
SE303/ICS901 : Soc Design
HLS : High Level Synthesis

Yves MATHIEU
yves.mathieu@telecom-paristech.fr



Outline

Introduction

Principles and vocabulary

Hardware support for software languages

HLS : Tools survey

Recent developments and tools

2/38 High Level Synthesis Yves MATHIEU



Outline

Introduction

Principles and vocabulary

Hardware support for software languages

HLS : Tools survey

Recent developments and tools

3/38 High Level Synthesis Yves MATHIEU



The designer dream...
From RTL synthesis to HLS synthesis

Avoiding long and fastidious cycle accurate, register accurate and bit accurate
coding
We would like to describe :

• An algorithm (signal processing, data processing...)
• A target technology (ASIC xxx, FPGA yyy)
• Speed constraints (target clock frequency)
• Throughput constraints (number invocations per second of the algorithm)
• Latency constraints (maximum allowed delay "cycles" between the invocation

and the result

Solution : High Level Synthesis

4/38 High Level Synthesis Yves MATHIEU



The designer dream...
From RTL synthesis to HLS synthesis

Avoiding long and fastidious cycle accurate, register accurate and bit accurate
coding
We would like to describe :

• An algorithm (signal processing, data processing...)
• A target technology (ASIC xxx, FPGA yyy)
• Speed constraints (target clock frequency)
• Throughput constraints (number invocations per second of the algorithm)
• Latency constraints (maximum allowed delay "cycles" between the invocation

and the result

Solution : High Level Synthesis

4/38 High Level Synthesis Yves MATHIEU



The designer dream...
From RTL synthesis to HLS synthesis

Avoiding long and fastidious cycle accurate, register accurate and bit accurate
coding
We would like to describe :

• An algorithm (signal processing, data processing...)
• A target technology (ASIC xxx, FPGA yyy)
• Speed constraints (target clock frequency)
• Throughput constraints (number invocations per second of the algorithm)
• Latency constraints (maximum allowed delay "cycles" between the invocation

and the result

Solution : High Level Synthesis

4/38 High Level Synthesis Yves MATHIEU



The designer dream...
From RTL synthesis to HLS synthesis

Avoiding long and fastidious cycle accurate, register accurate and bit accurate
coding
We would like to describe :

• An algorithm (signal processing, data processing...)
• A target technology (ASIC xxx, FPGA yyy)
• Speed constraints (target clock frequency)
• Throughput constraints (number invocations per second of the algorithm)
• Latency constraints (maximum allowed delay "cycles" between the invocation

and the result

Solution : High Level Synthesis

4/38 High Level Synthesis Yves MATHIEU



The designer dream...
From RTL synthesis to HLS synthesis

Avoiding long and fastidious cycle accurate, register accurate and bit accurate
coding
We would like to describe :

• An algorithm (signal processing, data processing...)
• A target technology (ASIC xxx, FPGA yyy)
• Speed constraints (target clock frequency)
• Throughput constraints (number invocations per second of the algorithm)
• Latency constraints (maximum allowed delay "cycles" between the invocation

and the result

Solution : High Level Synthesis

4/38 High Level Synthesis Yves MATHIEU



The designer dream...
From RTL synthesis to HLS synthesis

Avoiding long and fastidious cycle accurate, register accurate and bit accurate
coding
We would like to describe :

• An algorithm (signal processing, data processing...)
• A target technology (ASIC xxx, FPGA yyy)
• Speed constraints (target clock frequency)
• Throughput constraints (number invocations per second of the algorithm)
• Latency constraints (maximum allowed delay "cycles" between the invocation

and the result

Solution : High Level Synthesis

4/38 High Level Synthesis Yves MATHIEU



The designer dream...
From RTL synthesis to HLS synthesis

Avoiding long and fastidious cycle accurate, register accurate and bit accurate
coding
We would like to describe :

• An algorithm (signal processing, data processing...)
• A target technology (ASIC xxx, FPGA yyy)
• Speed constraints (target clock frequency)
• Throughput constraints (number invocations per second of the algorithm)
• Latency constraints (maximum allowed delay "cycles" between the invocation

and the result

Solution : High Level Synthesis

4/38 High Level Synthesis Yves MATHIEU



The designer dream...
From RTL synthesis to HLS synthesis

Avoiding long and fastidious cycle accurate, register accurate and bit accurate
coding
We would like to describe :

• An algorithm (signal processing, data processing...)
• A target technology (ASIC xxx, FPGA yyy)
• Speed constraints (target clock frequency)
• Throughput constraints (number invocations per second of the algorithm)
• Latency constraints (maximum allowed delay "cycles" between the invocation

and the result

Solution : High Level Synthesis

4/38 High Level Synthesis Yves MATHIEU



HLS Methodologies and tools for Systems on Chips
A plethora of situations

Choice of input language (C, C++, SystemC)
Culture of the destination audience :

• Computer scientists : weak culture of ad-hoc digital hardware architectures..
• Electronic specialists : weak culture of high level languages.

Each HLS tool has an implicit targeted architecture :
• CPU style : based on a control flow graph and using predefined resources

(register bank, multipliers, ALUs...) : Hardly used anymore
• DATA-FLOW style : based on a data flow graph and state machines : current

trend for most tools.

5/38 High Level Synthesis Yves MATHIEU



HLS Methodologies and tools for Systems on Chips
A plethora of situations

Choice of input language (C, C++, SystemC)
Culture of the destination audience :

• Computer scientists : weak culture of ad-hoc digital hardware architectures..
• Electronic specialists : weak culture of high level languages.

Each HLS tool has an implicit targeted architecture :
• CPU style : based on a control flow graph and using predefined resources

(register bank, multipliers, ALUs...) : Hardly used anymore
• DATA-FLOW style : based on a data flow graph and state machines : current

trend for most tools.

5/38 High Level Synthesis Yves MATHIEU



HLS Methodologies and tools for Systems on Chips
A plethora of situations

Choice of input language (C, C++, SystemC)
Culture of the destination audience :

• Computer scientists : weak culture of ad-hoc digital hardware architectures..
• Electronic specialists : weak culture of high level languages.

Each HLS tool has an implicit targeted architecture :
• CPU style : based on a control flow graph and using predefined resources

(register bank, multipliers, ALUs...) : Hardly used anymore
• DATA-FLOW style : based on a data flow graph and state machines : current

trend for most tools.

5/38 High Level Synthesis Yves MATHIEU



HLS Methodologies and tools for Systems on Chips
A plethora of situations

Choice of input language (C, C++, SystemC)
Culture of the destination audience :

• Computer scientists : weak culture of ad-hoc digital hardware architectures..
• Electronic specialists : weak culture of high level languages.

Each HLS tool has an implicit targeted architecture :
• CPU style : based on a control flow graph and using predefined resources

(register bank, multipliers, ALUs...) : Hardly used anymore
• DATA-FLOW style : based on a data flow graph and state machines : current

trend for most tools.

5/38 High Level Synthesis Yves MATHIEU



HLS Methodologies and tools for Systems on Chips
A plethora of situations

Choice of input language (C, C++, SystemC)
Culture of the destination audience :

• Computer scientists : weak culture of ad-hoc digital hardware architectures..
• Electronic specialists : weak culture of high level languages.

