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Chapter 1

Introduction

1.1 Aspect “Signal”

Signal = représentation physique d’une information envoyée d’une source vers un desti-
nataire. En pratique résultat d’'une mesure par un capteur.

Exemple : signaux de parole (figures 1.1) et de musique (figures 1.2), signaux au-
diofréquences, variation d’une pression en fonction du temps.

1.1.1 Signal de parole

e Trois types de sons : voisés (signaux périodiques sur une durée inférieure a 100 ms,
existence d’'une fréquence fondamentale, d’harmoniques), non-voisés (variations plus
rapides, signal plus “hautes fréquences”), plosives (support temporel tres étroit).

En 64 ms, environ 12 “périodes” = 5 ms par période soit un premier pic a approxi-
mativement 200 Hz = voix féminine.

On privilégie dans ce cours ’étude de la représentation fréquentielle des signaux.
L’outil de base est la transformée de Fourier. Le module au carré donne la répartition
de la puissance en fonction de la fréquence (spectre).

e Signal non-stationnaire : les propriétés statistiques évoluent au cours du temps. Sig-
nal localement stationnaire sur des durées inférieures a une centaine de ms. Nécessité
d’utiliser des fenétres de pondération.

La transformée de Fourier n’est pas utilisable directement. Nécessité de définir de
nouveaux outils.

e Mémorisation puis tracé par une machine d’un signal “a4 temps continu” (z(t) avec
t € R) = signal “a temps discret” (x(n1) avec n € Z).
On privilégie trés fortement dans ce cours ’étude des signaux a temps discret. Ex-

istence d’une transformée de Fourier a temps discret.
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Figure 1.1: Exemple d’un signal de parole : début d’une phrase (“Des gens ...”) prononcée
par un locuteur féminin. Effet de zoom et représentation fréquentielle du signal correspon-
dant.

e Choix de la fréquence d’échantillonnage. Recherche de conditions de telle sorte qu’il
n’y ait pas perte d’information par échantillonnage (que 1’on puisse revenir au signal
de départ).

En pratique c’est le résultat d’'un compromis. Le signal de parole est échantillonné
soit & 8 kHz (réseau téléphonique commuté, bande téléphonique) soit a 16 kHz
(téléconférences, communications de groupe, bande élargie).

Dans ce cours, importance des ordres de grandeur. Ce n’est pas un cours abstrait.

1.1.2 Signal de musique

e Bande Hi-Fi : loreille est sensible & des fréquences comprises entre 20 Hz et 20
kHz = f. = 32 kHz (bande FM, un peu juste), 44.1 kHz (CD), 48 kHz (studio
production).

e Timbre d’un instrument caractérisé par les pics dans le spectre.

e Importance de la représentation fréquentielle. Interprétation généralement plus facile
dans le domaine fréquentiel que dans le domaine temporel. Exemple d’un signal
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Figure 1.2: Exemple d’un signal de musique : violon. Effet de zoom et représentation
fréquentielle du signal correspondant.

dégradé par une opération de compression.

1.1.3 Autres signaux

e Images. Luminance : fonction de deux variables spatiales et du temps I(z,y,1t).
Signal vidéo : définition d’un balayage de fagon a se ramener a une fonction d’une
seule variable, le temps.

Ordre de grandeur de la “largeur de bande”. 625 lignes, 25 fois par seconde = 64 us
par ligne. Ecran tres bonne définition : 1024 points (pixels) par ligne = fréquence
max : 512x(blanc, noir) = période max = 64/512 = 1/8 us = 8 MHz. Largeur de
bande 1000 fois plus importante que la parole. Probleme du traitement temps réel
dans une machine. A complexité de traitement équivalente, il faudra un processeur
1000 fois plus puissant pour traiter des images que pour traiter du signal de parole.
Dans la pratique, généralement traitements plus élaborés en parole qu’en image ...

e Signaux biomédicaux : EEG, ECG ...
e Radar, sonar ...

e Signaux sismiques (recherche pétroliere) ...
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1.2 Aspect “systeme”

e Systéme = organe physique qui transforme un signal d’entrée en un signal de sortie.
Représentation par une boite noire. Exemple : systéme phonatoire (entrée = vibra-
tions des cordes vocales, systéme = conduit vocal, sortie = pression acoustique).

e Systemes a temps continu et a temps discret.
e Traitement de base : opération de filtrage.

e Pour caractériser un systeme, autres outils que la transformée de Fourier : trans-
formée de Laplace pour les systemes a temps continu et la transformée en z pour les
systemes a temps discret.

1.3 Exemples de traitement

e Parole : compresser (transmission : téléphone mobile, GSM), synthétiser (serveurs
vocaux ), reconnaitre (commande vocale), améliorer la prise de son (filtrage d’antenne)

e Musique : compresser (diffusion, stockage, MPEG-Audio), modéliser, simuler synthétiser
(instruments, salle), corriger des enregistrements dégradés ...

e Images : compresser (archiver, MPEG), reconstruire (tomodensitométrie, scanner),
reconnaitre (analyse de sceénes, robotique), corriger ...

e Radar, sonar : détecter (applications militaires).
e Signaux sismiques : prospecter.
e Signaux biomédicaux : analyser, archiver.

e Autres applications : correction du canal de transmission (trajets multiples, in-
terférences), surveillance (non-destructive) de machines ...

1.4 Plan du cours, idées directrices

e Etude des signaux et des systemes monodimensionnels.

e Etude tres superficielle des signaux et des systemes a temps continu. Cette étude
réclame un développement important pour étre traitée correctement (distribution).
Plus de problemes mathématiques délicats si on se restreint a I’étude des signaux
et des systemes a temps discret. C’est un cours de base en traitement du signal
et non en théorie du signal. Impasse presque totale sur les filtres a temps continu
(analogiques) : vu dans d’autres cours. Uniquement quelques qualificatifs et notion
de réponse impulsionnelle et de réponse en fréquence. Impasse totale sur ’étude de
la transformée de Laplace.
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Etude des signaux et des systemes a temps continu faite uniquement pour rappeler et
interpréter physiquement quelques propriétés de la transformée de Fourier (signaux
de module et carré sommables) et du développement en série de Fourier (signaux
périodiques).

e Etude des signaux et des systemes a temps discret en privilégiant 'interprétation
fréquentielle (ce n’est pas un cours de théorie des systémes) :

— Comment passe-t-on de la transformée de Fourier a temps continu (TFTC) a
la transformée de Fourier a temps discret (TFTD), a la transformée de Fourier
discrete (TFD, FEFT) et a la transformée de Fourier a court terme (introduction)
? Cf table 1.1.

Importance pratique de ces transformées.
— Comment filtre-t-on des signaux a temps discret 7
e Introduction aux processus aléatoires.

Densité spectrale de puissance. Filtrage.
Modélisation paramétrique.

TFTC d’une fonction x(t) € L1 N Ly

+oo . +o0 )
x(t) = X(f)ej%ftdf avec X(f) = / x(t)e_ﬂ”ftdt

—00 —00

DSF d’une fonction z(t) périodique (71p)

= . 1 [+T0/2 '
;(;(t) = Z X(k)e]2ﬂ'kt/To avec X(k) — / I(t)e_]27rkt/T0dt
To —To/2

k=—oc0
TFTD d’une suite z(n) (série convergente)

+1/2 +00
x(n):/ X(f)e?7 g avec X(f) = Z z(n)e 7% /m

*1/2 n=—oo

TFD d’une suite x(n) périodique (Np)

1 = . No—1 .
z(n) = Ng X(k)eﬂwkn/No avec X(k) = Z x(n)e—j%kn/No
k=0 n=0

Table 1.1: Résumé de quelques résultats (futurs) du cours
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Chapter 2

Signaux a temps continu : Analyse
et filtrage

2.1 Introduction

e Signaux déterministes & temps continu : modélisables par une fonction x(t) avec
t € R a valeurs réelles ou complexes. Ce sont soit des signaux “test” (fonction
rectangle, sinusoide), soit des “réponses impulsionnelles” de filtre.

e Classification de type continuité, dérivabilité peu utile. Distinction entre signaux
d’énergie finie et de puissance finie.

e Définitions :

Puissance instantanée = |x(t)|?

Energie = [ [z (t)[? dt

Puissance moyenne = limy_, = fjg/; lz(t)]* dt

2.2 Signaux d’énergie finie

2.2.1 Transformée de Fourier & temps continu (TFTC)

Existence de la transformée de Fourier. Notations

oo . +o0 ]
l‘(t) = X(f)eJQﬂ'ftdf — X(f) — / x(t)efj%rftdt

—0o0 — 00

Interprétation : X (f) est la projection du signal sur 'exponentielle complexe & la fréquence
f. Lesignal est décomposé sur une base continue d’exponentielles complexes. Le parametre
f s’interprete comme une “fréquence” au sens habituel (I'inverse d’une période) & un détail
pres : existence de fréquences négatives. C’est du a la projection sur des exponentielles
complexes plutot que sur des sinusoides.
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Problemes mathématiques délicats : on projette sur une fonction qui n’est pas elle
méme d’énergie finie.
Exemple : fenétre rectangulaire x(t) = rectp(t).

sin(mfT)
mf

Observation : z(t) de “durée” finie (support de z(t)), X(f) de “bande” infinie (support
de X (f)). Existence de relations d’incertitude.

X(f)= = Tsinc(fT).

2.2.2 Principales propriétés et commentaires

Linéarité
Homothétie temporelle : z(at) = X(f/a)/a

Exemple : magnétophone ralenti = perception plus graves des fréquences.

Translation temporelle : z(t —ty) = X (f) e =27/t

Amplitude conservée, phase modifiée. La phase est directement reliée & 1’origine des
temps.

Modulation : z(t) €270t = X (f — fo)

Opération fondamentale en transmission. Création d’'un “multiplex fréquentiel” :

re(t) @ = Y (f) =
k=1 k=1

y(t) = Xie(f = fr)

M=
M=

Transmission de plusieurs signaux distincts sur un méme support (fil de cuivre,
liaison hertzienne) a la condition que ces signaux soient & “bande limitée”.

Pondération par une fenétre : z(t) x y(t) = fj;o XY (f—X) dA
Résultat tres utile pour formaliser I'extraction d’une portion de signal. Cf exemple
d’un signal de parole en introduction. Utilisation de la fonction rectangle.

y(t) =rectr(t) =Y (f) = TSin:}jJiT)

= Tsinc(fT)
Interprétation graphique de fj;o XN)Y (f — A) dX pas tout a fait évidente. Etude
détaillée plus tard.

Convolution : z(t) x y(t) = fj;o z(T)y(t —7) dr = X(f) x Y(f)
Opération fondamentale dans I’étude des systéemes : opération de filtrage.
Exemple : Y(f) = rectp(f) = filtrage passe-bas “idéal”.
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Parseval : [ |z(t)]? dt = [T27|X(f)? df

Conservation de I’énergie, isométrie.

Signal réel : X(—f) = X*(f) = |X(f)]? = X(/)X (/)

Symeétrie hermitienne.

2.2.3 Autres définitions

o Sx(f) = |X(f)|? s’appelle la “densité spectrale énergétique” ou “spectre”. Clest
une fonction & valeur réelle, positive, paire. Interprétation physique fondamentale.
On a perdu toute information relative a la phase. Généralement la phase joue un
role beaucoup moins important surtout lorsque le récepteur est 'oreille (peu sensible
a la phase).

e Le support de z(t) s’appelle la “durée” du signal.
e Le support de X (f) s’appelle la “largeur de bande” (ou bande) du signal.

e Un signal vérifiant X (f) =0 pour f ¢ [-B1, B2 est “a bande limitée”. Si z(t) € R
alors B1 = BQ.

e Signal “bande étroite” : X (f) # 0 pour fo — B < |f| < fo + B avec B << fy.
Importance des ordres de grandeur, exemple : pour une chaine de radio FM, fy ~ 100
MHz et B ~ 20 kHz.

2.2.4 Théoreme de Bernstein

Existence de “relations d’incertitude” entre les supports temporels et fréquentiels. Ex-
emple du signal rectangulaire, figure 77. A un support fini dans le domaine temporel
correspond un support infini dans le domaine fréquentiel. Conclusion : un signal & bande
limitée n’existe pas (en théorie). En pratique, importance des ordres de grandeur.

Le théoreme de Bernstein donne des relations entre la largeur de bande du signal et les
dérivées n-emes du signal (plus la bande du signal est importante, plus il est susceptible
de varier rapidement).

Autre interprétation : plus un signal est impulsif (concentré dans le temps) plus son
spectre est large (et réciproquement).

2.3 Signaux périodiques

Nécessité de définir une “fonction” qui chiffre la distribution de la puissance en fonction
de la fréquence.
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2.3.1 Développement en série de Fourier (DSF)

Energie infinie = pas de transformée de Fourier au sens des fonctions. Existence d’un
développement en série de Fourier.

Si z(t) est une fonction périodique de période fondamentale T', i.e. le plus petit réel
positif vérifiant x(t + T') = x(t) Vt, alors

+oo ‘ ) /2 |
E X(k;) 6327rkt/T avec X(k;) = / l‘(t) e—jZTrkt/Tdt
T J 12

k=—o00

Propriétés similaires a celles de la TFTC.

2.3.2 Densité spectrale de puissance

Quelques commentaires relatifs a Parseval uniquement :

1 2
/m dt = Z | X (K

k=—0oc0

On aimerait avoir une représentation de la distribution de la puissance suivant un axe
fréquentiel comme pour les signaux d’énergie finie. Utilisation des distributions nécessaire
ici. Sinon les distributions sont utiles dans le reste du cours uniquement pour obtenir
quelques formules sous une forme simple = utilisation tres réduite et tres formelle.

On appelle “densité spectrale de puissance” (ou spectre) du signal périodique z(t) de
fréquence fondamentale fy

Z X (K)[? 8(f — kfo)

k=—o00

Le spectre d’un signal périodique est un “spectre de raies”.
Quelques transformées de Fourier “au sens des distributions”

5t = 1(
S = 5(f — fo)

acos(2mfot) = g[&f fo) +0(f + fo)]
+oo
Zét—nT Zeﬂﬂ = % Z(S(f—%).
n=—oo n—foo k=—oc0

2.3.3 Exemple
On désire avoir une représentation fréquentielle d’un signal d’horloge de la forme :

+o0

y(t) = Y a(t —kTy)

k=—o00
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avec
x(t) = rectp, (t).
On a
+oo . 1 Ty /2 )
y(t) = Z Y (k) 2T avec Y (k) = / y(t) e 92k T2 gt
fe—oo Ty J1y /2
1 [T . 1 k Ty KTy
Y(k) = / z(t) e IR gy = — X (f = —) = —sinc(——
)=z | FX( = 72) = grsine(Sh)
ce qui donne comme transformée de Fourier “au sens des distributions”
+oo
S . kT k
Y(f) = T2kz Smc(ﬁ) 6(f = E)'
=—00

1.2

061 4

0.4r q

021 q

Figure 2.1: Transformée de Fourier de la fonction rectangle z(t) et de la fonction rectangle
périodisée y(t).

