
INF110 / CSC-3TC34-TP
Contrôle de connaissances — Corrigé

Logique et Fondements de l’Informatique

26 janvier 2026

Consignes.
Les exercices 1 à 5 (qui portent sur la logique) et le problème final (qui porte sur la calculabilité)

sont totalement indépendants les uns des autres. Ils pourront être traités dans un ordre quelconque,
mais on demande de faire apparaître de façon très visible dans les copies où commence chaque exercice
(tirez au moins un trait sur toute la largeur de la feuille entre deux exercices). Le non-respect de cette
consigne pourra être pénalisé.

La longueur du sujet ne doit pas effrayer : les réponses attendues sont souvent plus courtes que les
questions. Notamment, l’énoncé du problème est long parce que des rappels et éclaircissements ont
été faits et que les questions ont été rédigées de façon aussi précise que possible.

Dans les exercices portant sur Rocq (exercices 1 à 4), les erreurs de syntaxe Rocq ne seront pas
pénalisées tant qu’on comprend clairement l’intention. De même, quand on demande d’écrire un
λ-terme, il n’est pas indispensable de suivre exactement les notations introduites en cours.

L’usage de tous les documents écrits (notes de cours manuscrites ou imprimées, feuilles d’exercices,
livres) est autorisé.

L’usage des appareils électroniques est interdit.

Durée : 3h
Barème approximatif et indicatif (sur 20) : 2+2+4+3+3+6
Ce corrigé comporte 11 pages (page de garde incluse).

Git : 3dd2bb6 Sun Jan 25 20:23:39 2026 +0100

1

Exercice 1.
Dans cet exercice, on considère des paires d’états d’une preuve en Rocq avant et après l’application

d’une tactique. On demande de retrouver quelle est la tactique ou la séquence de tactiques appliquée.
(1) On part de l’état suivant :

A, B, C : Prop
H : (A /\ B) /\ C
============================
A

et on veut arriver à l’état suivant :

A, B, C : Prop
H1 : A /\ B
H2 : C
============================
A

(2) On part de l’état suivant :

A, B, C : Prop
============================
(A \/ B) /\ C <-> (A /\ C) \/ (A /\ C)

et on veut arriver à l’état suivant :

First subgoal:

A, B, C : Prop
============================
(A \/ B) /\ C -> (A /\ C) \/ (A /\ C)

Second subgoal:

A, B, C : Prop
============================
(A /\ C) \/ (A /\ C) -> (A \/ B) /\ C

(3) On part de l’état suivant :

A, B, C : Prop
H1 : B
H2 : C
============================
A \/ B

et on veut arriver à l’état suivant :

2

No more goals.

(4) On part de l’état suivant :

A, B : Prop
H1 : A -> B
H2 : ~ B
============================
~A

et on veut arriver à l’état suivant :

A, B : Prop
H1 : A -> B
H2 : ~ B
H3 : A
============================
B

(5) On part de l’état suivant :

n, m : nat
H : S n = S m
============================
n = m

et on veut arriver à l’état suivant :

n, m : nat
H : n = m
============================
n = m

(6) On part de l’état suivant :

n : nat
============================
n + 0 = n

et on veut arriver à l’état suivant :

First subgoal:

============================
0 + 0 = 0

Second subgoal:

n : nat
IHn : n + 0 = n
============================
S n + 0 = S n

3

(7) On part de l’état suivant :

n : nat
IHn : n + 0 = n
============================
S n + 0 = S n

et on veut arriver à l’état suivant :

n : nat
IHn : n + 0 = n
============================
S (n + 0) = S n

(8) On part de l’état suivant :

n : nat
IHn : n + 0 = n
============================
S (n + 0) = S n

et on veut arriver à l’état suivant :

n : nat
IHn : n + 0 = n
============================
n + 0 = n

Corrigé.
(1) destruct H as (H1, H2).
(2) split.
(3) right. assumption.
(4) intros H3. apply H2.
(5) injection H as H.
(6) induction n as [|n IHn]. ou simplement induction n.
(7) simpl.
(8) f_equal. (la tactique) ou apply f_equal. (le lemme). ✓

Exercice 2.
Si l’on dispose du lemme suivant en Rocq :

Lemma mul_0_r : forall n : nat, n * 0 = 0.

Parmi les buts suivants, quand peut-on utiliser ce lemme avec la tactique rewrite? Quand peut-on
utiliser ce lemme avec la tactique apply? Justifier brièvement.

