed homogeneous bootstrap (999 replications)

1 2 3 4 5
.................................................. 50
(dots omitted)
.................................................

. su TErdVRSoBC1bv

Variable Obs Mean Std. Dev. Min Max

TErdVRSoBC~v 70 3.591606 1.242244 1.922622 7.885657

. teradialbc y1 y2 y3 = x1 x2 x3 x4 x5, het r(v) b(o) ref(dref) reps(999) tebc(
> TErdVRSoBC2) biassqvar(TErdVRSoBC2bv) telower(TErdVRSoLB2) teupper(TErdVRSoUB
> 2) noprint

. su TErdVRSoBC2bv

Variable Obs Mean Std. Dev. Min Max

TErdVRSo~2bv 58 40.84578 47.09781 5.852742 294.3301

. teradialbc y1 y2 y3 = x1 x2 x3 x4 x5, subs r(v) b(o) ref(dref) reps(999) tebc
> (TErdVRSoBC3) biassqvar(TErdVRSoBC3bv) telower(TErdVRSoLB3) teupper(TErdVRSoU
> B3) noprint

. su TErdVRSoBC3bv

Variable Obs Mean Std. Dev. Min Max

TErdVRSo~3bv 70 3.644745 2.421754 0 15.34533

Statistic BV in Table 1 is three times the ratio of bias squared to variance of the
bootstrap values of the radial measures of technical efficiency. Bias correction and sta-
tistical inference should be performed only if this statistic is well above unity. For all
three types of bootstrap, BV measure is satisfactory. For smoothed homogeneous and
subsampling bootstrap the values of BV are much smaller that those for smoothed het-
erogeneous bootstrap. If BV is small, the variance of the bootstrap values is relatively
large and the mean-square error of the bias-corrected estimate of technical efficiency
measure is much higher than that of the original measure. We also know from run-
ning nptestind that the results from smoothed homogeneous bootstrap should not be
trusted.

Panels ‘Smoothed heterogeneous’ and ‘Subsampling’ in table 1 show the results for
heterogeneous bootstrap. Statistic BV indicates that subsampling bootstrap introduces
quite some noise. Bias-corrected measure is estimated very imprecise and results for
subsampling bootstrap should not be used. This leaves us with reliable statistical in-
ference using heterogeneous smoothed bootstrap. Here the BV statistic is well above
unity.

The bias for heterogeneous smoothed bootstrap is larger than that of homogeneous
smoothed bootstrap, which is implied by larger bias-corrected estimates of efficiency
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Table 1: Statistical inference about the radial output-based measure of technical effi-
ciency under the assumption of VRS

# TEa Smoothed homogeneous Smoothed heterogeneous Subsampling

BCb BVc LBd UBe BC BV LB UB BC BV LB UB

1 1.032 1.056 0.290 1.033 1.129 1.177 7.362 1.124 1.290 1.153 0.395 1.040 1.414
2 1.109 1.126 0.438 1.110 1.162 1.222 3.018 1.154 1.339 1.186 0.418 1.114 1.334
3 1.068 1.087 0.310 1.069 1.141 1.158 5.647 1.115 1.220 1.138 0.642 1.068 1.250
4 1.107 1.116 0.516 1.108 1.136 1.142 2.301 1.123 1.179 1.135 0.671 1.109 1.171
5 1.000 1.048 0.275 1.000 1.194 . . . . 1.000 1.700 1.000 1.000
6 1.105 1.123 0.441 1.105 1.161 1.324 2.176 1.200 1.804 1.195 0.160 1.117 1.836
7 1.119 1.129 0.555 1.120 1.146 1.154 2.526 1.134 1.187 1.149 0.749 1.122 1.180
8 1.104 1.126 0.244 1.105 1.207 1.361 5.364 1.251 1.673 1.268 0.362 1.107 1.656
9 1.161 1.174 0.476 1.161 1.200 1.201 2.148 1.175 1.241 1.216 0.788 1.163 1.274

