TELECOM
Paris

—5:74 1 |

W 1P PARIS

d nd

Institut Mines-Télécom

SE303/ICS901 : Soc Design

HLS : High Level Synthesis

Yves MATHIEU

yves.mathieu@telecom-paristech.fr

B outline

Introduction

Principles and vocabulary

Hardware support for software languages
HLS : Tools survey

Recent developments and tools

e,
TeLECOM [N '.\’w
Pari 2 "
= B/ A
=53 1l I

2/38 High Level Synthesis Yves MATHIEU

B outline

Introduction

e,
TELECOM ;"'.\”w(
aris 2 m

TR

3/38 High Level Synthesis Yves MATHIEU

I The designer dream...

From RTL synthesis to HLS synthesis

® Avoiding long and fastidious cycle accurate, register accurate and bit accurate

coding
3
4/38 High Level Synthesis Yves MATHIEU — B g
R gn Lovel Sy T IR

I The designer dream...

From RTL synthesis to HLS synthesis

® Avoiding long and fastidious cycle accurate, register accurate and bit accurate
coding
B We would like to describe :

e,
TELECOM ;.".\tv:
aris 2 m

TR

4/38 High Level Synthesis Yves MATHIEU

I The designer dream...

From RTL synthesis to HLS synthesis

® Avoiding long and fastidious cycle accurate, register accurate and bit accurate
coding
B We would like to describe :
» An algorithm (signal processing, data processing...)

e,
TELECOM :"‘\tﬁ:
aris 2 m

T IR

4/38 High Level Synthesis Yves MATHIEU

I The designer dream...

From RTL synthesis to HLS synthesis

® Avoiding long and fastidious cycle accurate, register accurate and bit accurate
coding
B We would like to describe :

» An algorithm (signal processing, data processing...)
+ A target technology (ASIC xxx, FPGA yyy)

e,
TELECOM ;.'.\tv:
Paris z_’ H

.

TR

4/38 High Level Synthesis Yves MATHIEU

I The designer dream...

From RTL synthesis to HLS synthesis

® Avoiding long and fastidious cycle accurate, register accurate and bit accurate
coding
B We would like to describe :

» An algorithm (signal processing, data processing...)
+ A target technology (ASIC xxx, FPGA yyy)
» Speed constraints (target clock frequency)

e,
TELECOM ;.'.\tv:
Paris z_’ H

.

TR

4/38 High Level Synthesis Yves MATHIEU

I The designer dream...

From RTL synthesis to HLS synthesis

® Avoiding long and fastidious cycle accurate, register accurate and bit accurate
coding
B We would like to describe :
» An algorithm (signal processing, data processing...)
+ A target technology (ASIC xxx, FPGA yyy)
+ Speed constraints (target clock frequency)
+ Throughput constraints (number invocations per second of the algorithm)

0
o SO
57 1l I

4/38 High Level Synthesis Yves MATHIEU

I The designer dream...

From RTL synthesis to HLS synthesis

® Avoiding long and fastidious cycle accurate, register accurate and bit accurate
coding
B We would like to describe :
» An algorithm (signal processing, data processing...)
+ A target technology (ASIC xxx, FPGA yyy)
+ Speed constraints (target clock frequency)
+ Throughput constraints (number invocations per second of the algorithm)

+ Latency constraints (maximum allowed delay "cycles" between the invocation
and the result

v
TeLECOM [N '.("w
Paris [l ’ H
= B/ A
57 1l I

4/38 High Level Synthesis Yves MATHIEU

I The designer dream...

From RTL synthesis to HLS synthesis

® Avoiding long and fastidious cycle accurate, register accurate and bit accurate
coding
B We would like to describe :
» An algorithm (signal processing, data processing...)
+ A target technology (ASIC xxx, FPGA yyy)
+ Speed constraints (target clock frequency)
+ Throughput constraints (number invocations per second of the algorithm)

+ Latency constraints (maximum allowed delay "cycles" between the invocation
and the result

B Solution : High Level Synthesis

0,
o SO
57 1l I

4/38 High Level Synthesis Yves MATHIEU

HLS Methodologies and tools for Systems on Chips

A plethora of situations

B Choice of input language (C, C++, SystemC)

e,
TELECOM ;".\”w(
Paris z_' H

.

TR

5/38 High Level Synthesis Yves MATHIEU

HLS Methodologies and tools for Systems on Chips

A plethora of situations

B Choice of input language (C, C++, SystemC)
® Culture of the destination audience :

e,
TELECOM :’.tﬁ:
Paris z_' H

.

TR

5/38 High Level Synthesis Yves MATHIEU

HLS Methodologies and tools for Systems on Chips

A plethora of situations

B Choice of input language (C, C++, SystemC)
® Culture of the destination audience :
» Computer scientists : weak culture of ad-hoc digital hardware architectures..

e,
TELECOM :’.tﬁ:
Paris z_' H

.

TR

5/38 High Level Synthesis Yves MATHIEU

HLS Methodologies and tools for Systems on Chips

A plethora of situations

B Choice of input language (C, C++, SystemC)
® Culture of the destination audience :

» Computer scientists : weak culture of ad-hoc digital hardware architectures..
+ Electronic specialists : weak culture of high level languages.

e,
TELECOM ;.'.\tv:
Paris z_' H

.

TR

5/38 High Level Synthesis Yves MATHIEU

HLS Methodologies and tools for Systems on Chips

A plethora of situations

B Choice of input language (C, C++, SystemC)
® Culture of the destination audience :

» Computer scientists : weak culture of ad-hoc digital hardware architectures..
+ Electronic specialists : weak culture of high level languages.

® Each HLS tool has an implicit targeted architecture :

e,
TELECOM ;.'.\tv:
Paris z_’ H

.

TR

5/38 High Level Synthesis Yves MATHIEU

HLS Methodologies and tools for Systems on Chips

A plethora of situations

B Choice of input language (C, C++, SystemC)
® Culture of the destination audience :

» Computer scientists : weak culture of ad-hoc digital hardware architectures..
+ Electronic specialists : weak culture of high level languages.

® Each HLS tool has an implicit targeted architecture :

» CPU style : based on a control flow graph and using predefined resources
(register bank, multipliers, ALUs...) : Hardly used anymore

e,
TELECOM ;.'.\tv:
Paris z_’ H

.