2.4 Filtrage linéaire

2.4.1 Définitions

Un systeme est un organe physique (une boite noire) qui transforme un signal d’entrée en
un signal de sortie. Existence d’une relation fonctionnelle : y(t) = F{z(t)}.

Exemples : systeme phonatoire (entrée : mouvement des cordes vocales, sortie : vari-
ation d’une pression acoustique), chaine Hi-Fi (ce qui va nous intéresser c’est surtout
Iégaliseur et non I'ampli qui est modélisable par un simple gain).

Représentation par des diagrammes fonctionnels. Vision tres ingénieur (ce que cache la
boite est tres relatif). Systemes en chaine directe. Systemes asservis (exemple : rebouclage
HP-micro avec risque d’effet Larsen).
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2.4.2 Propriétés d’un systéme

Sans/avec mémoire : Exemple : résistance/capacité. Premier cas tres peu intéressant.

Linéarité : Il vérifie le principe de superposition.
Siz1(t) — y1(t) et si xa(t) — ya(t) alors axy(t) + Bra(t) — ayi(t) + By2(t) Vo, S.

Notion tres relative, exemple : ampli. Les amplitudes des signaux d’entrée ne doivent
pas étre trop élevées sinon on risque des saturations, ni trop faibles sinon on risque
de manquer de précision. La notion de modele est tres relative. Un “bon” modele
est le résultat d’un compromis simplicité-performances.

Invariance : Les caractéristiques de la relation d’entrée-sortie ne changent pas au cours
du temps. Si z(t) — y(t) alors z(t + 7) — y(t + 7) V7. Exemple d’un systéme
non-invariant : systeme phonatoire.

Causalité : A chaque instant, la sortie ne dépend que de l'entrée & des instants présents
ou passés. Systemes non-anticipatifs. Propriété respectée pour tous les systemes réels
mais pas obligatoire lors de simulation. Exemple : amélioration d’enregistrements
dégradés.

Stabilité : Nombreuses définitions : stabilité locale, globale, asymptotique. Ici, simple-
ment définition de la stabilité au sens “entrée bornée - sortie bornée” :
Si VM, t tels que |z(t)] < M = 3N, tels que |y(t)| < N Vt > to, alors le systeme
sera stable “EB-SB”.

Dans ce cours, uniquement étude des systémes linéaires, invariants et stables = filtre.

2.4.3 Caractérisation d’un filtre

On a cherché a représenter un signal comme une combinaison linéaire de quelques signaux
de base. Il suffit de connaitre la réponse d’un filtre a ces signaux de base. Pour connaitre
la sortie a une entrée quelconque, il suffira d’appliquer le principe de superposition.

Réponse impulsionnelle

On appelle réponse impulsionnelle d’un filtre, la réponse du filtre a 'entrée particuliere
x(t) = §(t). On la notera par la suite h(t). Cette réponse est-elle suffisante pour car-
actériser le filtre, i.e. connaissant h(t) peut-on calculer y(t) quelque soit x(t) ?

Pseudo-démonstration via l'intégrale de Riemann. On suppose z(t) “suffisamment
réguliére” pour pouvoir définir

+o0 +oo
xp(t) = Z x(nT) rectp(t —nT) = Z x(nT)%rectT(t —nT) T.

n=—oo n=—oo
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Appelons hp(t) la réponse du filtre a l'entrée (1/7)rectr(t). En appliquant la propriété
de linéarité et d’invariance, on obtient

+oo
rr(t) = yr(t) = Y x(nT) hp(t —nT) T

n=-—00
Par passage a la limite et en supposant des propriétés de “continuité”, on obtient

+oo

z(t) — y(t) = / z(7T) h(t — 1) dr = h(t) * z(t).

—0o0

On dit qu’un filtre est un convolueur.

Remarques :

e Filtre causal. La réponse impulsionnelle est nulle pour t < 0. On a

y(t) = / xz(1) h(t — 1) dr.

—00

e Filtre stable. On montre qu'une CNS est que fj;o |h(7)| dT < 0.

e Mémoire d’un filtre causal et stable. Le support de h(t) est I'intervalle [0, co[ & cause
de la causalité et h(t) tend vers zéro a cause de la stabilité. Dans la pratique, la
réponse impulsionnelle peut étre considérée comme nulle & partir d’un certain instant
to. On appelle alors l'intervalle [0, %] la mémoire du filtre (notion tres relative).
Dans la construction de y(t) seules les valeurs de l'entrée dans l'intervalle [t — tg, ¢]
interviendront.

Réponse en fréquence, gain complexe

Entrée particulicre : z(t) = ¢ e/?™fo. Sortie correspondante :

+oo . , +o0 ,
y(t) = xo/ h(r)e? =) dr = g eﬂ”fot/ h(r)e 92m0T dr

— 00 —00

+00 )
y(t) = 2(t) H(fy) avec H(f)= / h(r)eI2 7 dr.

—00
On appelle H(f) la réponse en fréquence ou gain complexe du filtre. C’est la transformée
de Fourier de la réponse impulsionnelle.

Remarques :

e La relation y(t) = x(t) H(fy) si 2(t) = xo €727/t veut dire que les exponentielles
complexes sont les “fonctions propres” des filtres et que H(fy) est la “valeur propre”
correspondante.
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e [l est possible de caractériser un filtre en faisant une série de mesure. On fait une
“analyse harmonique” en mesurant I’amplitude yg et le déphasage ¢y de la sinusoide
de sortie et en écrivant |H (fo)| = yo/xo et Arg H(fo) = ¢o. Lieu de transfert.

e La relation Y (f) = H(f) X(f) traduit 'opération de filtrage. Suivant la forme du
module de H(f), on parle de filtres passe-bas, passe-haut, passe-bande ...

e Dans la pratique, c’est l’application qui impose la forme du module de H(f). Le
probleme consiste alors a déterminer les caractéristiques du filtre dans le domaine
temporel. On parle de synthese de filtre. Définition d’'un gabarit nécessaire car un
filtre passe-bas du type H(f) = rectr(f) impossible.

La réponse impulsionnelle du filtre n’est pas la bonne réponse car on ne sait pas
“implanter” un produit de convolution. On montre qu'une équation différentielle a
coefficients constants est une autre facon de caractériser un filtre et que cette forme
(ou plutot) I'équation intégrale correspondante s’implante a I'aide d’amplificateurs
opérationnels, de résistances et de capacités.

e Tous ces problemes seront abordés lors de ’étude des systeémes a temps discret (étude
plus simple dans ce cas) et on dira que pour les systémes & temps continu c’est la
méme chose (plutot que linverse).

2.4.4 Exos
Intégrateur

Systeme défini par la relation

Lissage des variations brusques de z(t).

Systeme linéaire, invariant, causal, stable.

Réponse impulsionnelle : h(t) = 1/T sit € [0,T], h(t) = 0 sinon.
Réponse en fréquence H(f) = sinc(fT) e=I™/T . Interprétation ...

Filtre passe-bas idéal

Etude du filtre passe-bas idéal H(f) = rectop(f) e =927/ soumis & I'entrée 2(t) = rectr(t).
Réponse impulsionnelle : h(t) = 2B sinc(2B(t — tg)). Par la suite to = 0 pour simplifier.
Réponse a l'entrée rectangulaire :

2B(t+T/2)

T/2
y(t) = / 2B sinc(2B(t — 1)) dr = / sinc(u) du
T/2 2B(t—T/2)

y(t) =g(2B(t+1T/2)) —g(2B(t —T/2)) avec g(z)= /Oz sinc(u) du
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Le tracé de g(x) puis de y(t) permet de constater que le temps de montée d'un filtre
passe-bas est de l'ordre de 1/B.
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Chapter 3

Echantillonnage

3.1 Introduction

Numérisation = discrétisation de I’axe temporel (échantillonnage) + discrétisation des
amplitudes (quantification, codage de source).

Intérét d’un signal mis sous forme numérique : grande immunité au bruit, stockage
(reproductibilité indéfinie), transmission possible avec a priori un taux d’erreur aussi faible
que 'on veut, possibilité de traitements tres élaborés, arrivée du “tout numérique” pour
des raisons économiques (existence de circuits performants et peu cotteux).

Inconvénients : distorsions introduites lors de la numérisation, plus large occupation
spectrale lors de la transmission.

Exemple : CD. Bande “Hi-Fi” [20 Hz - 20 kHz|. Echantillonnage caractérisé par
un parametre : la fréquence d’échantillonnage fo = 1/T = 44.1 kHz. Quantification
caractérisée par un parametre : la résolution b = 16 bits/ech. Débit = 44.1 x 16 = 705
kbits/s (par voie). Nécessité de codes correcteurs d’erreur (codage de canal). Lecteur de
CD = récepteur d’une chaine de communication. Exemple d’un traitement : “MPEG-
Audio”. Actuellement possibilité de réduire le débit d’un signal par un facteur 10 (ordre
de grandeur) sans perte de qualité grace a un traitement sophistiqué.

3.2 Théoreme d’échantillonnage

3.2.1 Probléme

On part d’un signal & temps continu z(¢) dont on suppose connue la transformée de Fourier
X(f). On construit une suite {z(nT)} en prélevant des valeurs a des instants régulierement
espacés (multiples de T'). Quelles conditions & imposer a x(¢) (un parametre important :
sa largeur de bande B) et a T (ou f.) pour qu’il n’y ait pas perte d’information, i.e. que
'on garde la possibilité de reconstruire x(t) a partir des échantillons {x(nT")} ?

19
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3.2.2 Résultat intermédiaire : formule de Poisson

Si X(f) est la transformée de Fourier du signal & temps continu z(¢), quel que soit T" et
quel que soit le support de X(f), on a

+oo
= Z (f—=) = Z x(nT)e 27T (3.1)
k—foo n=-—00

a la condition que ces sommations aient un sens (aucune difficulté dans la pratique). On
appellera Y (f) cette expression.

Démonstration : Y (f) est une fonction périodique, de période 1/, donc développable
en série de Fourier

—+00

Y=g 3 XUy = Y e

k=—o0 n=-—oo

1/2T 4 +oo 1/2T—k/T
Cn, —T/ — X(f - ) 772“f”Tdf = Z / X u)e*ﬂ”“”Tdu

k=—oo oo ) —1/2T—k/T

—+00 .
Cn = X (u)e??™ ) gy, = 2(—nT)

—00

ce qui entraine (3.1).

X(f) Y(f)
A\ /%Y\
f | _fe |+fe

Figure 3.1: Transformée de Fourier périodisée.

3.2.3 Conditions suffisantes

Si on est dans le cas particulier montré figure 3.2, on constate qu’il suffit de multiplier
Y (f) par H(f) =T x recty,(f) pour obtenir X (f).
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| _fe -B ‘|‘B | +fe f

Figure 3.2: Conditions suffisantes pour qu’il n’y ait pas perte d’information.

On a donc
1 = k
X(f)=H(z Y, X(f—2)
T T
k=—o00
En appliquant la formule de Poisson, on obtient

+oo

X(f)= Y w(nT)H(f)e >
ce qui entraine
+oo
z(t)= Y x(nT)h(t —nT)

avec

127 "
h(t) = T/ ITIf = sine(=).
—1/2T T

”

On en déduit le “théoreme d’échantillonnage Si les deux conditions suivantes sont

respectées :
e 1(t) est un signal a bande limitée [—B, +B], i.e. si X(f) =0 pour |f| > B
e etsi fo > 2B,

alors il n’y a pas de perte d’information par échantillonnage parce que l'on peut recon-
struire exactement le signal x(t) & partir de ses échantillons

+o00
x(t) = Z :U(nT)sinc(t_TnT). (3.2)

C’est la “formule d’interpolation” dont le principe est visualisé figure 3.3 en se limitant a
une somme de 3 termes. Interpolation au sens “signal a bande la plus limitée”. La plus
petite fréquence d’échantillonnage possible s’appelle la “fréquence de Nyquist”.
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Figure 3.3: Interpolation.

3.3 Remarques et interprétations

3.3.1 Recouvrement des spectres

Si le signal x(t) n’est pas a bande limitée, alors

Je

V() £ X(f) pour |f] <L

Phénomene de “recouvrement des spectres” (aliasing). Il s’agit la plupart du temps d’une
dégradation (phénomene désagréable pour des signaux de parole ou de musique par ex-
emple) excepté de rares cas ou ce phénomene est directement exploité (exemple de la
stroboscopie).

En effet (sous forme d’exo)

Soit z1(t) = cos(2m fit). On choisit fo = 4f1. Expression de xz1(nT"), X1(f) et Yi(f) ?

Soit x9(t) = cos(2m fat) avec fo = f1 + fe. Expression de zo(nT'), Xa(f) et Ya(f) ?

Quel est le signal dont la transformée de Fourier est recty, (f)Y2(f) 7 Quel est le signal
dont la transformée de Fourier est [recty, jo(f — 5fe/4) +recty, jo(f + 5fe/4)]Ya(f) ?

Conclusion : apres I’échantillonneur, on ne fait pas la différence. La fréquence fy est
vue comme la fréquence f;. L’échantillonneur est un opérateur modulo f..

3.3.2 Fréquence numérique

Connaissant la suite {z(nT')}, il existe une infinité de fonctions prenant les valeurs z(nT)
aux instants d’échantillonnage. Exemple précédent : toutes les fonctions zx(t) = cos(27( f1+
kf.)t) prennent les valeurs {1,0, —1,0, - - -} aux instants nT. On dira que la suite {1,0,—1,0,---}
a toute sa puissance concentrée aux deux “fréquences” +1/4 et -1/4. On introduit le
parametre

e

fta = T
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La fréquence “analogique” (& temps continu) f;. est exprimable en Hertz. La fréquence
“numérique” (a temps discret) fiq est sans dimension.

3.3.3 Conditions non nécessaires (sous forme d’exo)

Exemple : On considére un signal x(t) a bande limitée [—B, +B]. On multiplie ce signal
par cos(10m Bt). La fréquence d’échantillonnage f. > 12B est-elle nécessaire 7
Réponse : non. Si fo = 4B, 6B ou 7B, la reconstruction reste possible.

3.4 Dans la pratique

3.4.1 Deux problemes

e Un signal a bande limitée n’existe pas. Contre-exemple apparent : une sinusoide
mais elle est de durée infinie. Dans la pratique, on ne peut observer une sinusoide
que pendant une durée finie = sinusoide xfenétre, i.e., dans le domaine fréquentiel,
deux sinus cardinaux centrés en — fi et + f7.