Each HLS tool has an implicit targeted architecture :
• CPU style : based on a control flow graph and using predefined resources

(register bank, multipliers, ALUs...) : Hardly used anymore
• DATA-FLOW style : based on a data flow graph and state machines : current

trend for most tools.

5/38 High Level Synthesis Yves MATHIEU



HLS Methodologies and tools for Systems on Chips
A plethora of situations

Choice of input language (C, C++, SystemC)
Culture of the destination audience :

• Computer scientists : weak culture of ad-hoc digital hardware architectures..
• Electronic specialists : weak culture of high level languages.

Each HLS tool has an implicit targeted architecture :
• CPU style : based on a control flow graph and using predefined resources

(register bank, multipliers, ALUs...) : Hardly used anymore
• DATA-FLOW style : based on a data flow graph and state machines : current

trend for most tools.

5/38 High Level Synthesis Yves MATHIEU



HLS Methodologies and tools for Systems on Chips
A plethora of situations

Choice of input language (C, C++, SystemC)
Culture of the destination audience :

• Computer scientists : weak culture of ad-hoc digital hardware architectures..
• Electronic specialists : weak culture of high level languages.

Each HLS tool has an implicit targeted architecture :
• CPU style : based on a control flow graph and using predefined resources

(register bank, multipliers, ALUs...) : Hardly used anymore
• DATA-FLOW style : based on a data flow graph and state machines : current

trend for most tools.

5/38 High Level Synthesis Yves MATHIEU



HLS Methodologies and tools for Systems on Chips
Languages

No precise definition of the concept of high-level representation of a hardware
system.
No common definition of the usable subset of a given language?
How to model communication buses and protocols?
Systematic use of synthesis "pragmas" to express the intention of the
designer

• Guide the tool towards a reasonable solution (parallelism / pipeline)
• Choosing technical options for a given technology (example RAM / flip-flops)

6/38 High Level Synthesis Yves MATHIEU



HLS Methodologies and tools for Systems on Chips
Languages

No precise definition of the concept of high-level representation of a hardware
system.
No common definition of the usable subset of a given language?
How to model communication buses and protocols?
Systematic use of synthesis "pragmas" to express the intention of the
designer

• Guide the tool towards a reasonable solution (parallelism / pipeline)
• Choosing technical options for a given technology (example RAM / flip-flops)

6/38 High Level Synthesis Yves MATHIEU



HLS Methodologies and tools for Systems on Chips
Languages

No precise definition of the concept of high-level representation of a hardware
system.
No common definition of the usable subset of a given language?
How to model communication buses and protocols?
Systematic use of synthesis "pragmas" to express the intention of the
designer

• Guide the tool towards a reasonable solution (parallelism / pipeline)
• Choosing technical options for a given technology (example RAM / flip-flops)

6/38 High Level Synthesis Yves MATHIEU



HLS Methodologies and tools for Systems on Chips
Languages

No precise definition of the concept of high-level representation of a hardware
system.
No common definition of the usable subset of a given language?
How to model communication buses and protocols?
Systematic use of synthesis "pragmas" to express the intention of the
designer

• Guide the tool towards a reasonable solution (parallelism / pipeline)
• Choosing technical options for a given technology (example RAM / flip-flops)

6/38 High Level Synthesis Yves MATHIEU



HLS Methodologies and tools for Systems on Chips
Languages

No precise definition of the concept of high-level representation of a hardware
system.
No common definition of the usable subset of a given language?
How to model communication buses and protocols?
Systematic use of synthesis "pragmas" to express the intention of the
designer

• Guide the tool towards a reasonable solution (parallelism / pipeline)
• Choosing technical options for a given technology (example RAM / flip-flops)

6/38 High Level Synthesis Yves MATHIEU



HLS Methodologies and tools for Systems on Chips
Languages

No precise definition of the concept of high-level representation of a hardware
system.
No common definition of the usable subset of a given language?
How to model communication buses and protocols?
Systematic use of synthesis "pragmas" to express the intention of the
designer

• Guide the tool towards a reasonable solution (parallelism / pipeline)
• Choosing technical options for a given technology (example RAM / flip-flops)

6/38 High Level Synthesis Yves MATHIEU



HLS Methodologies and tools for Systems on Chips
Tools

Replacement of the C or C++ compiler with an ad-hoc compiler
The ad-hoc compiler is able to generate a RTL representation of the hardware
rather than object code.
Ref. gnu gcc : The ‘#pragma’ directive is the method specified by the C
standard for providing additional information to the compiler, beyond what is
conveyed in the language itself.
No standard : different pragmas from one tool to another.

7/38 High Level Synthesis Yves MATHIEU



HLS Methodologies and tools for Systems on Chips
Tools

Replacement of the C or C++ compiler with an ad-hoc compiler
The ad-hoc compiler is able to generate a RTL representation of the hardware
rather than object code.
Ref. gnu gcc : The ‘#pragma’ directive is the method specified by the C
standard for providing additional information to the compiler, beyond what is
conveyed in the language itself.
No standard : different pragmas from one tool to another.

7/38 High Level Synthesis Yves MATHIEU



HLS Methodologies and tools for Systems on Chips
Tools

Replacement of the C or C++ compiler with an ad-hoc compiler
The ad-hoc compiler is able to generate a RTL representation of the hardware
rather than object code.
Ref. gnu gcc : The ‘#pragma’ directive is the method specified by the C
standard for providing additional information to the compiler, beyond what is
conveyed in the language itself.
No standard : different pragmas from one tool to another.

7/38 High Level Synthesis Yves MATHIEU



HLS Methodologies and tools for Systems on Chips
Tools

Replacement of the C or C++ compiler with an ad-hoc compiler
The ad-hoc compiler is able to generate a RTL representation of the hardware
rather than object code.
Ref. gnu gcc : The ‘#pragma’ directive is the method specified by the C
standard for providing additional information to the compiler, beyond what is
conveyed in the language itself.
No standard : different pragmas from one tool to another.

7/38 High Level Synthesis Yves MATHIEU



HLS Methodologies and tools for Systems on Chips
A "long" learning time

A difficult approach because of the paradigm shift (from RTL to HLS)
Due to the difference in approach, switching from one HLS tool to another is
not so easy.
But a gain in development time for those who master the methodology
Ridiculously simple examples in the tools tutorials, no realistic example.

• Example : A beginner in HLS must code a Finite Impulse Response filter ...
• RTL : Easy to code, if you know in advance the desired level of parallelism or

pipeline.
• HLS : Take the lead with synthesis pragmas to obtain the desired parallelism or

pipeline
• HLS : A frozen I/O diagram that does not necessarily correspond to the desired

context of use

8/38 High Level Synthesis Yves MATHIEU



HLS Methodologies and tools for Systems on Chips
A "long" learning time

A difficult approach because of the paradigm shift (from RTL to HLS)
Due to the difference in approach, switching from one HLS tool to another is
not so easy.
But a gain in development time for those who master the methodology
Ridiculously simple examples in the tools tutorials, no realistic example.