TR

5/38 High Level Synthesis Yves MATHIEU

HLS Methodologies and tools for Systems on Chips

A plethora of situations

B Choice of input language (C, C++, SystemC)
® Culture of the destination audience :

» Computer scientists : weak culture of ad-hoc digital hardware architectures..
+ Electronic specialists : weak culture of high level languages.

® Each HLS tool has an implicit targeted architecture :
» CPU style : based on a control flow graph and using predefined resources
(register bank, multipliers, ALUs...) : Hardly used anymore
» DATA-FLOW style : based on a data flow graph and state machines : current
trend for most tools.

e,
TELECOM ».'.\tv:
Paris z_’ B

.

TR

5/38 High Level Synthesis Yves MATHIEU

I HLS Methodologies and tools for Systems on Chips

Languages

B No precise definition of the concept of high-level representation of a hardware

system.
6/38 High Level Synthesis Yves MATHIEU — B g
K gn Lovel Sy T IR

I HLS Methodologies and tools for Systems on Chips

Languages

B No precise definition of the concept of high-level representation of a hardware
system.

® No common definition of the usable subset of a given language ?

e,
TELECOM ;.'.\tv:
Paris z_' H

.

TR

6/38 High Level Synthesis Yves MATHIEU

I HLS Methodologies and tools for Systems on Chips

Languages

B No precise definition of the concept of high-level representation of a hardware
system.

® No common definition of the usable subset of a given language ?
® How to model communication buses and protocols ?

v
TeLECOM [N '.("w
Paris [l ' H
= B/ A
=53 1l I

6/38 High Level Synthesis Yves MATHIEU

I HLS Methodologies and tools for Systems on Chips

Languages

B No precise definition of the concept of high-level representation of a hardware
system.

® No common definition of the usable subset of a given language ?

® How to model communication buses and protocols ?
B Systematic use of synthesis "pragmas” to express the intention of the

designer
3
6/38 High Level Synthesis Yves MATHIEU = 5 o
K gn Lovel Sy T IR

I HLS Methodologies and tools for Systems on Chips

Languages

B No precise definition of the concept of high-level representation of a hardware
system.

® No common definition of the usable subset of a given language ?

® How to model communication buses and protocols ?

B Systematic use of synthesis "pragmas” to express the intention of the
designer

» Guide the tool towards a reasonable solution (parallelism / pipeline)

v
TeLECOM [N '.("w
Paris [l ’ H
= B/ A
=53 1l I

6/38 High Level Synthesis Yves MATHIEU

I HLS Methodologies and tools for Systems on Chips

Languages

B No precise definition of the concept of high-level representation of a hardware
system.

® No common definition of the usable subset of a given language ?

® How to model communication buses and protocols ?
B Systematic use of synthesis "pragmas” to express the intention of the
designer

» Guide the tool towards a reasonable solution (parallelism / pipeline)
« Choosing technical options for a given technology (example RAM / flip-flops)

v
TeLECOM [N '.("w
Paris [l ’ H
= B/ A
=53 1l I

6/38 High Level Synthesis Yves MATHIEU

I HLS Methodologies and tools for Systems on Chips

Tools

® Replacement of the C or C++ compiler with an ad-hoc compiler

e,
TELECOM :’.tﬁ:
Paris z_' H

.

TR

7/38 High Level Synthesis Yves MATHIEU

I HLS Methodologies and tools for Systems on Chips

Tools

® Replacement of the C or C++ compiler with an ad-hoc compiler

B The ad-hoc compiler is able to generate a RTL representation of the hardware
rather than object code.

e,
TELECOM ;.'.\tv:
Paris z_' H

.

TR

7/38 High Level Synthesis Yves MATHIEU

I HLS Methodologies and tools for Systems on Chips

Tools

® Replacement of the C or C++ compiler with an ad-hoc compiler

B The ad-hoc compiler is able to generate a RTL representation of the hardware
rather than object code.

B Ref. gnu gcc : The “#pragma’ directive is the method specified by the C
standard for providing additional information to the compiler, beyond what is
conveyed in the language itself.

0
o SO
=53 1l I

7/38 High Level Synthesis Yves MATHIEU

I HLS Methodologies and tools for Systems on Chips

Tools

® Replacement of the C or C++ compiler with an ad-hoc compiler

B The ad-hoc compiler is able to generate a RTL representation of the hardware
rather than object code.

B Ref. gnu gcc : The “#pragma’ directive is the method specified by the C
standard for providing additional information to the compiler, beyond what is
conveyed in the language itself.

B No standard : different pragmas from one tool to another.

v
TeLECOM [N '.("w
Paris [l ’ H
= B/ A
=53 1l I

7/38 High Level Synthesis Yves MATHIEU

I HLS Methodologies and tools for Systems on Chips

A "long" learning time

m A difficult approach because of the paradigm shift (from RTL to HLS)

e,
TELECOM :’.tﬁ:
Paris z_' H

.

TR

8/38 High Level Synthesis Yves MATHIEU

I HLS Methodologies and tools for Systems on Chips

A "long" learning time

m A difficult approach because of the paradigm shift (from RTL to HLS)
® Due to the difference in approach, switching from one HLS tool to another is

not so easy.
8/38 High Level Synthesis Yves MATHIEU EHA 'M

I HLS Methodologies and tools for Systems on Chips

A "long" learning time

m A difficult approach because of the paradigm shift (from RTL to HLS)

® Due to the difference in approach, switching from one HLS tool to another is
not so easy.

B But a gain in development time for those who master the methodology

e,
TELECOM ;.'.\tv:
Paris z_’ H

.

TR

8/38 High Level Synthesis Yves MATHIEU

I HLS Methodologies and tools for Systems on Chips

A "long" learning time

m A difficult approach because of the paradigm shift (from RTL to HLS)

® Due to the difference in approach, switching from one HLS tool to another is
not so easy.

B But a gain in development time for those who master the methodology

B Ridiculously simple examples in the tools tutorials, no realistic example.

0
o IO
57 1l

8/38 High Level Synthesis Yves MATHIEU

I HLS Methodologies and tools for Systems on Chips

A "long" learning time

m A difficult approach because of the paradigm shift (from RTL to HLS)
® Due to the difference in approach, switching from one HLS tool to another is
not so easy.
B But a gain in development time for those who master the methodology
B Ridiculously simple examples in the tools tutorials, no realistic example.
» Example : A beginner in HLS must code a Finite Impulse Response filter ...

0
o IO
57 1l

8/38 High Level Synthesis Yves MATHIEU

I HLS Methodologies and tools for Systems on Chips

A "long" learning time

m A difficult approach because of the paradigm shift (from RTL to HLS)

® Due to the difference in approach, switching from one HLS tool to another is
not so easy.