(1)

4

n : nat
============================
n * 0 = 0 + 0

(2)

n, m : nat
============================
(n + m) * 0 = n * 0 + m * 0

(3)

n, m : nat
============================
n + 0 = n

Corrigé.
(1) On peut utiliser rewrite -> mul_0_r. car le but contient un sous-terme de la forme ?n *

0 (où ?n est n). On peut également utiliser apply mul_0_r. car le but est convertible à ?n * 0 =
0 (car la partie droite de l’égalité se simplifie en 0).

(2) On peut utiliser rewrite -> mul_0_r. car le but contient un sous-terme de la forme ?n *
0 (où ?n est n + m). On ne peut pas utiliser apply mul_0_r. car le but n’est pas convertible à ?n *
0 = 0.

(3) On peut utiliser rewrite <- mul_0_r. car le but contient un sous-terme de la forme 0. On
ne peut pas utiliser apply add_0_r. car le but n’est pas convertible à ?n * 0 = 0. ✓

Exercice 3.
(A) Pour chacun des termes de preuve Rocq suivants, retrouver le théorème du calcul propositionnel

intuitionniste qu’il prouve. (Ici, A, B, C vivent dans Prop.)
(1) fun (H1 : A) (H2 : B) => H2
(2) fun (H1 : A) (H2 : ~ A) => H2 H1
(3) fun (H1 : A -> (B -> C)) (H2 : B) (H3 : A) => H1 H3 H2
(B) Pour chaque formule logique suivante, en donner une preuve (en calcul propositionnel

intuitionniste pour (1)–(4)). La preuve sera exprimée de préférence sous forme d’un λ-terme, qui
n’a pas à être justifié si on est sûr qu’il est correct et qu’on veut gagner du temps ; toutefois, si on ne
sait pas écrire le λ-terme ou si on a un doute à son sujet, on pourra donner une preuve en déduction
naturelle (présentée comme arbre de preuve ou sous forme drapeau), qui vaudra au moins une partie
des points.

(1) A ⇒ A

(2) A ⇒ (A ∧ A)
(3) (A ∨ A) ⇒ A

(4) ¬(A ∨ B) ⇒ ¬A

(5) ((∀x. P (x))∨(∀x. Q(x))) ⇒ (∀x. (P (x)∨Q(x))) (en logique du premier ordre intuitionniste)

5

Corrigé.
(A)
(1) A ⇒ B ⇒ B
(2) A ⇒ ¬¬A
(3) (A ⇒ B ⇒ C) ⇒ B ⇒ A ⇒ C

(B)
(1) λ(u : A). u
(2) λ(u : A). ⟨u, u⟩
(3) λ(u : A ∨ A). (match u with ι1v 7→ v, ι2v 7→ v) (noter qu’on peut préférer l’écrire avec

des noms de variables liées différentes dans l’alternative : λ(u : A ∨ A). (match u with ι1v1 7→ v1,
ι2v2 7→ v2), c’est exactement équivalent)

(4) λ(h : ¬(A ∨ B)). λ(u : A). h(ι(A,B)
1 u)

(5) λ(h : (∀x. P (x)) ∨ (∀x. Q(x))). (match h with ι1g 7→ λ(x : I). ι
(P (x),Q(x))
1 (gx),

ι2g 7→ λ(x : I). ι
(P (x),Q(x))
2 (gx)) ou, si on préfère, λ(h : (∀x. P (x)) ∨ (∀x. Q(x))). λ(x : I).

(match h with ι1g 7→ ι
(P (x),Q(x))
1 (gx), ι2g 7→ ι

(P (x),Q(x))
2 (gx)) ✓

Exercice 4.
(1) Définir en Rocq un type inductif pour représenter les arbres binaires contenant des entiers.
(2) Définir une fonction miroir qui, étant donné un arbre binaire, renvoie son miroir (symétrie

gauche-droite).
(3) Énoncer un lemme en Rocq affirmant que le miroir du miroir d’un arbre est l’arbre lui-même.
(4) Avec quelle(s) tactique(s) peut-on prouver ce lemme? Expliquer brièvement.
(5) Définir une fonction taille qui calcule le nombre de noeuds d’un arbre binaire.
(6) Expliquer succinctement comment prouver en Rocq que la taille d’un arbre et la taille de son

miroir sont égales.
Corrigé.