10 1.055 1.076 0.299 1.055 1.137 1.173 6.741 1.128 1.258 1.147 0.425 1.057 1.346
11 1.000 1.034 0.396 1.000 1.110 1.137 5.790 1.088 1.262 1.080 0.295 1.000 1.284
12 1.000 1.032 0.368 1.001 1.101 1.166 4.394 1.093 1.346 1.091 0.275 1.000 1.332
13 1.156 1.164 0.729 1.156 1.177 1.183 1.524 1.165 1.218 1.192 0.389 1.159 1.250
14 1.016 1.033 0.361 1.016 1.078 . . . . 1.047 0.159 1.018 1.156
15 1.000 1.050 0.302 1.000 1.195 . . . . 1.175 0.274 1.000 1.525
16 1.052 1.070 0.238 1.052 1.129 1.244 3.587 1.123 1.469 1.188 0.270 1.052 1.492
17 1.000 1.048 0.275 1.001 1.194 . . . . 1.222 0.337 1.000 1.657
18 1.000 1.032 0.504 1.000 1.087 1.107 2.954 1.050 1.235 1.065 0.306 1.000 1.218
19 1.049 1.066 0.328 1.050 1.111 1.122 2.470 1.076 1.198 1.122 0.296 1.050 1.305
20 1.000 1.047 0.333 1.001 1.164 1.288 6.666 1.205 1.705 1.136 0.323 1.000 1.478
21 1.000 1.042 0.377 1.001 1.128 1.170 5.913 1.108 1.336 1.111 0.368 1.000 1.350
22 1.000 1.020 0.613 1.000 1.051 1.204 2.034 1.091 1.680 1.061 0.146 1.000 1.301
23 1.025 1.036 0.285 1.026 1.069 1.069 1.578 1.035 1.121 1.098 0.243 1.027 1.259
24 1.000 1.048 0.360 1.000 1.159 1.354 4.846 1.224 2.241 1.136 0.275 1.000 1.952
25 1.021 1.030 0.938 1.022 1.041 1.047 1.697 1.031 1.075 1.044 0.472 1.028 1.082
26 1.060 1.069 0.521 1.061 1.088 1.095 1.599 1.070 1.137 1.103 0.347 1.062 1.190
27 1.000 1.035 0.384 1.000 1.111 1.207 5.644 1.141 1.469 1.094 0.221 1.000 1.372
28 1.012 1.029 0.387 1.013 1.071 1.214 1.948 1.105 1.706 1.083 0.137 1.022 1.839
29 1.180 1.199 0.316 1.180 1.254 . . . . 1.272 0.768 1.184 1.359
30 1.117 1.129 0.469 1.118 1.153 1.251 2.081 1.171 1.455 1.179 0.178 1.122 1.458
31 1.193 1.204 0.618 1.193 1.224 1.245 1.651 1.211 1.317 1.225 0.748 1.199 1.266
32 1.000 1.050 0.278 1.000 1.196 . . . . 1.000 0.100 1.000 1.000
33 1.049 1.069 0.713 1.051 1.103 1.097 1.376 1.062 1.158 1.142 0.350 1.051 1.323
34 1.161 1.172 0.351 1.161 1.203 1.206 1.905 1.173 1.253 1.233 0.375 1.163 1.357

a Original output-based measures of technical efficiency under assumption of VRS technology;
b bias-corrected radial measures of technical efficiency; c three times the ratio of bias squared to
variance for radial measures of technical efficiency; d lower bound estimate for radial measures of
technical efficiency; e upper bound estimate for radial measures of technical efficiency.
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measures. This means that homogeneous bootstrap provides optimistic estimates of the
bootstrapped frontier. The 95% confidence interval is also wider, but not as wide as
that for subsampling bootstrap. This might be a result of large variance of the boot-
strap values for subsampling bootstrap. Statistical inference cannot be provided for
observations 5, 14, 15, 17, 29, and 32. The reason for this is too few bootstrap replica-
tions, where these observations lie within the bootstrap frontier, making the solution of
the linear programming problem infeasible. Indeed e(realreps) after teradialbc for
mentioned data points is 0(5), 1(14), 3(15), 0(17), 3(29), and 0(32).

Finally, we turn to our discussion to the new command nptestrts that performs
nonparametric test of returns to scale and analysis of scale efficiency. We have already
determined that heterogeneous smoothed bootstrap should be used for this data set.
We still provide the results using the homogeneous bootstrap and emphasize the caveat
of using incorrect bootstrap procedure.

