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The designer dream...
From RTL synthesis to HLS synthesis

Avoiding long and fastidious cycle accurate, register accurate and bit accurate
coding
We would like to describe :

• An algorithm (signal processing, data processing...)
• A target technology (ASIC xxx, FPGA yyy)
• Speed constraints (target clock frequency)
• Throughput constraints (number invocations per second of the algorithm)
• Latency constraints (maximum allowed delay "cycles" between the invocation

and the result

Solution : High Level Synthesis
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HLS Methodologies and tools for Systems on Chips
A plethora of situations

Choice of input language (C, C++, SystemC)
Culture of the destination audience :

• Computer scientists : weak culture of ad-hoc digital hardware architectures..
• Electronic specialists : weak culture of high level languages.

Each HLS tool has an implicit targeted architecture :
• CPU style : based on a control flow graph and using predefined resources

(register bank, multipliers, ALUs...) : Hardly used anymore
• DATA-FLOW style : based on a data flow graph and state machines : current

trend for most tools.
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HLS Methodologies and tools for Systems on Chips
Languages

No precise definition of the concept of high-level representation of a hardware
system.
No common definition of the usable subset of a given language?
How to model communication buses and protocols?
Systematic use of synthesis "pragmas" to express the intention of the
designer

• Guide the tool towards a reasonable solution (parallelism / pipeline)
• Choosing technical options for a given technology (example RAM / flip-flops)
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HLS Methodologies and tools for Systems on Chips
Tools

Replacement of the C or C++ compiler with an ad-hoc compiler
The ad-hoc compiler is able to generate a RTL representation of the hardware
rather than object code.
Ref. gnu gcc : The ‘#pragma’ directive is the method specified by the C
standard for providing additional information to the compiler, beyond what is
conveyed in the language itself.
No standard : different pragmas from one tool to another.
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HLS Methodologies and tools for Systems on Chips
A "long" learning time

A difficult approach because of the paradigm shift (from RTL to HLS)
Due to the difference in approach, switching from one HLS tool to another is
not so easy.
But a gain in development time for those who master the methodology
Ridiculously simple examples in the tools tutorials, no realistic example.

• Example : A beginner in HLS must code a Finite Impulse Response filter ...
• RTL : Easy to code, if you know in advance the desired level of parallelism or

pipeline.
• HLS : Take the lead with synthesis pragmas to obtain the desired parallelism or

pipeline
• HLS : A frozen I/O diagram that does not necessarily correspond to the desired

context of use
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HLS Methodologies and tools for Systems on Chips
What question do we want to solve?

Example : The FFT (Fast Fourier Transform)
There are already some libraries of optimized hardware IPs.
In HLS, we start (for example) with a reference C code.

• Rewrite the original C code (with the good subset of C usable by the tool)
• Find the right combination of pragmas :

– Loops unrollings or not.
– Pipelining
– Store datas in single port memories
– Store datas in dual port memories
– Store datas in registers

• Implement the exploration of architectures (check results for different
combinations of pragmas)

– Provided in some tools, or using external scripting
– But unbearably long, because it uses multiple RTL synthesis
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HLS Methodologies and tools for Systems on Chips
What question do we want to solve?

Reduce long and tedious coding times (RTL) :
• Writing control state machines.
• Writing communication codes to the outside world (ad-hoc communications,

standardized buses)

The real problem is not "I want to code a FFT"
The real problem is "I want to encode a FFT ..."

• Which communicates with a slave bus of the standard XXX
• With a YYY width data bus
• With processed data of width ZZZ
• With internal datas using type TTT (floating point, fixed point, integer...)
• With packet data transfers for FFT datas
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Step1 : Data Flow Graph

#include "accum.h"

void accumulate(int a, int b, int c, int d, int

&dout)

{

int t1,t2;

t1 = a + b;

t2 = t1 + c;

dout = t2 + d;

}

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor Graphics)

12/38 High Level Synthesis Yves MATHIEU



Step2 : Resource Allocation

Choice of operators, estimation of datapaths sizes
Area and delay estimation for each operator
Requires knowledge of technological data

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor Graphics)
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Step 3 : Scheduling

Assumption : Taddition < Tclk

Allocation of each operation to a given cycle.
Storage of intermediate results into registers.