B But a gain in development time for those who master the methodology

B Ridiculously simple examples in the tools tutorials, no realistic example.

» Example : A beginner in HLS must code a Finite Impulse Response filter ...
» RTL : Easy to code, if you know in advance the desired level of parallelism or

pipeline.
Yy

I HLS Methodologies and tools for Systems on Chips

A "long" learning time

m A difficult approach because of the paradigm shift (from RTL to HLS)

® Due to the difference in approach, switching from one HLS tool to another is
not so easy.
B But a gain in development time for those who master the methodology
B Ridiculously simple examples in the tools tutorials, no realistic example.
» Example : A beginner in HLS must code a Finite Impulse Response filter ...
» RTL : Easy to code, if you know in advance the desired level of parallelism or
ipeline.
. EHF_)S : Take the lead with synthesis pragmas to obtain the desired parallelism or
pipeline

0,
o SO
=53 1l I

8/38 High Level Synthesis Yves MATHIEU

I HLS Methodologies and tools for Systems on Chips

A "long" learning time

m A difficult approach because of the paradigm shift (from RTL to HLS)

® Due to the difference in approach, switching from one HLS tool to another is
not so easy.
B But a gain in development time for those who master the methodology
B Ridiculously simple examples in the tools tutorials, no realistic example.
» Example : A beginner in HLS must code a Finite Impulse Response filter ...
» RTL : Easy to code, if you know in advance the desired level of parallelism or
pipeline.
» HLS : Take the lead with synthesis pragmas to obtain the desired parallelism or
pipeline
* HLS : A frozen I/O diagram that does not necessarily correspond to the desired
context of use

0
o SO
=53 1l I

8/38 High Level Synthesis Yves MATHIEU

I HLS Methodologies and tools for Systems on Chips

What question do we want to solve ?

® Example : The FFT (Fast Fourier Transform)

e,
TELECOM ;".\”w(
Paris z_' H

.

TR

9/38 High Level Synthesis Yves MATHIEU

I HLS Methodologies and tools for Systems on Chips
What question do we want to solve ?
® Example : The FFT (Fast Fourier Transform)
B There are already some libraries of optimized hardware IPs.

e,
TELECOM :’.tﬁ:
Paris z_' H

.

TR

9/38 High Level Synthesis Yves MATHIEU

I HLS Methodologies and tools for Systems on Chips
What question do we want to solve ?
® Example : The FFT (Fast Fourier Transform)

B There are already some libraries of optimized hardware IPs.
B |n HLS, we start (for example) with a reference C code.

e,
TELECOM ;.'.\tv:
Paris z_' H

.

TR

9/38 High Level Synthesis Yves MATHIEU

I HLS Methodologies and tools for Systems on Chips
What question do we want to solve ?
® Example : The FFT (Fast Fourier Transform)

B There are already some libraries of optimized hardware IPs.
B |n HLS, we start (for example) with a reference C code.

e,
TELECOM ;.'.\tv:
Paris z_' H

.

TR

9/38 High Level Synthesis Yves MATHIEU

I HLS Methodologies and tools for Systems on Chips
What question do we want to solve ?
® Example : The FFT (Fast Fourier Transform)

B There are already some libraries of optimized hardware IPs.
B |n HLS, we start (for example) with a reference C code.
* Rewrite the original C code (with the good subset of C usable by the tool)

e,
TELECOM ;.'.\tv:
Paris z_' H

.

TR

9/38 High Level Synthesis Yves MATHIEU

I HLS Methodologies and tools for Systems on Chips

What question do we want to solve ?

® Example : The FFT (Fast Fourier Transform)
B There are already some libraries of optimized hardware IPs.

B |n HLS, we start (for example) with a reference C code.

* Rewrite the original C code (with the good subset of C usable by the tool)
+ Find the right combination of pragmas :

e,
TELECOM ;.'.\tv:
Paris z_’ H

.

TR

9/38 High Level Synthesis Yves MATHIEU

I HLS Methodologies and tools for Systems on Chips

What question do we want to solve ?

® Example : The FFT (Fast Fourier Transform)

B There are already some libraries of optimized hardware IPs.
B |n HLS, we start (for example) with a reference C code.

* Rewrite the original C code (with the good subset of C usable by the tool)
+ Find the right combination of pragmas :

— Loops unrollings or not.

e,
TELECOM ;.'.\tv:
Paris z_’ H

.

TR

9/38 High Level Synthesis Yves MATHIEU

I HLS Methodologies and tools for Systems on Chips

What question do we want to solve ?

® Example : The FFT (Fast Fourier Transform)

B There are already some libraries of optimized hardware IPs.
B |n HLS, we start (for example) with a reference C code.

* Rewrite the original C code (with the good subset of C usable by the tool)
+ Find the right combination of pragmas :

— Loops unrollings or not.

— Pipelining
9/38 High Level Synthesis Yves MATHIEU = 5 g
K gh Love Syn T IR

I HLS Methodologies and tools for Systems on Chips

What question do we want to solve ?

® Example : The FFT (Fast Fourier Transform)

B There are already some libraries of optimized hardware IPs.
B |n HLS, we start (for example) with a reference C code.

* Rewrite the original C code (with the good subset of C usable by the tool)
+ Find the right combination of pragmas :

— Loops unrollings or not.

— Pipelining

— Store datas in single port memories

e,
TELECOM ;.'.\tv:
Paris z_’ H

.

TR

9/38 High Level Synthesis Yves MATHIEU

I HLS Methodologies and tools for Systems on Chips

What question do we want to solve ?

® Example : The FFT (Fast Fourier Transform)

B There are already some libraries of optimized hardware IPs.
B |n HLS, we start (for example) with a reference C code.
* Rewrite the original C code (with the good subset of C usable by the tool)
+ Find the right combination of pragmas :
— Loops unrollings or not.
— Pipelining
— Store datas in single port memories
— Store datas in dual port memories

e,
TELECOM ;.'.\tv:
Paris z_’ H

.

TR

9/38 High Level Synthesis Yves MATHIEU

I HLS Methodologies and tools for Systems on Chips

What question do we want to solve ?

® Example : The FFT (Fast Fourier Transform)

B There are already some libraries of optimized hardware IPs.
B |n HLS, we start (for example) with a reference C code.