• Example : A beginner in HLS must code a Finite Impulse Response filter ...
• RTL : Easy to code, if you know in advance the desired level of parallelism or

pipeline.
• HLS : Take the lead with synthesis pragmas to obtain the desired parallelism or

pipeline
• HLS : A frozen I/O diagram that does not necessarily correspond to the desired

context of use

8/38 High Level Synthesis Yves MATHIEU



HLS Methodologies and tools for Systems on Chips
A "long" learning time

A difficult approach because of the paradigm shift (from RTL to HLS)
Due to the difference in approach, switching from one HLS tool to another is
not so easy.
But a gain in development time for those who master the methodology
Ridiculously simple examples in the tools tutorials, no realistic example.

• Example : A beginner in HLS must code a Finite Impulse Response filter ...
• RTL : Easy to code, if you know in advance the desired level of parallelism or

pipeline.
• HLS : Take the lead with synthesis pragmas to obtain the desired parallelism or

pipeline
• HLS : A frozen I/O diagram that does not necessarily correspond to the desired

context of use

8/38 High Level Synthesis Yves MATHIEU



HLS Methodologies and tools for Systems on Chips
A "long" learning time

A difficult approach because of the paradigm shift (from RTL to HLS)
Due to the difference in approach, switching from one HLS tool to another is
not so easy.
But a gain in development time for those who master the methodology
Ridiculously simple examples in the tools tutorials, no realistic example.

• Example : A beginner in HLS must code a Finite Impulse Response filter ...
• RTL : Easy to code, if you know in advance the desired level of parallelism or

pipeline.
• HLS : Take the lead with synthesis pragmas to obtain the desired parallelism or

pipeline
• HLS : A frozen I/O diagram that does not necessarily correspond to the desired

context of use

8/38 High Level Synthesis Yves MATHIEU



HLS Methodologies and tools for Systems on Chips
A "long" learning time

A difficult approach because of the paradigm shift (from RTL to HLS)
Due to the difference in approach, switching from one HLS tool to another is
not so easy.
But a gain in development time for those who master the methodology
Ridiculously simple examples in the tools tutorials, no realistic example.

• Example : A beginner in HLS must code a Finite Impulse Response filter ...
• RTL : Easy to code, if you know in advance the desired level of parallelism or

pipeline.
• HLS : Take the lead with synthesis pragmas to obtain the desired parallelism or

pipeline
• HLS : A frozen I/O diagram that does not necessarily correspond to the desired

context of use

8/38 High Level Synthesis Yves MATHIEU



HLS Methodologies and tools for Systems on Chips
A "long" learning time

A difficult approach because of the paradigm shift (from RTL to HLS)
Due to the difference in approach, switching from one HLS tool to another is
not so easy.
But a gain in development time for those who master the methodology
Ridiculously simple examples in the tools tutorials, no realistic example.

• Example : A beginner in HLS must code a Finite Impulse Response filter ...
• RTL : Easy to code, if you know in advance the desired level of parallelism or

pipeline.
• HLS : Take the lead with synthesis pragmas to obtain the desired parallelism or

pipeline
• HLS : A frozen I/O diagram that does not necessarily correspond to the desired

context of use

8/38 High Level Synthesis Yves MATHIEU



HLS Methodologies and tools for Systems on Chips
A "long" learning time

A difficult approach because of the paradigm shift (from RTL to HLS)
Due to the difference in approach, switching from one HLS tool to another is
not so easy.
But a gain in development time for those who master the methodology
Ridiculously simple examples in the tools tutorials, no realistic example.

• Example : A beginner in HLS must code a Finite Impulse Response filter ...
• RTL : Easy to code, if you know in advance the desired level of parallelism or

pipeline.
• HLS : Take the lead with synthesis pragmas to obtain the desired parallelism or

pipeline
• HLS : A frozen I/O diagram that does not necessarily correspond to the desired

context of use

8/38 High Level Synthesis Yves MATHIEU



HLS Methodologies and tools for Systems on Chips
A "long" learning time

A difficult approach because of the paradigm shift (from RTL to HLS)
Due to the difference in approach, switching from one HLS tool to another is
not so easy.
But a gain in development time for those who master the methodology
Ridiculously simple examples in the tools tutorials, no realistic example.

• Example : A beginner in HLS must code a Finite Impulse Response filter ...
• RTL : Easy to code, if you know in advance the desired level of parallelism or

pipeline.
• HLS : Take the lead with synthesis pragmas to obtain the desired parallelism or

pipeline
• HLS : A frozen I/O diagram that does not necessarily correspond to the desired

context of use

8/38 High Level Synthesis Yves MATHIEU



HLS Methodologies and tools for Systems on Chips
What question do we want to solve?

Example : The FFT (Fast Fourier Transform)
There are already some libraries of optimized hardware IPs.
In HLS, we start (for example) with a reference C code.

• Rewrite the original C code (with the good subset of C usable by the tool)
• Find the right combination of pragmas :

– Loops unrollings or not.
– Pipelining
– Store datas in single port memories
– Store datas in dual port memories
– Store datas in registers

• Implement the exploration of architectures (check results for different
combinations of pragmas)

– Provided in some tools, or using external scripting
– But unbearably long, because it uses multiple RTL synthesis

9/38 High Level Synthesis Yves MATHIEU



HLS Methodologies and tools for Systems on Chips
What question do we want to solve?

Example : The FFT (Fast Fourier Transform)
There are already some libraries of optimized hardware IPs.
In HLS, we start (for example) with a reference C code.

• Rewrite the original C code (with the good subset of C usable by the tool)
• Find the right combination of pragmas :

– Loops unrollings or not.
– Pipelining
– Store datas in single port memories
– Store datas in dual port memories
– Store datas in registers

• Implement the exploration of architectures (check results for different
combinations of pragmas)

– Provided in some tools, or using external scripting
– But unbearably long, because it uses multiple RTL synthesis

9/38 High Level Synthesis Yves MATHIEU



HLS Methodologies and tools for Systems on Chips
What question do we want to solve?

Example : The FFT (Fast Fourier Transform)
There are already some libraries of optimized hardware IPs.
In HLS, we start (for example) with a reference C code.

• Rewrite the original C code (with the good subset of C usable by the tool)
• Find the right combination of pragmas :

– Loops unrollings or not.
– Pipelining
– Store datas in single port memories
– Store datas in dual port memories
– Store datas in registers

• Implement the exploration of architectures (check results for different
combinations of pragmas)

– Provided in some tools, or using external scripting
– But unbearably long, because it uses multiple RTL synthesis

9/38 High Level Synthesis Yves MATHIEU



HLS Methodologies and tools for Systems on Chips
What question do we want to solve?

Example : The FFT (Fast Fourier Transform)
There are already some libraries of optimized hardware IPs.
In HLS, we start (for example) with a reference C code.

• Rewrite the original C code (with the good subset of C usable by the tool)
• Find the right combination of pragmas :

– Loops unrollings or not.
– Pipelining
– Store datas in single port memories
– Store datas in dual port memories
– Store datas in registers

• Implement the exploration of architectures (check results for different
combinations of pragmas)

– Provided in some tools, or using external scripting
– But unbearably long, because it uses multiple RTL synthesis

9/38 High Level Synthesis Yves MATHIEU



HLS Methodologies and tools for Systems on Chips
What question do we want to solve?

Example : The FFT (Fast Fourier Transform)
There are already some libraries of optimized hardware IPs.
In HLS, we start (for example) with a reference C code.

