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ABSTRACT

This paper describes a simple and fast algorithm for remov-
ing occlusions that occur in image sequences. In contrast to
many methods of the literature, no assumption is made on oc-
clusions shapes, colors or motions. Instead, this new method
assumes that the background can be re-warped using an ho-
mography and that the reflectivity is quasi-Lambertian. Af-
ter geometric and photometric alignments, three methods are
evaluated. A median based method, a novel algorithm based
on maximal clique detection and a robust PCA method are
compared on real and simulated image sequences. This com-
parison show that this new clique-based method provides best
performances in terms of quality and reliability.

Index Terms— Image reconstruction, multi-image pro-
cessing, mask removal, occlusion detection, background esti-
mation, non-linear filtering.

1. INTRODUCTION

When photographing a famous monument or scenic view
many people experience the difficulty that someone wan-
der into the shot they wish to take. Often, by the time one
person moves out another one moves in. In such a situa-
tion taking a picture without occlusions becomes tricky and
time-consuming. This paper, as illustrated in figure 1, aims
at proposing a simple, fast and reliable method to solve this
problem by combing several photographs.

Several works have yet addressed this problem. Some au-
thors focus on specific kinds of obstacles as, for instance,
raindrops [1, 2, 3, 4, 5], grids [6] or fences [7]. Some authors
use a very dense sequence of images so that they can derive an
optical flow from which a depth map is deduced and the far-
thest away surface is kept [8]. Alternately, some authors rely
on specific dense sensor configurations that allow for a statis-
tical decision [9]. If no information on the underlying scene is
observed, an ultimate strategy consists in inpainting missing
areas with the most probable content [10, 11] after a mask de-
tection scheme is performed [6]. Yet, inpainting strategies are
prone to errors, i.e., mis-estimated background. In addition,
in many situations the framerate is not high enough to allow
for a reliable optical flow computation or the assumptions on
the masks shapes don’t hold true. For all of theses reasons,
we believe that a simple, fast and reliable algorithm should be

Fig. 1. On top: two frames of an image sequence after geo-
metric and photometric alignment. Bottom left (resp. right)
the proposed solution (resp. right) the RPCA method. The
red circle en-lights a defect in the RCPA reconstruction.

proposed.

Roughly, the solution proposed in this paper relies on the
combined motions of the photographer and of the masks to
ensure that the sequence gives the entire background. By ge-
ometrically and photometrically aligning the images we form
a stack of images. Consequently, for each pixel we obtain a
stack of values and decide what the background is. As we
shall see, the method proposed in this paper assumes no spe-
cific shapes, color, motion or textures for the masks or obsta-
cles. In addition, the proposed algorithm is simple, fast and,
as we shall see in section 4, compares advantageously with a
more sophisticated approach such as robust PCA [12].
Outline of the paper: Section 2 gives the setup considered in
this paper and details the methods we use to align geometri-
cally and photometrically image sequences. Section 3 mainly
discusses a new method for background detection based on
a meaningful clique detection. Section 4 gives, for real and
simulated sequences, a comparative evaluation of the pro-
posed algorithm and of two related methods: a median based
method and a robust PCA (RPCA) based method. Section 5
discusses further refinements and directions of our current
work. A webpage with an implementation, image sequences
and numerical results is available [13].




2. PROPOSED METHOD

We first detail the assumption we shall use in section 2.1. Sub-
sections 2.2 and 2.3 details the methods used to align the im-
age sequences.

2.1. Framework and Assumptions

As we’ve seen in section 1, many methods in the literature
consider specific kind of obstacles or occlusions such as rain-
drops, fences or grids. In contrast, we posit assumptions on
the object of interest that we shall call hereinafter underly-
ing background or just background. We suppose that we are
given an image sequence such that the background 1) is quasi-
Lambertian and 2) can be re-warped to a given reference im-
age. Assumption 2) holds true if the scene is planar, like in
our experiments, or if the camera undergoes a rotation around
its optical center. Note that we do not make any assump-
tion on the background content, its color distribution, conti-
nuity or texture. Instead, we expect it to be quasi-Lambertian
so that there is no significant color differences when looking
from different positions. A limitation of the above assump-
tions is that the algorithm we propose in this paper cannot
be expected to work well when observing backgrounds with
reflecting surfaces or specular reflectors like mirrors. We ex-
pect that lighting conditions are almost constant during the
acquisition.

