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In most electronic imaging applica-
tions, images with high resolution
(HR) are desired and often re-
quired. HR means that pixel den-

sity within an image is high, and
therefore an HR image can offer more
details that may be critical in various ap-
plications. For example, HR medical images are very
helpful for a doctor to make a correct diagnosis. It may be
easy to distinguish an object from similar ones using HR
satellite images, and the performance of pattern recogni-
tion in computer vision can be improved if an HR image
is provided. Since the 1970s, charge-coupled device
(CCD) and CMOS image sensors have been widely used
to capture digital images. Although these sensors are suit-
able for most imaging applications, the current resolution
level and consumer price will not satisfy the future de-
mand. For example, people want an inexpensive HR digi-
tal camera/camcorder or see the price gradually reduce,
and scientists often need a very HR level close to that of
an analog 35 mm film that has no visible artifacts when an
image is magnified. Thus, finding a way to increase the
current resolution level is needed.

The most direct solution to increase spatial resolution
is to reduce the pixel size (i.e., increase the number of pix-
els per unit area) by sensor manufacturing techniques. As
the pixel size decreases, however, the amount of light
available also decreases. It generates shot noise that de-

grades the image quality severely. To reduce the pixel size
without suffering the effects of shot noise, therefore,
there exists the limitation of the pixel size reduction, and
the optimally limited pixel size is estimated at about 40
µm2 for a 0.35 µm CMOS process. The current image
sensor technology has almost reached this level.

Another approach for enhancing the spatial resolution
is to increase the chip size, which leads to an increase in ca-
pacitance [1]. Since large capacitance makes it difficult to
speed up a charge transfer rate, this approach is not con-
sidered effective. The high cost for high precision optics
and image sensors is also an important concern in many
commercial applications regarding HR imaging. There-
fore, a new approach toward increasing spatial resolution
is required to overcome these limitations of the sensors
and optics manufacturing technology.

One promising approach is to use signal processing
techniques to obtain an HR image (or sequence) from
observed multiple low-resolution (LR) images. Recently,
such a resolution enhancement approach has been one of
the most active research areas, and it is called super resolu-
tion (SR) (or HR) image reconstruction or simply reso-
lution enhancement in the literature [1]-[61]. In this
article, we use the term “SR image reconstruction” to re-
fer to a signal processing approach toward resolution en-
hancement because the term “super” in “super
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resolution” represents very well the characteristics of the
technique overcoming the inherent resolution limitation
of LR imaging systems. The major advantage of the sig-
nal processing approach is that it may cost less and the ex-
isting LR imaging systems can be still utilized. The SR
image reconstruction is proved to be useful in many prac-
tical cases where multiple frames of the same scene can be
obtained, including medical imaging, satellite imaging,
and video applications. One application is to reconstruct
a higher quality digital image from LR images obtained
with an inexpensive LR camera/camcorder for printing
or frame freeze purposes. Typically, with a camcorder, it is
also possible to display enlarged frames successively. Syn-
thetic zooming of region of interest (ROI) is another im-
portant application in surveillance, forensic, scientific,
medical, and satellite imaging. For surveillance or foren-
sic purposes, a digital video recorder (DVR) is currently
replacing the CCTV system, and it is often needed to
magnify objects in the scene such as the face of a criminal
or the licence plate of a car. The SR technique is also use-
ful in medical imaging such as computed tomography
(CT) and magnetic resonance imaging (MRI) since the
acquisition of multiple images is possible while the reso-
lution quality is limited. In satellite imaging applications
such as remote sensing and LANDSAT, several images of
the same area are usually provided, and the SR technique
to improve the resolution of target can be considered. An-
other application is conversion from an NTSC video sig-
nal to an HDTV signal since there is a clear and present
need to display a SDTV signal on the HDTV without vi-
sual artifacts.

How can we obtain an HR image from multiple LR
images? The basic premise for increasing the spatial reso-
lution in SR techniques is the availability of multiple LR
images captured from the same scene (see [4, chap. 4] for
details). In SR, typically, the LR images represent differ-

ent “looks” at the same scene. That is, LR images are
subsampled (aliased) as well as shifted with subpixel pre-
cision. If the LR images are shifted by integer units, then
each image contains the same information, and thus there
is no new information that can be used to reconstruct an
HR image. If the LR images have different subpixel shifts
from each other and if aliasing is present, however, then
each image cannot be obtained from the others. In this
case, the new information contained in each LR image
can be exploited to obtain an HR image. To obtain differ-
ent looks at the same scene, some relative scene motions
must exist from frame to frame via multiple scenes or
video sequences. Multiple scenes can be obtained from
one camera with several captures or from multiple cam-
eras located in different positions. These scene motions
can occur due to the controlled motions in imaging sys-
tems, e.g., images acquired from orbiting satellites. The
same is true of uncontrolled motions, e.g., movement of
local objects or vibrating imaging systems. If these scene
motions are known or can be estimated within subpixel
accuracy and if we combine these LR images, SR image
reconstuction is possible as illustrated in Figure 1.

In the process of recording a digital image, there is a
natural loss of spatial resolution caused by the optical dis-
tortions (out of focus, diffraction limit, etc.), motion blur
due to limited shutter speed, noise that occurs within the
sensor or during transmission, and insufficient sensor
density as shown in Figure 2. Thus, the recorded image
usually suffers from blur, noise, and aliasing effects. Al-
though the main concern of an SR algorithm is to recon-
struct HR images from undersampled LR images, it
covers image restoration techniques that produce high
quality images from noisy, blurred images. Therefore, the
goal of SR techniques is to restore an HR image from sev-
eral degraded and aliased LR images.

A related problem to SR techniques is image restora-
tion, which is a well-established area
in image processing applications
[62]-[63]. The goal of image restora-
tion is to recover a degraded (e.g.,
blurred, noisy) image, but it does not
change the size of image. In fact, res-
toration and SR reconstruction are
closely related theoretically, and SR
reconstruction can be considered as a
second-generation problem of image
restoration.