• Rewrite the original C code (with the good subset of C usable by the tool)
• Find the right combination of pragmas :

– Loops unrollings or not.
– Pipelining
– Store datas in single port memories
– Store datas in dual port memories
– Store datas in registers

• Implement the exploration of architectures (check results for different
combinations of pragmas)

– Provided in some tools, or using external scripting
– But unbearably long, because it uses multiple RTL synthesis

9/38 High Level Synthesis Yves MATHIEU



HLS Methodologies and tools for Systems on Chips
What question do we want to solve?

Example : The FFT (Fast Fourier Transform)
There are already some libraries of optimized hardware IPs.
In HLS, we start (for example) with a reference C code.

• Rewrite the original C code (with the good subset of C usable by the tool)
• Find the right combination of pragmas :

– Loops unrollings or not.
– Pipelining
– Store datas in single port memories
– Store datas in dual port memories
– Store datas in registers

• Implement the exploration of architectures (check results for different
combinations of pragmas)

– Provided in some tools, or using external scripting
– But unbearably long, because it uses multiple RTL synthesis

9/38 High Level Synthesis Yves MATHIEU



HLS Methodologies and tools for Systems on Chips
What question do we want to solve?

Example : The FFT (Fast Fourier Transform)
There are already some libraries of optimized hardware IPs.
In HLS, we start (for example) with a reference C code.

• Rewrite the original C code (with the good subset of C usable by the tool)
• Find the right combination of pragmas :

– Loops unrollings or not.
– Pipelining
– Store datas in single port memories
– Store datas in dual port memories
– Store datas in registers

• Implement the exploration of architectures (check results for different
combinations of pragmas)

– Provided in some tools, or using external scripting
– But unbearably long, because it uses multiple RTL synthesis

9/38 High Level Synthesis Yves MATHIEU



HLS Methodologies and tools for Systems on Chips
What question do we want to solve?

Example : The FFT (Fast Fourier Transform)
There are already some libraries of optimized hardware IPs.
In HLS, we start (for example) with a reference C code.

• Rewrite the original C code (with the good subset of C usable by the tool)
• Find the right combination of pragmas :

– Loops unrollings or not.
– Pipelining
– Store datas in single port memories
– Store datas in dual port memories
– Store datas in registers

• Implement the exploration of architectures (check results for different
combinations of pragmas)

– Provided in some tools, or using external scripting
– But unbearably long, because it uses multiple RTL synthesis

9/38 High Level Synthesis Yves MATHIEU



HLS Methodologies and tools for Systems on Chips
What question do we want to solve?

Example : The FFT (Fast Fourier Transform)
There are already some libraries of optimized hardware IPs.
In HLS, we start (for example) with a reference C code.

• Rewrite the original C code (with the good subset of C usable by the tool)
• Find the right combination of pragmas :

– Loops unrollings or not.
– Pipelining
– Store datas in single port memories
– Store datas in dual port memories
– Store datas in registers

• Implement the exploration of architectures (check results for different
combinations of pragmas)

– Provided in some tools, or using external scripting
– But unbearably long, because it uses multiple RTL synthesis

9/38 High Level Synthesis Yves MATHIEU



HLS Methodologies and tools for Systems on Chips
What question do we want to solve?

Example : The FFT (Fast Fourier Transform)
There are already some libraries of optimized hardware IPs.
In HLS, we start (for example) with a reference C code.

• Rewrite the original C code (with the good subset of C usable by the tool)
• Find the right combination of pragmas :

– Loops unrollings or not.
– Pipelining
– Store datas in single port memories
– Store datas in dual port memories
– Store datas in registers

• Implement the exploration of architectures (check results for different
combinations of pragmas)

– Provided in some tools, or using external scripting
– But unbearably long, because it uses multiple RTL synthesis

9/38 High Level Synthesis Yves MATHIEU



HLS Methodologies and tools for Systems on Chips
What question do we want to solve?

Example : The FFT (Fast Fourier Transform)
There are already some libraries of optimized hardware IPs.
In HLS, we start (for example) with a reference C code.

• Rewrite the original C code (with the good subset of C usable by the tool)
• Find the right combination of pragmas :

– Loops unrollings or not.
– Pipelining
– Store datas in single port memories
– Store datas in dual port memories
– Store datas in registers

• Implement the exploration of architectures (check results for different
combinations of pragmas)

– Provided in some tools, or using external scripting
– But unbearably long, because it uses multiple RTL synthesis

9/38 High Level Synthesis Yves MATHIEU



HLS Methodologies and tools for Systems on Chips
What question do we want to solve?

Example : The FFT (Fast Fourier Transform)
There are already some libraries of optimized hardware IPs.
In HLS, we start (for example) with a reference C code.

• Rewrite the original C code (with the good subset of C usable by the tool)
• Find the right combination of pragmas :

– Loops unrollings or not.
– Pipelining
– Store datas in single port memories
– Store datas in dual port memories
– Store datas in registers

• Implement the exploration of architectures (check results for different
combinations of pragmas)

– Provided in some tools, or using external scripting
– But unbearably long, because it uses multiple RTL synthesis

9/38 High Level Synthesis Yves MATHIEU



HLS Methodologies and tools for Systems on Chips
What question do we want to solve?

Example : The FFT (Fast Fourier Transform)
There are already some libraries of optimized hardware IPs.
In HLS, we start (for example) with a reference C code.

• Rewrite the original C code (with the good subset of C usable by the tool)
• Find the right combination of pragmas :

– Loops unrollings or not.
– Pipelining
– Store datas in single port memories
– Store datas in dual port memories
– Store datas in registers

• Implement the exploration of architectures (check results for different
combinations of pragmas)

– Provided in some tools, or using external scripting
– But unbearably long, because it uses multiple RTL synthesis

9/38 High Level Synthesis Yves MATHIEU



HLS Methodologies and tools for Systems on Chips
What question do we want to solve?

Example : The FFT (Fast Fourier Transform)
There are already some libraries of optimized hardware IPs.
In HLS, we start (for example) with a reference C code.

• Rewrite the original C code (with the good subset of C usable by the tool)
• Find the right combination of pragmas :

– Loops unrollings or not.
– Pipelining
– Store datas in single port memories
– Store datas in dual port memories
– Store datas in registers

• Implement the exploration of architectures (check results for different
combinations of pragmas)

– Provided in some tools, or using external scripting
– But unbearably long, because it uses multiple RTL synthesis

9/38 High Level Synthesis Yves MATHIEU



HLS Methodologies and tools for Systems on Chips
What question do we want to solve?

Reduce long and tedious coding times (RTL) :
• Writing control state machines.
• Writing communication codes to the outside world (ad-hoc communications,

standardized buses)

The real problem is not "I want to code a FFT"
The real problem is "I want to encode a FFT ..."

• Which communicates with a slave bus of the standard XXX
• With a YYY width data bus
• With processed data of width ZZZ
• With internal datas using type TTT (floating point, fixed point, integer...)
• With packet data transfers for FFT datas

10/38 High Level Synthesis Yves MATHIEU



HLS Methodologies and tools for Systems on Chips
What question do we want to solve?

Reduce long and tedious coding times (RTL) :
• Writing control state machines.
• Writing communication codes to the outside world (ad-hoc communications,

standardized buses)

The real problem is not "I want to code a FFT"
The real problem is "I want to encode a FFT ..."