* Rewrite the original C code (with the good subset of C usable by the tool)
+ Find the right combination of pragmas :
— Loops unrollings or not.
Pipelining
Store datas in single port memories
Store datas in dual port memories
Store datas in registers

0
o SO
57 1l I

9/38 High Level Synthesis Yves MATHIEU

I HLS Methodologies and tools for Systems on Chips

What question do we want to solve ?

® Example : The FFT (Fast Fourier Transform)

B There are already some libraries of optimized hardware IPs.
B |n HLS, we start (for example) with a reference C code.

* Rewrite the original C code (with the good subset of C usable by the tool)
+ Find the right combination of pragmas :
Loops unrollings or not.
Pipelining
Store datas in single port memories
Store datas in dual port memories
— Store datas in registers
 Implement the exploration of architectures (check results for different
combinations of pragmas)

0
o SO
57 1l I

9/38 High Level Synthesis Yves MATHIEU

I HLS Methodologies and tools for Systems on Chips

What question do we want to solve ?

® Example : The FFT (Fast Fourier Transform)

B There are already some libraries of optimized hardware IPs.
B |n HLS, we start (for example) with a reference C code.

* Rewrite the original C code (with the good subset of C usable by the tool)
+ Find the right combination of pragmas :
Loops unrollings or not.
Pipelining
Store datas in single port memories
Store datas in dual port memories
— Store datas in registers
 Implement the exploration of architectures (check results for different
combinations of pragmas)

— Provided in some tools, or using external scripting

0
o SO
57 1l I

9/38 High Level Synthesis Yves MATHIEU

I HLS Methodologies and tools for Systems on Chips

What question do we want to solve ?

® Example : The FFT (Fast Fourier Transform)

B There are already some libraries of optimized hardware IPs.
B |n HLS, we start (for example) with a reference C code.

* Rewrite the original C code (with the good subset of C usable by the tool)
+ Find the right combination of pragmas :

— Loops unrollings or not.

— Pipelining

— Store datas in single port memories

— Store datas in dual port memories

— Store datas in registers
 Implement the exploration of architectures (check results for different

combinations of pragmas)
— Provided in some tools, or using external scripting
— But unbearably long, because it uses multiple RTL synthesis

I
9/38 High Level Synthesis Yves MATHIEU

I HLS Methodologies and tools for Systems on Chips

What question do we want to solve ?

® Reduce long and tedious coding times (RTL) :

e,
TELECOM ;".\”w(
Paris z_' H

.

TR

10/38 High Level Synthesis Yves MATHIEU

I HLS Methodologies and tools for Systems on Chips

What question do we want to solve ?

® Reduce long and tedious coding times (RTL) :
+ Writing control state machines.

e,
TELECOM :’.tﬁ:
Paris z_' H

.

TR

10/38 High Level Synthesis Yves MATHIEU

I HLS Methodologies and tools for Systems on Chips

What question do we want to solve ?

® Reduce long and tedious coding times (RTL) :
+ Writing control state machines.
» Writing communication codes to the outside world (ad-hoc communications,
standardized buses)

e,
TELECOM :’.tﬁ:
Paris z_' H

.

TR

10/38 High Level Synthesis Yves MATHIEU

I HLS Methodologies and tools for Systems on Chips

What question do we want to solve ?

® Reduce long and tedious coding times (RTL) :

+ Writing control state machines.
» Writing communication codes to the outside world (ad-hoc communications,
standardized buses)

B The real problem is not "l want to code a FFT"

e,
TELECOM ;.'.\tv:
Paris z_' H

.

TR

10/38 High Level Synthesis Yves MATHIEU

I HLS Methodologies and tools for Systems on Chips

What question do we want to solve ?

® Reduce long and tedious coding times (RTL) :

+ Writing control state machines.
» Writing communication codes to the outside world (ad-hoc communications,
standardized buses)

B The real problem is not "l want to code a FFT"
B The real problem is "l want to encode a FFT ..."

e,
TELECOM ;.'.\tv:
Paris z_’ H

.

TR

10/38 High Level Synthesis Yves MATHIEU

I HLS Methodologies and tools for Systems on Chips

What question do we want to solve ?

® Reduce long and tedious coding times (RTL) :
+ Writing control state machines.
» Writing communication codes to the outside world (ad-hoc communications,
standardized buses)
B The real problem is not "l want to code a FFT"
B The real problem is "l want to encode a FFT ..."
* Which communicates with a slave bus of the standard XXX

e,
TELECOM ;.'.\tv:
Paris z_’ H

.

TR

10/38 High Level Synthesis Yves MATHIEU

I HLS Methodologies and tools for Systems on Chips

What question do we want to solve ?

® Reduce long and tedious coding times (RTL) :
+ Writing control state machines.
» Writing communication codes to the outside world (ad-hoc communications,
standardized buses)
B The real problem is not "l want to code a FFT"
B The real problem is "l want to encode a FFT ..."

« Which communicates with a slave bus of the standard XXX
« With a YYY width data bus

e,
TELECOM ;.'.\tv:
Paris z_’ H

.

TR

10/38 High Level Synthesis Yves MATHIEU

I HLS Methodologies and tools for Systems on Chips

What question do we want to solve ?

® Reduce long and tedious coding times (RTL) :

+ Writing control state machines.
» Writing communication codes to the outside world (ad-hoc communications,
standardized buses)

B The real problem is not "l want to code a FFT"

B The real problem is "l want to encode a FFT ..."

« Which communicates with a slave bus of the standard XXX
» With a YYY width data bus
» With processed data of width ZZZ

e,
TELECOM ;.'.\tv:
Paris z_’ H

.

TR

10/38 High Level Synthesis Yves MATHIEU

I HLS Methodologies and tools for Systems on Chips

What question do we want to solve ?

® Reduce long and tedious coding times (RTL) :
+ Writing control state machines.
» Writing communication codes to the outside world (ad-hoc communications,
standardized buses)

B The real problem is not "l want to code a FFT"

B The real problem is "l want to encode a FFT ..."

* Which communicates with a slave bus of the standard XXX

« With a YYY width data bus

» With processed data of width ZZZ

+ With internal datas using type TTT (floating point, fixed point, integer...)

0
o SO
57 1l I

10/38 High Level Synthesis Yves MATHIEU

I HLS Methodologies and tools for Systems on Chips

What question do we want to solve ?