(1) On définit un type inductif pour les arbres binaires :

Inductive arbre : Type :=
| feuille : arbre
| noeud : nat -> arbre -> arbre -> arbre.

(2) On définit la fonction miroir par récursion structurelle :

Fixpoint miroir (a : arbre) : arbre :=
match a with
| feuille => feuille
| noeud v g d => noeud v (miroir d) (miroir g)
end.

(3) Lemma miroir_involutif : forall a : arbre, miroir (miroir a) = a.
(4) On peut prouver ce lemme par induction structurelle sur a (tactique induction a.). Après

la simplification par simpl., chaque cas se résout facilement avec reflexivity. ou les hypothèses
d’induction.

(5) On définit la fonction taille par récursion :

6

Fixpoint taille (a : arbre) : nat :=
match a with
| feuille => 0
| noeud v g d => (taille g) + (taille d)
end.

(6) On énoncerait le lemme :
Lemma taille_miroir : forall a : arbre, taille a = taille (miroir a).
Pour le prouver, on utilise l’induction structurelle (induction a.). Le cas de base (feuille) se

résout par reflexivity. Dans le cas récursif, la simplification calcule la taille du miroir. Les
hypothèses d’induction permettent de réécrire les tailles du miroir des sous-arbres. On conclut en
utilisant la commutativité de l’addition.

Preuve complète :

Require Import Arith.

Lemma taille_miroir : forall a : arbre, taille a = taille (miroir a).
Proof.
induction a; simpl.
- reflexivity.
- rewrite IHa1.
rewrite IHa2.
apply Nat.add_comm.

Qed. ✓

Exercice 5.
Dans cet exercice, on veut montrer que la « formule de Scott », à savoir la formule propositionnelle

suivante :
((¬¬A ⇒ A) ⇒ (A ∨ ¬A)) ⇒ (¬¬A ∨ ¬A)

n’est pas un théorème du calcul propositionnel intuitionniste.
Pour cela, on introduit l’espace topologique X = R et l’ouvert suivant :

U =
{
x ∈ R : x > 0 et ∀n ∈ N.(x ̸= 2−n)

}
= R>0 \ {1,

1
2 ,

1
4 ,

1
8 , . . .}

=]1; +∞[∪]12; 1[∪]14; 1
2[∪]18; 1

4[∪ · · ·

(On rappellera brièvement pourquoi U est bien un ouvert.)
Donner la valeur, pour la sémantique des ouverts de X , de chaque sous-formule de la formule

de Scott dans laquelle A a été remplacé par U , et en déduire pourquoi la formule de Scott n’est pas
démontrable. On représentera chaque ensemble graphiquement en plus d’expliciter sa valeur avec des
symboles.

(Il est recommandé de faire particulièrement au point 0 et, pour éviter les erreurs, de bien s’assurer
qu’on a affaire à un ouvert à chaque fois.)
Corrigé. D’abord, U est un ouvert parce que c’est une réunion d’intervalles ouverts.

On trouve successivement :

7

— L’ensemble ¬̇ U est l’ensemble R<0 =]−∞; 0[des réels strictement négatifs.
— L’ensemble ¬̇ ¬̇ U est l’ensemble R>0 =]0; +∞[des réels strictement positifs.
— L’ensemble ¬̇ ¬̇ U ⇒̇ U est l’ensemble {x ∈ R : x ̸= 0 et ∀n ∈ N.(x ̸= 2−n)} des réels

non nuls qui ne sont pas un 2−n, ensemble qui est aussi la réunion de U et de]−∞; 0[. (Le seul
point véritablement problématique est 0, mais il ne peut pas appartenir à l’ouvert car les 2−n

n’y sont pas, et si un ouvert contient 0 il doit contenir un intervalle ouvert autour de 0, donc
tous les 2−n à partir d’un certain rang.)