11 faut toujours filtrer avant échantillonnage. On montre que le filtre G(f) minimisant
I’erreur quadratique
+oo
| leto - aoPar
—0o0

est G(f) = recty, (f) mais il est lui-méme irréalisable !

e La formule d’interpolation est irréaliste. Pour reconstruire le signal & temps continu
a 'instant ¢ a partir de ses échantillons, il faut connaitre tous les échantillons de
—00 & +00. Il en résulte deux nouveaux problemes. La limitation a un nombre fini
d’échantillons entraine une approximation

+N
z(t) = Z :L‘(nT)sinc(t —TnT) ~ x(t).
n=—N

Le “délai de reconstruction” est égal a NT. C’est grave ou pas suivant les applica-
tions. Communications mono-directionnelles (diffusion) : pas grave. Communica-
tions bi-directionnelles (conversation téléphonique) : grave si NT est trop important.

3.4.2 Bloqueurs

Dans la pratique, on emploie des bloqueurs
Bloqueur d’ordre 0 : Z(t) = x(nT) pour nT <t < (n+ 1)T.
Bloqueur d’ordre 1 : #(t) = az(nT) + bx((n — 1)T) pour nT <t < (n+ 1)T.

Etc.
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On peut chercher a caractériser le type de dégradation apportée lorsque 1’on utilise un
bloqueur d’ordre 0 (convertisseur N/A). Il s’exprime sous la forme

+o0
2(t)= > a(nT)h(t—nT)
avec h(t) = rectp(t —T/2). Donc
+oo
X(f)= Y aDH(e ™ = H(f) Xialf)

avec

[H(f)| = Tsinc(fT).

Le tracé de la figure 3.4 montre que la dégradation apportée par 'utilisation d’un bloqueur
d’ordre 0 est une distorsion dans la bande [—f./2, f./2], une création de puissance hors
de cette bande. A comparer avec la formule d’interpolation. Cas dual. Autres formules

- |fe

Figure 3.4: Bloqueur d’ordre 0.

d’interpolation : fonctions splines, ...

3.5 Autre exo

Phénomeéne de stroboscopie. On considere un signal “haute fréquence” périodique de
période T tres petite. On ’échantillonne a la fréquence fo = 1/T avec T = Ty + A.
Montrer qu’il est possible de “reconstruire” le signal a 'aide des échantillons xz(nT") de
telle fagon que I’on obtienne un signal y(¢) de méme forme mais plus “lent” i.e. y(t) = x(at)
avec o < 1.

Exemple : z(t) = a + b cos(2nt/Ty).



Chapter 4

Transformeées

4.1 Transformée de Fourier a temps discret (TFTD)

4.1.1 Définition

Existence de signaux a temps discret qui ne sont pas forcément le résultat de I’échantillonnage
d’un signal & temps continu. Notation de tels signaux {x(n)} avec n € Z. Equivalence
avec {x(nT)} : il suffit de poser T'= 1. On cherche un outil permettant de les analyser :
on utilise la formule de Poisson.

Définition. On appelle transformée de Fourier & temps discret d’'un signal & temps
discret {x(n)} I'expression (si elle existe)

—+00

X(f)= Y a(n)e > (4.1)

n=—oo

X(f) est une fonction périodique de période 1 (il suffit de connaitre X(f) pour f €
[—1/2,1/2]). La formule précédente est simplement le développement d’une fonction
périodique en série de Fourier. On a donc

/
z(n) = _11/22 X (f)eti#ingy. (4.2)

4.1.2 Justification

Considérons un signal x(t) et sa transformée de Fourier & temps continu X;.(f). On a la

relation
o0

x(t) = Xio(f)et2m Ity

— 00

Si x(t) est a bande limitée [-B,+B] et si 1/T = f. > 2B, on peut écrire

+fe/2 )
amnz/ Xyo( et 2 fe g,
_fe/2

25
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Si on fait la distinction entre “fréquences & temps continu” exprimées en Hz et “fréquences
a temps discret” (des fréquences normalisées) fig = fic/fe, on obtient la relation

+1/2

Xtc(ftdfe)€+j27rftdndftd
~1/2

z(nT) = fe

qui est cohérente avec I’équation (4.2).

Si, a partir d’un signal & temps discret {x(n)}, on construit un signal a temps continu
x(t) qui prenne les valeurs z(n) aux instants nT" avec T' = 1 avec la contrainte : il est a
bande limitée [—f./2, f./2] avec f. = 1, alors

e pour f € [-1/2,1/2], X3q(f) = Xte(f)-

e pour £ 3 [~1/2,1/2), Xie(f) = 0 et Xpalf) = Xia(f mod 1).

4.1.3 Propriétés

On donne, table 4.1, les principales propriétés de la transformée de Fourier a temps discret
en les comparant a celles de la transformée de Fourier a temps continu.

Transformée de Fourier Transformée de Fourier
a temps continu a temps discret
Définition z(t) = X(f) x(n) = X(f)
[T a(t)e 2t Foo x(n)eimin
Modulation eI2mfoty(¢) el?mfong(n)
X(f = fo) X(f = fo)
Translation x(t —to) x(n —ng
temporelle e*j%ftOX(f) e~I2mfno X (f)
Convolution [ a(r)y(t — r)dr e m(m)y(n —m)
X (f)Y(f) XY (/)
Produit w(t)y(t) z(n)y ( )
S23 XY (f = N i3 XY (F — A)dA
Signal réel X(- f)—X*(f) X(=f) = (f)
Parseval [Fe(e)2dt = [F21X(F)Pdt | 020 )P = [T 1X(F)df

Table 4.1: Principales propriétés de la transformée de Fourier & temps continu et a temps

discret.

4.1.4 Exemples

“Impulsion a temps discret”
z(n) =1sin =0, z(n) =0sinon. On a X(f) =1Vf.
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Signal rectangulaire
z(n) =1 pour 0 <n < N —1, sinon 0.

N-1 o |
X(f) = Z e—i2mfn _ 1— 2y _ e—jwf(N—l)M
n=0 1— ezt sin(mf)

A comparer avec la transformée de Fourier a temps continu de la fonction z(t) =
rectr(t) qui est égale a T'sinc(fT).

12

10r

-15 —i -0.5 6 0.5 i 15
Figure 4.1: TFTD (module) d’un signal rectangulaire avec N = 10.

Remarque : z(n) peut étre vu comme le résultat de 1’échantillonnage de la fonction
rectyr(t — (N — 1)T/2) avec T = 1. On a donc

—+00
X(f) = Z U(f —k) avec U(f)= N sinc(fN) e 9™ N=1),

k=—o00

Que se passe-t-il lorsque N — oo 7 Convergence particuliere : convergence non-
uniforme, phénomene de Gibbs.

Cosinus
x(n) = cos(2m fin) pour 0 <n < N — 1, sinon 0.

N-1 N-1

X(f) = 3 cos(2mfin)e 2 = % S [z 4 =in(i+fony
n=0 n=0
1N v sin(r(f — fON) _pysin(m(f + f1)N)
_1 r(f—f1)(N-1) w(f+f1)(N=1)
X(f) =32 [~ sinr(F=f) ¢ sin(x (71 )
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Que se passe-t-il lorsque N — oo 7 On admettra le résultat suivant

+00 oo
X(f) = % Z [e—92m(F=fun 4 e=a2n(f+fim] — % Z [6(f—fi—k)+6(f+ fr —F)]
n=-—00 k=—o00

Probléemes mathématiques délicats. Convergence “au sens des distributions”.

I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4.2: TFTD (module) du signal z(n) = cos(2mfin) pour 0 < n < N — 1, sinon 0
avec f1 = 0.123 et N = 10.

4.1.5 Exos

Soit z(n) un signal a temps discret de bande [—1/9,1/9]. Tracer symboliquement le spectre
du signal y(n) = z(n) x cos(4nn/3).

4.2

4.2.1

Transformée de Fourier discréte (TFD)

Introduction

Plusieurs présentations possibles

e Comme une approximation de la TFTD. La transformée de Fourier & temps discret

X(f) = :{iofoo z(n)e 72™/™ n’est pas implantable directement dans une machine

pour deux raisons : la sommation est infinie et le parametre f est a valeurs continues.
Il faut se limiter & un nombre fini d’échantillons et discrétiser ’axe fréquentiel.

e Comme une transformation unitaire avec une interprétation fréquentielle.
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4.2.2 La TFD vue comme une approximation de la TFTD
Limitation & un nombre fini d’échantillons

Formalisation simple en employant une “fenétre de pondération” de durée N.
y(n) =x(n) x v(n) avec wv(n)=0 pourn#0---N—1

(choix d’une fenétre non-centrée pour simplifier les notations par la suite). L’approximation
réalisée peut étre étudiée en exploitant la relation

+1/2
y(f) = / XO)V(f — A)dA.

—-1/2

Apparition d’“ondulations”, cf figure 4.2. Existence de nombreuses fenétres ayant des
“bords plus doux” (Hamming, etc, cf chapitre 5).

Discrétisation de ’axe fréquentiel

On évalue Y (f) pour M fréquences uniformément réparties entre 0 et 1.
N-1 .
Y(f=—)= Z x(n)e_ﬂﬂﬁn pourk=0---M — 1.
n=0

Quel est le type d’approximation réalisée ? Probleme difficile.

Exemple

On part d’un cosinus de durée infinie x(n) = cos(2m fin). Sa transformée de Fourier a
temps discret est un double peigne de Dirac

+00
1
X()=5 DB = fi—k)+8(f + fr— k).
k=—0oc0
La discrétisation de I'axe fréquentiel de la courbe de la figure 4.2 avec M = 20 donne le
tracé de la figure 4.3. On observe que les M valeurs Y (0)--- Y ((M — 1)/M) paraissent
une mauvaise approximation de X (f) sauf si la fréquence f; est un multiple de 1/M et si
M =N.

Conclusion

On montre que la TFTC, la TFTD et la TFD donnent des résultats “cohérents” si le
signal & temps continu z(t) est périodique (période Tp), & bande limitée (nombre fini de
raies), si la fréquence d’échantillonnage f. = 1/7T est supérieure a la fréquence de Nyquist
et si N est choisi de facon que Ty = NT'. Alors la TFTC est composée de N raies espacées
de 1/NT et les N valeurs de la TFTD sont précisément les coefficients du développement
en série de Fourier.
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EINRERRIN

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4.3: TFD (module) du signal z(n) = cos(2w fin) avec fi = 0.123, N = 10 et
M = 20.

Dans la pratique, ces conditions ne sont jamais vérifiées. On cherche par exemple a
détecter plusieurs sinusoides dans du bruit. Probléeme de la résolution spectrale. Condition
suffisante (pas forcément nécessaire) pour discriminer deux sinusoides : que leur fréquences
(normalisées) respectives fi et fo vérifient |f1 — fa| > 2/N.

4.2.3 Définition directe de la TFD
On appelle transformée de Fourier discrete de la séquence z(0)---2(N — 1) une autre
séquence X (0)--- X (N — 1) avec

N-1
X(k) = Z z(n)e I2mmR/IN,
n=0

Ces N relations s’écrivent de fagon matricielle

X(O) 1 1 cee e 1 x(O)
X(l) 1 wi W(N-1) ;p(l)
. =1 . . . . . . (4.3)
X(N-1) 1 wW=b ... .. wE=-HIvV-1) (N —1)

ott W = e 727/N est la N racine de 1'unité.

La matrice précédente, notée A, caractérise une transformation linéaire. C’est une
matrice carrée de dimension N x N a valeurs complexes. Elle est composée de vecteurs
orthogonaux 2 & 2 et de norme v/N. C’est une matrice unitaire, & un coefficient pres,

1 *\t __
FAA) =1
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On peut donc calculer les N valeurs z(0) - - - z(N — 1) a partir de X(0)--- X(N —1). La
transformée de Fourier discrete inverse a pour expression

1 N—
2 : +'2 k/N
j2mn )

k=0

On remarque que z(n +mN) = z(n). Toute suite périodique de période N peut s’écrire
sous la forme d’une somme de N exponentielles complexes.
Prenons 'exemple du “peigne de Dirac” a temps discret de période N,

+oo
Z A(n —mN)

m=—00

avec A(n) = 1 si n =0 et A(n) = 0 sinon (symbole de Kronecker)!. Ce signal s’écrit aussi

1 N-1 s
=5 > X (k). (4.4)
k=0
avec
N-1
X(k) =Y An)e?™v" =1
n=0
On obtient
N-1 1 N-1 s
;} A(n—mN) = N z_;] YRS U

Il est intéressant de relier ce résultat a la transformée de Fourier a temps discret et a la
transformée de Fourier a temps continu d’un peigne de Dirac. La transformée de Fourier
a temps discret de x(n) a pour expression

N1+oo

T X -y -m

k 0 m=—o00

1 X k
X — -
=5 2 -3
k=—o00
La relation
+oo 1 N-1 .
Z An—mN) =— eJImNT
m=—00 N k=0
est la version a temps discret de
+o00 1 +o00 ' .
Z 5(t —mT) = T Z eI 2R
m=—00 k=—o00

! Au niveau des notations, on distingue volontairement le symbole de Kronecker A(n) qui ne présente
aucun probléme mathématique de I'impulsion de Dirac §(¢) (ou 6(f)) qui réclame de grandes précautions.
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4.2.4 Propriétés

On retrouve, table 4.2, toutes les propriétés habituelles a la condition de calculer tous les
indices modulo N (lorsque 'indice courant sort de l'intervalle [0--- N — 1]).

Définition z(0)---z(N—-1)=X(0)--- X(N —-1)

sy w(n)e TN
Modulation ej%%"x(n)

X[(k —1) mod N]
Translation z[(n — np) mod N]
temporelle ei2mNm0 X (k)
Convolution Z%;é z(m)y[(n —m) mod N]
X (k)Y (k)
Produit x(n)y(n)
o' X(@Y[(k — 1) mod NJJ/N

Signal réel X(N —k)=X"(k)
Parseval o [P = [y 1X(R)P/N

Table 4.2: Principales propriétés de la transformée de Fourier discrete.

Remarque concernant le produit de convolution. Ce qui nous intéressera par la suite
c’est le produit de convolution

de deux signaux a temps discret de durée infinie. La propriété de “convolution” précédente
est relative a deux signaux de durée finie avec un indice courant calculé modulo N

-1

N
v(n) = Z xz(m)y[(n —m) mod NJ.
m=0

Comme on sera amené par la suite a vouloir calculer u(n) a I'aide de v(n) en exploitant

X (k)Y (k) pour bénéficier de I’algorithme de FF'T, on distinguera le produit de convolution
a temps discret u(n) = z(n)*y(n) et le produit de convolution circulaire v(n) = z(n)@y(n).