. nptestrts y1 y2 y3 = x1 x2 x3 x4 x5, testtwo b(o) reps(999) a(0.05) se(SE_o)
> sefficient(SEffnt_hom) sineffdrs(SiDRS_hom)

Radial (Debreu-Farrell) output-based measures of technical efficiency under
assumption of CRS, NIRS, and VRS technology are computed for the following
data:

Number of data points (K) = 70
Number of outputs (M) = 3
Number of inputs (N) = 5

Reference set is formed by 70 data points, for which measures of technical
efficiency are computed.

Test #1

Ho: mean(F_i^CRS)/mean(F_i^VRS) = 1
and

Ho: F_i^CRS/F_i^VRS = 1 for each of 70 data point(s)

Bootstrapping reference set formed by 70 data points and computing radial
(Debreu-Farrell) output-based measures of technical efficiency under
assumption of CRS and VRS technology for each of 70 data points relative to
the bootstrapped reference set

Smoothed homogeneous bootstrap (999 replications)

1 2 3 4 5
.................................................. 50
(dots omitted)
.................................................

p-value of the Ho that mean(F_i^CRS)/mean(F_i^VRS) = 1 (Ho that the global
technology is CRS) = 0.0040:

mean(hat{F_i^CRS})/mean(hat{F_i^VRS}) = 1.0164 is statistically greater than 1
at the 5% significance level

All data points are scale efficient

Test #2

Ho: mean(F_i^NiRS)/mean(F_i^VRS) = 1

Bootstrapping reference set formed by 70 data points and computing radial
(Debreu-Farrell) output-based measures of technical efficiency under
assumption of CRS and VRS technology for each of 70 data points relative to
the bootstrapped reference set

Smoothed homogeneous bootstrap (999 replications)
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1 2 3 4 5
.................................................. 50
(dots omitted)
.................................................

p-value of the Ho that mean(F_i^NiRS)/mean(F_i^VRS) = 1 (Ho that the global
technology is NiRS) = 0.0010:

mean(hat{F_i^NiRS})/mean(hat{F_i^VRS}) = 1.0085 is statistically greater than
1 at the 5% significance level

. table SEffnt_hom

Indicator
variable if
statistically
scale efficient Freq.

scale efficient 70

The p-value of the null hypothesis that global technology is constant returns to scale
(Test #1) using homogeneous smoothed bootstrap is very small implying CRS is not
an appropriate assumption. Further, the the null hypothesis that global technology
is nonincreasing returns to scale (Test #2) is also rejected. Hence, nonparametric
test of returns to scale advises performing efficiency measurement under assumption of
VRS technology. Additionally, the message All data points are scale efficient
implies that the Test #1 is not rejected for a single data point. That the global returns
to scale is not CRS is at odds with the latter finding. We now perform the test using
heterogeneous smoothed bootstrap:

. nptestrts y1 y2 y3 = x1 x2 x3 x4 x5, testtwo het b(o) reps(999) a(0.05) seffi
> cient(SEffnt_het) sineffdrs(SiDRS_het)

Radial (Debreu-Farrell) output-based measures of technical efficiency under
assumption of CRS, NIRS, and VRS technology are computed for the following
data:

Number of data points (K) = 70
Number of outputs (M) = 3
Number of inputs (N) = 5

Reference set is formed by 70 data points, for which measures of technical
efficiency are computed.

Test #1

Ho: mean(F_i^CRS)/mean(F_i^VRS) = 1
and

Ho: F_i^CRS/F_i^VRS = 1 for each of 70 data point(s)

Bootstrapping reference set formed by 70 data points and computing radial
(Debreu-Farrell) output-based measures of technical efficiency under
assumption of CRS and VRS technology for each of 70 data points relative to
the bootstrapped reference set

Smoothed heterogeneous bootstrap (999 replications)

1 2 3 4 5
.................................................. 50
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(dots omitted)

p-value of the Ho that mean(F_i^CRS)/mean(F_i^VRS) = 1 (Ho that the global
technology is CRS) = 1.0000:

mean(hat{F_i^CRS})/mean(hat{F_i^VRS}) = 1.0164 is not statistically greater
than 1 at the 5% significance level