Another problem related to SR re-
construction is image interpolation
that has been used to increase the size
of a single image. Although this field
has been extensively studied
[64]-[66], the quality of an image
magnified from an aliased LR image
is inherently limited even though the
ideal sinc basis function is employed.
That is, single image interpolation
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cannot recover the high-frequency
components lost or degraded during
the LR sampling process. For this
reason, image interpolation methods
are not considered as SR techniques.
To achieve further improvements in
this field, the next step requires the
utilization of multiple data sets in
which additional data constraints
from several observations of the same
scene can be used. The fusion of in-
formation from various observations
of the same scene allows us SR recon-
struction of the scene.

The goal of this article is to intro-
duce the concept of SR algorithms
to readers who are unfamiliar with
this area and to provide a review for
experts. To this purpose, we present
the technical review of various exist-
ing SR methodologies which are of-
ten employed. Before presenting the review of existing
SR algorithms, we first model the LR image acquisi-
tion process.

Observation Model
The first step to comprehensively analyze the SR image
reconstruction problem is to formulate an observation
model that relates the original HR image to the observed
LR images. Several observation models have been pro-
posed in the literature, and they can be broadly divided
into the models for still images and for video sequence. To
present a basic concept of SR reconstruction techniques,
we employ the observation model for still images in this
article, since it is rather straightforward to extend the still
image model to the video sequence model.

Consider the desired HR image of size L N L N1 1 2 2×
written in lexicographical notation as the vector
x = [ , ,...., ]x x xN

T
1 2 , where N L N L N= ×1 1 2 2 . Namely,

x is the ideal undegraded image that is sampled at or
above the Nyquist rate from a continuous scene which is
assumed to be bandlimited. Now, let the parameters L1
and L2 represent the down-sampling factors in the obser-
vation model for the horizontal and vertical directions, re-

spectively. Thus, each observed LR image is of size
N N1 2× . Let the kth LR image be denoted in lexico-
graphic notation as y k k k k M

Ty y y= [ , ,...., ], , ,1 2 , for
k p=1 2, ,..., and M N N= ×1 2 . Now, it is assumed that x
remains constant during the acquisition of the multiple
LR images, except for any motion and degradation al-
lowed by the model. Therefore, the observed LR images
result from warping, blurring, and subsampling opera-
tors performed on the HR image x. Assuming that each
LR image is corrupted by additive noise, we can then rep-
resent the observation model as [30], [48]

y DB M x nk k k k= + ≤ ≤for 1 k p (1)

where M k is a warp matrix of size L1N1L2N2 � L1N1L2N2,
Bk represents a L N L N L N L N1 1 2 2 1 1 2 2× blur matrix,
D is a ( )N N L N L N1 2

2
1 1 2 2× subsampling matrix, and

n k represents a lexicographically ordered noise vector. A
block diagram for the observation model is illustrated in
Figure 3.

Let us consider the system matrix involved in (1). The
motion that occurs during the image acquisition is repre-
sented by warp matrix M k . It may contain global or local
translation, rotation, and so on. Since this information is
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generally unknown, we need to estimate the scene mo-
tion for each frame with reference to one particular frame.
The warping process performed on HR image x is actu-
ally defined in terms of LR pixel spacing when we esti-
mate it. Thus, this step requires interpolation when the
fractional unit of motion is not equal to the HR sensor
grid. An example for global translation is shown in Figure
4. Here, a circle (�) represents the original (reference)
HR image x, and a triangle (�) and a diamond (�) are
globally shifted versions of x. If the down-sampling factor
is two, a diamond (�) has (0.5, 0.5) subpixel shift for the
horizontal and vertical directions and a triangle (�) has a
shift which is less than (0.5,0.5). As shown in Figure 4, a
diamond (�) does not need interpolation, but a triangle
(�) should be interpolated from x since it is not located
on the HR grid. Although one could use ideal interpola-
tion theoretically, in practice, simple methods such as

zero-order hold or bilinear interpolation methods have
been used in many literatures.

Blurring may be caused by an optical system (e.g., out
of focus, diffraction limit, aberration, etc.), relative motion
between the imaging system and the original scene, and
the point spread function (PSF) of the LR sensor. It can be
modeled as linear space invariant (LSI) or linear space vari-
ant (LSV), and its effects on HR images are represented by
the matrix Bk . In single image restoration applications,
the optical or motion blur is usually considered. In the SR
image reconstruction, however, the finiteness of a physical
dimension in LR sensors is an important factor of blur.
This LR sensor PSF is usually modeled as a spatial averag-
ing operator as shown in Figure 5. In the use of SR recon-
struction methods, the characteristics of the blur are
assumed to be known. However, if it is difficult to obtain
this information, blur identification should be incorpo-
rated into the reconstruction procedure.

The subsampling matrix D generates aliased LR im-
ages from the warped and blurred HR image. Although
the size of LR images is the same here, in more general
cases, we can address the different size of LR images by
using a different subsampling matrix (e.g., Dk ). Al-
though the blurring acts more or less as an anti-aliasing
filter, in SR image reconstruction, it is assumed that
aliasing is always present in LR images.

A slightly different LR image acquisition model can be
derived by discretizing a continuous warped, blurred
scene [24]-[28]. In this case, the observation model must
include the fractional pixels at the border of the blur sup-
port. Although there are some different considerations
between this model and the one in (1), these models can
be unified in a simple matirx-vector form since the LR
pixels are defined as a weighted sum of the related HR
pixels with additive noise [18]. Therefore, we can express
these models without loss of generality as follows:

y W x nk k k= + =, ,...,for k p1 , (2)

where matrix Wk of size ( )N N L N L N1 2
2

1 1 2 2× repre-
sents, via blurring, motion, and subsampling, the contri-
bution of HR pixels in x to the LR pixels in y k . Based on
the observation model in (2), the aim of the SR image re-
construction is to estimate the HR image x from the LR

images y k for k p=1,..., .
Most of the SR image reconstruc-

tion methods proposed in the litera-
ture consist of the three stages
illustrated in Figure 6: registration,
interpolation, and restoration (i.e.,
inverse procedure). These steps can
be implemented separately or simul-
taneously according to the recon-
struction methods adopted. The
estimation of motion information is
referred to as registration, and it is ex-
tensively studied in various fields of
image processing [67]-[70]. In the
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registration stage, the relative shifts between LR images
compared to the reference LR image are estimated with
fractional pixel accuracy. Obviously, accurate subpixel
motion estimation is a very important factor in the suc-
cess of the SR image reconstruction algorithm. Since the
shifts between LR images are arbitrary, the registered HR
image will not always match up to a uniformly spaced
HR grid. Thus, nonuniform interpolation is necessary to
obtain a uniformly spaced HR image from a
nonuniformly spaced composite of LR images. Finally,
image restoration is applied to the upsampled image to
remove blurring and noise.