4.2.5 Algorithme FFT

La matrice A a des propriétés tres particuliéres ce qui entraine 'existence d’un algorithme
rapide (FFT : Fast Fourier Transform). Montrons le principe de I’algorithme en choisissant
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N = 8. Le systeme matriciel s’écrit

33

[ X(0) 7 1 1 1 1 1 1 1 1 77T z(0) T
X(1) rwtow?2ow3 owt owh o we wr x(1)
X(2) T w2 owt o ws owd o wio w2z i x(2)
X3) | |1 w3 ws w? w2 wh wid w2l x(3)
X(4) - 1 W4 W8 W12 W16 W20 W24 W28 1‘(4)
X(5) 1 W5 WlO W15 W20 W25 W3O W35 l’(5)
X(G) 1 W6 W12 W18 W24 WSO W36 W42 .%'(6)
i X(?) ] i 1 W7 W14 W21 W28 W35 W42 W49 1L IL’(?) ]
On réalise une premiere décomposition suivant les indices pairs et les indices impairs de
z(n)
X(0) 1 1 1 1 717 =(0) ] [ 1 1 1 1 z(1)
X | |1 w2 owt we z(2) | | whowEowe s wr (3)
X@) | |1 wtows w2 x(4) w2 we Wi Wit a(5)
X(3) 1 ws w2 w8 ] [ z(6) | i w3 w? o wis w2 x(7)
X(4) T wé wit w71 2(0) ] [ Wt w2z w20 w2 x(1)
XGB) | |1 owo w2 o z(2) N we W w2 Wwh z(3)
X6) | |1 w2 wH w3 x(4) wo wis w30 a2 x(5)
X(7) 1w w2 w2 1 | z(6) | w7 w2 ow3s w9 x(7)
En exploitant la propriété W8 = W", on obtient
X(0) [ 2(0) ]| 1 0 0 0 ] [ 2(1) ]
X | ] =2 o wt o o0 ;| x(3)
x| @ [ Tlo o w2 oo |4 e
| X(3) | | 2(6) | | 0 0 0o w3 i | 2(7) |
[ X(4) ] [ 2(0) ]| 1 0 0 0 ] [ 2(1) ]
X(5) _ x(2) 10 Wt o0 0 A x(3)
X(6) x(4) 0 0 W2 0 z(5)
| X(7) | | 2(6) | | 0 0 0o w3 i | 2(7) |
Posons
U(0) z(0) U(1) (1)
U(2) Y z(2) U(3) Y, z(3)
v | = e | o) | T a0
U(6) (6) U(7) z(7)

On réalise une deuxieéme décomposition pour calculer [U(0),U(2),U(4),U(6)] (ou pour
calculer [U(1),U(3),U(5),U(7))).

U(0) 11 1 1 z(0)
ue | |1 w2 wt w z(2)
Uu4) | 1wt o ws w2 z(4)
U(6) 1 ws w2 wis z(6)
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|
oo = [0 e [ = [ e ][50
On obtient [ 0o ] ) [ Vo) ] . [ - ] [ e
U(2) V(4) 0 w2 V(6)
v ] =LV Lo we ] [Vio) ]
On réalise une troisieme décomposition pour calculer [V/(0), V (4)] etc.

V(0) = z(0) + x(4)
V(4) = x(0) — z(4).

On en déduit le diagramme de la figure 4.4 symbolisant ’ensemble des opérations a ef-
fectuer. Le nombre de multiplications/accumulations (complexes) est égal & N x v a la

X(0) u) v(0) X(0)
X() \ U \ V) >< w’ x@
X(@) \ U@ >< w’ v X(2)
X@) W u(e) / w? Ve >< w’ @
X(4) W w’ U V() x(1)
X(5) W\ w' U \ V(5) >< w’ X
X(6) / w’  ue >< w’ v NE)
X(7) / w® ue) / 2 >< w’ X

w Vo)

Figure 4.4: Diagramme de calcul de ’algorithme FFT.

condition que N = 27. Comme le nombre de multiplications/accumulations pour effectuer
le calcul brutal est égal & N2, on voit que cet algorithme est particulierement performant.
Par exemple lorsque N = 1024, le rapport vaut

2

Nlog,(N)

2

~ 100.

Nombreuses variantes : entrelacement temporel, fréquentiel, radix 2, 4, etc.

4.3 Transformée en 2z

4.3.1 Introduction

Présentation “minimale”. Dans ce cours, la présentation de cette transformée n’est pas
nécessaire. Il est bon tout de méme d’avoir un peu de vocabulaire car cette transformée
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est largement utilisée par les “traiteurs de signaux”. Formalisme assez commode pour
étudier des filtres “numériques” (& temps discret).

4.3.2 Définition

On appelle transformée en z de la suite {x(n)} la fonction de la variable complexe z définie

par
+0o0

n=—oo

a la condition que cette somme ait un sens. Nécessité de définir le domaine de convergence.
Si on appelle p; le rayon de convergence de la série entiere X (z) = > 2(n)z " i.e. que
X1 (2) existe pour |z71] < p; et ps le rayon de convergence de X_(z) = Y. z(n)z™"
ie. que X_(z) existe pour |z| < pg, alors la transformée en z est définie sur la couronne
1/p1 < |z| < p2. Pour une suite a valeurs réelles p; et ps sont des réels positifs. Exis-
tence d’'une correspondance biunivoque entre une suite {x(n)} et une série X(z) unique-
ment & Uintérieur du domaine de convergence (s’il est non vide) a cause de 'unicité du
développement en série de Laurent pour une fonction holomorphe dans une couronne.

Intéret de la transformée en z : étre une représentation “compacte” de ’ensemble des
valeurs numériques si on réussit a sommer la série = manipulation tres aisée.

Si le cercle unité appartient au domaine de convergence, alors la transformée de Fourier
a temps discret existe et on a la relation

X(f) = X(Z)|z:612"f
avec ’abus d’écriture habituel. La transformée en z apparait comme une généralisation
de la transformée de Fourier a temps discret.
4.3.3 Exemples

Exemple d’une suite causale : z(n) = 0 pour n < 0, z(n) = a" pour n > 0 avec a € R.

+oo 1
X() =) a" "= o=
n=0

a la condition que
laz7l | <1 = |z| > |al.

Le domaine de convergence est donc dans ce cas l'extérieur du cercle de rayon |al.

Exemple d’une suite anticausale : z(n) = 0 pour n > 0, z(n) = —a™ pour n < 0 avec
a€ R.
-1 +o00
X(z)=— Z a"z7"=1- Zcf"zn
n=-—00 n=0
X(z)=1—— 1 !
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a la condition que
a7zl <1 = |z <|al.

Le domaine de convergence est l'intérieur du cercle de rayon |al.

Conclusion : la condition de convergence impose “le sens du temps”. On parle de
suites “causales” (z(n) = 0 pour n < 0) et de suites “anti-causales” (z(n) = 0 pour
n > 0). Par la suite, le domaine de convergence sera implicite. Si la suite est causale, le
domaine de convergence est I'extérieur d’'un cercle. Si la suite est anti-causale, le domaine
de convergence est l'intérieur d’un cercle. Pour une suite quelconque, le domaine de
convergence est une couronne. Tout le probleme sera de savoir si le cercle unité appartient
ou non au domaine de convergence.

4.3.4 Inversion de la transformée en z

De facon générale : utilisation de l'intégrale de Cauchy pour une fonction holomorphe
dans une couronne

x(n) = 271Tj/FX(z)z"_1dz

ou I' est un contour fermé appartenant au domaine d’holomorphie (le cercle unité pour les
“bons” signaux).

Habituellement X (z) se présente sous la forme d’une fraction rationnelle de deux
polynomes en z. Expression habituelle pour une suite causale

Cbo bz 4+ bz @
S ltaz o tape P

X(z)

avec P et () deux entiers positifs quelconques. La méthode la plus standard consiste a
réaliser une décomposition en éléments simples.
Exemple : quel est le signal causal ayant comme transformée en z

z—a
Xiz)=———.
&= he-9
b—a . c—a
(b—c)(z=0b) (c=b)(z—c)
Comme on cherche un signal causal, il faut développer suivant les puissances négatives de
z. On écrit

X(z)=

21 b—a a—c
X pu—
(2) b—c[l — bzt + 1 —cz_l]
-1
X(z) = bz_ ((b—a) L+ 4B ) (e L+ ez 4P ),

z(n) = j[(b —a)b" 1 4 (a — ).



4.3. TRANSFORMEE EN Z 37

4.3.5 Quelques propriétés

Translation temporelle
Si y(n) = x(n — k), alors

+oo
Y(z)= Z z(n—k)z7" =27FX(2).

Remarque : 2z~ apparait comme l'opérateur de retard élémentaire.

Produit de convolution

Si
+o0o
y(n) = > w(k)h(n —k)
k=—0o0
alors

[e%e] “+00
Y(z)= > Y a®)h(n-k)z"=X(2)H(2).

n=—00 k=—o0

Généralement pas de probleme dii au domaine de convergence car pour les signaux
habituels le cercle unité appartient au domaine de convergence de x(n) et de h(n)
donc de y(n).

Autres propriétés
Translation temporelle, produit, parité, Parseval.
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Chapter 5

Signaux a temps discret : Filtrage

5.1 Filtres discrets (numériques)

5.1.1 Définition

Systéme discret : a partir d’un signal & temps discret {x(n)} création d’un autre signal &
temps discret {y(n)} obéissant a une relation fonctionnelle

y(n) = F (- z(n —1),2(n),z(n +1),---;n).

Comme pour les systeémes & temps continu, si un systéme est linéaire (il vérifie le principe
de superposition) et invariant (la relation fonctionnelle est indépendante de n), alors le
systéme est appelé un filtre. Un filtre peut étre causal (y(n) ne dépend pas de x(n+1),---)
ou non et stable (entrée bornée = sortie bornée) ou non.

On se limite dans le cadre de ce cours a la sous-classe des filtres décrits par une équation
récurrente & coefficients (réels) constants

y(n)+awy(n—1)+---+apy(n—P) =b_q,z(n+ Q1)+ +box(n)+ - +bg,x(n — Q2)

avec P, ()1, Q2 trois entiers positifs quelconques.
Remarques

e Cette forme est restrictive (en théorie mais pas en pratique) car elle traduit le fait
que l'on s’intéresse uniquement & une solution causale (n croissant) : on calcule y(n)
en fonction de ’entrée et de la sortie uniquement aux instants précédents.

e Pour simplifier les notations par la suite, on supposera en plus le filtre causal

Q P
y(n) = Z bix(n —1) — Z a;y(n —1). (5.1)
i=0 i=1

Un filtre dans une machine c’est constamment calculer cette expression (souvent en
temps réel, c’est a dire au rythme d’arrivée des x(n)).

39
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e Si l'entrée est elle-méme causale (on démarre la récurrence a l'instant n = 0), les
conditions initiales associées a I’équation récurrente doivent étre prises nulles pour
respecter le principe de superposition. L’introduction de conditions initiales non
nulles posent un probléeme (représentation des systemes en “variables d’état” non
abordée dans ce cours).

e Terminologie

P =0, Q>0 : Filtre RIF (réponse impulsionnelle finie), MA (moving average),
tout zéro, non-récursif.

P >0, Q@ =0 : Filtre AR (auto-régressif), tout pole.
P >0, Q >0 : Filtre RII (réponse impulsionnelle infinie), ARMA.

e Ce n’est qu’une facon de caractériser un filtre. Il en existe trois autres.

5.1.2 Réponse impulsionnelle, produit de convolution

On appelle réponse impulsionnelle d’un filtre la réponse de ce filtre a I'entrée partic-
uliere A(n) = 1 si n = 0 sinon 0 (symbole de Kronecker). On la notera par la suite
systématiquement h(n). La connaissance de la réponse impulsionnelle est suffisante pour
caractériser un filtre puisque, connaissant h(n), quelle que soit 'entrée z(n), on peut
calculer la sortie

400 +o0
y(n) =h(n)xz(n) = > h(k)a(n—k) = Y  hn—kak).
k=—o00 k=—0o0

En effet si (cas d'une entrée causale, tous les indices commencent & 0)

{z(n)} ={1,0,---} = A{y(n)} ={n(0),h(1),--}

alors, & cause de la propriété d’invariance,

{m(n)}:{O,---,0,1,0,~~-} = {y(n)}:{0,---,0,h(0),h(1),~--}.

On utilisant la propriété de linéarité, on voit que la sortie y(n) a 'instant n est la somme
de la contribution de x(n) pondérée par h(0), plus la contribution de z(n — 1) pondérée
par h(1), plus etc.

Exemple d’un filtre défini par (5.1) avec P =0

h(n) = b, si0>n>Q
= 0 sinon.
La réponse impulsionnelle est a support fini d’ou la terminologie filtre RIF. Dans ce cas

particulier, le produit de convolution et la relation de récurrence ont exactement la méme
forme

Q
y(n) = Z biz(n —1i).
=0
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Dans le cas général, il existe deux fagons de calculer le méme résultat. L’équation
récurrente est beaucoup plus intéressante dans la pratique car elle ne met en jeu que
des sommations finies.

5.1.3 Réponse en fréquence, gain complexe

On soumet le filtre a entrée non causale z(n) = ael?™fin - On suppose connue la réponse
impulsionnelle h(n). On obtient

Z h *aeﬂ”ﬁ” Z h —j27rf1k:'

k=—00 k=—o00

On reconnait la transformée de Fourier a temps discret de la réponse impulsionnelle évaluée
a la fréquence f = fi. Cette transformée H(f) s’appelle la réponse en fréquence ou le
gain complexe du filtre. On a

y(n) = ae’> N H(f1) = a|H(f,)|e/PrfintArg(H)),

Les exponentielles complexes sont les fonctions propres des filtres.
Ce développement se généralise sans difficulté au cas d’'une entrée comportant un
nombre fini d’exponentielles. Si

L
n) =3 el 2rhimto)
=1

alors

L L
n) = Z ae? CTInt o) (f)) = Zal|H(fl)|ej(27rf1n+¢z+Arg(H(f1)).
1=1 =1

Ce développement se généralise aussi au cas d’une entrée comportant un nombre infini
d’exponentielles. On trouve

+1/2 +1 /2 .
y(n) = / Y ()l Indf = / X(f)eim Iy,
—1/2 1/2

On retrouve la relation standard Y (f) = H(f)X(f).
La réponse en fréquence caractérise 'opération de filtrage. FElle est accessible a la
mesure (analyse harmonique).

5.1.4 Fonction de transfert

Cherchons la transformée en z de y(n) donnée par (5.1). On obtient

+o0 +o0o

Q
Y(z)= Z sz Z x(n —1) Zal Z (n—id)z""

n=-—00 =0 n=-o0 n=-—00
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Zb z_’X Zal —y

Y(z) _ zﬁﬂmfi.
X(Z) 1+ Zzp;l a;z ™

Le rapport H(z) = Y(2)/X(z) est indépendant de 'entrée. On l'appelle la fonction de
transfert du filtre. Il apparait comme une fraction rationnelle de deux polyndmes en z~!
(filtre causal). Il se factorise sous la forme

HZQ:1(1 - 51'2_1).
[12,(1— ez

On appelle {B; --- Bg} les zéros de la fonction de transfert et {aq---ap} les poles. Les
coefficients des polynomes en z~! étant supposés & valeurs réelles, les zéros et les poles
apparaissent par paires (3;, 37) et (o, o).

H(z) s’interpréte comme étant la transformée en z de y(n) lorsque X(z) = 1 ie.
xz(n) = A(n). H(z) est donc la transformée en z de la réponse impulsionnelle.