Test #2

Ho: F_i^NiRS/F_i^VRS = 1 for each of 1 scale inefficient data point(s)

Bootstrapping reference set formed by 70 data points and computing radial
(Debreu-Farrell) output-based measures of technical efficiency under
assumption of NIRS and VRS technology for each of 70 data points relative to
the bootstrapped reference set

Smoothed heterogeneous bootstrap (999 replications)

1 2 3 4 5
.................................................. 50
(dots omitted)

. table SEffnt_het

Indicator
variable if
statistically
scale efficient Freq.

scale inefficient 1
scale efficient 69

. table SiDRS_het

Indicator variable if
statistically scale
inefficient due to DRS Freq.

scale inefficient due to DRS 1

Using heterogeneous smoothed bootstrap, nonparametric test fails to reject the null
hypothesis that the global technology is CRS. This means there is no need to test that
global technology is nonincreasing returns to scale (Test #2). Performing Test #1k,
k = 1, . . . 70 however suggests that one of 70 data points is scale inefficient. Since
option testtwo was specified, Test #2k is performed for this single data point to de-
termine the nature of its scale inefficiency. Using option sineffdrs we generated an
indicator variable SiDRS het equal to 1 if statistically scale inefficient due to DRS.
table SiDRS het identifies that the data point is scale inefficient due to operating un-
der DRS portion of the technology (such as a data point (xj , yj) in terms of figure 1).
Table 2 lists the original measures of technical efficiency under assumption of CRS and
VRS technology, scale efficiency measure, as well as indicator variables if statistically
scale efficient and the nature of scale inefficiency. Consider data point 1. That it is
statistically scale efficient means that 1.053 is not statistically larger than 1. That data
point 5 is not statically scale efficient using heterogeneous bootstrap means that 1.076
is statistically larger than 1.
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Table 2: Scale analysis

# CRSa VRSa SE Scale efficientc Scale efficient Scale inefficient due to DRSd

(homogeneous) (heterogeneous) (heterogeneous)

1 1.087 1.032 1.053 scale efficient scale efficient .
2 1.110 1.109 1.001 scale efficient scale efficient .
3 1.079 1.068 1.010 scale efficient scale efficient .
4 1.119 1.107 1.011 scale efficient scale efficient .
5 1.076 1.000 1.076 scale efficient scale inefficient scale inefficient due to DRS
6 1.108 1.105 1.002 scale efficient scale efficient .
7 1.126 1.119 1.006 scale efficient scale efficient .
8 1.111 1.104 1.006 scale efficient scale efficient .
9 1.184 1.161 1.020 scale efficient scale efficient .

10 1.077 1.055 1.021 scale efficient scale efficient .
11 1.025 1.000 1.025 scale efficient scale efficient .
12 1.028 1.000 1.028 scale efficient scale efficient .
13 1.166 1.156 1.009 scale efficient scale efficient .
14 1.076 1.016 1.059 scale efficient scale efficient .
15 1.000 1.000 1.000 scale efficient scale efficient .
16 1.065 1.052 1.012 scale efficient scale efficient .
17 1.000 1.000 1.000 scale efficient scale efficient .
18 1.000 1.000 1.000 scale efficient scale efficient .
19 1.058 1.049 1.008 scale efficient scale efficient .
20 1.000 1.000 1.000 scale efficient scale efficient .
21 1.000 1.000 1.000 scale efficient scale efficient .
22 1.000 1.000 1.000 scale efficient scale efficient .
23 1.044 1.025 1.018 scale efficient scale efficient .
24 1.000 1.000 1.000 scale efficient scale efficient .
25 1.041 1.021 1.020 scale efficient scale efficient .
26 1.074 1.060 1.013 scale efficient scale efficient .
27 1.000 1.000 1.000 scale efficient scale efficient .
28 1.059 1.012 1.046 scale efficient scale efficient .
29 1.206 1.180 1.023 scale efficient scale efficient .
30 1.123 1.117 1.005 scale efficient scale efficient .
31 1.202 1.193 1.007 scale efficient scale efficient .
32 1.117 1.000 1.117 scale efficient scale efficient .
33 1.079 1.049 1.028 scale efficient scale efficient .
34 1.182 1.161 1.019 scale efficient scale efficient .