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor Graphics)
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Step 4 : Control

Finite State Machine associated to the data path.
Drives the choosen schedule.

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor Graphics)
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"Hardware implementation"
A constraint-less design

Resources minimization
Only one adder and a finite state machine.

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor Graphics)
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Loop Pipelining
Initiation Interval (II) : how many cycles between each loop usage.
Example : II=1 means one new computation at each clock cycle.
"Latency" (L) : How many cycles between the arrival of the first input data
and the first output data.

No constraint -> L=3, II=4
0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor Graphics)
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Loop Pipelining : II=3, L=3
Synthesis constraints using pragmas or scripts...
Note : In C4 an output at the same time as an input.
We assume that there are no constraints on the I/Os

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor Graphics)
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Loop Pipelining : II=2, L=3
Synthesis constraints using pragmas or scripts...
You need 2 adders in parallel.
We assume that there are no constraints on the I/Os

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor Graphics)
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Loop Pipelining : II=1, L=3
You need 3 adders in parallel : Maximum performance is achieved.

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor Graphics)
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Loop Unrolling
We do not play with the iterations of the loop.
We play with parallelism inside the loop.

Initial scheduling showing 2 successive calls to the loop.

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor Graphics)
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Loop Unrolling : Initial implementation, II=4
Loading of "din[31 :0]+0" at first cycle.
Computing accumulation at other 3 cycles.

Hardware Implementation

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor Graphics)
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Loop Unrolling : Partial unrolling, II=2
New scheduling using an unrolling factor equal to 2
Two input datas received during the same clock cycle.

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor Graphics)
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Loop Unrolling : Partial unrolling, II=2
Still Only one adder needed.
Smaller counter needed.

Hardware Implementation

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor Graphics)
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Loop Unrolling : Full unrolling, II=1
New scheduling using an unrolling factor equal to 4
Four input datas received during the same clock cycle.

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor Graphics)
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Loop Unrolling : Full unrolling

Three adders, no counter.

Hardware Implementation

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor Graphics)
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Loop pipelining versus Loop unrolling

Loop pipelining
• Uses parallelism at a global level.
• Increase area as II is decreased.
• At a given cycle, inputs and outputs are related to several calls of the loop

Loop unrolling
• Uses parallelism at a local level.
• Increase clock frequency constraints as II is decreased.
• At a given cycle, inputs and outputs are related to only one call of the loop
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"Loops : the core of the HLS tools"

Simple loops with well known number of iterations.
Loop Pipelining and Loop Unrolling may be used together.
Automatic synthesis of the finite state machines.

• RTL : Long and tedious coding of the start and end of pipeline behavior.
• RTL : Long and tedious debugging.
• RTL : Very often, coding of only one alternative

Bonus : Easy exploration of different alternatives.
Warning : The optimal result can be counterintuitive.
Standard in all HLS tools but not necessarily with the same vocabulary

28/38 High Level Synthesis Yves MATHIEU



"Loops : the core of the HLS tools"

Simple loops with well known number of iterations.
Loop Pipelining and Loop Unrolling may be used together.
Automatic synthesis of the finite state machines.

• RTL : Long and tedious coding of the start and end of pipeline behavior.
• RTL : Long and tedious debugging.
• RTL : Very often, coding of only one alternative

Bonus : Easy exploration of different alternatives.
Warning : The optimal result can be counterintuitive.
Standard in all HLS tools but not necessarily with the same vocabulary

28/38 High Level Synthesis Yves MATHIEU



"Loops : the core of the HLS tools"

Simple loops with well known number of iterations.
Loop Pipelining and Loop Unrolling may be used together.
Automatic synthesis of the finite state machines.

• RTL : Long and tedious coding of the start and end of pipeline behavior.
• RTL : Long and tedious debugging.
• RTL : Very often, coding of only one alternative

Bonus : Easy exploration of different alternatives.
Warning : The optimal result can be counterintuitive.
Standard in all HLS tools but not necessarily with the same vocabulary

28/38 High Level Synthesis Yves MATHIEU



"Loops : the core of the HLS tools"

Simple loops with well known number of iterations.
Loop Pipelining and Loop Unrolling may be used together.
Automatic synthesis of the finite state machines.