H(z)=

5.1.5 Relations

e La réponse en fréquence est la transformée de Fourier a temps discret de la réponse
impulsionnelle.

e La fonction de transfert est la transformée en z de la réponse impulsionnelle.

e Interprétation géométrique du module de la réponse en fréquence. Exemple

(1-p2")
(1—az"H)(1 —a*z"1)’

H(z)=

(1 — Be 72T __McC
(1 — ae=327)|.|(1 — are=327f)|  MA.MB

[H(f)] =

ott M, A, B et C sot respectivement les images de e727f, des poles et du zéro comme
le montre le tracé de la figure 5.1. Cette interprétation est intéressante car elle
permet un tracé approximatif de |H(f)|. Toutes les propriétés des filtres peuvent
étre appréciées qualitativement par simple inspection de la position des poles et des
zéros. Les poles proches du cercle unité entrainent des “pics”. Les zéros proches du
cercle unité entrainent des “vallées”.

5.1.6 Notion de stabilité

Probleme difficile si on veut le traiter de facon rigoureuse. Notion de stabilité locale,
globale, asymptotique, non-asymptotique, etc. On dira simplement qu'un filtre est stable
si & toute entrée bornée correspond une sortie bornée.

Deux CNS :
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dIm

TN

/’ mC %

_|_1/2 /,/ 0

-1/2 \ = // Re
M __:_'y‘

\

Figure 5.1: Interprétation géométrique du module de la réponse en fréquence.

+oo

e h(n) est de module sommable : > ">

h(n) < 400
+oo

En effet, la condition est suffisante. Si ) '~"

h(n) < A et si |z(n)| < B Vn, alors

+oo +oo
y(m)l =1 Y hkzn -k < Y k) —k)| < AB

k=—o00 k=—o00

La condition est également nécessaire car si elle n’est pas vérifiée, le signal x(n) =
signelh(n)] qui est borné fait diverger le filtre pour n = 0.

e On montre que pour un systeéme causal, une autre CNS est que les poles de la fonction
de transfert soient strictement a I'intérieur du cercle unité.

La réponse en fréquence d’un filtre n’a un sens que si le filtre est stable. La fonction de
transfert d’un filtre instable existe mais le domaine de convergence de H(z) n’inclut pas
le cercle unité.

Existence de criteres algébriques.

5.1.7 Exemples sous forme d’exo

Filtre AR du ler ordre

y(n) +ary(n — 1) = (n)
Réponse impulsionnelle :

{h(n)} = {17 _aha%’ I <_a1)nﬂ o }

Réponse en fréquence :
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Module :
|H(f)? =1/(1 + 2a1cos(2nf) + af)

Comme
H(0)| =1/1 +ai] et [H(1/2)]=1/]1 - a]

on remarque que l'on obtient un filtre passe-bas si —1 < a; < 0 et un filtre passe-haut si
0<a <1
Fonction de transfert :

H(z)=1/(1 +a1z™ 1)

Péle = —ay (si a l'intérieur du cercle unité = stabilité sinon instabilité (la réponse impul-
sionnelle est une suite divergente)).

Filtre RIF

y(n) =xz(n) +2x(n — 1) 4+ 3z(n — 2) + 4z(n — 3) + 3x(n — 4) + 2z(n — 5) + z(n — 6)
Réponse impulsionnelle :
{h(n)}=1{1,2,3,4,3,2,1,0,---}
Fonction de transfert :
H(z)=1+ 2, V432,244,343, 42,704, 6= (14 271)(1 + 272)]2

Zéros doubles en -1, +j, -j.
Réponse en fréquence :

H(f) = [(1+ € P2 ) (1 e )2 = (o0 (@07 gm0 )2

H(f) = 16 cos®(n f) cos®(2m f) e 9577,

Le tracé de la figure 5.2 montre que, trés grossierement, ce filtre laisse passer les basses
fréquences et coupe les hautes fréquences. C’est un filtre passe-bas (pas tres efficace). On
peut chercher & calculer la chute en dB entre le 16be principal et le 16be secondaire. On
trouve 22 dB. C’est peu. Pour filtrer du signal de parole en bande téléphonique, il faut au
moins 50 dB, pour de la musique 100 dB (I'oreille est sensible a des variations de puissance
de plus de 100 dB). Par contre, il supprime totalement la fréquence 1/4.

Exemple de I'aspect manipulatoire de la transformée en z

Y(2)=[14+2zHA+ 221 +2H1+279)]X(2)
s’écrit

U(z) = [A+2"H(1+27))X(2)
Y(2) = [(1+27)1+22)U(2)
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Figure 5.2: Module de la réponse en fréquence du filtre RIF suivant une échelle linéaire
(a gauche) ou une échelle en dB (a droite).

ce qui entraine

un) = z(n)+z(n—1)+z(n—2)+x(n—3)
y(n) = un)+un-—1)+u(n—2)+un-—23).

La factorisation de H(z) permet d’en déduire de fagon exhaustive tous les systémes
d’équations récurrentes équivalents a la relation initiale.

Filtre réjecteur
La fonction de transfert comportant deux zéros sur le cercle unité s’écrit
H(z) = (1- 20271)(1 — zSzil) avec zg = e?¥fo

soit
H(z) =1—2cos(2nfo)z 1 4+ 272

ce qui donne dans le domaine temporel
y(n) = z(n) — 2cos(2m fo)x(n — 1) + z(n — 2).

L’interprétation géométrique du module de la réponse en fréquence indique qu’un signal
comportant une composante a la fréquence fy verra cette composante totalement sup-
primée. On peut effectivement remarquer que la sortie du filtre est nulle quel que soit n
pour une entrée de la forme z(n) = 2 cos(27 fon + ¢).

Filtre AR du 2éme ordre

y(n) + ary(n — 1) + agy(n — 2) = box(n)
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1 1

H = - - = .
(2) (1 —pei®z=1)(1 — pe=i®2=1) 1 —2pcos(p)z—1 + p2z—2

Jsinf(n + 1))
sin(g)

On donne, figure 5.3, la réponse impulsionnelle et le module de la réponse en fréquence
lorsque p = 0.9 et ¢ = /4.

h(n) =p

15

0.5

—
—x
—
%
——x
Ly
-
Ly

[dB]

_ L L L L L L L L L L L L L L
[¢] 5 10 15 20 25 30 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Figure 5.3: Réponse impulsionnelle et module de la réponse en fréquence du filtre AR du
2éme ordre lorsque p = 0.9 et ¢ = 7/4.

5.2 Synthese des filtres

Connaissant la réponse en fréquence H (f) imposée par une application, on veut en déduire
les coefficients de I’équation récurrente correspondante pour pouvoir “implanter” le filtre
dans un processeur. Il existe de nombreuses méthodes. Dans le cadre de ce document,
on se limite & la méthode la plus simple (mais pas la plus efficace) : la méthode dite de
la fenétre. En particulier, on impose que le filtre soit un filtre RIF (nécessaire si on veut
“une phase linéaire”).

Exemple. On désire synthétiser un filtre passe-bas de fréquence de coupure 1/2M
(utilisation assez fréquente en TS). On parle de filtre “demi-bande” si M = 2, “quart de
bande” si M = 4, etc.

5.2.1 Principe

On rappelle que H(f) est nécessairement une fonction périodique. Comme H(f) est
la transformée de Fourier & temps discret de la réponse impulsionnelle, on en déduit
directement

/
hin) = / g

~1/2
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Exemple du filtre passe-bas (idéal) de fréquence de coupure 1/2M

H(f) = M si |f|<1/2M
= 0 si 1/2M < |f| <1/2.

On en déduit

+1/2M ,
_ jomfn e sin(mn/M) o
h(n) M/—1/2M e df /M smc(M).

En théorie, la sortie du filtre y(n) est directement donnée par

+o0
y(n) = Y h(k)z(n—k). (5.2)

k=—o00

On montre, figure 5.4, la réponse impulsionnelle d’un filtre quart de bande.

1+

0.8

0.6

0.4

.Oiﬁ’f il I I ki ’f’ﬁ%i

-0.21

-04 L L L L L L
-20 -15 -10 -5 0 5 10 15 20

Figure 5.4: Réponse impulsionnelle d'un filtre quart de bande (M = 4) et fenétre de
Hamming sur 41 échantillons.

5.2.2 Mise en ceuvre
Limitation & un nombre fini de termes

Le produit de convolution (5.2) n’est pas directement implantable dans une machine. Il
faut se limiter a un nombre fini d’opérations. Pour garder la propriété de symétrie de
h(n), on choisit

+N
gn) = 3 h(k)a(n — k) (5.3)
k=—N

et non pas
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Pour évaluer I’approximation réalisée, il faut comparer la nouvelle réponse en fréquence
H(f) a celle du filtre idéal. Comme

+00 +oo )
gn) = Y hEoE)zn—k)= > hk)z(n - k)
k=—00 k=—o00
en utilisant une “fenétre de pondération”, on obtient dans le domaine fréquentiel
1/2
H(f)= HM\V(f — N)dA.

—-1/2
Le tracé de la figure 5.5 montre I'introduction d’ondulations lorsque I’on utilise une fenétre
rectangulaire particulierement au voisinage des sauts brusques de H(f). Ces ondulations
sont dues a celles présentes dans V(f) (cf figure 4.1). Pour atténuer I'importance de
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Figure 5.5: Réponse en fréquence d’un filtre quart de bande avec N’ = 2N +1 = 41 apres
pondération par une fenétre rectangulaire (trait plein) ou par une fenétre de Hamming
(trait pointillé). Les amplitudes sont données en échelle linéaire (a gauche) ou en décibel
(a droite).

ces ondulations, on peut étre tenté d’augmenter le parametre N. Les ondulations ne
disparaissent pas. Elles sont juste localisées dans une bande de fréquence de plus en plus
étroite. C’est le “phénomene de Gibbs”. On voudrait que V(f) ait un lobe principal le
plus étroit possible et des lobes secondaires les plus petits possibles. C’est contradictoire.
Un bon compromis est donné par la fenétre de Hamming, montrée figure 5.4, comme on
peut le constater, figure 5.5, ou on compare la réponse en fréquence H (f) lorsque 'on
utilise une fenétre rectangulaire et une fenétre de Hamming.
On donne, table 5.1, les “performances” de quelques fenétres.

Filtre causal

Le produit de convolution (5.3) caractérise un filtre non-causal. Si on veut rendre causal
le filtre, il suffit de différer le résultat de N échantillons en posant

y(n) =g(n - N).
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Fenétre Largeur Taux

du lobe principal | d’ondulation
rectangulaire 2/N’ 22 %
Hamming 4/N’ 2%
Blackman 6/N’ 0.1 %

Table 5.1: Performances de quelques fenétres avec N’ = 2N + 1.

On obtient ) 3 R )
{(0) - h(2N)} = {h(~N) - ()}

H(f)=e " INH(f).

C’est tres artificiel. On n’a rien changé exceptée la définition de 'origine des indices n !

Gabarit

Le développement précédent montre que la réponse en fréquence d’un filtre ne peut pas étre
parfaitement plate ni en bande passante, ni en bande affaiblie et que la bande de transition
ne peut pas étre infiniment étroite. Il faut donc introduire des degrés de liberté : on définit
un “gabarit” en précisant le taux d’ondulation en bande passante, le taux d’ondulation en
bande affaiblie (ou le taux de réjection) et la largeur de la bande de transition en fonction
de I'application.

Dans I'exemple précédent, le taux de réjection est de I'ordre de 50 dB si 'ordre du
filtre RIF est égal & N/ = 41 et si on utilise une fenétre de Hamming. C’est suffisant si
on désire filtrer du signal de parole en bande téléphonique (dynamique en puissance de
Pordre de 50 dB). C’est insuffisant pour du signal de musique (dynamique en puissance
de l'ordre de 100 dB). 11 faut alors augmenter l'ordre.

Implantation temps réel dans un processeur

Peut-on prendre des ordres tres élevés 7 Cela dépend de la fréquence d’échantillonnage du
signal et de la puissance de calcul du processeur utilisé. Par exemple, pour du signal de
musique échantillonné & 44.1 kHz et filtré dans un microprocesseur capable d’effectuer 107
multiplications /accumulations par seconde!, on trouve que N’ doit vérifier 44100N’ < 107
soit N/ < 200.

5.2.3 Autres méthodes de synthese

Algorithme de Remez. La réponse impulsionnelle est obtenue en utilisant des algorithmes
d’optimisation

min| max W H(f)—H

minl max W) H(S) = ()]
ou W (f) est une fonction de pondération. On montre, figure 5.6, la réponse en fréquence
d’un filtre quart de bande apres pondération par une fenétre de Hamming (trait plein) ou

1Ordre de grandeur pour les processeurs actuels ?
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apres utilisation de l’algorithme de Remez (trait pointillé). L’ordre du filtre et la bande
de transition ont été choisis identiques. Conclusion !
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Figure 5.6: Réponse en fréquence d’un filtre quart de bande apres pondération par une
fenétre de Hamming (trait plein) ou apreés utilisation de l’algorithme de Remez (trait
pointillé).

5.3 Un exemple applicatif

On dispose d’un signal de musique échantillonné a 48 kHz. On veut en obtenir une version
échantillonnée a 32 kHz minimisant la distorsion.

Techniques de sous et sur-échantillonnage largement utilisées en TS : bancs de filtres,
codage de source, changement de fréquences d’échantillonnage, etc.

5.3.1 Sous-échantillonnage par un facteur M

A partir d’un signal a temps discret z(n), on construit un nouveau signal y(m) en prélevant
un échantillon sur M : y(m) = x(mM). On recherche la relation existant entre la trans-
formée de Fourier a temps discret X (f) du signal z(n) et la transformée de Fourier a
temps discret Y (f) du signal y(m). Pour formaliser 'opération de sous-échantillonnage, il
est commode de créer un signal intermédiaire v(n) qui prend les valeurs z(n) si n = mM
et qui est égal a zéro sinon. Il a perdu de I'information contenue dans z(n) mais il reste
a la méme cadence. On a

+oo
v(n) = x(n) Z A(n —mM)

m=—00

En exploitant la formule (4.4), on obtient
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Donc
M-1 +oo M-
Mkzo z; —127rf k/M)n: kz_: f_i

La transformée de Fourier du signal & temps discret y(m) qui est le signal v(n) débarrassé
des termes nuls, s’écrit

+o0o +o0

V)= 30 wome = 3 amane Y < V()
Donc y
-1
—k
- 37 > X,
k=0

Conclusion : on observe deux phénomenes, un phénomene de recouvrement des spectres
et un phénomene de dilatation des fréquences comme le montre le dessin de la figure 5.7.

Figure 5.7: Phénomene de recouvrement dii au sous-échantillonnage.

Il est possible de supprimer le phénomeéne de recouvrement des spectres en filtrant la
séquence x(n) par un filtre passe-bas de fréquence de coupure 1/2M mais bien str on perd
alors de l'information. On appelle ce filtre, le filtre décimateur.

