INF110/ CSC-3TC34-TP
Controle de connaissances

Logique et Fondements de I’Informatique

26 janvier 2026

Consignes.

Les exercices 1 a 5 (qui portent sur la logique) et le probleme final (qui porte sur la calculabilité)
sont totalement indépendants les uns des autres. Ils pourront étre traités dans un ordre quelconque,
mais on demande de faire apparaitre de fagon treés visible dans les copies o commence chaque exercice
(tirez au moins un trait sur toute la largeur de la feuille entre deux exercices). Le non-respect de cette
consigne pourra étre pénalisé.

La longueur du sujet ne doit pas effrayer : les réponses attendues sont souvent plus courtes que les
questions. Notamment, 1’énoncé du probleme est long parce que des rappels et éclaircissements ont
été faits et que les questions ont été rédigées de fagcon aussi précise que possible.

Dans les exercices portant sur Rocq (exercices 1 a 4), les erreurs de syntaxe Rocq ne seront pas
pénalisées tant qu'on comprend clairement 1’intention. De méme, quand on demande d’écrire un
A-terme, il n’est pas indispensable de suivre exactement les notations introduites en cours.

L’usage de tous les documents écrits (notes de cours manuscrites ou imprimées, feuilles d’exercices,
livres) est autorisé.
L’usage des appareils électroniques est interdit.

Durée : 3h
Baréme approximatif et indicatif (sur 20) : 242+4+3+3+6
Cet énoncé comporte 7 pages (page de garde incluse).

Git : 3dd2bb6 Sun Jan 25 20:23:39 2026 +0100

Exercice 1.
Dans cet exercice, on considere des paires d’états d’une preuve en Rocq avant et apres I’application

d’une tactique. On demande de retrouver quelle est la tactique ou la séquence de tactiques appliquée.

(1) On part de I’état suivant :

A, B, C : Prop
H: (A/\AB) /\C

A
et on veut arriver a I’état suivant :

A, B, C : Prop

Hl1 : A /\ B
H2 : C
A

(2) On part de I’état suivant :

A, B, C : Prop

(A\/B) /NC<>@A/\NO N (A/\O
et on veut arriver a I’état suivant :
First subgoal:

A, B, C : Prop

A\N/B /NC>A/NON\N A/NO
Second subgoal:

A, B, C : Prop

A/NON\N @A/NO >@\NB) /N\NC
(3) On part de I’état suivant :

A, B, C : Prop

H1l : B
H2 : C
A\/ B

et on veut arriver a I’état suivant :

No more goals.

(4) On part de I’état suivant :

A, B : Prop
H1 : A ->B
H2 : ~ B

~A

et on veut arriver a I’état suivant :

A, B : Prop
Hl : A -> B
H2 : ~ B
H3 : A

B

(5) On part de I’état suivant :

(6) On part de I’état suivant :

n : nat

n+0=n
et on veut arriver a I’état suivant :

First subgoal:

0 +0 =20
Second subgoal:

n : nat
IHh : n + 0 = n

Sn+0®=Sn

(7) On part de I’état suivant :

n : nat
IHh : n + 0 = n

Sn+0®=Sn

et on veut arriver a I’état suivant :

n : nat
IHh : n + 0 = n

S(Mm+0® =Sn

(8) On part de I’état suivant :

n : nat
IHh : n + ® = n

S(m+0® =Sn
et on veut arriver a I’état suivant :

n : nat

Exercice 2.
Si I’on dispose du lemme suivant en Rocq :

Lemma mul_O_r : forall n : nat, n * @ = 0.

Parmi les buts suivants, quand peut-on utiliser ce lemme avec la tactique rewrite ? Quand peut-on
utiliser ce lemme avec la tactique apply ? Justifier brievement.

1)

Exercice 3.

(A) Pour chacun des termes de preuve Rocq suivants, retrouver le théoréme du calcul propositionnel
intuitionniste qu’il prouve. (Ici, A, B, C vivent dans Prop.)

(1) fun (H1 : A) (H2 : B) => H2

(2) fun (H1 : A) (H2 : ~ A) => H2 H1

3 fun (H1 : A -> (B > C)) (H2 : B) (H3 : A) => H1 H3 H2

(B) Pour chaque formule logique suivante, en donner une preuve (en calcul propositionnel
intuitionniste pour (1)—(4)). La preuve sera exprimée de préférence sous forme d’un A-terme, qui
n’a pas a €tre justifié si on est slir qu’il est correct et qu’on veut gagner du temps ; toutefois, si on ne
sait pas écrire le A-terme ou si on a un doute a son sujet, on pourra donner une preuve en déduction
naturelle (présentée comme arbre de preuve ou sous forme drapeau), qui vaudra au moins une partie
des points.