— L’ensemble U ∨̇ ¬̇ U est le même ensemble U ∪]−∞; 0[qu’au point précédent.
— L’ensemble (¬̇ ¬̇ U ⇒̇ U) ⇒̇ (U ∨̇ ¬̇ U) est R tout entier, précisément parce que les deux points

précédents donnent le même ouvert.
— L’ensemble ¬̇ ¬̇ U ∨̇ ¬̇ U est l’ensemble]−∞; 0[∪]0; +∞[= R \ {0} des réels non nuls.
— L’ensemble associé à la formule de Scott tout entière est le même ensemble R \ {0} qu’au

point précédent.
Comme on a trouvé autre chose que R, par correction de la sémantique des ouverts sur X = R, la
formule de Scott ne peut pas être démontrable en calcul propositionnel intuitionniste. ✓

Problème 6.
Rappels de quelques définitions et notations habituelles. On rappelle qu’un mot binaire

est une suite finie (éventuellement vide, c’est-à-dire de longueur nulle) de 0 et de 1. On notera
{0, 1}∗ = {ε, 0, 1, 00, 01, 10, 11, 000, . . .} (ici, ε désigne le mot vide) l’ensemble de tous les mots
binaires. La longueur |w| d’un mot binaire w ∈ {0, 1}∗ est le nombre total de bits qu’il contient
(p.ex., |00| = 2 et |ε| = 0), et nous suivrons la convention de numéroter les bits de la gauche vers la
droite de 0 à |w| − 1 (par exemple, le bit numéroté 0 de 1010 vaut 1, tandis que son bit numéroté 3
vaut 0). On dit qu’un mot binaire u est un préfixe d’un mot binaire v lorsque v commence par les
bits de u, ou, formellement : |u| ≤ |v| et pour chaque 0 ≤ j < |u|, le bit numéroté j de v est égal au
bit numéroté j de u. (Par exemple, 1010 est un préfixe de 1010111, tout mot binaire est un préfixe de
lui-même, et ε est un préfixe de n’importe quel mot binaire.)

On pourra utiliser sans justification et sans commentaire le fait que les mots binaires peuvent être
manipulés algorithmiquement (via un codage de Gödel qu’on ne demande pas de préciser) : notamment,
calculer la longueur d’un mot, ou renvoyer son bit numéroté i, sont des opération calculables.

On appelle arbre de Kleene l’ensemble K ⊆ {0, 1}∗ de mots binaires défini de la manière
suivante : un mot binaire w ∈ {0, 1}∗ de longueur |w| appartient à K lorsque, pour chaque 0 ≤ i < |w|,
le bit numéroté i de w vaut

— 0 s’il existe un arbre de calcul (codé par un entier) < |w| attestant φi(0) = 0,
— 1 s’il existe un arbre de calcul (codé par un entier) < |w| attestant φi(0) = r, où r ̸= 0,
— et arbitraire sinon,

où φi désigne la i-ième fonction générale récursive (d’arité 1).
Si on préfère parler en termes de machines de Turing, on pourra changer la définition en :
— 0 si la i-ième machine de Turing termine 1 en < |w| étapes et renvoie 0,
— 1 si la i-ième machine de Turing termine en < |w| étapes et renvoie une valeur r ̸= 0,
— et arbitraire sinon

(cela ne changera rien de substantiel aux raisonnements).

1. Sous-entendu : à partir d’une bande vierge (ou d’une bande représentant le nombre 0, ou tout autre état initial fixé
sans importance).

8

Informellement dit, l’appartenance d’un mot w à K est déterminée par le résultat de l’exécution
des |w| premiers programmes, chacun jusqu’à la borne |w|, et le bit numéroté i de w est contraint, si
le programme i termine, par le résultat de celui-ci.

(On prendra note du fait que ε ∈ K car la contrainte « pour chaque 0 ≤ i < |w| » est vide —
donc trivialement vérifiée — vu que |ε| = 0.)

(1) Montrer que si v ∈ K et si u est un préfixe de v. alors on a aussi u ∈ K .
Corrigé. Supposons que u soit un préfixe de v avec v ∈ K . Alors pour tout i tel que 0 ≤ i < |u|,
le bit numéroté i de u est aussi le bit numéroté i de v, qui d’après les conditions sur v ∈ K , vaut 0
(resp. 1) s’il existe un arbre de calcul < |v| attestant φi(0) = 0 (resp. φi(0) ̸= 0), et à plus forte raison
s’il existe un arbre de calcul < |u| l’attestant : ceci implique donc bien u ∈ K . ✓

On dit que K est un arbre de mots binaires 2 pour exprimer la propriété démontrée par cette
question (1). (Formellement, un arbre de mots binaires est une partie T ⊆ {0, 1}∗ telle que si v ∈ T
et que u est un préfixe de v, alors u ∈ T .)