® Reduce long and tedious coding times (RTL) :
+ Writing control state machines.
» Writing communication codes to the outside world (ad-hoc communications,
standardized buses)

B The real problem is not "l want to code a FFT"
B The real problem is "l want to encode a FFT ..."
* Which communicates with a slave bus of the standard XXX
» With a YYY width data bus
» With processed data of width ZZZ
+ With internal datas using type TTT (floating point, fixed point, integer...)
+ With packet data transfers for FFT datas

0
o SO
57 1l I

10/38 High Level Synthesis Yves MATHIEU

B outline

Principles and vocabulary

11/38 High Level Synthesis Yves MATHIEU =

I Stept : Data Flow Graph

#include "accum.h”
void accumulate(int a, int b, int c, int d, int H
&dout)
{ 2
int t1,t2;
t1 = a + b; d dout
t2 = t1 + c;
dout = t2 + d;

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor Graphics)

o
12/38 High Level Synthesis Yves MATHIEU = %, o
2 gn Lovel Sy T IR

Tu
aTur o

I Step2 : Resource Allocation

Operations

Characterized
Library of
Components

- Resource
Allocation

+ 1+ +

Hardware Resource
+ [* Delay = 3 ns
Area = 320 um2

® Choice of operators, estimation of datapaths sizes
B Area and delay estimation for each operator
B Requires knowledge of technological data

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor Graphics)

e,
13/38 High Level Synthesis Yves MATHIEU %

TR

I Step 3 : Scheduling

Register/clock

boundary
Control step c1 ‘/cz c3 ca
a
—> | u
b__, + T
‘ _|—>
t2 Data written on
c + clock edge
—» " |
t3
, A
—
Clock cycle 1 2 3 4

B Assumption : Taggition < Teik
B Allocation of each operation to a given cycle.

m Storage of intermediate results into registers.
0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor Graphics)

14/38 High Level Synthesis Yves MATHIEU

e,
TELECOM ;.".\tv:
aris 2 m

TR

I Sicp 4 : Control

t3 =t2 +d

B Finite State Machine associated to the data path.
® Drives the choosen schedule.

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor Graphics)

=,
15/38 High Level Synthesis B

Yves MATHIEU = %, ':
=53 1l I

I Hardware implementation™

A constraint-less design

a[31:0]
b[31:0] _ |
c[31:0] |
di31:0] | 4x1

32 dout[31:0]

/.
/

Reg

FSM

B Resources minimization
® Only one adder and a finite state machine.
0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor Graphics)

16/38 High Level Synthesis Yves MATHIEU

(oureq,
00
Paris z_' H
= 5 o
=53 1l I

N Loop Pipelining
m [nitiation Interval (Il) : how many cycles between each loop usage.
B Example : llI=1 means one new computation at each clock cycle.

® "Latency" (L) : How many cycles between the arrival of the first input data
and the first output data.

No constraint -> L=3, II=4
0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor Graphics)

17/38 High Level Synthesis Yves MATHIEU

0
o SO
=53 1l I

N Loop Pipelining : l1=3, L=3
B Synthesis constraints using pragmas or scripts...
B Note : In C4 an output at the same time as an input.
® We assume that there are no constraints on the I/Os

Iteration 0

: Data written every
. three clock cycles

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor Graphics)

18/38 High Level Synthesis Yves MATHIEU :' 3

TR

N Loop Pipelining : l1=2, L=3
B Synthesis constraints using pragmas or scripts...
B You need 2 adders in parallel.
B We assume that there are no constraints on the I/Os

Iteration 0

Data written every

. -+ 2 | two clock cycles
- | Stage2
|
-«
M _T_. dout
Clock crole ! 2 3 ! 4 i
+ |
|
|
) @

Iteration 1

+ =
e
Two adders s

needed for I1=2 A + - dout

Clock cycle 3

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor Graphics)

19/38 High Level Synthesis Yves MATHIEU

0]
Paris i) m
=53 1l I

N Loop Pipelining : lI=1, L=3
B You need 3 adders in parallel : Maximum performance is achieved.

teration 0

Y "
1+ *T
e+
— e
T+
Data witen every
> clock cycle

Maximum Overlap.
Three adders
eded for ll=1

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor Graphics)

20/38 High Level Synthesis Yves MATHIEU

0]
Paris i) m
=53 1l I

N Loop Unrolling

B We do not play with the iterations of the loop.
B We play with parallelism inside the loop.

o Clock Cycles -
One iteration per ——» |
clock |
1 ACCUM loop in first
2 call of the main loop
5 3
o I
2 0
o |
@ 1
” - ACCUM loop in second
2 call of the main loop
3

v

Initial scheduling showing 2 successive calls to the loop.

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor Graphics)

21/38 High Level Synthesis Yves MATHIEU = %, g
N gn Lovel Sy T IR

N Loop Unrolling : Initial implementation, l1=4

B [oading of "din[31 :0]+0" at first cycle.
B Computing accumulation at other 3 cycles.

din[31:0]
din[63:31] e 3/2 ’
din[95:64] dout[31:0]
din[127:96] o I * ‘ Reg

CSU:Itter <4

7 3-bit control logic

Hardware Implementation

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor Graphics)

I
22/38 High Level Synthesis Yves MATHIEU

N Loop Unrolling : Partial unrolling, 11=2

B New scheduling using an unrolling factor equal to 2
B Two input datas received during the same clock cycle.

Clock Cycles -

Two iterations >
er clock
p 1 ACCUM loop in first

call of the main loop

=
[}
=
Q
=
o
>
» ACCUM loop in second
- "
call of the main loop
2
3
\}

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor Graphics) -

23/38 High Level Synthesis Yves MATHIEU

ey

N Loop Unrolling : Partial unrolling, 11=2

m Still Only one adder needed.
B Smaller counter needed.

din[31:0]
din[95:64]
dout[31:0]
din[63:31] +
Reg
din[127:96]
0
1-bit
Counter

Hardware Implementation

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor Graphics)

24/38 High Level Synthesis Yves MATHIEU

TELE;CCIM
Saris

EHET

«
D 3
' Of
B/ A
k2 G
og o>

N Loop Unrolling : Full unrolling, l1=1

® New scheduling using an unrolling factor equal to 4
B Four input datas received during the same clock cycle.