MHA=A

2) A= (AN A)

B (AVA)=A

@) ~(AV B) = —A

(5) ((Vx. P(z))V(Vz. Q(x))) = (Vz. (P(z)VQ(x))) (enlogique du premier ordre intuitionniste)

Exercice 4.
(1) Définir en Rocq un type inductif pour représenter les arbres binaires contenant des entiers.

(2) Définir une fonction miroir qui, étant donné un arbre binaire, renvoie son miroir (symétrie
gauche-droite).

(3) Enoncer un lemme en Rocq affirmant que le miroir du miroir d’un arbre est 1’arbre lui-méme.
(4) Avec quelle(s) tactique(s) peut-on prouver ce lemme ? Expliquer bri¢vement.
(5) Définir une fonction taille qui calcule le nombre de noeuds d’un arbre binaire.

(6) Expliquer succinctement comment prouver en Rocq que la taille d’un arbre et la taille de son
miroir sont égales.

Exercice 5.
Dans cet exercice, on veut montrer que la « formule de Scott », a savoir la formule propositionnelle
suivante :
(mA=A) = (AV-A) = (-—AV-A)

n’est pas un théoréeme du calcul propositionnel intuitionniste.
Pour cela, on introduit I’espace topologique X = R et I’ouvert suivant :

U = {xGR x>0 et VnEN.(m#T”)}

111
= 1,=,>, =, ...
R>0\{7274787 }
1 11 11
— 1 7.1 . —

(On rappellera brievement pourquoi U est bien un ouvert.)

Donner la valeur, pour la sémantique des ouverts de X, de chaque sous-formule de la formule
de Scott dans laquelle A a été remplacé par U, et en déduire pourquoi la formule de Scott n’est pas
démontrable. On représentera chaque ensemble graphiquement en plus d’expliciter sa valeur avec des
symboles.

(I est recommandé de faire particulicrement au point 0 et, pour éviter les erreurs, de bien s’ assurer
qu’on a affaire a un ouvert a chaque fois.)

Probléme 6.

Rappels de quelques définitions et notations habituelles. On rappelle qu'un mot binaire
est une suite finie (éventuellement vide, c’est-a-dire de longueur nulle) de 0 et de 1. On notera
{0,1}* = {¢,0,1,00,01,10, 11,000, ...} (ici, ¢ désigne le mot vide) 1’ensemble de tous les mots
binaires. La longueur |w| d’un mot binaire w € {0,1}* est le nombre total de bits qu’il contient
(p.ex., |00 = 2 et |¢| = 0), et nous suivrons la convention de numéroter les bits de la gauche vers la
droite de 0 & |w| — 1 (par exemple, le bit numéroté 0 de 1010 vaut 1, tandis que son bit numéroté 3
vaut (). On dit qu’un mot binaire v est un préfixe d’un mot binaire v lorsque v commence par les
bits de u, ou, formellement : |u| < |v| et pour chaque 0 < j < |u], le bit numéroté j de v est égal au
bit numéroté j de u. (Par exemple, 1010 est un préfixe de 1010111, tout mot binaire est un préfixe de
lui-méme, et ¢ est un préfixe de n’importe quel mot binaire.)

On pourra utiliser sans justification et sans commentaire le fait que les mots binaires peuvent étre
manipulés algorithmiquement (via un codage de Godel qu’on ne demande pas de préciser) : notamment,
calculer la longueur d’un mot, ou renvoyer son bit numéroté ¢, sont des opération calculables.

On appelle arbre de Kleene I’ensemble .2~ C {0,1}* de mots binaires défini de la maniére
suivante : un mot binaire w € {0, 1}* de longueur |w| appartienta %" lorsque, pour chaque 0 < i < |w|,
le bit numéroté i de w vaut

— 0 s’il existe un arbre de calcul (codé par un entier) < |w| attestant ¢;(0) = 0,

— 1 ¢’il existe un arbre de calcul (codé par un entier) < |w| attestant ¢;(0) = r, ot r # 0,

— et arbitraire sinon,
ou (p; désigne la i-ieme fonction générale récursive (d’arité 1).