The differences among the several proposed works are
subject to what type of reconstruction method is em-
ployed, which observation model is assumed, in which
particular domain (spatial or frequency) the algorithm is
applied, what kind of methods is used to capture LR im-
ages, and so on. The technical report by Borman and
Stevenson [2] provides a comprehensive and complete
overview on the SR image reconstruction algorithms un-
til around 1998, and a brief overview of the SR tech-
niques appears in [3] and [4].

Based on the observation model in (2), existing SR
algorithms are reviewed in the following sections. We
first present a nonuniform interpolation approach that
conveys an intuitive comprehension of the SR image re-
construction. Then, we explain a frequency domain ap-
proach that is helpful to see how to exploit the aliasing
relationship between LR images. Next, we present de-
terministic and stochastic regularization approaches, the
projection onto convex sets (POCS) approach, as well as
other approaches. Finally, we discuss advanced issues to
improve the performance of the SR algorithm.

SR Image Reconstruction Algorithms
Nonuniform Interpolation Approach
This approach is the most intuitive method for SR im-
age reconstruction. The three stages presented in Figure
6 are performed successively in this approach: i) estima-
tion of relative motion, i.e., registration (if the motion
information is not known), ii) nonuniform interpola-
tion to produce an improved resolution image, and iii)
deblurring process (depending on the observation
model). The pictorial example is shown in Figure 7.
With the relative motion information
est imated, the HR image on
nonuniformly spaced sampling
points is obtained. Then, the direct or
iterative reconstruction procedure is
followed to produce uniformly
spaced sampling points [71]-[74].
Once an HR image is obtained by
nonuniform interpolation, we ad-
dress the restoration problem to re-
move blurring and noise. Restoration
can be performed by applying any

deconvolution method that considers the presence of
noise.

The reconstruction results of this approach appear in
Figure 8. In this simulation, four LR images are gener-
ated by a decimation factor of two in both the horizontal
and vertical directions from the 256 256× HR image.
Only sensor blur is considered here, and a 20-dB Gaussi-
an noise is added to these LR images. In Figure 8, part (a)
shows the image interpolated by the nearest neighbor-
hood method from one LR observation, and part (b) is
the image produced by bilinear interpolation; a
nonuniformly interpolated image from four LR images
appears in part (c), and a deblurred image using the
Wiener restoration filter from part (c) is shown in part
(d). As shown in Figure 8, significant improvement is ob-
served in parts (c) and (d) when viewed in comparison
with parts (a) and (b).

Ur and Gross [5] performed a nonuniform interpola-
tion of an ensemble of spatially shifted LR images by uti-
lizing the generalized multichannel sampling theorem of
Papoulis [73] and Brown [74]. The interpolation is fol-
lowed by a deblurring process, and the relative shifts are
assumed to be known precisely here. Komatsu et al. [1]
presented a scheme to acquire an improved resolution im-
age by applying the Landweber algorithm [75] from
multiple images taken simultaneously with multiple cam-
eras. They employ the block-matching technique to mea-
sure relative shifts. If the cameras have the same aperture,
however, it imposes severe limitations both in their ar-
rangement and in the configuration of the scene. This dif-
ficulty was overcome by using multiple cameras with
different apertures [6]. Hardie et al. developed a tech-
nique for real-time infrared image registration and SR re-
construction [7]. They utilized a gradient-based
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registration algorithm for estimating the shifts between
the acquired frames and presented a weighted nearest
neighbor interpolation approach. Finally, Wiener filter-
ing is applied to reduce effects of blurring and noise
caused by the system. Shah and Zakhor proposed an SR
color video enhancement algorithm using the Landweber
algorithm [8]. They also consider the inaccuracy of the
registration algorithm by finding a set of candidate mo-

tion estimates instead of a single motion vector for each
pixel. They use both luminance and chrominance infor-
mation to estimate the motion field. Nguyen and
Milanfar [9] proposed an efficient wavelet-based SR re-
construction algorithm. They exploit the interlacing
structure of the sampling grid in SR and derive a
computationally efficient wavelet interpolation for inter-
laced two-dimensional (2-D) data.

The advantage of the nonuniform interpolation ap-
proach is that it takes relatively low computational load
and makes real-time applications possible. However, in
this approach, degradation models are limited (they are
only applicable when the blur and the noise characteris-
tics are the same for all LR images). Additionally, the
optimality of the whole reconstruction algorithm is not
guaranteed, since the restoration step ignores the errors
that occur in the interpolation stage.

Frequency Domain Approach
The frequency domain approach makes explicit use of the
aliasing that exists in each LR image to reconstruct an
HR image. Tsai and Huang [10] first derived a system
equation that describes the relationship between LR im-
ages and a desired HR image by using the relative motion
between LR images. The frequency domain approach is
based on the following three principles: i) the shifting
property of the Fourier transform, ii) the aliasing rela-
tionship between the continuous Fourier transform
(CFT) of an original HR image and the discrete Fourier
transform (DFT) of observed LR images, iii) and the as-
sumption that an original HR image is bandlimited.
These properties make it possible to formulate the system
equation relating the aliased DFT coefficients of the ob-
served LR images to a sample of the CFT of an unknown
image. For example, let us assume that there are two 1-D
LR signals sampled below the Nyquist sampling rate.
From the above three principles, the aliased LR signals
can be decomposed into the unaliased HR signal as
shown in Figure 9.