2.2. Geometrical Image Alignment

The approach we employ is straightforward. A reference
frame is chosen. The assumption 2) allows us re-sample
the observed frames on the reference frame using an ho-
mography [14] and bi-linear interpolation. The homogra-
phy parameters are computed using RANSAC [15] on SIFT
matches [16]!. We expect that the homography with the
largest number of matches corresponds to the background.

2.3. Chromatic Alignment

Under the quasi-Lambertian assumption, we expect the dif-
ferent images to have close colorimetric values at seen back-
ground pixels. However we experiment differences that de-
pends on the many uncontrolled differences between images.
In addition, the camera white-balance algorithm also tends
to modify the color content between images. The observed
color distributions depends not only on the background but
also on the masks or occlusions. Thus, we can’t use stan-
dard color transfer algorithms [17] to equalize the images. To
solve the problem, we determine color transfer maps between
images. Indeed, digital camera conversion from input inten-
sities to output vectors can be approximated by an invertible

A SIFT match is defined, as usual, by Ist neighbor < 15 x 2nd neighbor.

function [18]. Following [19], we use an order two polyno-
mial model to compute this color transfer mapping. As we
shall see, the use of an order 2 polynomial model often gives
good results. Experiments show a poor correlation between
channels so we can compute the mapping for each color chan-
nel independenty. The polynomial coefficients are computed
from three pairs of SIFT matches. We use pixels correspond-
ing to SIFT matches obtained from the geometric alignment
then apply a RANSAC strategy to robustify the selection. The
computed polynomial is applied to the whole image and the
background has almost constant colors in the entire sequence.

3. IMAGE RECONSTRUCTION

After geometric and photometric alignments described in sec-
tions 2.2 and 2.3, we obtain a stack of photometrically and
geometrically aligned images

O(x) = {L;(x), i€ {1,...,n}} (1)

defined Vx € Q = R?, where Vx, I;(x) € R®. To estimate
the background, for each pixel x € (2, we need to decide
which value i(x) represents best the background. In this sec-
tion, we detail two possible strategies to estimate I(x). The
first one uses a median-based decision (section 3.1) criterion.
Section 3.2 formalizes and gives algorithms to compute the
second method that was developed for this project. Another
option to estimate I(x) consists in using a robust RPCA al-
gorithm. Due to the severe length constraints of this paper,
this option is not detailed here and we refer to, e.g., [12] for
a detailed explanation. Experimentally, the clique based al-
gorithm is shown to perform better than the median and the

RPCA based method in most cases, see section 4.

3.1. Median Based Algorithm

Median decision is known as a robust way to decide among
samples when the noise is unknown. In our case, it would
work assuming that more than 50% of the pixels belong to the
background and provided a suitable generalization is used to
deal with color images. Several choices exist to define the me-
dian value of vectorial samples. A trivial choice would be to
apply a one dimensional median filter to each color channel.
However, this choice lead to wrong colors in our experiments.
Thus, we use the median filter proposed in [20], namely

arg min
I(x)ed(x)

2Lx) = I3, @

i=1

that can be easily computed with standard algorithms [21].

3.2. Clique Based Algorithm

As we’ve just seen, the median based decision has limited
performances due to its quite stringent assumptions. We wish
to propose a new strategy to overcome these limitations. We



would like to assume no specific model for the signal, the
masks or the proportion of masks over background in ®. To
do so, we notice that if at a given pixel several images are
displaying the background, then these values will be close.
Consequently, for each pixel x € €2, we look for a dense sub-
set, or clique, of ®(x). To do so, we define a dense clique as
follows.

Definition 1. (Dense clique) Let v1,...,v, €R? and V:=
{vi,...,un}. A cligue CCV such that card V=m is said
dense if V ve C' its m—1 nearest neighbors in V are in C\{v}.

For every x € (), the cliques given in definition 1, applied
with ®(x), can be computed using algorithm 1. As we’ve ar-

Data: Set ®(x) (see (1)), positive integer m

Result: Meaningful cliques set S(x).

Set S = & and compute the n x m matrix made with
indexes of nearest neighbors (NN) of I,;(x). Namely
Vie{l,...,n},col(M,i)= (i, 1st-NN. .., m—1th-NN).

for i=1,..., n-m+1 do

for j=0,...,m-1 do

if col(M, 1) # col(M,i + j) then
| Break

end

if j==m-1 then
| S:=SuUcol(M,i)

end

end

end

return S

Algorithm 1: Dense clique computation.

gued, if groups of images are displaying similar values then
one of these groups can reasonably be assumed to be the back-
ground. To discriminate between these groups or cliques, we
use the following definition.