a Measure of technical efficiency under the assumption of CRS;
b Measure of technical efficiency under the assumption of VRS; c Statistically scale efficient;
d Statistically scale inefficient due to DRS.
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The nonparametric test of returns to scale concludes differently about the null hy-
pothesis depending on type of the bootstrap. This should not be surprising as it is a
consequence of employing an inconsistent bootstrap procedure. The results of the test
are based on correct mimicking of the data generating process. If this is not guaranteed,
the bootstrap procedure is inconsistent and results of the nonparametric test cannot be
trusted. For this particular data and base of efficiency measurement, smoothed hetero-
geneous bootstrap should be employed.

8.2 Data: PWT5.6

The second dataset, the Penn World Tables were used by Kumar and Russell (2002)
among others. See Heston and Summers (1991) for more details on the data set. The
purpose of this short study is to construct Malmquist productivity index (MPI) be-
tween 1965 and 1990, and perform analysis of productivity change by decomposing the
MPI. Malmquist Productivity Index makes use of the output distance function which is
the reciprocal of the Debreu-Farrell measure of technical efficiency (Caves et al. 1982;
Färe et al. 1994a).

The Malmquist output-based productivity index MPI from time-period b to time
period c for data point k is given by:

MPIo,bck =

[
F o(yk,b, xk,b, yb, xb|CRS)

F o(yk,c, xk,c, yb, xb|CRS)
×

F o(yk,b, xk,b, yc, xc|CRS)

F o(yk,c, xk,c, yc, xc|CRS)

]1/2
.

This index maybe decomposed as

MPIo,bck =
F o(yk,b, xk,b, yb, xb|CRS)

F o(yk,c, xk,c, yc, xc|CRS)

×

[
F o(yk,c, xk,c, yc, xc|CRS)

F o(yk,c, xk,c, yb, xb|CRS)

F o(yk,b, xk,b, yc, xc|CRS)

F o(yk,b, xk,b, yc, xc|CRS)

]1/2
, (17)

where F o(yk,d, xk,d, ya, xa|CRS) is the Debreu-Farrell measure calculated for data point
k in time period d to the frontier formed by observations (ya, xa) under the assumption of
CRS technology. The first term in (17) measures the contribution of technical efficiency
change to productivity change. The second term in (17) measures the contribution of
technical change to productivity change:

MPI = EFF × TECH.

If EFF > 1 (< 1 in input-based measurement), change in efficiency has positively con-
tributed to productivity change from time-period b to time period c. The meaning of
TECH is the following: TECH > / = / < 1 implies that technical progress/stagnation/regress
has occurred between periods b and c.

The decomposition of the Malmquist productivity index in (17) can be extended.
Calculating the Debreu-Farrell measure under VRS, Malmquist productivity index can
be decomposed into three components attributable to (i) Pure Technical Efficiency
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Change (PEFF ), (ii) Technological Change (TECH) and (iii) Scale Efficiency Change
(SEC) (Färe et al. 1994b). The decomposition of the output-based MPI from time-
period b to time period c for data point k is given by:

MPIo,bck =
F o(yk,b, xk,b, yb, xb|VRS)

F o(yk,c, xk,c, yc, xc|VRS)

×

[
F o(yk,c, xk,c, yc, xc|CRS)

F o(yk,c, xk,c, yb, xb|CRS)

F o(yk,b, xk,b, yc, xc|CRS)

F o(yk,b, xk,b, yc, xc|CRS)

]1/2

×
So
k(yk,b, xk,b)

So
k(yk,c, xk,c)

, (18)

Where So
k is scale efficiency defined in (11).

From the outset, it is not clear which of the decompositions, (17) or (18) should be
used. We first perform the nonparametric test of returns to scale using heterogeneous
bootstrap:

. use pwt56, clear

. reshape wide y k l, i(nu country) j(year)
(note: j = 1965 1990)

Data long -> wide

Number of obs. 104 -> 52
Number of variables 6 -> 8
j variable (2 values) year -> (dropped)
xij variables:

y -> y1965 y1990
k -> k1965 k1990
l -> l1965 l1990

. nptestrts y1965 = k1965 l1965, het b(o) reps(999) a(0.05)

Radial (Debreu-Farrell) output-based measures of technical efficiency under
assumption of CRS, NIRS, and VRS technology are computed for the following
data:

Number of data points (K) = 52
Number of outputs (M) = 1
Number of inputs (N) = 2

Reference set is formed by 52 data points, for which measures of technical
efficiency are computed.