• Which communicates with a slave bus of the standard XXX
• With a YYY width data bus
• With processed data of width ZZZ
• With internal datas using type TTT (floating point, fixed point, integer...)
• With packet data transfers for FFT datas

10/38 High Level Synthesis Yves MATHIEU



HLS Methodologies and tools for Systems on Chips
What question do we want to solve?

Reduce long and tedious coding times (RTL) :
• Writing control state machines.
• Writing communication codes to the outside world (ad-hoc communications,

standardized buses)

The real problem is not "I want to code a FFT"
The real problem is "I want to encode a FFT ..."

• Which communicates with a slave bus of the standard XXX
• With a YYY width data bus
• With processed data of width ZZZ
• With internal datas using type TTT (floating point, fixed point, integer...)
• With packet data transfers for FFT datas

10/38 High Level Synthesis Yves MATHIEU



HLS Methodologies and tools for Systems on Chips
What question do we want to solve?

Reduce long and tedious coding times (RTL) :
• Writing control state machines.
• Writing communication codes to the outside world (ad-hoc communications,

standardized buses)

The real problem is not "I want to code a FFT"
The real problem is "I want to encode a FFT ..."

• Which communicates with a slave bus of the standard XXX
• With a YYY width data bus
• With processed data of width ZZZ
• With internal datas using type TTT (floating point, fixed point, integer...)
• With packet data transfers for FFT datas

10/38 High Level Synthesis Yves MATHIEU



HLS Methodologies and tools for Systems on Chips
What question do we want to solve?

Reduce long and tedious coding times (RTL) :
• Writing control state machines.
• Writing communication codes to the outside world (ad-hoc communications,

standardized buses)

The real problem is not "I want to code a FFT"
The real problem is "I want to encode a FFT ..."

• Which communicates with a slave bus of the standard XXX
• With a YYY width data bus
• With processed data of width ZZZ
• With internal datas using type TTT (floating point, fixed point, integer...)
• With packet data transfers for FFT datas

10/38 High Level Synthesis Yves MATHIEU



HLS Methodologies and tools for Systems on Chips
What question do we want to solve?

Reduce long and tedious coding times (RTL) :
• Writing control state machines.
• Writing communication codes to the outside world (ad-hoc communications,

standardized buses)

The real problem is not "I want to code a FFT"
The real problem is "I want to encode a FFT ..."

• Which communicates with a slave bus of the standard XXX
• With a YYY width data bus
• With processed data of width ZZZ
• With internal datas using type TTT (floating point, fixed point, integer...)
• With packet data transfers for FFT datas

10/38 High Level Synthesis Yves MATHIEU



HLS Methodologies and tools for Systems on Chips
What question do we want to solve?

Reduce long and tedious coding times (RTL) :
• Writing control state machines.
• Writing communication codes to the outside world (ad-hoc communications,

standardized buses)

The real problem is not "I want to code a FFT"
The real problem is "I want to encode a FFT ..."

• Which communicates with a slave bus of the standard XXX
• With a YYY width data bus
• With processed data of width ZZZ
• With internal datas using type TTT (floating point, fixed point, integer...)
• With packet data transfers for FFT datas

10/38 High Level Synthesis Yves MATHIEU



HLS Methodologies and tools for Systems on Chips
What question do we want to solve?

Reduce long and tedious coding times (RTL) :
• Writing control state machines.
• Writing communication codes to the outside world (ad-hoc communications,

standardized buses)

The real problem is not "I want to code a FFT"
The real problem is "I want to encode a FFT ..."

• Which communicates with a slave bus of the standard XXX
• With a YYY width data bus
• With processed data of width ZZZ
• With internal datas using type TTT (floating point, fixed point, integer...)
• With packet data transfers for FFT datas

10/38 High Level Synthesis Yves MATHIEU



HLS Methodologies and tools for Systems on Chips
What question do we want to solve?

Reduce long and tedious coding times (RTL) :
• Writing control state machines.
• Writing communication codes to the outside world (ad-hoc communications,

standardized buses)

The real problem is not "I want to code a FFT"
The real problem is "I want to encode a FFT ..."

• Which communicates with a slave bus of the standard XXX
• With a YYY width data bus
• With processed data of width ZZZ
• With internal datas using type TTT (floating point, fixed point, integer...)
• With packet data transfers for FFT datas

10/38 High Level Synthesis Yves MATHIEU



HLS Methodologies and tools for Systems on Chips
What question do we want to solve?

Reduce long and tedious coding times (RTL) :
• Writing control state machines.
• Writing communication codes to the outside world (ad-hoc communications,

standardized buses)

The real problem is not "I want to code a FFT"
The real problem is "I want to encode a FFT ..."

• Which communicates with a slave bus of the standard XXX
• With a YYY width data bus
• With processed data of width ZZZ
• With internal datas using type TTT (floating point, fixed point, integer...)
• With packet data transfers for FFT datas

10/38 High Level Synthesis Yves MATHIEU



Outline

Introduction

Principles and vocabulary

Hardware support for software languages

HLS : Tools survey

Recent developments and tools

11/38 High Level Synthesis Yves MATHIEU



Step1 : Data Flow Graph

#include "accum.h"

void accumulate(int a, int b, int c, int d, int

&dout)

{

int t1,t2;

t1 = a + b;

t2 = t1 + c;

dout = t2 + d;

}

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor Graphics)

12/38 High Level Synthesis Yves MATHIEU



Step2 : Resource Allocation

Choice of operators, estimation of datapaths sizes
Area and delay estimation for each operator
Requires knowledge of technological data

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor Graphics)

13/38 High Level Synthesis Yves MATHIEU



Step 3 : Scheduling

Assumption : Taddition < Tclk

Allocation of each operation to a given cycle.
Storage of intermediate results into registers.

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor Graphics)

14/38 High Level Synthesis Yves MATHIEU



Step 4 : Control

Finite State Machine associated to the data path.
Drives the choosen schedule.

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor Graphics)

15/38 High Level Synthesis Yves MATHIEU



"Hardware implementation"
A constraint-less design

Resources minimization
Only one adder and a finite state machine.

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor Graphics)

16/38 High Level Synthesis Yves MATHIEU



Loop Pipelining
Initiation Interval (II) : how many cycles between each loop usage.
Example : II=1 means one new computation at each clock cycle.
"Latency" (L) : How many cycles between the arrival of the first input data
and the first output data.

No constraint -> L=3, II=4
0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor Graphics)

17/38 High Level Synthesis Yves MATHIEU



Loop Pipelining : II=3, L=3
Synthesis constraints using pragmas or scripts...
Note : In C4 an output at the same time as an input.
We assume that there are no constraints on the I/Os

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor Graphics)

18/38 High Level Synthesis Yves MATHIEU



Loop Pipelining : II=2, L=3
Synthesis constraints using pragmas or scripts...
You need 2 adders in parallel.
We assume that there are no constraints on the I/Os

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor Graphics)

19/38 High Level Synthesis Yves MATHIEU



Loop Pipelining : II=1, L=3
You need 3 adders in parallel : Maximum performance is achieved.

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor Graphics)

20/38 High Level Synthesis Yves MATHIEU



Loop Unrolling
We do not play with the iterations of the loop.
We play with parallelism inside the loop.

Initial scheduling showing 2 successive calls to the loop.