Interprétation du phénomene de dilatation des fréquences en prenant ’exemple du
signal a temps discret {---,1,0,—1,0, 1, --}. Toute sa puissance est localisée & la fréquence
1/4. Si on le sous-échantillonne par un facteur 2, on obtient {---,1,—1,1,---}. Toute sa
puissance devient localisée a la fréquence 1/2.

Remarque

On considére un signal a temps continu z(t) admettant comme transformée de Fourier a
temps continu X;.(fic). On suppose que z(n) est obtenu par échantillonnage de z(t) a la
fréquence fe..

La transformée de Fourier & temps discret du signal z(t) échantillonné a la fréquence
fe =1/T en fonction de la fréquence f;. relative a des signaux a temps continu est donnée

par
+o0

Xia(fre) = Z Xie(fre —kfe) =Y x(nT)e "

k—foo n=-—oo

ftcn
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Le signal a temps discret y(m) est obtenu par échantillonnage de z(¢) a la fréquence
fl=f.)2. Ona

—+00

e —‘27rft—,cm
Yia(fe) = Z Xie ftc_kf )= Z y(mT")e "

m=—0oQ

En décomposant la sommation sur k£ en indices pairs et indices impairs, on obtient

Yia(fie) = %[Xtd(ftc) + Xea(fre — %)]

Il reste une ambiguité au niveau du parametre f. Dans les formules précédentes, f;. reste
une fréquence exprimée en Hertz. On veut utiliser la fréquence normalisée f = fi./f..
Comme

= - 27rft‘m = o ftc o fte—fe/2
S ymTe 7T = 37 a(nT)e TR + Z Je I
m=—oco n=-—0o n=-—co
= _iomdte = P g fte— 2fe/2
Z y(mT')e j2m fté m _ Z ZL‘(?’LT) j2m },n I Z _]271‘
m=—00 n=-—oco n=-—o00
On en déduit ) F fo1
Y(f) ==X X .
(=tixchy+x )

5.3.2 Sur-échantillonnage par un facteur M
A partir de la séquence x(n), on crée la séquence y(m) en intercalant des zéros
y(nM) = x(n)
y(nM +1) = 0 pour le{l---M—1}.
Contrairement au cas précédent, le sur-échantillonnage n’entraine pas de perte d’information
(ni de création d’ailleurs).
Relation entre les transformées de Fourier

La transformée de Fourier a temps discret de y(m) est égale a

+00 +o0o
Y(f)= Y ym)e T =" y(nM)e MM = X(MF).

Il y a création d’images et un phénomene de rétrécissement des fréquences comme le montre
la figure 5.8. Le dessin semble montrer que les spectres sont “identiques”. Ils n’ont pas la
méme interprétation. Si x(n) est obtenu par échantillonnage a la fréquence f. d’un signal
A temps continu z(t) et si y(m) est obtenu par échantillonnage & la fréquence f, = Mf,
d’un signal a temps continu y(¢), on remarque que les deux signaux z(t) et y(¢) ne sont
pas “identiques” comme le montre le tracé de la figure 5.9. Si 'on veut que z(n) et y(m)
alent des spectres “identiques”, il faut filtrer y(m) par un filtre passe-bas de fréquence de
coupure 1/2M appelé filtre interpolateur.
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Figure 5.8: Spectres avant et apres sur-échantillonnage lorsque M = 2.

Figure 5.9: Comparaison entre x(t) et y(t).

Filtrage interpolateur

La sortie du filtre interpolateur est donnée par

+o0o
v(m) = Y h(m—k)y(k)

k=—o00
+oo

v(m) = Z y(k)since(

k=—o00

En posant m = nM + 1 et k = pM + q, on obtient

m—k

).

+oo0 M-1
B . nM+1l—pM —q
v(nM +1) = Z Z y(pM + q)sinc( 7 ).
p=—o00 g=0
Puisque
y(M) = x(p)
y(pM +q) = 0 pour ge{l---M —1}
on obtient
+oo
v(nM +1) = Z x(p)sinc(n —p + L) (5.4)
p=—00 M

On remarque que v(nM) = x(n) puisque
sinc(n —p) =0 pour p#n.

La formule (5.4) est simplement la formule d’interpolation (3.2)

+o00 t—pT
o) = S alpTysine(—)
p=—00
évaluée aux instants ;
=(n+—)T
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5.3.3 Conclusion

Pour passer d’un signal de musique échantillonné a 48 kHz a un signal échantillonné a 32
kHz, il faut d’abord sur-échantillonner par un facteur 2 puis sous-échantillonner par un
facteur 3. Le filtre interpolateur qui suit le sur-échantillonneur doit étre un filtre demi-
bande et le filtre décimateur qui précede le sous-échantillonneur doit étre un filtre tiers de
bande. Il suffit donc d’intercaler entre le sur-échantillonneur et le sous-échantillonneur un
unique filtre tiers de bande.

5.3.4 Un autre exemple : convertisseur A/N “sigma-delta 1 bit”

Comment un convertisseur analogique/numérique sur 1 bit peut-il devenir aussi précis
qu'un convertisseur sur 16 bits 7 Réponse : en utilisant une fréquence d’échantillonnage
bien supérieure a la fréquence de Nyquist et en réalisant un traitement numérique. Intérét
? Le cott (prix, fiabilité, etc) d’un traitement analogique est supérieur au cout d’un traite-
ment numérique. On a donc intérét a déplacer au maximum le traitement de ’analogique
vers le numérique.

Le schéma de la figure 5.10 donne le principe d’un convertisseur A/N “sigma-delta”.
L’entrée x(n) est un nombre réel de précision infinie (compris entre -1 et +1), la sor-
tie x4(m) est une version arrondie, le signal intermédiaire (a temps discret et a valeurs
discretes) y(n) € {—1,+1} est une représentation binaire.

l Mj_a(m)

e v [ Ju

Figure 5.10: Schéma de principe d’un convertisseur A/N “sigma-delta 1 bit”.
On a

v(n) = un—1)+v(n—1)

yn) = 1 si v(n)>0
= —1 s v(n)<0
u(n) = x(n) —y(n) (5.5)

On montre, figure 5.11, la “représentation binaire” d’une sinusoide a temps discret de
fréquence 1/50. On montre, figure 5.12, le signal w(n) lorsque H(f) est un filtre passe-bas
de fréquence de coupure 1/2M avec M = 4 ou 8 (pour rendre le tracé lisible, on représente
w(n) comme s’il était un signal & temps continu).

Pourquoi 7 Prématuré. Il faut remplacer dans (5.5) y(n) par y(n) = v(n) + g(n) ou
g(n) est une source de bruit.
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Figure 5.11: Représentation binaire d’une sinusoide de fréquence 1/50.

0.8 4

-0.8 b

10 20 30 40 50 60

Figure 5.12: Versions arrondies (traits pleins) d’une sinusoide (trait pointillé) de fréquence
1/50 lorsque M =4 ou 8.
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Chapter 6

Processus aléatoires : une
introduction

6.1 Introduction

Nécessité d'un modele probabiliste. Exemple d’une chaine de communication. Une source
émet de I'information. Cette information passe dans un canal (sous la forme d’un signal
déterministe). Le récepteur observe la sortie du canal et cherche a récupérer I'information
émise. Ce signal est imprévisible pour (au moins) deux raisons :

e le message est inconnu pour le récepteur (sinon quelle est ['utilité de cette transmis-
sion),

e le message a subi des perturbations

— de nature déterministe (le canal peut étre assimilé a une opération de filtrage),

— de nature aléatoire (addition de bruits).

Un modele pour le signal recu : un processus aléatoire a temps continu.

Autre exemple : cf figures 1.1 et 1.2. Probléeme : comment synthétiser de la parole
(par un filtre AR excité par un bruit blanc), de la musique (quelques sinusoides plus du
bruit).

Dans ce développement (tres sommaire), étude de quelques propriétés d’un processus
aléatoire & temps discret X (n) :

e Que veut dire processus aléatoire a temps discret stationnaire (au 2éme ordre au sens
large), centré, gaussien (laplacien,...), de puissance 03(, de fonction d’autocovariance
Rx(k), de densité spectrale de puissance Sx(f), ergodique dont une réalisation
(trajectoire) est le signal (observé) z(n) ?

e Quelles sont les propriétés des processus aléatoires a temps discret apres une opération
de filtrage ?

57
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Rappel : Variable aléatoire = application mesurable (de Q@ — R telle que I'image
réciproque X 1(B) € A V borélien de R) définie sur un espace probabilisé(2, A, P)
ou 2 est 'ensemble des évenements, A un sous-ensemble de €} possédant une structure
particuliere et P une mesure de probabilité.

6.2 Processus aléatoire

6.2.1 Définition

Processus aléatoire a temps discret : famille de v.a. indexée par n € Z. Notation :
X(n,w).

e Interprétation statistique. On fixe un (ou plusieurs) instant d’observation n = nq,
on obtient une (ou plusieurs) variable aléatoire X (n1,w) qui se préte bien a un calcul
(théorique).

e Interprétation temporelle. On fixe une épreuve particuliere w = wi, on obtient
une observation (réalisation, trajectoire) particuliére z(n,w) qui a une signification

physique (on interprete le signal que ’on cherche & traiter comme la réalisation d’un
processus aléatoire).

6.2.2 Interprétation statistique
Statistique du ler ordre

On fixe un instant particulier n = n;. On obtient une variable aléatoire X (nq,w). Si on
connait sa fonction de répartition

Fx(z;n1) = P{X(nl) < z}

ou la densité de probabilité px(z;n1) (si la fonction de répartition est différentiable par
rapport a x), on peut calculer tous les moments d’ordre M

+0o0
E{XM(ny)} :/ eMpx (z;n1)de.
—00
Dans la pratique, on utilise les deux premiers moments, la moyenne
mx(n1) = E{X(m)}
et la variance (le moment d’ordre 2 centré)

0% (n1) = B{(X(n1) —mx(m))*}.
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Statistique du 2éme ordre

On fixe deux instants particuliers n = n; et n = ny. On obtient deux variables aléatoires
X(ni,w) et X(ng2,w). Sion connait la fonction de répartition conjointe

Fx(x1,29;m1,n2) = P{X(n1) < 21 et X(n2) < x2}

et la densité de probabilité conjointe px (x1,x2;n1,n2), on peut en déduire tous les mo-
ments d’ordre M et M’

+o0 oo
E{XM(nl)XM (n2)} :/ / J:{V[acéw px (21, x2;n1, n2)dx1dxs.
—o0 J—0o0

Dans la pratique, on utilise le premier moment conjoint centré (fonction d’autocovariance)

Rx(n1,n2) = E{[X(n1) — mx (n1)][X (n2) — mx (n2)]}

—+oo —+oco
Rx(ni,n2) = / / [z1 —mx(n1)][z2 — mx(n2)px (21, x2; n1, n2)dz1dzs.

Statistique d’ordre supérieur

Généralisation délicate pour un nombre infini (mais dénombrable pour les p.a. & temps
discret) d’instants d’observation.

Processus stationnaire au sens large (SSL)

Si la moyenne et la variance ne dépendent pas de I'instant d’observation n, si la variance est
bornée et si I’autocovariance ne dépend que de ’écart entre les deux instants d’observation,
alors on dit que le processus X (n) est stationnaire au 2éme ordre au sens large. On
supposera cette propriété vérifiée dans toute la suite.

On notera la moyenne, la variance et la fonction d’autocovariance respectivement

mx = E{X(n)}
0% = B{(X(n) — mx)*}

Rx (k) = E{(X(n) — mx)(X(n + k) —mx)}.
La puissance du processus est donnée par

E{X?*(n)} = 0% + m%x = Rx(0) + m%.



60 CHAPTER 6. PROCESSUS ALEATOIRES : UNE INTRODUCTION

Processus stationnaire gaussien

Chaque variable aléatoire X (np) suit une loi gaussienne, toute combinaison linéaire de
X(ny)---X(ny) avec ny---ny et N quelconque suit une loi gaussienne. Un processus
aléatoire stationnaire gaussien est completement caractérisé par sa moyenne mx et sa
fonction d’autocovariance Rx (k) ou sa matrice de covariance

Rx(0)  Rx(1) -+ Rx(N-1)
ey = |
Rx(N—-1) - Rx(l)  Rx(0)

pour N “suffisamment grand”. Si z = [z1 - zpn]

_ 1 o3
Px(@) = G N o)

z—mx) Ty (z—mx)

Pour N =1, on retrouve la formule classique

1
px(a) = —F—
1/ 271'0?(

6.2.3 Interprétation temporelle

6—(z—mx)2/20§(

On dispose d’une réalisation (trajectoire)
Moyenne temporelle
. 1 e
T E
mx(w) = Jm o #(n)

n—=—

Corrélation temporelle

+N

> z(n)x(n+ k)

n=—

- 1
—
Rx(k,w) = lm o

L’hypothese d’ergodicité permet d’affirmer que mx(w) et Rx(k,w) sont indépendants de
w et que les moments statistiques sont presque sirement égaux aux moyennes temporelles.

6.2.4 Densité spectrale de puissance
Propriétés de I’autocovariance

X(n,w) : p.a. (SSL) a valeurs réelles et centré (pour simplifier)
Rx (k) = E{X(n)X(n+k)}

e Expression déterministe
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e symétrique Rx(—k) = Rx (k)

e bornée |Rx (k)| < Rx(0) = o%
En effet
E{[X(n) +XX(n+k)]*}>0 VA

Rx(0) 4+ 2ARx (k) + A>Rx(0) > 0 VA
R% (k) — R%(0) <0 Vk

e La matrice d’autocovariance
X(n) Rx(0) -+ Rx(N-1)
T'x(N) = B{ (X(n)- - X(ntN—1)]} =
X(n+N-1) Rx(N—-1) --- Rx(0)

est semi-définie positive puisque E{[ iV;Ol M X (n 4 k)2 >0 YA,

Définition de la densité spectrale de puissance

On appelle densité spectrale de puissance (ou spectre de puissance ou spectre tout court)
la transformée de Fourier & temps discret de la fonction d’autocovariance

+oo
Sx(f)= Y Rx(k)e?>/*,

k=—0c0
Existence si Rx (k) est une suite de module sommable.

Propriétés de la densité spectrale de puissance

e Fonction périodique (période 1)

+1/2 }
Ry (k) = /_ Ly Sxey

Fonction réelle et paire : Sy (f) = Rx(0) + 2372 Rx (k) cos(2r fk).

Fonction positive : théoreme de Bochner Sx(f) >0 Vf.

La puissance (totale) est donnée par
+1/2
L)} = Rx(0) +mk = [ Sx()f + i
—-1/2
Relation avec la transformée en z de la fonction d’autocovariance

+o00
Sx(z)= Y Rx(k)z"*

k=—oc0

(domaine d’existence : une couronne comprenant le cercle unité). Evaluation de la
transformée en z sur le cercle unité.
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6.2.5 Exemples de processus aléatoires
Bruit blanc

Processus aléatoire centré vérifiant

Rx(0) = o%
Rx(k) = 0 pour k#D0.