Test #1

Ho: mean(F_i^CRS)/mean(F_i^VRS) = 1
and

Ho: F_i^CRS/F_i^VRS = 1 for each of 52 data point(s)

Bootstrapping reference set formed by 52 data points and computing radial
(Debreu-Farrell) output-based measures of technical efficiency under
assumption of CRS and VRS technology for each of 52 data points relative to
the bootstrapped reference set

Smoothed heterogeneous bootstrap (999 replications)

1 2 3 4 5
.................................................. 50
(dots omitted)
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.................................................

p-value of the Ho that mean(F_i^CRS)/mean(F_i^VRS) = 1 (Ho that the global
technology is CRS) = 0.9920:

mean(hat{F_i^CRS})/mean(hat{F_i^VRS}) = 1.1196 is not statistically greater
than 1 at the 5% significance level

All data points are scale efficient

The null hypothesis that the global technology is CRS cannot be rejected. Besides
all countries are scale efficient so that third component in (18) is essentially one. We
therefore proceed with decomposition (17). We calculate the required efficiency mea-
sures

. teradial y1965 = k1965 l1965 (y1965 = k1965 l1965), r(c) b(o) tename(F11) nop
> rint

. teradial y1990 = k1990 l1990 (y1965 = k1965 l1965), r(c) b(o) tename(F21) nop
> rint

. teradial y1965 = k1965 l1965 (y1990 = k1990 l1990), r(c) b(o) tename(F12) nop
> rint

. teradial y1990 = k1990 l1990 (y1990 = k1990 l1990), r(c) b(o) tename(F22) nop
> rint

. g mpi = sqrt(F12 / F22 * F22 / F21)

. g effch = F11 / F22

. g techch = mpi / effch

and present the results of the decomposition for the first 34 out of 52 data points in
Table 3. We discuss selected results.

Argentina was on the frontier in 1965 but moved away from the 1990 frontier. Hong
Kong was quite inefficient in 1965 but in 1990 it defines the frontier. We also observe
that productivity of industrialized countries such as Australia, Austria, and Belgium
has increased, while productivity has fallen for Argentina, Bolivia, Equador among
others. The productivity has increased for example in Australia due to both improved
efficiency and technology. In Bolivia, the main reason for decreased productivity was loss
in efficiency. In Malawi, on the contrary efficiency change has positively contributed
to growth of productivity, but technology has deteriorated so much that the entire
productivity has decreased.

9 Sample restriction, discussion and runtime

Technical note

All functions create Stata matrices and feed them to plugin. The number of data
points that can be used in all functions is thus limited by [R] matsize. Stata/IC allows
maximum of 800, while Stata/MP and Stata/SE allow 11000 data points.
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Table 3: Measures of technical efficiency and Malmquist Produc-
tivity Index

# Country 1965a 1990b MPI EFFch TECHch

1 Argentina 1.000 1.546 0.818 0.647 1.264
2 Australia 1.320 1.213 1.184 1.088 1.088
3 Austria 1.174 1.374 1.067 0.854 1.249
4 Belgium 1.419 1.159 1.247 1.225 1.018
5 Bolivia 2.002 2.457 0.948 0.815 1.163
6 Canada 1.261 1.070 1.207 1.179 1.023
7 Chile 1.180 1.549 0.889 0.762 1.167
8 Columbia 2.415 2.243 1.062 1.077 0.987
9 Denmark 1.324 1.432 1.084 0.924 1.173