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor Graphics)

21/38 High Level Synthesis Yves MATHIEU



Loop Unrolling : Initial implementation, II=4
Loading of "din[31 :0]+0" at first cycle.
Computing accumulation at other 3 cycles.

Hardware Implementation

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor Graphics)

22/38 High Level Synthesis Yves MATHIEU



Loop Unrolling : Partial unrolling, II=2
New scheduling using an unrolling factor equal to 2
Two input datas received during the same clock cycle.

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor Graphics)

23/38 High Level Synthesis Yves MATHIEU



Loop Unrolling : Partial unrolling, II=2
Still Only one adder needed.
Smaller counter needed.

Hardware Implementation

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor Graphics)

24/38 High Level Synthesis Yves MATHIEU



Loop Unrolling : Full unrolling, II=1
New scheduling using an unrolling factor equal to 4
Four input datas received during the same clock cycle.

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor Graphics)

25/38 High Level Synthesis Yves MATHIEU



Loop Unrolling : Full unrolling

Three adders, no counter.

Hardware Implementation

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor Graphics)

26/38 High Level Synthesis Yves MATHIEU



Loop pipelining versus Loop unrolling

Loop pipelining
• Uses parallelism at a global level.
• Increase area as II is decreased.
• At a given cycle, inputs and outputs are related to several calls of the loop

Loop unrolling
• Uses parallelism at a local level.
• Increase clock frequency constraints as II is decreased.
• At a given cycle, inputs and outputs are related to only one call of the loop

27/38 High Level Synthesis Yves MATHIEU



Loop pipelining versus Loop unrolling

Loop pipelining
• Uses parallelism at a global level.
• Increase area as II is decreased.
• At a given cycle, inputs and outputs are related to several calls of the loop

Loop unrolling
• Uses parallelism at a local level.
• Increase clock frequency constraints as II is decreased.
• At a given cycle, inputs and outputs are related to only one call of the loop

27/38 High Level Synthesis Yves MATHIEU



"Loops : the core of the HLS tools"

Simple loops with well known number of iterations.
Loop Pipelining and Loop Unrolling may be used together.
Automatic synthesis of the finite state machines.

• RTL : Long and tedious coding of the start and end of pipeline behavior.
• RTL : Long and tedious debugging.
• RTL : Very often, coding of only one alternative

Bonus : Easy exploration of different alternatives.
Warning : The optimal result can be counterintuitive.
Standard in all HLS tools but not necessarily with the same vocabulary

28/38 High Level Synthesis Yves MATHIEU



"Loops : the core of the HLS tools"

Simple loops with well known number of iterations.
Loop Pipelining and Loop Unrolling may be used together.
Automatic synthesis of the finite state machines.

• RTL : Long and tedious coding of the start and end of pipeline behavior.
• RTL : Long and tedious debugging.
• RTL : Very often, coding of only one alternative

Bonus : Easy exploration of different alternatives.
Warning : The optimal result can be counterintuitive.
Standard in all HLS tools but not necessarily with the same vocabulary

28/38 High Level Synthesis Yves MATHIEU



"Loops : the core of the HLS tools"

Simple loops with well known number of iterations.
Loop Pipelining and Loop Unrolling may be used together.
Automatic synthesis of the finite state machines.

• RTL : Long and tedious coding of the start and end of pipeline behavior.
• RTL : Long and tedious debugging.
• RTL : Very often, coding of only one alternative

Bonus : Easy exploration of different alternatives.
Warning : The optimal result can be counterintuitive.
Standard in all HLS tools but not necessarily with the same vocabulary

28/38 High Level Synthesis Yves MATHIEU



"Loops : the core of the HLS tools"

Simple loops with well known number of iterations.
Loop Pipelining and Loop Unrolling may be used together.
Automatic synthesis of the finite state machines.

• RTL : Long and tedious coding of the start and end of pipeline behavior.
• RTL : Long and tedious debugging.
• RTL : Very often, coding of only one alternative

Bonus : Easy exploration of different alternatives.
Warning : The optimal result can be counterintuitive.
Standard in all HLS tools but not necessarily with the same vocabulary

28/38 High Level Synthesis Yves MATHIEU



"Loops : the core of the HLS tools"

Simple loops with well known number of iterations.
Loop Pipelining and Loop Unrolling may be used together.
Automatic synthesis of the finite state machines.

• RTL : Long and tedious coding of the start and end of pipeline behavior.
• RTL : Long and tedious debugging.
• RTL : Very often, coding of only one alternative

Bonus : Easy exploration of different alternatives.
Warning : The optimal result can be counterintuitive.
Standard in all HLS tools but not necessarily with the same vocabulary

28/38 High Level Synthesis Yves MATHIEU



"Loops : the core of the HLS tools"

Simple loops with well known number of iterations.
Loop Pipelining and Loop Unrolling may be used together.
Automatic synthesis of the finite state machines.

• RTL : Long and tedious coding of the start and end of pipeline behavior.
• RTL : Long and tedious debugging.
• RTL : Very often, coding of only one alternative

Bonus : Easy exploration of different alternatives.
Warning : The optimal result can be counterintuitive.
Standard in all HLS tools but not necessarily with the same vocabulary

28/38 High Level Synthesis Yves MATHIEU



"Loops : the core of the HLS tools"

Simple loops with well known number of iterations.
Loop Pipelining and Loop Unrolling may be used together.
Automatic synthesis of the finite state machines.

• RTL : Long and tedious coding of the start and end of pipeline behavior.
• RTL : Long and tedious debugging.
• RTL : Very often, coding of only one alternative

Bonus : Easy exploration of different alternatives.
Warning : The optimal result can be counterintuitive.
Standard in all HLS tools but not necessarily with the same vocabulary

28/38 High Level Synthesis Yves MATHIEU



"Loops : the core of the HLS tools"

Simple loops with well known number of iterations.
Loop Pipelining and Loop Unrolling may be used together.
Automatic synthesis of the finite state machines.

• RTL : Long and tedious coding of the start and end of pipeline behavior.
• RTL : Long and tedious debugging.
• RTL : Very often, coding of only one alternative

Bonus : Easy exploration of different alternatives.
Warning : The optimal result can be counterintuitive.
Standard in all HLS tools but not necessarily with the same vocabulary

28/38 High Level Synthesis Yves MATHIEU



Outline

Introduction

Principles and vocabulary

Hardware support for software languages

HLS : Tools survey

Recent developments and tools

29/38 High Level Synthesis Yves MATHIEU



C/C++ : Communications ports
C/C++ language : hardware seen as a function.
Function I/Os are seen as communication ports.
The design should be able to choose the communication protocol.
Solution : Using C++ pragmas.

void example(int A[50], int B[50]) {

//Set the HLS native interface types

#pragma HLS INTERFACE axis port=A

#pragma HLS INTERFACE axis port=B

int i;

for(i = 0; i < 50; i++){

B[i] = A[i] + 5;

}

}

Xilinx Vitis-HLS : Two separated AXI4-stream ports
30/38 High Level Synthesis Yves MATHIEU



C/C++ : Communications ports
C/C++ language : hardware seen as a function.
Function I/Os are seen as communication ports.
The design should be able to choose the communication protocol.
Solution : Using C++ pragmas.

void example(int A[50], int B[50]) {

//Set the HLS native interface types

#pragma HLS INTERFACE axis port=A

#pragma HLS INTERFACE axis port=B

int i;

for(i = 0; i < 50; i++){

B[i] = A[i] + 5;