Let x t t( , )1 2 denote a continuous HR image and
X w w( , )1 2 be its CFT. The global translations, which
are the only motion considered in the frequency do-
main approach, yield the kth shifted image of
x t t x t tk k k( , ) ( , )1 2 1 1 2 2= + +δ δ , where δ k1 andδ k2 are ar-
bitrary but known values, and k p=1 2, ,.., . By the shifting
property of the CFT, the CFT of the shifted image,
X w wk ( , )1 2 , can be written as

( )[ ]X w w j w w X w wk k k( , ) exp ( , )1 2 1 1 2 2 1 22= +π δ δ . (3)

The shifted image x t tk ( , )1 2 is sampled with the sampling
period T1 and T2 to generate the observed LR image
y n nk [ , ]1 2 . From the aliasing relationship and the assump-
tion of bandlimitedness of X w w( , )1 2 (| ( , )|X w w1 2 0=
for | | ( / )w L T1 1 1≥ π , | | ( / )w L T2 2 2≥ π ), the relationship
between the CFT of the HR image and the DFT of the kth
observed LR image can be written as [76]

26 IEEE SIGNAL PROCESSING MAGAZINE MAY 2003

(a) (b)

(c) (d)

� 8. Nonuniform interpolation SR reconstruction results by (a)
nearest neighbor interpolation, (b) bilinear interpolation, (c)
nonuniform interpolation using four LR images, and (d)
debluring part (c).

Aliasing

Aliased LR Signal (CFT)

Dealiased HR Signal (DFT)

Decompose Aliased Signal into Dealiased Signal

� 9. Aliasing relationship between LR image and HR image.



Y
T T

X

T N
n

k
n

L

k
n

L

[ , ]Ω Ω

Ω

1 2
1 2 0

1

0

1

1

1

1
1

1

2

1

1

2

2

=

× +





=

−

=

−

∑ ∑

π 


 +



















, .2

2

2

2
2

π
T N

n
Ω

(4)
By using lexicographic ordering for the indices n1 , n2 on
the right-hand side and k on the left-hand side, a matrix
vector form is obtained as:

Y X= Φ , (5)

where Y is a p ×1 column vector with the kth element of
the DFT coefficients of y n nk [ , ]1 2 , X is a L L1 2 1× column
vector with the samples of the unknown CFT of x t t( , )1 2 ,
andΦis a p L L× 1 2 matrix which relates the DFT of the ob-
served LR images to samples of the continuous HR image.
Therefore, the reconstruction of a desired HR image re-
quires us to determine Φ and solve this inverse problem.

An extension of this approach for a blurred and noisy
image was provided by Kim et al. [11], resulting in a
weighted least squares formulation. In their approach, it is
assumed that all LR images have the same blur and the
same noise characteristics. This method was further re-
fined by Kim and Su [12] to consider different blurs for
each LR image. Here, the Tikhonov regularization
method is adopted to overcome the ill-posed problem re-
sulting from blur operator. Bose et al. [13] proposed the
recursive total least squares method for SR reconstruction
to reduce effects of registration errors (errors in Φ). A
discrete cosine transform (DCT)-based method was pro-
posed by Rhee and Kang [14]. They reduce memory re-
quirements and computational costs by using DCT
instead of DFT. They also apply multichannel adaptive
regularization parameters to overcome ill-posedness such
as underdetermined cases or insufficient motion informa-
tion cases.

Theoretical simplicity is a major advantage of the fre-
quency domain approach. That is, the relationship be-
tween LR images and the HR image is clearly
demonstrated in the frequency domain. The frequency
method is also convenient for parallel implementation ca-
pable of reducing hardware complexity. However, the ob-
servation model is restricted to only global translational
motion and LSI blur. Due to the lack of data correlation
in the frequency domain, it is also difficult to apply the
spatial domain a priori knowledge for regularization.

Regularized SR Reconstruction Approach
Generally, the SR image reconstruction approach is an
ill-posed problem because of an insufficient number of
LR images and ill-conditioned blur operators. Proce-
dures adopted to stabilize the inversion of ill-posed prob-
lem are called regularization. In this section, we present
deterministic and stochastic regularization approaches
for SR image reconstruction. Typically, constrained least

squares (CLS) and maximum a posteriori (MAP) SR im-
age reconstruction methods are introduced.

Deterministic Approach
With estimates of the registration parameters, the obser-
vation model in (2) can be completely specified. The de-
terministic regularized SR approach solves the inverse
problem in (2) by using the prior information about the
solution which can be used to make the problem well
posed. For example, CLS can be formulated by choosing
an x to minimize the Lagrangian [63]

y W x Cxk k− +










=
∑ 2

1

2

k

p

α ,
(6)

where the operatorC is generally a high-pass filter, and||||⋅
represents a l2 -norm. In (6), a priori knowledge concern-
ing a desirable solution is represented by a smoothness
constraint, suggesting that most images are naturally
smooth with limited high-frequency activity, and there-
fore it is appropriate to minimize the amount of high-pass
energy in the restored image. In (6), α represents the
Lagrange multiplier, commonly referred to as the regular-
ization parameter, that controls the tradeoff between fi-
delity to the data (as expressed by ∑ −=k

p
1

2y W xk k ) and
smoothness of the solution (as expressed by Cx 2 ). The
Larger values of α will generally lead to a smoother solu-
tion. This is useful when only a small number of LR im-
ages are available (the problem is underdetermined) or
the fidelity of the observed data is low due to registration
error and noise. On the other hand, if a large number of
LR images are available and the amount of noise is small,
smallα will lead to a good solution. The cost functional in
(6) is convex and differentiable with the use of a quadratic
regularization term. Therefore, we can find a unique esti-
mate image $x which minimizes the cost functional in (6).
One of the most basic deterministic iterative techniques
considers solving
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and this leads to the following iteration for $x:

$ $ ( $ ) $x x W y W x C Cxk
T

k k
Tn n

k

p
n n+

=

= + − −








∑1

1

β α ,
(8)
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where β represents the convergence parameter and Wk
T

contains an upsampling operator and a type of blur and
warping operator.

Katsaggelos et al. [15], [16] proposed a multichan-
nel regularized SR approach in which regularization
functional is used to calculate the regularization param-
eter without any prior knowledge at each iteration step.
Later, Kang formulated the generalized multichannel
deconvoultion method including the multichannel reg-
ularized SR approach [17]. The SR reconstruction
method obtained by minimizing a regularized cost
functional was proposed by Hardie et al. [18]. They de-
fine an observation model that incorporates knowledge
of the optical system and the detector array (sensor
PSF). They used an iterative gradient-based registra-
tion algorithm and considered both gradient descent
and conjugate-gradient optimization procedures to
minimize the cost functional. Bose et al. [19] pointed
to the important role of the regularization parameter
and a proposed CLS SR reconstruction which gener-
ates the optimum value of the regularization parameter,
using the L-curve method [77].