• RTL : Long and tedious coding of the start and end of pipeline behavior.
• RTL : Long and tedious debugging.
• RTL : Very often, coding of only one alternative

Bonus : Easy exploration of different alternatives.
Warning : The optimal result can be counterintuitive.
Standard in all HLS tools but not necessarily with the same vocabulary

28/38 High Level Synthesis Yves MATHIEU



"Loops : the core of the HLS tools"

Simple loops with well known number of iterations.
Loop Pipelining and Loop Unrolling may be used together.
Automatic synthesis of the finite state machines.

• RTL : Long and tedious coding of the start and end of pipeline behavior.
• RTL : Long and tedious debugging.
• RTL : Very often, coding of only one alternative

Bonus : Easy exploration of different alternatives.
Warning : The optimal result can be counterintuitive.
Standard in all HLS tools but not necessarily with the same vocabulary

28/38 High Level Synthesis Yves MATHIEU



"Loops : the core of the HLS tools"

Simple loops with well known number of iterations.
Loop Pipelining and Loop Unrolling may be used together.
Automatic synthesis of the finite state machines.

• RTL : Long and tedious coding of the start and end of pipeline behavior.
• RTL : Long and tedious debugging.
• RTL : Very often, coding of only one alternative

Bonus : Easy exploration of different alternatives.
Warning : The optimal result can be counterintuitive.
Standard in all HLS tools but not necessarily with the same vocabulary

28/38 High Level Synthesis Yves MATHIEU



"Loops : the core of the HLS tools"

Simple loops with well known number of iterations.
Loop Pipelining and Loop Unrolling may be used together.
Automatic synthesis of the finite state machines.

• RTL : Long and tedious coding of the start and end of pipeline behavior.
• RTL : Long and tedious debugging.
• RTL : Very often, coding of only one alternative

Bonus : Easy exploration of different alternatives.
Warning : The optimal result can be counterintuitive.
Standard in all HLS tools but not necessarily with the same vocabulary

28/38 High Level Synthesis Yves MATHIEU



"Loops : the core of the HLS tools"

Simple loops with well known number of iterations.
Loop Pipelining and Loop Unrolling may be used together.
Automatic synthesis of the finite state machines.

• RTL : Long and tedious coding of the start and end of pipeline behavior.
• RTL : Long and tedious debugging.
• RTL : Very often, coding of only one alternative

Bonus : Easy exploration of different alternatives.
Warning : The optimal result can be counterintuitive.
Standard in all HLS tools but not necessarily with the same vocabulary

28/38 High Level Synthesis Yves MATHIEU



Outline

Introduction

Principles and vocabulary

Hardware support for software languages

HLS : Tools survey

Recent developments and tools

29/38 High Level Synthesis Yves MATHIEU



C/C++ : Communications ports
C/C++ language : hardware seen as a function.
Function I/Os are seen as communication ports.
The design should be able to choose the communication protocol.
Solution : Using C++ pragmas.

void example(int A[50], int B[50]) {

//Set the HLS native interface types

#pragma HLS INTERFACE axis port=A

#pragma HLS INTERFACE axis port=B

int i;

for(i = 0; i < 50; i++){

B[i] = A[i] + 5;

}

}

Xilinx Vitis-HLS : Two separated AXI4-stream ports
30/38 High Level Synthesis Yves MATHIEU
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C/C++ : Communication ports
C/C++

Sharing the same bus for several inputs/outputs
Defining base addresses for port c
Force usage of "valid handshake" for port b

void example(char *a, char *b, char *c) {

#pragma HLS INTERFACE s_axilite port=return bundle=BUS_A

#pragma HLS INTERFACE s_axilite port=a bundle=BUS_A

#pragma HLS INTERFACE s_axilite port=b bundle=BUS_A

#pragma HLS INTERFACE s_axilite port=c bundle=BUS_A offset=0x0400

#pragma HLS INTERFACE ap_vld port=b

*c += *a + *b;

}

Xilinx Vitis-HLS : Only one AXI4-lite port for all I/Os...
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SystemC : Communication ports
Recognition of specific SystemC constructs like sc_in, sc_out or sc_fifo

SC_MODULE(sc_sequ_cthread){

sc_fifo_out<int> dout;

sc_fifo_in<int> din;

...