10 Dominican Rep. 1.383 1.953 0.914 0.708 1.291
11 Equador 2.664 2.756 0.961 0.966 0.994
12 Finland 1.963 1.344 1.335 1.460 0.915
13 France 1.257 1.211 1.187 1.038 1.144
14 Germany, West 1.450 1.222 1.230 1.187 1.036
15 Greece 1.828 1.673 1.079 1.093 0.988
16 Guatemala 1.228 1.369 1.037 0.897 1.156
17 Honduras 2.224 2.431 1.022 0.915 1.117
18 Hong Kong 2.202 1.000 1.519 2.202 0.690
19 Iceland 1.041 1.146 0.971 0.909 1.068
20 India 2.723 2.417 1.226 1.127 1.088
21 Ireland 1.411 1.184 1.106 1.192 0.928
22 Israel 1.664 1.192 1.209 1.396 0.866
23 Italy 1.490 1.131 1.301 1.318 0.988
24 Jamaica 1.774 1.930 1.017 0.919 1.107
25 Japan 1.684 1.617 1.169 1.041 1.123
26 Kenya 3.902 3.411 1.328 1.144 1.161
27 Korea, Rep 2.309 1.632 1.225 1.415 0.866
28 Malawi 3.515 2.996 0.621 1.173 0.529
29 Mauritius 1.062 1.025 1.115 1.036 1.076
30 Mexico 1.171 1.347 0.950 0.869 1.093
31 Netherlands 1.190 1.130 1.141 1.054 1.082
32 New Zealand 1.186 1.406 1.004 0.843 1.191
33 Norway 1.628 1.257 1.492 1.295 1.152
34 Panama 2.266 3.021 0.859 0.750 1.146

a Measure of technical efficiency under the assumption of CRS in 1965;
b Measure of technical efficiency under the assumption of CRS in 1990.
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Technical note

Stata 11.2 and above can be used to run all new commands. Earlier versions of Stata
can probably also be used, but Stata 11.2 is the earliest version available to authors.

Technical note

Solving linear programming problems make use of quickhull (http://www.qhull.org/,
Barber et al. (1996)) algorithm and GLPK Version 4.55 (GNU Linear Programming Kit
2012, available at http://www.gnu.org/software/glpk/) coded in C. The required plugins
are compiled from C code. Systems for which the plugins are available are MacOX,
Ubuntu, and Windows.

Since the linear programming is coded in low-level language, the new commands are
very fast. We have recorded the time required to do the calculations in this paper. The
calculations were computed on an iMac (late 2012) desktop with a 2.9 GHz processor:

. timer clear

. timer on 1

. use ccr81, clear
(Program Follow Through at 70 US Primary Schools)

. gen dref = x5 != 10

. tenonradial y1 y2 y3 = x1 x2 x3 x4 x5, r(c) b(o) ref(dref) tename(TErdCRSo) n
> oprint

. timer off 1

. timer on 2

. nptestind y1 y2 y3 = x1 x2 x3 x4 x5, r(c) b(o) reps(999) a(0.05) noprint

. timer off 2

. timer on 3

. teradialbc y1 y2 y3 = x1 x2 x3 x4 x5, r(v) b(o) ref(dref) reps(999) tebc(TErd
> VRSoBC1) biassqvar(TErdVRSoBC1bv) telower(TErdVRSoLB1) teupper(TErdVRSoUB1) n
> oprint

. timer off 3

. timer on 4

. teradialbc y1 y2 y3 = x1 x2 x3 x4 x5, het r(v) b(o) ref(dref) reps(999) tebc(
> TErdVRSoBC2) biassqvar(TErdVRSoBC2bv) telower(TErdVRSoLB2) teupper(TErdVRSoUB
> 2) noprint

. timer off 4

. timer on 5

. nptestrts y1 y2 y3 = x1 x2 x3 x4 x5, b(o) reps(999) a(0.05) sefficient(SEffnt
> _hom) noprint

. nptestrts y1 y2 y3 = x1 x2 x3 x4 x5, het b(o) reps(999) a(0.05) sefficient(SE
> ffnt_het) noprint