Stochastic Approach
Stochastic SR image reconstruction, typically a Bayesian
approach, provides a flexible and convenient way to
model a priori knowledge concerning the solution.

Bayesian estimation methods are used when the a pos-
teriori probability density function (PDF) of the original

image can be established. The MAP estimator of x
maximizes the a posteriori PDF P( | )x y k with respect to x

( )x x y y y1 2 p=arg max P | , , ,K . (9)

Taking the logarithmic function and applying Bayes’ the-
orem to the conditional probability, the MAP optimiza-
tion problem can be expressed as

( ){ }x y y y x x1 2 p= +arg max ln , , , | ln ( )P PK . (10)

Here, both the a priori image model P( )x and the condi-
tional density P( , , , | )y y y x1 2 pK will be defined by a pri-
ori knowledge concerning the HR image x and the
statistical information of noise. Since MAP optimization
in (10) includes a priori constraints (prior knowledge rep-
resented by P( )x ) essentially, it provides regularized (sta-
ble) SR estimates effectively. Bayesian estimation
distinguishes between possible solutions by utilizing a pri-
ori image model, and Markov random field (MRF) priors
that provide a powerful method for image prior modeling
are often adopted. Using the MRF prior, P( )x is described
by a Gibbs prior whose probability density is defined as

P
Z

U
Z c

c S

( ) exp{ ( )} exp ( )X x x x= = − = −





∈

∑1 1 ϕ ,
(11)

where Z is simply a normalizing constant, U( )x is called an
energy function, ϕ c (x) is a potential function that depends
only on the pixel values located within clique c, andSdenotes
the set of cliques. By defining ϕ c ( )x as a function of the de-
rivative of the image, U( )x measures the cost caused by the
irregularities of the solution. Commonly, an image is as-
sumed to be globally smooth, which is incorporated into the
estimation problem through a Gaussian prior.

A major advantage of the Bayesian framework is the
use of an edge-preserving image prior model. With the
Gaussian prior, the potential function takes the quadratic
form ϕ c

nD( ) ( )( )x x= 2 where D n( ) is an nth order differ-
ence. Though the quadratic potential function makes the
algorithm linear, it penalizes the high-frequency compo-
nents severely. As a result, the solution becomes
oversmoothed. However, if we model a potential func-
tion which less penalizes the large difference in x, we can
obtain an edge-preserving HR image.

If the error between frames is assumed to be inde-
pendent and noise is assumed to be an independent iden-
tically distributed (i.i.d) zero mean Gaussian distribu-
tion, the optimization problem can be expressed more
compactly as

$ $ ( )x y W x xk= − +










= ∈
∑ ∑arg min 2

1k

p

c
c S

α ϕ ,
(12)

where α is the regularization parameter. Finally, it can be
shown that the estimate defined in (6) is equal to a MAP
estimate if we use the Gaussian prior in (12).
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(c) (d)

� 10. Regularized SR reconstruction results by (a) nearest neigh-
bor interpolation, (b) CLS with small regularization parameter,
(c) CLS with large regularization parameter, and (d) MAP with
edge-preserving prior.



A maximum likelihood (ML) estimation has also been
applied to the SR reconstruction. The ML estimation is a
special case of MAP estimation with no prior term. Due
to the ill-posed nature of SR inverse problems, however,
MAP estimation is usually used in preference to ML.

The simulation results of regularized SR methods are
shown in Figure 10. In these simulations, the original
256 256× shop image is shifted with one of the subpixel
shifts {(0,0), (0,0.5), (0.5,0), (0.5,0.5)} and decimated
by a factor of two in both the horizontal and vertical di-
rections. Here, only sensor blur is considered and a 20 dB
Gaussian noise is added to these LR images. Figure 10(a)
is a nearest neighborhood interpolated image from one of
the LR images. CLS SR results using a small regulariza-
tion parameter and a large regularization parameter ap-
pear in Figure 10(b) and(c), respectively. In fact, these
estimates can be considered as those of MAP reconstruc-
tion with Gaussian prior. Figure 10(d) shows the SR re-
sult with an edge-preserving Huber-Markov prior [21].
By far, the poorest reconstruction is the nearest neighbor
interpolated image. This poor performance is easily at-
tributed to the independent processing of the LR obser-
vations, and it is apparent throughout Figure 10(a).
Compared to this method, CLS SR results in Figure
10(b) and (c) show significant improvements by retain-
ing detailed information. We observe that these improve-
ments are further obtained by using the edge-preserving
prior as shown in Figure 10(d).

Tom and Katsaggelos [20] proposed the ML SR im-
age estimation problem to estimate the subpixel shifts,
the noise variances of each image, and the HR image si-
multaneously. The proposed ML estimation problem is
solved by the expectation-maximization (EM) algorithm.
The SR reconstruction from an LR video sequence using
the MAP technique was proposed by Schultz and
Stevenson [21]. They proposed a discontinuity preserv-
ing the MAP reconstruction method using the
Huber-Markov Gibbs prior model, resulting in a con-
strained optimization problem with a unique minimum.
Here, they used the modified hierarchical block matching
algorithm to estimate the subpixel displacement vectors.
They also consider independent object motion and inac-
curate motion estimates that are modeled by Gaussian
noise. A MAP framework for the joint estimation of im-
age registration parameters and the HR image was pre-
sented by Hardie et al. in [22]. The registration
parameters, horizontal and vertical shifts in this case, are
iteratively updated along with the HR image in a cyclic
optimization procedure. Cheeseman et al. applied the
Bayesian estimation with a Gaussian prior model to the
problem of integrating multiple satellite images observed
by the Viking orbiter [23].

Robustness and flexibility in modeling noise charac-
teristics and a priori knowledge about the solution are the
major advantage of the stochastic SR approach. As-
suming that the noise process is white Gaussian, a MAP
estimation with convex energy functions in the priors en-

sures the uniqueness of the solution. Therefore, efficient
gradient descent methods can be used to estimate the HR
image. It is also possible to estimate the motion informa-
tion and the HR image simultaneously.

Projection onto Convex Sets Approach
The POCS method describes an alternative iterative ap-
proach to incorporating prior knowledge about the solu-
tion into the reconstruction process. With the estimates
of registration parameters, this algorithm simultaneously
solves the restoration and interpolation problem to esti-
mate the SR image.