Clock Cycles -

Four iterations

lock
per cloc! ACCUM loop in first

call of the main loop

suonel9)|

ACCUM loop in second
call of the main loop

wWiIN =~ O

\i

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor Graphics)

25/38 High Level Synthesis Yves MATHIEU

0
o SO
=53 1l I

N Loop Unrolling : Full unrolling

B Three adders, no counter.

din[31:0]
din[63:31]

din[95:64] : Reg
din[127:96]

Hardware Implementation

dout[31:0]

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor Graphics)

Yves MATHIEU

26/38 High Level Synthesis

TELE;CCIM
Saris

EHET

«
D 3
' Of
B/ A
k2 G
og o>

N Loop pipelining versus Loop unrolling

B | oop pipelining
+ Uses parallelism at a global level.
* Increase area as Il is decreased.
+ At a given cycle, inputs and outputs are related to several calls of the loop

e,
TELECOM ;"’.tﬁ:
aris H m

TR

27/38 High Level Synthesis Yves MATHIEU

N Loop pipelining versus Loop unrolling

B |Loop pipelining

+ Uses parallelism at a global level.

* Increase area as Il is decreased.

+ At a given cycle, inputs and outputs are related to several calls of the loop
B | oop unrolling

» Uses parallelism at a local level.

* Increase clock frequency constraints as Il is decreased.

+ At a given cycle, inputs and outputs are related to only one call of the loop

e,
TELECOM :"‘\tﬁ:
aris H m

TR

27/38 High Level Synthesis Yves MATHIEU

I "L oops : the core of the HLS tools”

® Simple loops with well known number of iterations.

e,
TELECOM :’.tﬁ:
Paris z_' H

.

TR

28/38 High Level Synthesis Yves MATHIEU

I "L oops : the core of the HLS tools”

® Simple loops with well known number of iterations.
®m [oop Pipelining and Loop Unrolling may be used together.

e,
TELECOM ;.'.\tv:
Paris z_' H

.

TR

28/38 High Level Synthesis Yves MATHIEU

I "L oops : the core of the HLS tools”

® Simple loops with well known number of iterations.
®m [oop Pipelining and Loop Unrolling may be used together.

B Automatic synthesis of the finite state machines.

* RTL : Long and tedious coding of the start and end of pipeline behavior.
* RTL : Long and tedious debugging.
» RTL : Very often, coding of only one alternative

e,
TELECOM ».'.\tv:
Paris z_’ H

.

TR

28/38 High Level Synthesis Yves MATHIEU

I "L oops : the core of the HLS tools”

® Simple loops with well known number of iterations.
®m [oop Pipelining and Loop Unrolling may be used together.

B Automatic synthesis of the finite state machines.

* RTL : Long and tedious coding of the start and end of pipeline behavior.
* RTL : Long and tedious debugging.
» RTL : Very often, coding of only one alternative

e,
TELECOM ».'.\tv:
Paris z_’ H

.

TR

28/38 High Level Synthesis Yves MATHIEU

I "L oops : the core of the HLS tools”

® Simple loops with well known number of iterations.
®m [oop Pipelining and Loop Unrolling may be used together.

B Automatic synthesis of the finite state machines.

* RTL : Long and tedious coding of the start and end of pipeline behavior.
* RTL : Long and tedious debugging.
» RTL : Very often, coding of only one alternative

e,
TELECOM ».'.\tv:
Paris z_’ H

.

TR

28/38 High Level Synthesis Yves MATHIEU

I "L oops : the core of the HLS tools”

® Simple loops with well known number of iterations.
®m [oop Pipelining and Loop Unrolling may be used together.

B Automatic synthesis of the finite state machines.

* RTL : Long and tedious coding of the start and end of pipeline behavior.
* RTL : Long and tedious debugging.
» RTL : Very often, coding of only one alternative

B Bonus : Easy exploration of different alternatives.

e,
TELECOM ».'.\tv:
Paris z_’ H

.

TR

28/38 High Level Synthesis Yves MATHIEU

I "L oops : the core of the HLS tools”

® Simple loops with well known number of iterations.
®m [oop Pipelining and Loop Unrolling may be used together.

B Automatic synthesis of the finite state machines.

* RTL : Long and tedious coding of the start and end of pipeline behavior.
* RTL : Long and tedious debugging.
» RTL : Very often, coding of only one alternative

B Bonus : Easy exploration of different alternatives.
B Warning : The optimal result can be counterintuitive.

e,
TELECOM ».'.\tv:
Paris z_’ H

.

TR

28/38 High Level Synthesis Yves MATHIEU

I "L oops : the core of the HLS tools”

® Simple loops with well known number of iterations.
®m [oop Pipelining and Loop Unrolling may be used together.

B Automatic synthesis of the finite state machines.

* RTL : Long and tedious coding of the start and end of pipeline behavior.
* RTL : Long and tedious debugging.
» RTL : Very often, coding of only one alternative

B Bonus : Easy exploration of different alternatives.
B Warning : The optimal result can be counterintuitive.
B Standard in all HLS tools but not necessarily with the same vocabulary

e,
TELECOM ».'.\tv:
Paris z_’ H

.

TR

28/38 High Level Synthesis Yves MATHIEU

B outline

Hardware support for software languages

e,
TELECOM ;.'Qtv(
aris 2 m

TR

29/38 High Level Synthesis Yves MATHIEU

I C/C:+: Communications ports

B C/C++ language : hardware seen as a function.

void example(int A[50], int B[50]) {
//Set the HLS native interface types
#pragma HLS INTERFACE axis port=A
#pragma HLS INTERFACE axis port=B
int i;
for(i = 0; i < 50; i++){
B[i] = A[i] + 5;

}

Xilinx Vitis-HLS : Two separated AXI4-stream ports

30/38 High Level Synthesis Yves MATHIEU

©
Paris 2 "
=53 1l I

I C/C:+: Communications ports

B C/C++ language : hardware seen as a function.
B Function I/Os are seen as communication ports.

void example(int A[50], int B[50]) {
//Set the HLS native interface types
#pragma HLS INTERFACE axis port=A
#pragma HLS INTERFACE axis port=B
int i;
for(i = 0; i < 50; i++){
B[i] = A[i] + 5;

}

Xilinx Vitis-HLS : Two separated AXI4-stream ports

30/38 High Level Synthesis Yves MATHIEU

©
Paris 2 "
=53 1l I

I C/C:+: Communications ports
B C/C++ language : hardware seen as a function.
B Function I/Os are seen as communication ports.
B The design should be able to choose the communication protocol.

void example(int A[50], int B[50]) {
//Set the HLS native interface types
#pragma HLS INTERFACE axis port=A
#pragma HLS INTERFACE axis port=B
int i,
for(i = 0; i < 50; i++){
B[i] = A[i] + 5;