. timer off 6
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. timer list
1: 0.16 / 1 = 0.1600
2: 2.80 / 1 = 2.8040
3: 9.37 / 1 = 9.3670
4: 20.23 / 1 = 20.2280
5: 68.55 / 1 = 68.5490
6: 782.47 / 1 = 782.4680

tenonradial is trivial and runs instantly. This remains true even if the data set is
several thousands. nptestind is also quite fast but may slow down as sample size grows.
Employing smoothed homogeneous bootstrap in teradialbc runs relatively quickly on
small sample (9 seconds), but using heterogeneous bootstrap is more demanding (20
seconds) and the time will increase in sample size. Running nonparametric test of
returns to scale, nptestrts, is the most involved since instead of doing calculations for
each of K data points on each bootstrap replication as in teradialbc, the binomial test
requires bootstrap replications for each of K data points independently. This is time
demanding especially when smoothed heterogeneous bootstrap is used. On a sample
of 70 data points, it took just above 1 minute for homogeneous and 13 minutes for
heterogeneous bootstrap.

Displaying dots does not add to the output, but rather serves an indicator how long
the whole bootstrap is going to take. It can be suppressed by specifying nodots option
in each of new commands.

10 Comparison to dea command in Stata, Stata Journal,
10(2): 267-80)

The new command teradial performs radial technical efficiency analysis, which user-
written command dea offers (Ji and Lee 2010). The latter command has two serious
limitations for a practitioner. First, it is slow with even moderate data sets. We have
recorded time it takes to compute input-based measure of technical efficiency under
VRS using both commands for samples of 10 to 70 in steps of 10 data points:

. use ccr81, clear
(Program Follow Through at 70 US Primary Schools)

. rename nu dmu

. timer clear

. * number of observations: 10(10)70

. forvalues nobs = 10(10)70{
2. local nobs = `nobs´
3. local nobs2 = `nobs´ + 1
4. timer on `nobs´
5. quietly dea x1 x2 x3 x4 x5 = y1 y2 y3 in 1/`nobs´, rts(vrs) ort(in)
6. timer off `nobs´
7. timer on `nobs2´
8. quietly teradial y1 y2 y3 = x1 x2 x3 x4 x5 in 1/`nobs´, r(v) b(i) tename(

> TErdVRSi_`nobs´)
9. timer off `nobs2´
10. }
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. timer list
10: 8.85 / 1 = 8.8470
11: 0.00 / 1 = 0.0030
20: 33.87 / 1 = 33.8680
21: 0.01 / 1 = 0.0070
30: 71.71 / 1 = 71.7090
31: 0.02 / 1 = 0.0180
40: 849.43 / 1 = 849.4260
41: 0.04 / 1 = 0.0360
50: 1067.00 / 1 = 1066.9960
51: 0.09 / 1 = 0.0890
60: 1839.14 / 1 = 1839.1440
61: 0.15 / 1 = 0.1470
70: 1990.05 / 1 = 1990.0520
71: 0.22 / 1 = 0.2180

Time it takes increases for both dea and teradial, but dea becomes slow very quickly.
For a sample size of 70 data points dea needs 33 minutes, while teradial completes in
a fifth of a second. This can be a real bottleneck in actual empirical analysis. Thus,
using dea for making statistical inference is next to infeasible.

Second, in comparison to dea, teradial can calculate the measure technical effi-
ciency of a data point relative to the frontier defined by user by specifying ref option.
This is required for example for analysis of productivity change demonstrated in sub-
section 8.2. Such analysis is not possible using dea command.

11 Concluding remarks

We introduce five new Stata commands that estimate and provide statistical inference in
nonparametric frontier models. tenonradial and teradial calculate nonradial Russell
and radial Debreu-Farrell measures of technical efficiency, respectively. The measures
can be computed for different assumption about the technology, base of the analysis,
as well as relative to the frontier formed by data points provided by user. These fron-
tier models are deterministic and resulting measures are subject to sampling variation.
teradialbc can accommodate different types of bootstrapping techniques to provide
statistical inference regarding these deterministic measures. For obtaining reliable re-
sults from teradialbc the bootstrap type has to be chosen such that it correctly mimics
the data generating process. nptestind provides a simple tool to determine the type of
the bootstrap consistent with the data. Finally, nptestrts uses bootstrap to provide
inference with regards to the underlying technology and performs scale analysis of each
data point.

We have presented two empirical examples. In the first example, we illustrate the
capabilities of new commands and discuss implications for empirical analysis. In the
second example, we show that these commands can be used to analyze the changes in
productivity for 52 countries form 1965 to 1990.
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