The POCS formulation of the SR reconstruction was
first suggested by Stark and Oskoui [24]. Their method
was extended by Tekalp et al. to include observation noise
[25]. According to the method of POCS [63], incorpo-
rating a priori knowledge into the solution can be inter-
preted as restricting the solution to be a member of a
closed convex set Ci that are defined as a set of vectors
which satisfy a particular property. If the constraint sets
have a nonempty intersection, then a solution that be-
longs to the intersection set C Cs i

m
i= ∩ =1 , which is also a

convex set, can be found by alternating projections onto
these convex sets. Indeed, any solution in the intersection
set is consistent with the a priori constraints and therefore
it is a feasible solution. The method of POCS can be ap-
plied to find a vector which belongs in the intersection by
the recursion

x P P P P xn
m m

n+
−= ⋅⋅⋅1
1 2 1 , (13)

where x 0 is an arbitrary starting point, and Pi is the pro-
jection operator which projects an arbitrary signal x onto
the closed, convex sets, C i mi ( , ,..., )=1 2 . Although this
may not be a trivial task, it is, in general, much easier than
finding Ps , i.e., the projector that projects onto the solu-
tion set C s in one step [24].

Assuming that the motion information is accurate, a
data consistency constraint set based on the observation
model in (2) is represented for each pixel within the LR
images y m mk [ , ]1 2 [25], [26]:

{ }C m m x n n r m m m mD
k x

k[ , ] [ , ]: [ , ] [ , ] ,( )
1 2 1 2 1 2 1 2= ≤ δ

(14)
where

r m m y m m

x n n W m m n n

x
k

n n
k

( )

,

[ , ] [ , ]

[ , ] [ , ; ,
1 2 1 2

1 2 1 2 1 2
1 2

=

− ∑ ],
(15)
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Registration is a very important
step to the success of the SR
image reconstruction.



and δ k m m[ , ]1 2 is a bound reflecting the statistical confi-
dence, with which the actual image is a member of the set
C m mD

k [ , ]1 2 [26]. Since the bound δ k m m[ , ]1 2 is deter-
mined from the statistics of the noise process, the ideal
solution is a member of the set within a certain statistical
confidence. Furthermore, the POCS solution will be able
to model space- and time-varying white noise processes.
The projection of an arbitrary x n n[ , ]1 2 ontoC m mD

k [ , ]1 2
can be defined as [25], [78]
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(16)
Additional constraints such as amplitude constraint after
(16) can be utilized to improve the results [24].

Reconstruction results by POCS using data constraint
and amplitude constraint appear in Figure 11. In this sim-
ulation, four LR images are generated by a decimation
factor of two in both the horizontal and vertical directions
from the 256 256× HR image, and a 20 dB Gaussian
noise is added to these LR images. In this simulation, sen-
sor blur is only considered. Figure 11(a) shows a

bilinearly interpolated image of one of the LR observa-
tions, and parts (b)-(d) are the reconstruction results after
10, 30, and 50 iterations. Comparing the result by
bilinear interpolation in Figure 11(a), we observe that the
improvement of the results by POCS SR reconstruction
is evident.

Patti et al. [26] developed a POCS SR technique to
consider space varying blur, nonzero aperture time,
nonzero physical dimension of each individual sensor
element, sensor noise, and arbitrary sampling lattices.
Tekalp et al. then extended the technique to the case of
multiple moving objects in the scene by introducing
the concept of a validity map and/or a segmentation
map [27]. The validity map allows robust reconstruc-
tion in the presence of registration errors, and the seg-
mentation map enables object-based SR reconstruc-
tion. In [28], a POCS-based SR reconstruction
method where a continuous image formation model is
improved to allow for higher order interpolation meth-
ods was proposed by Patti and Altunbasak. In this work,
they assume a continuous scene within an HR sensor
area is not constant. They also modify the constraint set
to reduce the ringing artifact in the vicinity of edges. A
set theoretic regularization approach similar to POCS
formulation was investigated by Tom and Katsaggelos
[29]. Using ellipsoidal constraint sets, they find the SR
estimate which is the centroid of a bounding ellipsoid
(set intersection).

The advantage of POCS is that it is simple, and it uti-
lizes the powerful spatial domain observation model. It
also allows a convenient inclusion of a priori informa-
tion. These methods have the disadvantages of
nonuniqueness of solution, slow convergence, and a
high computational cost.

ML-POCS Hybrid Reconstruction Approach
The ML-POCS hybrid reconstruction approach finds SR
estimates by minimizing the ML (or MAP) cost func-
tional while constraining the solution within certain sets.

Earlier efforts for this formulation are found in the
work by Schultz and Stevenson [21] where MAP optimi-
zation is performed while projections-based constraint is
also utilized. Here, the constraint set ensures that the
down-sampled version of the HR image matched the ref-
erence frame of the LR sequence. Elad and Feuer [30]
proposed a general hybrid SR image reconstruction algo-
rithm which combines the benefits of the stochastic ap-
proaches and the POCS approach. The simplicity of the
ML (or MAP) and the nonellipsoid constraints used in
POCS are utilized simultaneously by defining a new con-
vex optimization problem as follows:

{ }min [ ] [ ] [ ] [ ] ,ε α2 1= − − +−y W x R y W x Sx V Sxk k
T

n k k
T

(17)
subject to
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(a) (b)

(c) (d)

� 11. POCS SR results (a) by bilinear interpolation and by POCS
after (b) 10 iterations, (c) 30 iterations, and (d) 50 iterations.



{ }x ∈ ≤ ≤C k Mk ,1 (18)

where Rn is the autocorrelation ma-
trix of noise,S is the Laplacian opera-
tor, V is the weighting matrix to
control the smoothing strength at
each pixel, and Ck represents the ad-
ditional constraint.

The advantage of the hybrid ap-
proach is that all a priori knowledge is
effectively combined, and it ensures a
single optimal solution in contrast to
the POCS approach.