}

Xilinx Vitis-HLS : Two separated AXI4-stream ports

30/38 High Level Synthesis Yves MATHIEU

TELECOM N
Saris R

I

T
QOLYTEG,

I C/C:+: Communications ports
B C/C++ language : hardware seen as a function.
B Function I/Os are seen as communication ports.
B The design should be able to choose the communication protocol.
B Solution : Using C++ pragmas.

void example(int A[50], int B[50]) {
//Set the HLS native interface types
#pragma HLS INTERFACE axis port=A
#pragma HLS INTERFACE axis port=B
int i,
for(i = 0; i < 50; i++){
B[i] = A[i] + 5;

}

Xilinx Vitis-HLS : Two separated AXI4-stream ports

30/38 High Level Synthesis Yves MATHIEU

TELECOM N
Saris R

I

T
QOLYTEG,

C/C++ : Communication ports
C/C++
B Sharing the same bus for several inputs/outputs

void example(char *a, char *b, char *c) {

#pragma HLS INTERFACE s_axilite port=return bundle=BUS_A

#pragma HLS INTERFACE s_axilite port=a bundle=BUS_A

#pragma HLS INTERFACE s_axilite port=b bundle=BUS_A

#pragma HLS INTERFACE s_axilite port=c bundle=BUS_A offset=0x0400
#pragma HLS INTERFACE ap_vld port=b

*C += *a + *b;

Xilinx Vitis-HLS : Only one AXI4-lite port for all I/Os...

31/38 High Level Synthesis Yves MATHIEU

TELE;CCIM
Saris

EHET

o

.

. 3

1 YOE

B/ A
N

og ™

C/C++ : Communication ports

C/C++

B Sharing the same bus for several inputs/outputs
® Defining base addresses for port ¢

#pragma
#pragma
#pragma
#pragma
#pragma

*C +=

HLS INTERFACE
HLS INTERFACE
HLS INTERFACE
HLS INTERFACE
HLS INTERFACE

*a + *b;

void example(char *a, char *b, char *c) {

s_axilite port=return bundle=BUS_A
s_axilite port=a bundle=BUS_A

s_axilite port=b bundle=BUS_A

s_axilite port=c bundle=BUS_A offset=0x0400

ap_vld port=b

Xilinx Vitis-HLS : Only one AXI4-lite port for all I/Os...

31/38 High Level Synthesis Yves MATHIEU

TELE;CCIM
Saris

EHET

o

.

. 3

1 YOE

B/ A
N

og ™

C/C++ : Communication ports
C/C++
B Sharing the same bus for several inputs/outputs

® Defining base addresses for port ¢
B Force usage of "valid handshake" for port b

void example(char *a, char *b, char *c) {

#pragma HLS INTERFACE s_axilite port=return bundle=BUS_A

#pragma HLS INTERFACE s_axilite port=a bundle=BUS_A

#pragma HLS INTERFACE s_axilite port=b bundle=BUS_A

#pragma HLS INTERFACE s_axilite port=c bundle=BUS_A offset=0x0400
#pragma HLS INTERFACE ap_vld port=b

*C += *a + *b;

Xilinx Vitis-HLS : Only one AXI4-lite port for all I/Os...

31/38 High Level Synthesis Yves MATHIEU

0]
Paris i) m
=53 1l I

I SystemC : Communication ports

® Recognition of specific SystemC constructs like sc_in, sc_out or sc_fifo

SC_MODULE (sc_sequ_cthread){
sc_fifo_out<int> dout;

sc_fifo_in<int> din;

void sc_FIFO_port::Prc2() {
#pragma HLS resource core=AXI4Stream variable=din

#pragma HLS resource core=AXI4Stream variable=dout

Xilinx Vitis-HLS : SystemC specific constructs

32/38 High Level Synthesis Yves MATHIEU

v
TeLECOM [N '.("w
Paris 2 "
- /A
=53 1l I

C/C++ Mathematical support
C/C++
® DSP processing needs handling of the precision of mathematical datas :

* Integer/Floating-Point/Fixed Point datatypes
* Arbitrary precision data-types.

e,
TELECOM ;.'.\tv:
Paris z_’ H

.

TR

33/38 High Level Synthesis Yves MATHIEU

C/C++ Mathematical support
C/C++
® DSP processing needs handling of the precision of mathematical datas :
* Integer/Floating-Point/Fixed Point datatypes
* Arbitrary precision data-types.

m VHDL/Verilog RTL supports arbitrary precision integer datatypes but no
floating point, and hardly fixed-point.

e,
TELECOM ».'.\tv:
Paris z_’ H

.

TR

33/38 High Level Synthesis Yves MATHIEU

C/C++ Mathematical support
C/C++
® DSP processing needs handling of the precision of mathematical datas :
* Integer/Floating-Point/Fixed Point datatypes
* Arbitrary precision data-types.

m VHDL/Verilog RTL supports arbitrary precision integer datatypes but no
floating point, and hardly fixed-point.

®m SystemC supports arbitrary precision integer or fixed-point datatypes and
standard floating point.

e,
TELECOM ».'.\tv:
Paris z_’ H

.

TR

33/38 High Level Synthesis Yves MATHIEU

C/C++ Mathematical support
C/C++

® DSP processing needs handling of the precision of mathematical datas :

* Integer/Floating-Point/Fixed Point datatypes
* Arbitrary precision data-types.

m VHDL/Verilog RTL supports arbitrary precision integer datatypes but no
floating point, and hardly fixed-point.

®m SystemC supports arbitrary precision integer or fixed-point datatypes and
standard floating point.

B C/C++ doesn’t support natively arbitrary precision datatypes.

e,
TELECOM ».'.\tv:
Paris z_’ H

.

