
Logique et Fondements de l’Informatique
Attendus du cours en 2025–2026

David A. Madore

19 janvier 2026

CSC-3TC34-TP / INF110

Git: cf33b83 Mon Jan 19 12:47:23 2026 +0100

Sont au programme du cours les notions suivantes :
— Calculabilité : fonctions primitives récursives, fonctions générales récursives, numérotation

(notamment la notation φe(i)), théorème s-m-n, astuce de Quine, existence d’une fonction
universelle pour les fonctions générales récursives (et inexistence pour les primitives récur-
sives), théorème de la forme normale et possibilité de lancer des calculs en parallèle, théorème
de récursion de Kleene ; indécidabilité du problème de l’arrêt, théorème de Rice ; machines
de Turing et équivalence avec les fonctions générales récursives ; parties décidables et semi-
décidables, équivalence entre semi-décidable et « image d’une fonction calculable » ; la notion
de réduction many-to-one et de Turing, la définition des degrés many-to-one et de Turing ; le
λ-calcul non typé, β-réduction, théorème de Church-Rosser, redex extérieur gauche, entiers de
Church, équivalence du λ-calcul avec les fonctions générales récursives, combinateur Y et son
utilisation pour les appels récursifs.

— Typage : λ-calcul simplement typé, et sa version enrichie par les types produits, sommes,
1 et 0 ; terminaison des programmes écrits dans ce dernier (normalisation forte ; sans preuve
ni détails) ; correspondance de Curry-Howard entre λ-calcul simplement typé enrichi et calcul
propositionnel intuitionniste.

— Calcul propositionnel : règles de logique en déduction naturelle, et au moins une présentation
des preuves (arbre de preuve, ou drapeau) ; écriture et vérification des λ-termes de preuve (sans
entrer dans le détail pointilleux des notations) ; différence entre logique intuitionniste et logique
classique ; propriété de la disjonction et décidabilité du calcul propositionnel intuitionniste
(idée).

— Sémantiques du calcul propositionnel intuitionniste : sémantique des ouverts, sa correc-
tion et sa complétude ; sémantique de Kripke, sa correction et sa complétude ; définition de
la sémantique de la rélisabilité propositionnelle, et sa correction ; utilisation de la correc-
tion des sémantiques vues en cours pour montrer qu’une formule propositionnelle n’est pas
démontrable.

— Quantificateurs : règles générales d’introduction et d’élimination du ∀ et ∃, et λ-termes de
preuve correspondants (sans entrer dans le détail pointilleux des notations) ; logique du premier
ordre pure, logique du premier ordre avec égalité.

1



— Arithmétique du premier ordre : les axiomes de Peano ; l’idée générale que Curry-Howard
sur l’arithmétique de Heyting permet d’extraire des algorithmes des preuves ; le fait qu’il est
possible de formaliser φe(i)↓ en arithmétique de Heyting/Peano (sans détails) ; le fait que
vérifier si une preuve est valable est décidable, mais que savoir si un énoncé est un théorème
est seulement semi-décidable ; l’énoncé du théorème de Gödel et l’idée de sa démonstration.

— Coq/Rocq : l’utilisation générale de Coq/Rocq telle que pratiquée en TP, et notamment les
principales tactiques de raisonnement (sur les connecteurs logiques, types inductifs, égalités,
etc.). Le nom des tactiques est exigible donc on recommande de préparer un récapitulatif pour
l’examen (un tel document est disponible sur la page Moodle du cours).

Ne sont explicitement pas exigibles les notions suivantes :
— Les détails de la fonction d’Ackermann ; les détails de la notion d’arbre de calcul (autre que

l’énoncé du théorème de la forme normale) ; rien d’autre sur les réductions degrés many-to-one
et de Turing que leur définition ; les notions de β-réduction autres qu’extérieur gauche, les
subtilités de l’ordre d’évaluation, le combinateur Z ou sa différence avec Y.

— Les détails du typage de quelque langage de programmation que ce soit (autres que les va-
riantes du λ-calcul simplement typé vus en cours, et les parties de Coq/Rocq vues en TP),
notamment rien de ce qui concerne Scheme, Haskell ou quelque autre langage mentionné en
passant dans le cours ; le sous-typage, le polymorphisme ad hoc, les types dépendants, ou les
autres fonctionnalités de certains systèmes de typages mentionnés en passant dans le cours.
L’algorithme de Hindley-Milner.

— Le calcul des séquents, le fonctionnement de l’élimination des coupures ou sa preuve. Le
λ-calcul. Les axiomes de Hilbert, et les combinateurs S, K, I.

— La notion de continuation. La fonction call/cc. Le continuation-passing-style ou de son typage.
Le λµ-calcul.

— Les subtilités de la réalisabilité propositionnelle (p.ex., la réalisabilité de la formule de Tseitin).
La sémantique des problèmes finis n’est pas non plus exigible (mais pourra être utilisée si on
le souhaite).

— Le λ-cube de Barendregt, les subtilités de la différence entre ∃ et types sommes, la notion de
prédicativité/imprédicativité, le système F .

— Les subtilités des différences et rapports entre l’arithmétique de Heyting et celle de Peano (sauf
s’il s’agit, par exemple, de vérifier si une démonstration donnée utilise un raisonnement par
l’absurde).

— Les détails de la démonstration du théorème de Gödel, la formalisation des systèmes précis
auxquels il s’applique.

— Les détails de la syntaxe de Coq/Rocq.

2