(2) Montrer que K est une partie décidable (i.e., calculable) de {0, 1}∗. Sa fonction indicatrice
est-elle primitive récursive?
Corrigé. On veut montrer qu’il existe un algorithme qui, donné un w ∈ {0, 1}∗, décide si w ∈ K .
Pour cela, il suffit de parcourir les bits 0 ≤ i < |w| de w et, pour chacun de tester si la condition
définissant K est vérifiée : on parcourt les entiers 0 ≤ j < |w| et, pour chacun, on teste s’il s’agit du
code d’un arbre de calcul attestant φi(0) = r pour un certain r, et, si c’est le cas, on vérifie que le bit
wi de w vaut 0 si r = 0 ou 1 si r ̸= 0. (Si on préfère les machines de Turing, on lance l’exécution
de la i-ième machine pour au plus |w| − 1 étapes et le reste est analogue.) Si une des conditions
échoue, le mot w n’est pas dans K , tandis que si toutes réussissent, le mot est dans K . Il s’agit bien
là d’un algorithme qui termine à coup sûr en temps fini. Il est même primitif récursif puisqu’on a
essentiellement deux boucles imbriquées, une sur i et une sur j, bornées par |w|. ✓

(3) Montrer qu’il existe dans K des mots binaires de longueur arbitrairement grande
(formellement : ∀n. ∃w ∈ K . (|w| ≥ n)). On pourra même expliquer comment en calculer
algorithmiquement un de longueur quelconque.
Corrigé. Comme on l’a expliqué à la question (2), la condition définissant l’appartenance d’un mot
à w est testable algorithmiquement. Pour fabriquer un mot de K de longueur n, on teste, pour chaque
0 ≤ i < |w| s’il existe un arbre de calcul < n attestant φi(0) = r pour un certain r (ou, si on préfère, si
l’exécution de la i-ième machine pour au plus n − 1 étapes termine et renvoie une valeur r), et, si c’est
le cas, on donne au bit numéroté i de w la valeur imposée par ce r (forcément unique, puisqu’il s’agit
da la valeur de φi(0)), sinon on lui donne une valeur quelconque, disons 0 : le mot formé des bits qu’on
vient de dire est dans K puisqu’il vérifie les contraintes. De plus, on l’a calculé algorithmiquement.
Il existe donc bien un mot de longueur n de K pour chaque n, et même un algorithme qui en renvoie
un en fonction de n. Ceci implique trivialement ce qui était demandé. ✓

On appelle branche infinie de K une suite infinie (bi)i∈N de bits (i.e., un élément de {0, 1}N)
dont tous les préfixes appartiennent à K , c’est-à-dire : b0 · · · bℓ−1 ∈ K pour tout ℓ ∈ N.

(4) Indépendamment de tout ce qui précède, montrer qu’il n’existe pas d’algorithme qui prend en
entrée un e ∈ N, termine toujours en temps fini, et renvoie

2. Si cette terminologie semble mystérieuse, l’explication est que le graphe (infini d’après la question (3)) dont les
sommets sont les éléments de K , avec une arête de u à v lorsque u est un préfixe de v, est un arbre (infini) au sens de la
théorie des graphes. Cette remarque n’est pas utile pour le présent exercice.

9

— 0 si φe(0)↓ = 0,
— 1 si φe(0)↓ = r où r ̸= 0,
— et une valeur arbitraire sinon (i.e., si φe(0) n’est pas définie).
Si on préfère parler en termes de machines de Turing, on pourra montrer qu’il n’existe pas

d’algorithme qui prend en entrée le code e d’une machine de Turing, termine toujours en temps fini,
et renvoie

— 0 si la e-ième machine de Turing termine et qu’elle renvoie 0,
— 1 si la e-ième machine de Turing termine et qu’elle renvoie une valeur r ̸= 0,
— et une valeur arbitraire sinon.
Indication : utiliser l’astuce de Quine pour construire un programme qui fait le contraire de ce

qu’on lui prédit.
Attention ! On demande dans cette question une démonstration précise : on ne se contentera pas

d’un raisonnement informel du type « on ne peut pas savoir si φe(0) terminera un jour, donc on ne
peut pas calculer sa valeur ».
Corrigé. Supposons par l’absurde qu’il existe un algorithme qui prend en entrée e, termine toujours
en temps fini et renvoie une valeur comme indiqué dans la question ; appelons f la fonction calculable
que calcule cet algorithme. On va aboutir à une contradiction.