Other SR Reconstruction
Approaches

Iterative Back-Projection Approach
Irani and Peleg [31] formulated the
iterative back-projection (IBP) SR
reconstruction approach that is simi-
lar to the back projection used in to-
mography. In this approach, the HR
image is estimated by back projecting
the error (difference) between simu-
lated LR images via imaging blur and
the observed LR images. This pro-
cess is repeated iteratively to mini-
mize the energy of the error. The IBP
scheme to estimate the HR image is
expressed by

$ [ , ] $ [ , ]

[ , ] $
, ,

x n n x n n

y m m y

n n

m m Y
k

k
m n

+

∈

=

+ −∑

1
1 2 1 2

1 2

1 2
1 1

( )k
n m m

h m m n n

[ , ]

[ , ; , ]

1 2

1 2 1 2× BP
(19)

where $ ( $ )y W xk
n

k
n= are simulated LR images from the ap-

proximation of x after n iteration, Yk
m n1 1, denotes the set

{ , | ,m m y m mk1 2 1 2∈ is influenced by n n1 2, , where
n n x1 2, }∈ and h m m n nBP ( , ; , )1 2 1 2 is a back-projection
kernel that determines the contribution of the error
( [ , ] $ [ , ])y m m y m mk k

n
1 2 1 2− to $ [ , ]x n nn

1 2 properly. The
scheme for IBP is illustrated in Figure 12. Unlike imaging
blur, hBP can be chosen arbitrarily. In [31], it is pointed
out that the choice of hBP affects the characteristics of the
solution when there are possible solutions. Therefore,
hBP may be utilized as an additional constraint which rep-
resents the desired property of the solution. Mann and
Picard [32] extended this approach by applying a per-
spective motion model in the image acquisition process.
Later, Irani and Peleg [33] modified the IBP to consider a
more general motion model.

The advantage of IBP is that it is understood intu-
itively and easily. However, this method has no unique

solution due to the ill-posed nature of the inverse prob-
lem, and it has some difficulty in choosing the hBP . In
contrast to the POCS and regularized approach, it is dif-
ficult to apply a priori constraints.

Adaptive Filtering Approach
Elad and Feuer [34] proposed an SR image reconstruc-
tion algorithm based on adaptive filtering theory ap-
plied in time axis. They modified notation in the
observation model to accommodate for its dependence
on time and suggested least squares (LS) estimators
based on a pseudo-RLS or R-LMS algorithm. The
steepest descent (SD) and normalized SD are applied to
estimate the HR image at each time iteratively, and the
LMS algorithm is derived from the SD algorithm. As a
result, the HR image at each time is calculated without
computational complexity of a direct matrix inversion.
This approach is shown to be capable of treating any
chosen output resolution, linear time and space variant
blur, and motion flow [34], which makes the progres-
sive estimation of HR image sequence possible. Follow-
ing this research, they rederive the R-SD and R-LMS
algorithm as an approximation of the Kalman filter

MAY 2003 IEEE SIGNAL PROCESSING MAGAZINE 31

Projection: Make Simulated LR Images Wx

Simulated LR Image: Wx

(Subtract)

Observed LR Image: y

Simulated Error: y Wx−

HR Image: x

Backprojection: Update HR Image by Adding ( )hBP y Wx−

� 12. A pictorial example of IBP method.



[35]. Here, convergence analysis and computational
complexity issues of these algorithms were also dis-
cussed.

Motionless SR Reconstruction Approach
The SR reconstruction algorithms presented so far re-
quire relative subpixel motions between the observed im-
ages. However, it is shown that SR reconstruction is also
possible from differently blurred images without relative
motion [30], [37]. Elad and Feuer [30] demonstrated
that the motionless SR image reconstruction without a
regularization term is possible if the following necessary
condition is satisfied:

{ }L m p2 22 1 2≤ + −min ( ) , , (20)

where ( ) ( )2 1 2 1m m+ × + is the size of the blurring ker-
nel, and L L L1 2= = . Hence, although more numbers of
blurred observations of a scene do not provide any addi-
tional information, it is possible to achieve SR with
these blurred samples, provided (20) is satisfied. Note
that one can recover the HR image with much fewer LR
images if a regularization is incorporated to the recon-
struction procedure. Rajan and Chaudhuri [37], [38]
proposed a similar motionless SR technique for inten-
sity and depth maps using an MRF model of the image
field. There have been other motionless attempts to SR
imaging [39], [40]. Rajan and Chaudhuri [39] pre-
sented the SR method using photometric cues, and the
SR technique using zoom as a cue is proposed by Joshi
and Chaudhuri [40].

Advanced Issues in SR
In the previous sections, we reviewed the existing SR re-
construction methods which are frequently employed. In
this section, we illustrate the advanced issues which are
important open problems within the SR area.

SR Considering Registration Error
Registration is a very important step to the success of the
SR image reconstruction as mentioned earlier. Therefore,

accurate registration methods, based on robust motion
models including multiple object motion, occlusions,
transparency, etc., should be needed [3]. However, when
we cannot ensure the performance of the registration al-
gorithms in certain environments, the error caused by an
inaccurate registration should be considered in the recon-
struction procedure. Although most SR algorithms im-
plicitly model the registration error as an additive
Gaussian noise, more sophisticated models for this error
are needed.

Bose et al. [41], [42] considered the error generated
by inaccurate registration in the system matrix Wk and
proposed the total least squares method to minimize
the error. This method is shown to be useful for im-
proving the solution accuracy when errors exist not
only in the recording process but also in the measure-
ment matrix. Ng and Bose analyzed displacement er-
rors on the convergence rate of the iteration used in
solving the transform-based preconditioned system
[43]. Here, LR images are acquired from multiple cam-
eras which are shifted from each other by a known
subpixel displacement. In this environment, small per-
turbations around the ideal subpixel locations of the
sensing elements are always produced due to imperfect
fabrication, and therefore the registration error is gen-
erated along the boundary of blur support. From this
unstable blur matrix, they proved the linear conver-
gence of the conjugate gradient method.