La densité spectrale de puissance est donc constante sur tout I’axe des fréquences

Sx(f) = o%-

Suite i.i.d. (suite indépendante et identiquement distribuée)

e Chaque élément de la suite a méme loi de probabilité a chaque instant
px(z;n) =px(z) Vn.

e Vni,ng, les via. X(n1) et X(n2) sont mutuellement indépendantes, donc décorrélées
(réciproque non vraie). C’est donc un bruit blanc.

Sinusoide a phase aléatoire

X(n,w) =acos(2m fin + ®(w))

avec a et f1 constants et ®(w) équirépartie entre 0 et 2.
Moyenne statistique

2m
mX(n):E{X(n)}:/O acos(2ﬁf1n+¢)g—fzo Vn

Moyenne temporelle

+N
> acos@rfin+ w) =0 VO(w)

n=—

1
= I
N e 2N F 1

mx (w)

Corrélation statistique

2w ) d¢
Rx(n,k) = F{X(n)X(n+k)} = /0 a“ cos(2m fin + ¢) cos(2m fi(n + k) + gﬁ)%

9 o 2m
2

Rx(n,k) = % cos (27 f1k).
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Corrélation temporelle

N
Z a? cos(2m fin + B(w)) cos(2m f1(n + k) + ®(w))

Rx(w) = |l 2N 1

+N
D [cos(2mf1(2n + k) + 20 (w)) + cos(2r f1k)]
N

a? I 1

— lim

2 N—o+oo 2N +1
n

Rx(w) =

a2
Rx(w) = 5 cos(2m f1k).

Conclusion : processus stationnaire et ergodique au 2éme ordre (au sens large) de densité
spectrale de puissance

—+00
CL2

Sx(f) =7 D 6(f ~h—k)+6(f +h - k).
k=—00

Deux cas extrémes : une suite i.i.d. est totalement imprévisible (source “sans mémoire”),
une sinusoide a phase aléatoire est presque totalement prévisible.

6.2.6 Intérét d’un modele probabiliste : un exemple

Quantification = codage de source = discrétisation des amplitudes. Parametre fondamen-
tal = b = résolution = nombre de bits par échantillon (en moyenne).

Considérons un signal a temps discret (n) prenant ses valeurs dans l'intervalle [— A, +A].
La démarche la plus naturelle pour définir un quantificateur consiste a

1. partitionner I'intervalle [~ A, +A] en L = 2" intervalles distincts de méme longueur
A =2A/2°

2. numéroter chaque intervalle,
3. définir un représentant par intervalle, par exemple le milieu de I'intervalle.

La procédure d’encodage consiste & décider a quel intervalle appartient x(n) puis a lui
associer le numéro i(n) € {1---L = 2%} correspondant. C’est le numéro de I'intervalle
choisi, le symbole canal, qui sera transmis ou stocké. La procédure de décodage con-
siste & associer au numéro i(n) le représentant correspondant (n) = #*") choisi parmi
I'ensemble des représentants {21 - - gl }. On appelle 'ensemble des représentants un dic-
tionnaire (codebook). Les procédures d’encodage et de décodage de ce quantificateur sont
schématisées figure 6.1.
L’erreur de quantification a pour expression

Pour caractériser la dégradation apportée par 'opération de quantification, il faut définir
un critere et proposer un modele simple pour les signaux intervenant dans ce critere. On
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+A
11

S x(n)
10 gj q(n)

01

00

Figure 6.1: Quantificateur scalaire uniforme.

suppose que z(n) est la réalisation d’un processus aléatoire X (n). Comme critére, on
choisit le rapport signal sur bruit

E{X?(n)}

50 = BX () — 2P}

A priori Verreur de quantification g(n) n’est pas de nature probabiliste puisque ¢(n) est
une fonction déterministe de z(n). Pour simplifier cette étude, on prend comme modele
pour représenter cette erreur de quantification ¢(n), un processus aléatoire Q(n) avec les
hypotheses suivantes.

e Il prend ses valeurs de facon équiprobable dans l'intervalle [-A/2, +A/2].
e Q(n), Q(n —1), ... sont indépendants entre eux.
e (n) et X(n) sont indépendants.

Le processus aléatoire Q(n) est une suite de variables aléatoires indépendantes et iden-
tiquement distribuées (une suite i.i.d.). La moyenne de l'erreur de quantification est nulle,
sa variance est donnée par

Az g A2 1 [24\? A2
2 — B{0? :/ R e T
7 = F{Q"(n)} _aj A= T\ 3

Si on suppose X (n) uniformément réparti dans l'intervalle [— A, +A], hypothese irréaliste
pour un signal quelconque mais cela entraine un calcul simple, sa moyenne est nulle et sa
variance a pour expression

2 2 4,1 A?
ox = EF{X (n)}:/Ax ﬂdm:?.
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On obtient la relation qui donne la puissance de 'erreur de quantification en fonction de
la puissance du signal et de la résolution b

O'é = Ug( 2-2b,

Le rapport signal sur bruit a pour expression

E{X?(n)} 2
10 logyq O} 10 logyq 2%” = 6,02 b.
Le fait de rajouter un bit revient donc a augmenter le rapport signal sur bruit de 6 dB.
Exemple du CD : entre le seuil d’audition absolu et le seuil de douleur, 'oreille a une
dynamique en puissance de l'ordre de 120 dB. Il aurait donc fallu que le CD réalise une
quantification scalaire sur 20 bits (au lieu de 16) !

Si on suppose X (n) gaussien, on obtiendrait

aé =co% 27% avec 10logyy(c) ~ 4.3 dB

6.3 Filtrage d’un processus aléatoire

6.3.1 Probléme

Connaissant les propriétés (au 2éme ordre) du processus stationnaire X (n), i.e. sa moyenne
mx, sa variance 0%, sa fonction d’autocovariance Rx (k) et/ou sa densité spectrale de
puissance Sx(f), quelles sont les propriétés du processus filtré Y'(n) par le filtre (stable)
de réponse en fréquence H(f) ? Le processus Y (n) est-il stationnaire (au 2éme ordre au
sens large) ? Si oui, expression de my, 0%, Ry (k) et Sy (f).

Probleme mathématique délicat pour définir proprement le filtrage d’un processus
aléatoire. On se contentera d’admettre que I'opération de filtrage d’une réalisation

+oo
yi)= > hk)z(n—k)

k=—o0
se généralise

+o0o
Y(n)= > hk)X(n—k)

k=—o00

ou que l'on se limite & I’étude d’un filtrage d’un p.a. par un filtre RIF (combinaison linéaire
d’un nombre fini de v.a.). On rappelle qu'une condition de stabilité du filtre est que la
réponse impulsionnelle soit de module sommable.

6.3.2 Formule de filtrage

Moyenne

+oo +o0
E(Y(m}=E{ Y. hk)X(n—k}= S h(k)E(X(n—k)}

k=—o00 k=—o00
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E{Y(n)} =mx Z h(k) = mx H(0).

k=—o00

Cette moyenne ne dépend pas de l'instant d’observation n. Si le processus d’entrée est
centré, le processus de sortie I'est aussi.

Intervariance entrée-sortie

On supposera X (n) centré par la suite (pour simplifier). Appelons

Rxy(n, k) = BE{X(n)Y(n+k)} = E{X(n Zh X(n+k—1)}

l=—00
+o00
Rxy (n, k) Z hOE{X(n)X(n+k-1}= > h(l)Rx(k—1)}.
l=—00 l=—00

Cette intercorrélation ne dépend pas de n, elle ne dépend que de k. Comme
ny(k}) = h(k) * Rx(k)

on obtient

Sxv (f) = H(f)Sx(f).

Autocovariance de la sortie

Ry(n,k) = E{Y(n)Y(n+k)} = E{Y (n Zh X(n+k-1)}

l=—c0
+00 +oo
= 3" hOBEY()X(n+k-D}= Y hl)Ryx(k—1).
l=—00 l=—o00

L’autocovariance est indépendante de n, elle ne dépend que de k. La propriété de station-
narité se conserve donc par filtrage. On a

Ry (k) = h(k) * Ry x (k)

Sy (f) = H(f)Syx(f)

Comme

Ryx(k) = E{Y(n)X(n+k)} = E{X(n)Y (n — k)} = Rxy(—k)

et que

Syx(f) = Z Rxy (—k)e *m/k = Z Rxy (k)e 727Dk = Syy (= f)

k=—o00 k=—00
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on obtient
Sy(f) = H(f)Sxy(=f) = H(f)H(=f)Sx(=f)

finalement

Sy (f) = H(HH(=1)Sx(f) = [H(f)*Sx(f)

puisque Sx (f) est une fonction paire et que H(f) a la propriété de symétrie hermitienne.

6.3.3 Remarques et interprétation
Généralisations

Généralisation a un processus a temps continu
Sy (f) = TFTC{E{X()X(t +7)}} = [H()[*Sx (/).
Utilisation de la transformée en z

Sy(z) = H(z)H(z" 1 Sx(2).

Processus gaussien

Le caracteére gaussien se maintient par filtrage

Densité spectrale de puissance

Considérons un filtre passe-bande (idéal) autour d’'une fréquence f;

H(f) = 1 st [flelfi=A/2,A+A/2]

= 0 sinon.
Comme
Sy(f) = Sx(f) st [flelfi—A/2,i+A/2
= 0 sinon,
on obtient

+1/2
/ S (F)df ~ 25x(f1)A

—1/2

pour A suffisamment petit. Comme le premier membre est nécessairement positif (ou
nul), on remarque que Sx(f) > 0 Vf. Sx(f) s’interprete comme une densité spectrale de
puissance.
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Processus ARMA

Si le processus d’entrée X (n) est un bruit blanc centré de variance 0%, la sortie Y (n) est un
processus de densité spectrale de puissance Sy (f) = |H(f)|?0%. Par exemple, si le filtre
est un filtre AR(4) avec deux fois deux pdles complexes conjugués de module légerement
inférieur a 1 et d’argument +/ — 7/8 et +/ — w/4, on obtiendra en sortie un processus
aléatoire ayant de la puissance surtout concentrée dans deux bandes de fréquence voisines
de f =1/8 et f =1/4. On voit qu’il est facile de créer un signal synthétique ayant des
composantes spectrales particulieres.

6.3.4 Exemple sous forme d’exo

Filtre défini par la relation de récurrence

y(n) —ay(n — 1) = bx(n).

Processus d’entrée X (n) : processus stationnaire centré de fonction d’autocovariance
{RX(0)7 RX(1)7 RX(Q)? o } = {O-g(a CO_%{? 0,-- }

Caractéristiques du filtre

b .
H(Z) = 1—70,2_1 S1 |Z’ > |(I‘
b .
H(f) = m S1 ’a‘ <1
b2
[H(f)

T1- 2a cos(2nf) + a?
{h(0), h(1), h(2),---} = {b,ba,ba?,- -}

Caractéristiques du processus d’entrée
Sx(z) =o%(cz+1+cz™)
Sx(f) = 0% (14 2ccos(2nf))
Caractéristiques du processus de sortie

cz+1+cz7!

Sy () = bok (1 —a2)(1—az"1)

1+ 2ccos(27f)
2.2
Sy(f)=1b Ix71_ 2a,cos(2m f) + a?
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Souvent, on désire connailtre la puissance du processus de sortie
) ) 1/2
7t = By} = ry(0) = [ sv(nar

—-1/2

Calcul plus facile en utilisant I'expression en z

1 dz
2 —

/ ezl +14+c271 dz

1—az)(1—az"l) z

2 = 1252 / cz? +z+c "
X27Tj

r z2(1—az)(z—a)
et en appliquant le théoreme des résidus (deux poles a l'intérieur du cercle unité z=0 et
z=a)
c ca’® +a+c

ERTEE)

2eme méthode : décomposition en éléments simples puis développement en série de Laurent
de

9 1+ 2ac

2 2 2
oy = b%c _—
Y X X712

| =b’o

cz+14czt
Y1 —az)(1—az™)

oy = E{) h(k)X Zh X(n—1)}

oy =Y h(k)[ch(k — 1) + h(k) + ch(k + 1)]o%
k

Sy (z) = bo%

3eme méthode

6.4 Théorie de ’estimation : une introduction

X (n) p.a. stationnaire et ergodique veut dire

my = E{X(n)} = lim 2N1+1 D @)
n N

+N

N

1

Rx(k) = E{X(n)X(n +k)} = lim o=

En pratique, on ne dispose qu’une seule réalisation comportant un nombre fini N d’échantillons
[(0)---z(N — 1)]. Comment utiliser “au mieux” ces données ?
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6.4.1 Moyenne “empirique”

On pose

myx est une v.a. puisqu’elle dépend d’un tirage aléatoire. Elle a une moyenne et une
variance

| Nl N-1
E{mx}= E{N Z X(n)} = N Z mx =mx
n=0 n=0

N-1 1 N-1
var{imx} = B{[(5 Y_ X(n)) = mx]*} = 5 B{[Y_(X(n) —mx)’}
n=0 n=0
N-1N-1 ]n]
var{mx} = N2 Z Z Rx(n—m =% Z (n).
n=0 m=0

Donc var{mx} # 0 mais on montre que limy_,o, var{mx} — 0. On dit que cet estimateur
tend “en moyenne quadratique” vers mx.

6.4.2 Covariance “empirique”

On supposera X (n) centré pour simplifier les notations. On pose

N—-1-k

—% Z z(n)x(n+k) pour k=0---N —1.
n=0
Comme
N 1 N—-1-k N — k
PR = 3 BOX0X () = R )

cet estimateur est biaisé mais “asymptotiquement sans biais”. Nécessité de calculer aussi
var{Rx(k)} mais calcul compliqué.
Remarque : on aurait pu choisir

Ex( _z: n+k)

ce qui aurait rendu 'estimateur sans biais mais on montre que la variance est alors beau-
coup plus importante. Globalement ’estimateur biaisé est bien préférable (on lui trouvera
par la suite de nouvelles qualités). Le fait de pondérer la sommation qui comporte en
fonction de k de moins en moins de termes par toujours 1/N permet de tenir de moins en
moins compte de cette somme qui est de moins en moins fiable !
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6.4.3 Un estimateur spectral : le périodogramme

La détermination de la densité spectrale de puissance

+oo
Sx(f) =Y Rx(k)exp(—j2n k)

k=—o0

réclame la connaissance de Rx (k) pour k = 0---00. Ne disposant que de N données
observées [z(0)---x(N — 1)] on ne peut disposer qu'au plus N termes de la fonction
d’autocovariance (plus ou moins fiables).