}

}

Xilinx Vitis-HLS : Two separated AXI4-stream ports
30/38 High Level Synthesis Yves MATHIEU



C/C++ : Communications ports
C/C++ language : hardware seen as a function.
Function I/Os are seen as communication ports.
The design should be able to choose the communication protocol.
Solution : Using C++ pragmas.

void example(int A[50], int B[50]) {

//Set the HLS native interface types

#pragma HLS INTERFACE axis port=A

#pragma HLS INTERFACE axis port=B

int i;

for(i = 0; i < 50; i++){

B[i] = A[i] + 5;

}

}

Xilinx Vitis-HLS : Two separated AXI4-stream ports
30/38 High Level Synthesis Yves MATHIEU



C/C++ : Communications ports
C/C++ language : hardware seen as a function.
Function I/Os are seen as communication ports.
The design should be able to choose the communication protocol.
Solution : Using C++ pragmas.

void example(int A[50], int B[50]) {

//Set the HLS native interface types

#pragma HLS INTERFACE axis port=A

#pragma HLS INTERFACE axis port=B

int i;

for(i = 0; i < 50; i++){

B[i] = A[i] + 5;

}

}

Xilinx Vitis-HLS : Two separated AXI4-stream ports
30/38 High Level Synthesis Yves MATHIEU



C/C++ : Communication ports
C/C++

Sharing the same bus for several inputs/outputs
Defining base addresses for port c
Force usage of "valid handshake" for port b

void example(char *a, char *b, char *c) {

#pragma HLS INTERFACE s_axilite port=return bundle=BUS_A

#pragma HLS INTERFACE s_axilite port=a bundle=BUS_A

#pragma HLS INTERFACE s_axilite port=b bundle=BUS_A

#pragma HLS INTERFACE s_axilite port=c bundle=BUS_A offset=0x0400

#pragma HLS INTERFACE ap_vld port=b

*c += *a + *b;

}

Xilinx Vitis-HLS : Only one AXI4-lite port for all I/Os...

31/38 High Level Synthesis Yves MATHIEU



C/C++ : Communication ports
C/C++

Sharing the same bus for several inputs/outputs
Defining base addresses for port c
Force usage of "valid handshake" for port b

void example(char *a, char *b, char *c) {

#pragma HLS INTERFACE s_axilite port=return bundle=BUS_A

#pragma HLS INTERFACE s_axilite port=a bundle=BUS_A

#pragma HLS INTERFACE s_axilite port=b bundle=BUS_A

#pragma HLS INTERFACE s_axilite port=c bundle=BUS_A offset=0x0400

#pragma HLS INTERFACE ap_vld port=b

*c += *a + *b;

}

Xilinx Vitis-HLS : Only one AXI4-lite port for all I/Os...

31/38 High Level Synthesis Yves MATHIEU



C/C++ : Communication ports
C/C++

Sharing the same bus for several inputs/outputs
Defining base addresses for port c
Force usage of "valid handshake" for port b

void example(char *a, char *b, char *c) {

#pragma HLS INTERFACE s_axilite port=return bundle=BUS_A

#pragma HLS INTERFACE s_axilite port=a bundle=BUS_A

#pragma HLS INTERFACE s_axilite port=b bundle=BUS_A

#pragma HLS INTERFACE s_axilite port=c bundle=BUS_A offset=0x0400

#pragma HLS INTERFACE ap_vld port=b

*c += *a + *b;

}

Xilinx Vitis-HLS : Only one AXI4-lite port for all I/Os...

31/38 High Level Synthesis Yves MATHIEU



SystemC : Communication ports
Recognition of specific SystemC constructs like sc_in, sc_out or sc_fifo

SC_MODULE(sc_sequ_cthread){

sc_fifo_out<int> dout;

sc_fifo_in<int> din;

...

}

void sc_FIFO_port::Prc2() {

#pragma HLS resource core=AXI4Stream variable=din

#pragma HLS resource core=AXI4Stream variable=dout

...

}

Xilinx Vitis-HLS : SystemC specific constructs
32/38 High Level Synthesis Yves MATHIEU



C/C++ Mathematical support
C/C++

DSP processing needs handling of the precision of mathematical datas :
• Integer/Floating-Point/Fixed Point datatypes
• Arbitrary precision data-types.

VHDL/Verilog RTL supports arbitrary precision integer datatypes but no
floating point, and hardly fixed-point.
SystemC supports arbitrary precision integer or fixed-point datatypes and
standard floating point.
C/C++ doesn’t support natively arbitrary precision datatypes.
Solution : Algorithm C (AC) Datatypes

• Specific templated classes for C++
• Integers with arbitrary width
• Fixed Point with arbitrary width and arbitrary integer part width
• Floating Point with arbitrary mantissa width and arbitrary exponant width

33/38 High Level Synthesis Yves MATHIEU



C/C++ Mathematical support
C/C++

DSP processing needs handling of the precision of mathematical datas :
• Integer/Floating-Point/Fixed Point datatypes
• Arbitrary precision data-types.

VHDL/Verilog RTL supports arbitrary precision integer datatypes but no
floating point, and hardly fixed-point.
SystemC supports arbitrary precision integer or fixed-point datatypes and
standard floating point.
C/C++ doesn’t support natively arbitrary precision datatypes.
Solution : Algorithm C (AC) Datatypes

• Specific templated classes for C++
• Integers with arbitrary width
• Fixed Point with arbitrary width and arbitrary integer part width
• Floating Point with arbitrary mantissa width and arbitrary exponant width

33/38 High Level Synthesis Yves MATHIEU



C/C++ Mathematical support
C/C++

DSP processing needs handling of the precision of mathematical datas :
• Integer/Floating-Point/Fixed Point datatypes
• Arbitrary precision data-types.

VHDL/Verilog RTL supports arbitrary precision integer datatypes but no
floating point, and hardly fixed-point.
SystemC supports arbitrary precision integer or fixed-point datatypes and
standard floating point.
C/C++ doesn’t support natively arbitrary precision datatypes.
Solution : Algorithm C (AC) Datatypes

• Specific templated classes for C++
• Integers with arbitrary width
• Fixed Point with arbitrary width and arbitrary integer part width
• Floating Point with arbitrary mantissa width and arbitrary exponant width

33/38 High Level Synthesis Yves MATHIEU



C/C++ Mathematical support
C/C++

DSP processing needs handling of the precision of mathematical datas :
• Integer/Floating-Point/Fixed Point datatypes
• Arbitrary precision data-types.

VHDL/Verilog RTL supports arbitrary precision integer datatypes but no
floating point, and hardly fixed-point.
SystemC supports arbitrary precision integer or fixed-point datatypes and
standard floating point.
C/C++ doesn’t support natively arbitrary precision datatypes.
Solution : Algorithm C (AC) Datatypes

• Specific templated classes for C++
• Integers with arbitrary width
• Fixed Point with arbitrary width and arbitrary integer part width
• Floating Point with arbitrary mantissa width and arbitrary exponant width

33/38 High Level Synthesis Yves MATHIEU



C/C++ Mathematical support
C/C++

DSP processing needs handling of the precision of mathematical datas :
• Integer/Floating-Point/Fixed Point datatypes
• Arbitrary precision data-types.