Another approach to minimize the effect of the reg-
istration error is based on channel adaptive regulariza-
tion [44]-[46]. The basic concept of channel adaptive
regularization is that LR images with a large amount of
registration error should be less contributed to the esti-
mate of the HR image than reliable LR images. Kang et
al. [44] assumed that the degree of registration error is
different in each channel (LR image) and applied the
regularization functionals [79] to adaptively control
the effect of registration error in each channel. Kang et
al. [45] showed that the tendency of high-frequency
components in the HR image is closely related to the
registration error and used the directional smoothing
constraint. Here, the registration error is modeled as
Gaussian noise which has a different variance according
to the registration axes, and channel adaptive regular-
ization is performed with a directional smoothing con-
straint. Kang et al. [46] extended these works based on
a set-theoretic approach. They proposed the regulariza-
tion functional that is performed on the data consis-
tency term. As a result, the minimization functional is
defined as ∑ − +=k

p
k1

2 2λ (x) y W x Cxk k . They pro-
posed that the desirable properties of the regularization
functional λ k (x) to reduce the effects of error in the re-
construction procedure as follows:
� λ k (x) is inversely proportional to|| ||y W xk k− 2

� λ k ( )x is proportional to|| ||Cx 2

� λ k ( )x is larger than zero
� λ k ( )x considers the influence of the cross channel.
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overcome the inherent resolution
limitation of the imaging system
and improve the performance of
most digital image processing
applications.



With this channel-adaptive regularization, the improve-
ment in the SR reconstruction appears in Figure 13. In
the simulation, each 128 128× observation is con-
structed with one of the subpixel shifts {(0,0), (0,0.5),
(0.5,0), (0.5,0.5)}, and it is assumed that the estimation
of the subpixel motion is incorrect as {(0,0), (0,0.3),
(0.4,0.1), (0.8,0.6)}. Figure 13 is a partially magnified
image of the result of a conventional SR algorithm that
does not consider the registration error (i.e., a constant
regularization parameter is used). The partially magni-
fied image of the result by employing channel adaptive
regularization in which the registration error is consid-
ered via λ k ( )x is shown in Figure 13(b). The results in
Figure 13 visually show that the method considering the
registration errors yields better performance than the
conventional approach.

A simultaneous registration and reconstruction ap-
proach [20], [22], [59] is also expected to reduce the ef-
fect of registration error in the SR estimates, since
registration and reconstruction process are closely inter-
dependent.

Blind SR Image Reconstruction
In most SR reconstruction algorithms, the blurring pro-
cess is assumed to be known. In many practical situations,
however, the blurring process is generally unknown or is
known only to within a set of parameters. Therefore, it is
necessary to incorporate the blur identification into the
reconstruction procedure.

Wirawan et al. [47] proposed a blind multichannel
SR algorithm by using multiple finite impulse response
(FIR) filters. Since each observed image is a linear
combination of the polyphase components of the HR
image, the SR problem can be represented as the blind
2-D multi-input, multi-output (MIMO) system driven
by polyphase components of a bandlimited signal.
Their algorithm consists of two stages: blind 2-D
MIMO deconvolution using FIR filters and separation
of mixed polyphase components. A mutually refer-
enced equalizer (MRE) algorithm is extended to solve
the blind multichannel deconvolution problem. Since
blind MIMO deconvolution based on second-order
statistics contains some inherent indeterminations, the
polyphase components need to be separated after
deconvolution. They proposed a source separation al-
gorithm which minimizes out-of-band spectral energy
resulting from instantaneous mixture of polyphase
components.

Nguyen et al. [48] proposed a technique for paramet-
ric blur identification and regularization based on the
generalized cross-validation (GCV) and Gauss quadra-
ture theory. They solve a multivariate nonlinear
minimization problem for these unknown parameters.
To efficiently and accurately estimate the numerator and
denominator of the GCV objective function,
Gauss-type quadrature techniques for bounding qua-
dratic forms are used.

Computationally Efficient SR Algorithm
The inverse procedure in SR reconstruction obviously re-
quires a very large computational load. To apply the SR
algorithm to practical situations, it is important to de-
velop an efficient algorithm that reduces the computa-
tional cost. As mentioned earlier, the interpolation-based
approach and adaptive filtering approach can be appro-
priate to real-time implementation. Another effort con-
cerning this issue is found in [49]-[51].

Nguyen et al. [49] proposed a circulant block precon-
ditioners to accelerate the conjugate gradient methods for
solving the Tikhonov-regularized SR problem. This pre-
conditioning technique transforms the original system
into another system in which rapid convergence is possi-
ble without any change in the solution. Generally, since
the convergence rate of CG depends on the distribution
of the eigenvalues of the system matrix Wk , for the pur-
pose of fast convergence, a preconditioned system with
eigenvalues clustering around one is derived. These
preconditioners can be easily realized, and the operation
with these preconditioners can be done efficiently by us-
ing a 2-D fast Fourier transform.

Elad and Hel-Or [50] proposed an SR algorithm that
separates fusion and deblurring. To reduce computa-
tional load, they assume that the blur is space invariant
and the same for all the observed images, the geometric
warps between the measured images are modeled as only
pure translations, and the additive noise is white. Al-
though these assumptions are limited, the proposed fu-
sion method is achieved through a very simple
noniterative algorithm, while preserving its optimality in
the ML sense.

Concluding Remarks
We tried to address the concept of SR technology in
this article by providing an overview of existing SR al-
gorithms and advanced issues currently under investi-
gation. Other issues in the SR techniques to improve
their performance are currently focused on the color
SR algorithm and the application to compression sys-
tems. It is necessary to extend the current SR algorithm
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(a) (b)

� 13. The effect of registration error in HR estimate; result by (a)
the conventional algorithm and (b) the channel-adaptive reg-
ularization.



to a real-world color imaging system. A color SR appli-
cation is considered in [8], [31], and [52]-[55], but a
more careful reconstruction method which reflects the
characteristic of color is needed. The important prob-
lem in color SR is to analyze the characteristic of a color
filter array and color interpolation procedure and take
into account intercorrelation between color compo-
nents in the reconstruction procedure. The application
of the SR algorithm to the compression system is also
needed [4], [56]-[61], since images are routinely com-
pressed prior to transmission and storage. In this case,
the SR algorithm must account for the structure of the
compression system. For example, it is important to an-
alyze and model the compression error caused by
quantization, since a simple Gaussian noise model is
not acceptable, especially when a significant amount of
compression is employed.

SR image reconstruction is one of the most spot-
lighted research areas, because it can overcome the in-
herent resolution limitation of the imaging system and
improve the performance of most digital image pro-
cessing applications. We hope this article creates inter-
est in this area as well as inspiration to develop the
relevant techniques.
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