TR

33/38 High Level Synthesis Yves MATHIEU

C/C++ Mathematical support
C/C++
® DSP processing needs handling of the precision of mathematical datas :
* Integer/Floating-Point/Fixed Point datatypes
* Arbitrary precision data-types.
m VHDL/Verilog RTL supports arbitrary precision integer datatypes but no
floating point, and hardly fixed-point.
®m SystemC supports arbitrary precision integer or fixed-point datatypes and
standard floating point.
B C/C++ doesn’t support natively arbitrary precision datatypes.
®m Solution : Algorithm C (AC) Datatypes

v
TeLECOM [N '.("w
Paris 3_’ H
= B/ A
=53 1l I

33/38 High Level Synthesis Yves MATHIEU

C/C++ Mathematical support
C/C++
® DSP processing needs handling of the precision of mathematical datas :
* Integer/Floating-Point/Fixed Point datatypes
* Arbitrary precision data-types.
m VHDL/Verilog RTL supports arbitrary precision integer datatypes but no
floating point, and hardly fixed-point.
®m SystemC supports arbitrary precision integer or fixed-point datatypes and
standard floating point.
B C/C++ doesn’t support natively arbitrary precision datatypes.
®m Solution : Algorithm C (AC) Datatypes
* Specific templated classes for C++

v
TeLECOM [N '.("w
Paris 3_’ H
= B/ A
=53 1l I

33/38 High Level Synthesis Yves MATHIEU

C/C++ Mathematical support
C/C++

® DSP processing needs handling of the precision of mathematical datas :
* Integer/Floating-Point/Fixed Point datatypes
* Arbitrary precision data-types.
m VHDL/Verilog RTL supports arbitrary precision integer datatypes but no
floating point, and hardly fixed-point.

®m SystemC supports arbitrary precision integer or fixed-point datatypes and
standard floating point.

B C/C++ doesn’t support natively arbitrary precision datatypes.

®m Solution : Algorithm C (AC) Datatypes

* Specific templated classes for C++
* Integers with arbitrary width

v
TeLECOM [N '.("w
Paris 3_’ H
= B/ A
=53 1l I

33/38 High Level Synthesis Yves MATHIEU

C/C++ Mathematical support
C/C++

® DSP processing needs handling of the precision of mathematical datas :
* Integer/Floating-Point/Fixed Point datatypes
* Arbitrary precision data-types.
m VHDL/Verilog RTL supports arbitrary precision integer datatypes but no
floating point, and hardly fixed-point.

®m SystemC supports arbitrary precision integer or fixed-point datatypes and
standard floating point.

B C/C++ doesn’t support natively arbitrary precision datatypes.
®m Solution : Algorithm C (AC) Datatypes
* Specific templated classes for C++

* Integers with arbitrary width
* Fixed Point with arbitrary width and arbitrary integer part width

v
TeLECOM [N '.("w
Paris ;’ H
= B/ A
=53 1l I

33/38 High Level Synthesis Yves MATHIEU

C/C++ Mathematical support
C/C++

® DSP processing needs handling of the precision of mathematical datas :
* Integer/Floating-Point/Fixed Point datatypes
* Arbitrary precision data-types.
m VHDL/Verilog RTL supports arbitrary precision integer datatypes but no
floating point, and hardly fixed-point.

®m SystemC supports arbitrary precision integer or fixed-point datatypes and
standard floating point.

B C/C++ doesn’t support natively arbitrary precision datatypes.
®m Solution : Algorithm C (AC) Datatypes
* Specific templated classes for C++
* Integers with arbitrary width
* Fixed Point with arbitrary width and arbitrary integer part width
* Floating Point with arbitrary mantissa width and arbitrary exponant width

33/38 High Level Synthesis Yves MATHIEU

v
TeLECOM [N '.("w
Paris ;’ H
= B/ A
=53 1l I

B outline

HLS : Tools survey

e,
TELECOM ;"'.\”w(
aris 2 m

TR

34/38 High Level Synthesis Yves MATHIEU

B some known HLS tools

Tool Owner Input language | Target Comment
Stratus HLS | Cadence c/c++ SystemC | ASIC/FPGA | RTL/HLS
Symphony C | Synopsys c/c++ ASIC/FPGA

Catapult Mentor c/c++ SystemC | ASIC/FPGA

Intel HLS Intel FPGA c/C++ FPGA Intel FPGAs

Vitis HLS Xilinx c/c++ SystemC | FPGA Xilinx FPGAs
Legup HLS Microchip Tech. | c/c++ FPGA Microchip FPGAs

35/38 High Level Synthesis Yves MATHIEU

v
TeLECOM [N '.("w
Paris ;’ H
= B/ A
=53 1l I

B outline

Recent developments and tools

36/38 High Level Synthesis Yves MATHIEU =

N B The FPGA case

heterogeneous architectures

B |Language : OpenCL parallel programming

e,
TELECOM ;"’.tﬁ:
aris 2 m

T IR

37/38 High Level Synthesis Yves MATHIEU

N B The FPGA case

heterogeneous architectures

B |Language : OpenCL parallel programming
B originaly targeted for CPU/GPU

e,
TELECOM ;.'.\tv:
Paris z_' H

.

TR

37/38 High Level Synthesis Yves MATHIEU

N B The FPGA case

heterogeneous architectures

B |Language : OpenCL parallel programming
B originaly targeted for CPU/GPU
® SPMD parallelism (Single Program Multiple Data)

e,
TELECOM ;.'.\tv:
Paris z_’ H

.

TR

37/38 High Level Synthesis Yves MATHIEU

N B The FPGA case

heterogeneous architectures

B |Language : OpenCL parallel programming

B originaly targeted for CPU/GPU

® SPMD parallelism (Single Program Multiple Data)
®m Extended to CPU/FPGA associations

0
o SO
57 1l I

37/38 High Level Synthesis Yves MATHIEU

N B The FPGA case

heterogeneous architectures

B |Language : OpenCL parallel programming

B originaly targeted for CPU/GPU

® SPMD parallelism (Single Program Multiple Data)

®m Extended to CPU/FPGA associations

B SocFPGA (CPU and FPGA integrated in the same circuit)

0
o IO
57 1l

37/38 High Level Synthesis Yves MATHIEU

N B The FPGA case

heterogeneous architectures

B |Language : OpenCL parallel programming

B originaly targeted for CPU/GPU

® SPMD parallelism (Single Program Multiple Data)

®m Extended to CPU/FPGA associations

B SocFPGA (CPU and FPGA integrated in the same circuit)

B FPGA based hadware accelerators in the cloud (data centers).
B |n general : one tool for specific destination platforms

0,
o IO
57 1l

37/38 High Level Synthesis Yves MATHIEU

Intel "OneAPI"

Optimized Applications

Optimized Middleware & Frameworks

DIRECT PROGRAMMING | API-BASED PROGRAMMING

Data Parallel C++ oneAPI Analysis &
(DPC++) Libraries Debug Tools

SCALAR VECTOR MATRIX SPATIAL
{Future)

38/38 High Level Synthesis Yves MATHIEU

TELECOM 2
Saris R

mEER

oooooo

	Digital Integrated Electronics
	Introduction
	Principles and vocabulary
	Hardware support for software languages
	HLS: Tools survey
	Recent developments and tools