VHDL/Verilog RTL supports arbitrary precision integer datatypes but no
floating point, and hardly fixed-point.
SystemC supports arbitrary precision integer or fixed-point datatypes and
standard floating point.
C/C++ doesn’t support natively arbitrary precision datatypes.
Solution : Algorithm C (AC) Datatypes

• Specific templated classes for C++
• Integers with arbitrary width
• Fixed Point with arbitrary width and arbitrary integer part width
• Floating Point with arbitrary mantissa width and arbitrary exponant width

33/38 High Level Synthesis Yves MATHIEU



C/C++ Mathematical support
C/C++

DSP processing needs handling of the precision of mathematical datas :
• Integer/Floating-Point/Fixed Point datatypes
• Arbitrary precision data-types.

VHDL/Verilog RTL supports arbitrary precision integer datatypes but no
floating point, and hardly fixed-point.
SystemC supports arbitrary precision integer or fixed-point datatypes and
standard floating point.
C/C++ doesn’t support natively arbitrary precision datatypes.
Solution : Algorithm C (AC) Datatypes

• Specific templated classes for C++
• Integers with arbitrary width
• Fixed Point with arbitrary width and arbitrary integer part width
• Floating Point with arbitrary mantissa width and arbitrary exponant width

33/38 High Level Synthesis Yves MATHIEU



C/C++ Mathematical support
C/C++

DSP processing needs handling of the precision of mathematical datas :
• Integer/Floating-Point/Fixed Point datatypes
• Arbitrary precision data-types.

VHDL/Verilog RTL supports arbitrary precision integer datatypes but no
floating point, and hardly fixed-point.
SystemC supports arbitrary precision integer or fixed-point datatypes and
standard floating point.
C/C++ doesn’t support natively arbitrary precision datatypes.
Solution : Algorithm C (AC) Datatypes

• Specific templated classes for C++
• Integers with arbitrary width
• Fixed Point with arbitrary width and arbitrary integer part width
• Floating Point with arbitrary mantissa width and arbitrary exponant width

33/38 High Level Synthesis Yves MATHIEU



C/C++ Mathematical support
C/C++

DSP processing needs handling of the precision of mathematical datas :
• Integer/Floating-Point/Fixed Point datatypes
• Arbitrary precision data-types.

VHDL/Verilog RTL supports arbitrary precision integer datatypes but no
floating point, and hardly fixed-point.
SystemC supports arbitrary precision integer or fixed-point datatypes and
standard floating point.
C/C++ doesn’t support natively arbitrary precision datatypes.
Solution : Algorithm C (AC) Datatypes

• Specific templated classes for C++
• Integers with arbitrary width
• Fixed Point with arbitrary width and arbitrary integer part width
• Floating Point with arbitrary mantissa width and arbitrary exponant width

33/38 High Level Synthesis Yves MATHIEU



C/C++ Mathematical support
C/C++

DSP processing needs handling of the precision of mathematical datas :
• Integer/Floating-Point/Fixed Point datatypes
• Arbitrary precision data-types.

VHDL/Verilog RTL supports arbitrary precision integer datatypes but no
floating point, and hardly fixed-point.
SystemC supports arbitrary precision integer or fixed-point datatypes and
standard floating point.
C/C++ doesn’t support natively arbitrary precision datatypes.
Solution : Algorithm C (AC) Datatypes

• Specific templated classes for C++
• Integers with arbitrary width
• Fixed Point with arbitrary width and arbitrary integer part width
• Floating Point with arbitrary mantissa width and arbitrary exponant width

33/38 High Level Synthesis Yves MATHIEU



Outline

Introduction

Principles and vocabulary

Hardware support for software languages

HLS : Tools survey

Recent developments and tools

34/38 High Level Synthesis Yves MATHIEU



Some known HLS tools

Tool Owner Input language Target Comment
Stratus HLS Cadence c/c++ SystemC ASIC/FPGA RTL/HLS
Symphony C Synopsys c/c++ ASIC/FPGA
Catapult Mentor c/c++ SystemC ASIC/FPGA
Intel HLS Intel FPGA c/c++ FPGA Intel FPGAs
Vitis HLS Xilinx c/c++ SystemC FPGA Xilinx FPGAs
Legup HLS Microchip Tech. c/c++ FPGA Microchip FPGAs

35/38 High Level Synthesis Yves MATHIEU



Outline

Introduction

Principles and vocabulary

Hardware support for software languages

HLS : Tools survey

Recent developments and tools

36/38 High Level Synthesis Yves MATHIEU



The FPGA case
heterogeneous architectures

Language : OpenCL parallel programming
originaly targeted for CPU/GPU
SPMD parallelism (Single Program Multiple Data)
Extended to CPU/FPGA associations
SocFPGA (CPU and FPGA integrated in the same circuit)
FPGA based hadware accelerators in the cloud (data centers).
In general : one tool for specific destination platforms

37/38 High Level Synthesis Yves MATHIEU



The FPGA case
heterogeneous architectures

Language : OpenCL parallel programming
originaly targeted for CPU/GPU
SPMD parallelism (Single Program Multiple Data)
Extended to CPU/FPGA associations
SocFPGA (CPU and FPGA integrated in the same circuit)
FPGA based hadware accelerators in the cloud (data centers).
In general : one tool for specific destination platforms

37/38 High Level Synthesis Yves MATHIEU



The FPGA case
heterogeneous architectures

Language : OpenCL parallel programming
originaly targeted for CPU/GPU
SPMD parallelism (Single Program Multiple Data)
Extended to CPU/FPGA associations
SocFPGA (CPU and FPGA integrated in the same circuit)
FPGA based hadware accelerators in the cloud (data centers).
In general : one tool for specific destination platforms

37/38 High Level Synthesis Yves MATHIEU



The FPGA case
heterogeneous architectures

Language : OpenCL parallel programming
originaly targeted for CPU/GPU
SPMD parallelism (Single Program Multiple Data)
Extended to CPU/FPGA associations
SocFPGA (CPU and FPGA integrated in the same circuit)
FPGA based hadware accelerators in the cloud (data centers).
In general : one tool for specific destination platforms

37/38 High Level Synthesis Yves MATHIEU



The FPGA case
heterogeneous architectures

Language : OpenCL parallel programming
originaly targeted for CPU/GPU
SPMD parallelism (Single Program Multiple Data)
Extended to CPU/FPGA associations
SocFPGA (CPU and FPGA integrated in the same circuit)
FPGA based hadware accelerators in the cloud (data centers).
In general : one tool for specific destination platforms

37/38 High Level Synthesis Yves MATHIEU



The FPGA case
heterogeneous architectures

Language : OpenCL parallel programming
originaly targeted for CPU/GPU
SPMD parallelism (Single Program Multiple Data)
Extended to CPU/FPGA associations
SocFPGA (CPU and FPGA integrated in the same circuit)
FPGA based hadware accelerators in the cloud (data centers).
In general : one tool for specific destination platforms

37/38 High Level Synthesis Yves MATHIEU



Intel "OneAPI"

38/38 High Level Synthesis Yves MATHIEU


	Digital Integrated Electronics
	Introduction
	Principles and vocabulary
	Hardware support for software languages
	HLS: Tools survey 
	Recent developments and tools