Definition 2. (Meaningful clique) We posit the same setup
as in definition 1. We say that a dense clique C'is meaningful
if every other dense clique C' satisfy card C' < card C and

var C' < 02, where o2 is a given threshold.

A clique that satisfy definition 2 can be computed by algo-
rithm 2. Mathematically, it is possible to observe two mean-
ingful cliques. Yet, in practice this situation never occurred
during our experiments. We are now in position to give an al-
gorithm estimating I(x) given ®(x): compute (2) with C(x)
obtained with algorithm 2. We now turn to the numerical eval-
uation of the proposed algorithm.

4. EXPERIMENTS

We compare three algorithms on real and simulated images.
Algorithm 2 is always applied with o7 = 15 for images val-
ued in {0, ..., 255}3. This value was found empirically using

Data: Set ®(x) (see (1)), treshold o2..
Result: Meaningful clique C'(x).
Set n :=card ®(x), m :=2, 5 :=0, Spre 1=
do

Set Spre 1= Scur, Scur 1= Algorithm 1 (®(x), m),

Scur = @

m:=m + 1 and s := card Scur
while s > 2
2. +ooif Scur = @

Compute o= := { 02 :=var C, for C € Sgy
if 02 < o then

| return C € S,
else

‘ return arg minces,,, var C
end

Algorithm 2: Meaningful clique computation.

table 1 (see also subsection 4.1). The median based method
consists in computing (2) on the aligned image sequence (1).
The RPCA method consists in applying [22]. We use the im-
plementation given in [23]. The next section discusses the
acquisition protocol for the real image sequences. More ex-
periments can be found in [13].

4.1. Acquisition Protocol and Pre-Processing

Image sequences were acquired in a short time span, with
a Canon 80D and a Sigma 30mm/f1.5 DC HSM lens. Dur-
ing the image acquisition, the background of interest is main-
tained in the center of the field and the focusing is done on it,
either manually or automatically. Camera settings (ISO sen-
sitivity, aperture and shutter speed) are manually controlled to
avoid various effects which may appear with automatic cam-
era settings when changing the field of view or because of
different masks. Then, each image is carefully corrected from
camera defects: geometric distorsions, chromatic aberrations,
vignetting effects. These elements proved to be important to
improve color matching at pixel level after image alignment.
We also prevent the automatic white balance correction which
may be different image by image depending on the scene con-
tent. To perform these camera and lens dependant correc-
tions, we make use of a specific commercial software DxO-
Lab [24]. This pre-processing yields to a significant decrease
in images disparity, after the alignment methods described in
sections 2.2 and 2.3. This pre-processing yields to a signif-
icant decrease in images disparity, see table 1 that gives the
RMSE(Iy, I) := o= lo — Iz

4.2. Experiments

We sequentially give quantitative results on simulated se-
quences then on real image sequences preprocessed with the
method of subsection 4.1. For the simulated experiments, we
consider only the clique based algorithm developed in this pa-



Image 1 | Image 2 | Image 3 | Image 4

Sea.l Before| 49.71 43.21 48.36 44.68 Dragon | 1(1e3) | 2 (le4) | 3 (4ed) | 4 (6e4) | 5 (2e5)
9.1 [ After 14.48 13.32 15.05 12.18 Clique | 91.1 3.2 0.0 0.0 0.0
Sea.? Before| 10.28 16.08 17.99 11.00 Median | 96.7 57.8 0.0 0.0 0.0

Ao Aller 857 1 802 1047 98 Leopard| 1(0) | 2 (1e3) | 3 (2e4) | 4 (Sed) | 5 (Se5)
Seq.3 [After 614 <6l <18 <47 Clique | ¢J 26.0 0.0 0.0 0.0
. . . : Median | & 77.4 0.0 0.0 0.0

Table 1. RMSE before/after pre-processing for 3 sequences Jungle | 1(0) 2(7e3) | 3(3ed) | 4(Ted) | 5(8e5)
of 4 images. RMSE after ali rll)megt are roughl beloqu 15 Chqqe %] 0.0 2.1 0.0 0.0
8es. g ghly . Median | ¢ 0.0 60.7 0.0 0.0

Bakery | 1(0) 2(led) | 3(2e4) | 4(1e5) | 5(8e5)
per and the median based method. Indeed, the RPCA method lg/llé((lllil:n % 88 2707 88 88

produces images up to an affine contrast change. There-
fore, quantitative results cannot be computed for the RPCA
method. Yet, RPCA is considered in the real experiments
where we only compare the visual quality of the estimated
backgrounds.