Considérons maintenant le programme e défini comme suit. Il ignore son argument, calcule f(e)
en vertu de l’algorithme dont on vient de supposer l’existence, et renvoie 1 si f(e) = 0 et 0 si f(e) ̸= 0.
L’astuce de Quine rend légitime l’utilisation de e dans sa propre définition (formellement : considère
la fonction qui à e associe la fonction qu’on vient de dire, et on applique le théorème de récursione de
Kleene à cette fonction). Par construction, cet algorithme termine toujours en temps fini (puisqu’on a
supposé que c’était le cas du calcul de f). Bref, φe(n) est toujours défini, et φe(n) = 1 si f(e) = 0 et
φe(n) = 0 si f(e) ̸= 0.

Si f(e) = 0 alors φe(0) = 1 comme on vient de le dire, donc on a f(e) = 1 par définition de la
fonction f , ce qui est une contradiction ; et si f(e) ̸= 0 alors φe(0) = 0 comme on vient de le dire,
donc f(e) = 0 par définition de la fonction f , ce qui est de nouveau une contradiction.

C’est donc que notre hypothèse (de calculabilité de f) était absurde. ✓

(5) Déduire de (4) qu’il n’existe aucune branche infinie calculable de K .
Corrigé. Si (bi) est une branche infinie de K , vérifions que e 7→ be vérifie les conditions du (4)
(c’est-à-dire vaut 0 si φe(0)↓ = 0 et r si φe(0)↓ ≠ 0). Supposons que φe(0)↓, mettons φe(0) = r : alors
il existe un arbre de calcul l’attestant, codé, disons, par un entier m. Appelons ℓ = max(m, e) + 1. Le
mot w := b0 · · · bℓ−1 (de longueur ℓ > m) est dans K par l’hypothèse que (bi) est une branche de K .
Il existe un arbre de calcul codé par un entier < |w| (à savoir m) attestant φe(0) = r, donc le bit be

de w vaut 0 si r = 0 et 1 si r ̸= 0. On a donc bien prouvé que e 7→ be vérifie les conditions du (4).
Or on a vu en (4) qu’une telle fonction ne peut pas être calculable. C’est donc que K n’a pas branche
infinie calculable. ✓

Le lemme de Kőnig est l’affirmation suivante : « tout arbre de mots binaires contenant des mots
de longueur arbitrairement grande a une branche infinie » (les termes « arbre de mots binaires »,
« contenant des mots de longueur arbitrairement grande » et « branche infinie » ont été définis
précisément ci-dessus). On ne demande pas de démontrer cette affirmation : néanmoins, c’est un
théorème des mathématiques classiques usuelles.

(6) Pour résumer, que peut-on conclure du lemme de Kőnig, et des questions précédentes,
concernant l’arbre K ? Comment expliqueriez-vous informellement la situation?

10

Corrigé. On a vu que K est un arbre de mots binaires calculable, contenant des mots de longueur
arbitrairement grande. Par le lemme de Kőnig, il a des branches infinies. Néanmoins, aucune de ses
branches n’est calculable.

On peut décrire informellement K comme un « labyrinthe infini, calculable mais impossible à
résoudre de façon calculable » : les pièces du labyrinthe sont les nœuds de l’arbre, c’est-à-dire les
w ∈ K , chaque pièce permet d’aller potentiellement vers w0 ou w1 selon si l’un ou l’autre (ou aucun
des deux) n’est dans K . On peut algorithmiquement faire un plan du labyrinthe jusqu’à n’importe
quelle profondeur finie. Néanmoins, si on postule que le labyrinthe possède une sortie au bout de
chaque branche infinie (les branches finies étant des culs-de-sac), alors aucun algorithme ne peut
naviguer le labyrinthe jusqu’à une sortie, bien que des chemins menant à une sortie existent (par le
lemme de Kőnig). ✓

(7) Expliquer pourquoi la question (5) suggère que le lemme de Kőnig n’est pas démontrable en
mathématiques constructives. (On ne demande pas ici un raisonnement formel précis, mais une idée.)
Corrigé. Une démonstration constructive du lemme de Kőnig, formalisée dans un système semblable
à l’arithmétique de Heyting, permettrait vraisemblablement d’extraire de la preuve un algorithme qui
calcule une branche infinie de l’arbre (cet arbre étant lui-même calculable pour commencer). Or on
vient de voir que ce n’est pas le cas, ce qui suggère qu’une telle démonstration n’est pas possible. ✓

11