Si on préfére parler en termes de machines de Turing, on pourra changer la définition en :

— 0 si la i-iéme machine de Turing termine[f|en < |w| étapes et renvoie 0,

— 1 si la i-iéme machine de Turing termine en < |w| étapes et renvoie une valeur r # 0,

— et arbitraire sinon
(cela ne changera rien de substantiel aux raisonnements).

Informellement dit, I’appartenance d’un mot w a % est déterminée par le résultat de 1’exécution
des |w| premiers programmes, chacun jusqu’a la borne |w|, et le bit numéroté i de w est contraint, si
le programme ¢ termine, par le résultat de celui-ci.

(On prendra note du fait que ¢ € J# car la contrainte « pour chaque 0 < i < |w| » est vide —
donc trivialement vérifiée — vu que |¢| = 0.)

(1) Montrer que si v € £ et si u est un préfixe de v. alors on a aussi u € 7.

1. Sous-entendu : a partir d’'une bande vierge (ou d’une bande représentant le nombre 0, ou tout autre état initial fixé
sans importance).

On dit que % est un arbre de mots binaires[?] pour exprimer la propriété démontrée par cette
question (1). (Formellement, un arbre de mots binaires est une partie .7 C {0, 1}* telle que siv € .7
et que u est un préfixe de v, alors u € 7.)

(2) Montrer que %~ est une partie décidable (i.e., calculable) de {0, 1}*. Sa fonction indicatrice
est-elle primitive récursive ?

(3) Montrer qu’il existe dans .# des mots binaires de longueur arbitrairement grande
(formellement : Vn. Jw € #. (Jw| > n)). On pourra méme expliquer comment en calculer
algorithmiquement un de longueur quelconque.

On appelle branche infinie de .7 une suite infinie (b;);cy de bits (i.e., un élément de {0, 1})
dont tous les préfixes appartiennent a %, c’est-a-dire : by - - - b,y € % pour tout ¢ € N.

(4) Indépendamment de tout ce qui précéde, montrer qu’il n’existe pas d’algorithme qui prend en
entrée un e € N, termine toujours en temps fini, et renvoie

— Ossi (pe(o)i =0,

— 1sip(0)L =rour#0,

— et une valeur arbitraire sinon (i.e., si ¢.(0) n’est pas définie).

Si on préfere parler en termes de machines de Turing, on pourra montrer qu’il n’existe pas
d’algorithme qui prend en entrée le code e d’une machine de Turing, termine toujours en temps fini,
et renvoie

— 0 si la e-ieme machine de Turing termine et qu’elle renvoie 0,

— 1 si la e-ieme machine de Turing termine et qu’elle renvoie une valeur r # 0,

— et une valeur arbitraire sinon.

Indication : utiliser I’astuce de Quine pour construire un programme qui fait le contraire de ce
qu’on lui prédit.

Attention! On demande dans cette question une démonstration précise : on ne se contentera pas
d’un raisonnement informel du type « on ne peut pas savoir si ¢.(0) terminera un jour, donc on ne
peut pas calculer sa valeur ».

(5) Déduire de (4) qu’il n’existe aucune branche infinie calculable de 7 .

Le lemme de Konig est I’ affirmation suivante : « tout arbre de mots binaires contenant des mots
de longueur arbitrairement grande a une branche infinie » (les termes « arbre de mots binaires »,
« contenant des mots de longueur arbitrairement grande » et « branche infinie » ont été définis
précisément ci-dessus). On ne demande pas de démontrer cette affirmation : néanmoins, c’est un
théoreme des mathématiques classiques usuelles.

(6) Pour résumer, que peut-on conclure du lemme de Kd&nig, et des questions précédentes,
concernant 1’arbre .#” ? Comment expliqueriez-vous informellement la situation ?

(7) Expliquer pourquoi la question (5) suggeére que le lemme de Kénig n’est pas démontrable en
mathématiques constructives. (On ne demande pas ici un raisonnement formel précis, mais une idée.)

2. Si cette terminologie semble mystérieuse, 1’explication est que le graphe (infini d’apres la question (3)) dont les
sommets sont les éléments de JZ, avec une aréte de u a v lorsque u est un préfixe de v, est un arbre (infini) au sens de la
théorie des graphes. Cette remarque n’est pas utile pour le présent exercice.

7