4.2.1. Simulated Experiments

We simulated occlusion as follows. We used four back-
ground images that will be used as ground-truth. For each
of these background, we superimposed numerically occlu-
sions randomly to generate an observed sequence. We then
added white Gaussian noise to these sequences. We wish to
provide a quantitative comparison between the clique based
method and the median based method. To do so, we de-
note, hereinafter, by Iy the ground-truth and I the estimated
background. The pixels where the background is observed

ke {1,...,n} times, in a sequence of n images, are given by
the set

M(k) = fx e Q: p(x) = k), 3)
where o(x) 1= card {i € {1,...,n} : |Li(x) — [o(x)]2 < €}
and ¢ > 0 is some threshold. For k € {1,...,n}, the error

rate is defined by

card {Hfo(x) —Ix)]2 < 5}

k)= card M (k) ' @

Tables 2-5 give the error rate for four simulated sequences in
the noiseless and noisy cases. In these experiments the clique
method based on algorithm 2 always performs better.

4.2.2. Experiments with Real Sequences

We give comparative results on real images sequences of our
own in figure 2. We recall that the experimental protocol and
pre-processing is given in subsection 4.1. We notice that the
clique based method performs better or similarly than the me-
dian or the RPCA methods. We recall that an implementation
and more experiments can be found in [13].

5. CONCLUSION

A new algorithm for occlusion detection and restoration was
proposed. The algorithm is a temporal non-linear filter that re-

Table 2. Error rates. Noiseless simulations. The first column
gives the sequence name and the algorithm considered: the
clique (algorithm 2) or the median methods (2). The second
column gives the error rate (4) (¢ := 3) for k = 1, the number
in parentheses is card M (k). The second row gives the error
rate for algorithm 2. The other columns are organized simi-
larly for different value of k € {1,...,n}. The clique method
always performs better.

5 4 3 2 1
| Clique | 911 3.2
Median | 96.7 57.8
) Clique 26.0
Median 77.4
3 Clique
Median 47.7

Table 3. Error rates with 3 noiseless simulations and with
clique or median decision. The percentage of erroneous de-
cisions as a function of the number n of masks is presented.
The blue cells are when there is no pixel hidden by n masks.
The pink cells are those where no error is made. For these
3 cases the number of images in a sequence is 6 so that the
median value is sure whenever n < 3.

Dragon | 1 (1e3) | 2 (1e4) | 3(4ed) | 4 (6e4d) | 5 (2e5)
Clique | 94.7 10.5 84e-2 | 29e-3 | 0.0
Median | 97.4 61.8 2.0e-2 | 0.0 0.0
Leopard| 1 (0) 2(1e3) | 3(2e4) | 4 (5e4) | 5 (5e5)
Clique | &¥ 47.6 8.5e-2 | 553 | 0.0
Median | ¢ 80.3 1.7e-2 | 0.0 0.0
Jungle | 1(0) 2(7e3) | 3(3e4) | 4(7e4) | 5(8ed)
Clique | &¥ 0.0 6.7 1.4e-2 | 0.0
Median | ¢ 0.0 63.3 59e-3 | 0.0
Bakery | 1(1) 2(led) | 3(2e4) | 4(9e4) | 5(8ed)
Clique | 100 1.0 1.2e-2 | 1.1e-3 | 0.0
Median | 100 52.9 0.0 0.0 0.0

Table 4. Error rates. Noisy simulations: ¢ = 5 additive
Gaussian noise. The table is organized as Table 2 (¢ := 35).
The clique method always performs better or very similarly.



1 2 3 4 5

Clique | 94.7 | 10.5 | 0.084 | 0.003

Median | 97.4 61.8 0.02
Clique

47.6 0.085 0.005
Median 80.3 0.017

3 Clique 6.7 0.014
Median 63.3 0.006

Clique | 100 1.0 0.012 0.001
Median | 100 52.9

Table 5. Error rates in case of noisy simulations with 0 = 5
additive Gaussian noise. The table is organized as Table 2
(e := 35). The clique method always performs better or very
similarly.

Fig. 2. Real experiments. From left to right: two aligned
frames, the clique, the median and the RPCA method.

lies on a meaningful clique computation. This new algorithm
is fast, simple and robust. This algorithm was demonstrated
to compare advantageously with a much more sophisticated
method such as a RPCA. Notably, no assumption was made
on the occlusions shapes, textures, colors or motions. A fu-
ture work could generalize the approach to a spatio-temporal
filtering method.
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