}

void sc_FIFO_port::Prc2() {

#pragma HLS resource core=AXI4Stream variable=din

#pragma HLS resource core=AXI4Stream variable=dout

...

}

Xilinx Vitis-HLS : SystemC specific constructs
32/38 High Level Synthesis Yves MATHIEU



C/C++ Mathematical support
C/C++

DSP processing needs handling of the precision of mathematical datas :
• Integer/Floating-Point/Fixed Point datatypes
• Arbitrary precision data-types.

VHDL/Verilog RTL supports arbitrary precision integer datatypes but no
floating point, and hardly fixed-point.
SystemC supports arbitrary precision integer or fixed-point datatypes and
standard floating point.
C/C++ doesn’t support natively arbitrary precision datatypes.
Solution : Algorithm C (AC) Datatypes

• Specific templated classes for C++
• Integers with arbitrary width
• Fixed Point with arbitrary width and arbitrary integer part width
• Floating Point with arbitrary mantissa width and arbitrary exponant width
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Some known HLS tools

Tool Owner Input language Target Comment
Stratus HLS Cadence c/c++ SystemC ASIC/FPGA RTL/HLS
Symphony C Synopsys c/c++ ASIC/FPGA
Catapult Mentor c/c++ SystemC ASIC/FPGA
Intel HLS Intel FPGA c/c++ FPGA Intel FPGAs
Vitis HLS Xilinx c/c++ SystemC FPGA Xilinx FPGAs
Legup HLS Microchip Tech. c/c++ FPGA Microchip FPGAs
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The FPGA case
heterogeneous architectures

Language : OpenCL parallel programming
originaly targeted for CPU/GPU
SPMD parallelism (Single Program Multiple Data)
Extended to CPU/FPGA associations
SocFPGA (CPU and FPGA integrated in the same circuit)
FPGA based hadware accelerators in the cloud (data centers).
In general : one tool for specific destination platforms

37/38 High Level Synthesis Yves MATHIEU



The FPGA case
heterogeneous architectures

Language : OpenCL parallel programming
originaly targeted for CPU/GPU
SPMD parallelism (Single Program Multiple Data)
Extended to CPU/FPGA associations
SocFPGA (CPU and FPGA integrated in the same circuit)
FPGA based hadware accelerators in the cloud (data centers).
In general : one tool for specific destination platforms

37/38 High Level Synthesis Yves MATHIEU



The FPGA case
heterogeneous architectures

Language : OpenCL parallel programming
originaly targeted for CPU/GPU
SPMD parallelism (Single Program Multiple Data)
Extended to CPU/FPGA associations
SocFPGA (CPU and FPGA integrated in the same circuit)
FPGA based hadware accelerators in the cloud (data centers).
In general : one tool for specific destination platforms

37/38 High Level Synthesis Yves MATHIEU



The FPGA case
heterogeneous architectures

Language : OpenCL parallel programming
originaly targeted for CPU/GPU
SPMD parallelism (Single Program Multiple Data)
Extended to CPU/FPGA associations
SocFPGA (CPU and FPGA integrated in the same circuit)
FPGA based hadware accelerators in the cloud (data centers).
In general : one tool for specific destination platforms

37/38 High Level Synthesis Yves MATHIEU



The FPGA case
heterogeneous architectures

Language : OpenCL parallel programming
originaly targeted for CPU/GPU
SPMD parallelism (Single Program Multiple Data)
Extended to CPU/FPGA associations
SocFPGA (CPU and FPGA integrated in the same circuit)
FPGA based hadware accelerators in the cloud (data centers).
In general : one tool for specific destination platforms

37/38 High Level Synthesis Yves MATHIEU



The FPGA case
heterogeneous architectures

Language : OpenCL parallel programming
originaly targeted for CPU/GPU
SPMD parallelism (Single Program Multiple Data)
Extended to CPU/FPGA associations
SocFPGA (CPU and FPGA integrated in the same circuit)
FPGA based hadware accelerators in the cloud (data centers).
In general : one tool for specific destination platforms

37/38 High Level Synthesis Yves MATHIEU



Intel "OneAPI"
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