En remplagant dans l’expression précédente Rx (k) par ﬁx(k), on obtient

N-1 N—-1-k

Sx(h= 3 = 3 am)a(n+ k)] exp(—j2r k)

k=—N+1 n=0
ce qui donne
1 Nl
Sx(f) = 51 3 wlw) exp(—j2n n) P
n=0
Si on évalue cette expression aux fréquences f = fr = k/L, on obtient la formule du
“périodogramme”

SX(E) = 7N‘ E .Z'(TL) eXp<—.727Tzn)| pour k=0---L—1.

n=0

Les représentations fréquentielles des signaux de parole et de musique des figures 1.1 et
1.2 ont été calculées de cette facon.
Compléments

e Si L = N, le périodogramme est donné directement par le module au carré de la
transformée de Fourier discrete. Si L > N, on effectue également une TFD mais
avec “zero padding”.

e Emploi d'une fenétre de pondération dans le domaine temporel :

N-1

Sx(p) = 1 X vw)e(w)exp(-izn 7o)
ou dans le domaine fréquentiel :
N-1

~

Sx(

~

)= > Wm)Rx(n)exp(—j2min).

k
L L
n=—N+1
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e La densité spectrale de puissance S x (f) reste, pour toutes les valeurs de f possibles,
une variable aléatoire dont il peut étre intéressant de déterminer la moyenne et la
variance. Dans le cas d’une pondération par une fenétre dans le domaine temporel,
la moyenne est donnée par

+oo +oo
E{Sx(f)}= >, [% > v(n)o(n — k)E{X ()X (n — k)}] exp(—j2r fk)
k=—o00 n=-—00
+oo
E{Sx(f)} = Y a(k)Rx(k)exp(—j2mfk)
k=—o00
avec | oo
ak) = 3 w(nu(n k)
On a donc
R 1/2
E{Sx(f)} = Q(f) » Sx(f) = e Q)Sx (f = A)dA.

1l existe donc un biais qui disparait si N — co. Le périodogramme est un estimateur
“asymptotiquement sans biais”.

Il faudrait donner ’expression des intercovariances

E{[Sx(fx) — B{Sx(f)[Sx (fi) — E{Sx(f)}} = ...

On peut montrer que ces intercovariances sont nulles si | fr — fi| > 2/N.

6.5 Sinusoide bruitée sous forme d’exo

6.5.1 Probléme

On mesure un signal y(0)---y(N — 1) a 'extrémité d’un canal en sachant a priori que
le signal émis & 'entrée est une sinusoide pure de la forme x(n) = acos(27 fin + ¢). On
ignore la valeurs numériques prises par a, f1 et ¢. De plus, le signal a été perturbé par
son passage dans le canal. On désire calculer les valeurs numériques prises par a et fi a
partir des valeurs observées. Probleme d’“estimation statistique”.

6.5.2 Modélisation
On modélise le signal observé comme étant la réalisation d’un processus aléatoire
Y(n) =acos(2rfin + ®(w)) + B(n)

ot ®(w) est une variable aléatoire équirépartie entre 0 et 27 et ot B(n) est un bruit blanc
centré de variance o non-corrélé avec X (n) = acos(27fin + ®(w)).
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On a vu que X (n) est un processus aléatoire stationnaire au 2éme ordre (et ergodique)
de fonction d’autocovariance

a2
Rx (k) = ) cos(2m f1k).

On en déduit que Y (n) est un processus aléatoire stationnaire centré de fonction d’autocovariance

E{Y(n)Y(n+k)} = B{X(n)X(n+k)} + E{B(n)B(n + k)}

Ry (k) = a;cos(27rf1k) + o25(k).

Etudions quelques propriétés de la matrice d’autocovariance

Ry (0) -+ Ry(N-1)
'y =
Ry(N-1) --- Ry (0)
On obtient
'y =Tx + oI.

La matrice I'x est de rang non complet. En effet, on a
cos(2m f1k) + cos(2m f1(k — 2)) = 2cos(2m f1(k — 1)) cos(27 f1)

ce qui entraine

Rx<k’) + Oth)(U{J — 1) —|—Rx(]€ — 2) =0

donc
Rx(0) Rx(1) Rx(2) 1 0
Rx(l) Rx(O) Rx(l) a1 = 0
Rx(2) Rx(1) Rx(0) 1 0

Seuls deux vecteurs colonne de I'y sont linéairement indépendants ce qui montre que le
rang de I'x est égal a = 2.

Appelons \; et Ay les deux valeurs propres non-nuls (et positives puisque I'x est semi-
défini positif) de I'x et v; et vy les deux vecteurs propres correspondants. Appelons
ws - - - wy les vecteurs engendrant ’espace nul. Comme

I'yv=Txv+0c%v=A+0%)v

I'yw =Txw+ o?w = 0w

on en déduit que les valeurs propres de I'y sont égales a

M 402 X400, -, 02

et que le vecteur propre associé a la plus petite valeur propre doit étre de la forme [1, aq, 1]°.
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6.5.3 Algorithme

L’étude précédente donne la démarche. Il faut, dans la pratique, se limiter a la connais-
sance d’un nombre fini de valeurs observées. On en déduit I'algorithme :

1. A partir de y(0) - - - y(N — 1), calculer

N—-1-k
1
Rx (k) = N Z y(n)y(n+ k) pour k=0,1,2.

n=0

2. Construire la matrice I'y de dimension 3.

3. Calculer le vecteur propre associé a la plus petite valeur propre. Il doit étre de la
forme [1, ag, 1]°.

4. En déduire 1
fi= ?AT’CCOS(%).

™

6.5.4 Autre méthode
1. A partir de y(0)---y(N — 1), calculer

N—
Y(k)= Z y(n)e I2R/N bour k=0,--- N —1.
—0

—_

3

2. En déduire
argmax |Y (k)]

fi = R

Comparaison avec la méthode précédente ?



Appendix A

Modélisation AR, prédiction
linéaire

A.1 Processus AR d’ordre P

A.1.1 Définition

Solution de
X(n)+aX(n—1)+---4+apX(n—P)=W(n)
ot W (n) est un processus aléatoire centré, stationnaire au second ordre, blanc, de variance

0¥, et ou le polynome A(z) = 1+ajz™' + -+ apz~T a toutes ses racines & I'intérieur
du cercle unité.

A.1.2 Propriétés

Comme E{W(n)X(n—k)} =0 pour k > 0 et que E{W(n)X(n)} = o, on en déduit les
équations “normales” ou de “Yule-Walker”

R(0) R(1) R(P)] 11 o2,
R(1) R(0) a | _ o | A)
R(P) R(1) R(0)] Lar 0

A.1.3 Remarque

Pour obtenir une réalisation z(n) de X (n), il suffit de construire une réalisation w(n) de
W(n) (générateur de bruit blanc) puis de réaliser une opération de filtrage (filtre stable
et causal étant données les hypotheses).

75
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A.2 Prédiction linéaire d’ordre P

A.2.1 Définition

P
X(n)=-mX(n—1)——apX(n—P)=- a;X(n—1)
1=1

ou X(n) est un processus aléatoire stationnaire au second ordre, centré, de fonction
d’autocovariance Ry (k).

A.2.2 Probléeme

Recherche des coefficients [a; - - - aup] minimisant Perreur quadratique E{|X (n) — X (n)[2}
entre la vraie valeur X (n) et la valeur prédite X (n). On pose

P
Y(n) = X(n) — X(n) = X(n) + 3" aiX(n — i),
i=1
Y (n) représente “I’erreur de prédiction”.

2
of = B{|X(n) + ) ciX(n )]}
i=1

Rx(1) R(O) -+ RP=1)7Tla
oy =ox +2n---ap] | 1 | +[a--ap] : : :
Rx(P) R(P—1) ---  R(0) ap

032/ = o§( + 20! + o'Ra

La minimisation de 032, relativement a o entraine
r+Ra=0

et

t

a%/:ogg—i-ZQtz—gz:ag(—l—gtz.

Si on regroupe ces deux équations, on remarque que l'on obtient les équations normales

(A.1) ou 0%, est remplacé par o2

A.2.3 Filtre blanchissant

On peut montrer que l'erreur de prédiction Y (n) est blanche (plus exactement que le signal
X (n) a été blanchi). En effet, on remarque que

OE{|Y (n)*}

Oa; =0 = E{Y(n)X(n—-i)}=0 Vi=1---P.
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Supposons P grand. Comme Y (n) est non corrélé avec tous les X (n — i) précédents et
que Y (n — i) est une combinaison linéaire de ces X (n — i), on en déduit que Y (n) est
non corrélé avec Y (n —i). L’erreur de prédiction Y (n) est donc un bruit blanc mais cette
propriété n’est vérifiée a priori que si P — oo (comportement asymptotique). On appelle
le filtre donnant Y'(n) a partir de X (n) le “filtre blanchissant”.

Si Y(n) a été totalement blanchi, on peut écrire

Sy (f) = [ANIPSx(f) = oF

ot A(f) est la réponse en fréquence du filtre A(z) =14+ a2z~ +---+apz~F. On a donc

_ o
D= e

A.3 Comparaison

e Processus AR d’ordre P : caractérisée par une opération de filtrage, entrée W(n),
sortie X (n), filtre de fonction de transfert 1/(1 4+ a2z~ +--- +apz~").

e Prédiction linéaire d’ordre P : caractérisée par une opération de filtrage, entrée

X (n), sortie Y (n), filtre de fonction de transfert A(z) =1+ a1zt + -+« + apz L.

e Propriété : si X(n) = X(n) =, les coefficients [a; - - - ap] et [y --- ap] vérifiant le
meéme systeme linéaire (les P derniéres équations des équations normales) doivent
donc étre égaux. Il en est de méme pour les deux puissances 012, = U%V. On a
donc A(z) = A(z), 0% = o}, et méme Y(n) = W(n). L'erreur de prédiction
est alors un bruit blanc. D’une fagon plus générale, la théorie de la prédiction
linéaire permet d’affirmer que si z(n) peut étre considéré comme la réalisation d’un
processus aléatoire AR d’ordre Py, alors il existe un filtre de fonction de transfert
A(z) totalement blanchissant dés que son ordre P devient supérieur ou égal a P.

A.4 Mise en occuvre

On ne dispose que de N échantillons [z(0)---z(N — 1)].

A.4.1 Premiere démarche : estimation de la fonction d’autocovariance
Rappelons la propriété d’ergodicité pour un processus stationnaire

1 +N
Rx(k) = E{X(n)X(n— k)} = lim — — > a(n)z(n — k).

n=—

Une démarche “raisonnable” consiste a calculer

N-1
1
Rx (k) = N Z z(n)x(n —k) pour k=0---P
n=~k
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puis a résoudre
a=-R7'r

en remplacant la vraie fonction d’autocovariance par son estimée dans R et r.

Problémes : La matrice R reste-t-elle inversible 7 Le filtre 1/A(z) est il stable 7 On
démontre que la propriété (tres importante dans la pratique) “les racines du polynéme
A(z) sont a l'intérieur du cercle unité” est liée au caractere défini positif de la matrice
d’autocovariance R. On peut vérifier que cette propriété est vérifiée si on choisit comme
estimateur de la fonction d’autocovariance, l’estimateur précédent !

A.4.2 Deuxieme démarche : minimisation directe

Donnons 'expression de I'erreur de prédiction

pour toutes valeurs de I'indice n. On obtient, en choisissant P = 2 pour simplifier I’écriture,

oy 1 [ 20 1 [ x(=1) r(=2)
y(1) z(1) z(0) z(—-1)
y(2) z(2) z(1) z(0)
z z z z o ] -
y(N — 1) 2(N — 1) H(N-2) a(N-3) |-
y(N) z(N) r(N—-1) x(N-2)
L y(N+1) | | (N +1) | | z(N) (N —1) |

On met en évidence des “conditions initiales” z(—2) x(—1) et des “conditions finales”
2(N) (N + 1). Si elles sont inconnues, on ne prend en compte que les N — P équations
centrales

y(2) z(2)

y(N‘— 1) a;(N‘— 1) x(N'— 2) m(N.— 3)

y=z+Ta
Il s’agit de calculer le vecteur g minimisant la norme du vecteur y. On écrit

L1+ (fa))(a +Ta) = 0

5[(1:% +2z'Ta + a'T'Ta)] = 0
a

Itz +T'Ta = 0.

On retrouve les équations normales oll I'¥x est une estimée du vecteur r et ot I''T" est une
estimée de R.
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A.4.3 Comparaison

Les deux démarches sont-elles équivalentes ? La réponse est non ! La matrice

22(1) + - 2}(N - 2) z(0)z(1) + -+ x(N — 3)z(N — 2)

PT = | L )2(1) £+ 2(N — 3)z(N - 2) 22(0) 4 ---22(N — 3)

reste symétrique mais elle n’est plus forcément définie positive ce qui n’assure plus forcément
la stabilité du filtre 1/A(z). La premiere démarche est bien préférable dans la pratique.

A.4.4 Spectre LPC

On a vu que si z(n) peut étre considéré comme la réalisation d’un processus aléatoire AR
d’ordre Py, alors il existe un filtre de fonction de transfert A(z) totalement blanchissant
des que son ordre P devient supérieur ou égal a Fy. Dans ce cas, on peut écrire que la
densité spectrale de puissance de X (n) est égale a

0.2
= Y .
AP

Sx(f)

Cette formule suggere un deuxiéme estimateur spectral. A partir des N données ob-
servées, on estime les P premiers coefficients de la fonction d’autocovariance, on résout
les équations normales puis on exploite la formule précédente.

Les tracés de la figure A.1 sont relatifs a un son de parole voisé. On observe dans le

04F T T T T T — 10

03F ] ol

|

WL

)
T

N
S
T

oL Il LA \'
I/ P [V
l ik W% N

Puissances en dB
& 1
]
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|
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Al \‘\hm“w“\.\ |

1

L L L L L L4 . .
50 100 150 200 250 300 Fréquences en kHz

Figure A.1: Signal de parole : exemple d’un son voisé.

domaine fréquentiel & partir du périodogramme un spectre de raies avec une fréquence fon-
damentale de 250 Hz (correspondant & un locuteur féminin) et les différents harmoniques.
Le spectre LPC ne donne que “I’enveloppe spectrale”. Ces deux estimateurs ne sont pas
équivalents. Le choix entre les deux dépend essentiellement de I’application.
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Appendix B

Transformée de Fourier a court
terme

B.1 Introduction

Les signaux que 'on est amené a traiter dans la pratique (du signal de parole, des sig-
naux biomédicaux, des signaux radar ...) ne sont ni périodiques, ni stationnaires. Les
caractéristiques spectrales du signal & analyser évoluent avec le temps. On cherche une
représentation temps-fréquence adaptée.

B.2 Définitions

On appelle transformée de Fourier a temps discret a court terme la fonction de deux
variables

+o00
X(n,f)=Y_ h(n—1Daz(l)e 7/

l=—00

ol n est un entier relatif caractérisant le temps, f un réel représentant la fréquence et
h(n) une fenétre dite d’analyse dont les valeurs seront supposées nulles a l'extérieur de
I'intervalle [0--- N — 1]. Comme la transformée de Fourier est appliquée & un signal de
durée finie, il suffit d’évaluer cette expression pour N fréquences multiples de 1/N. On
obtient la transformée de Fourier discrete a court terme

+o0
Xi(n)=X(n, f = %) = Z h(n — l)x(l)e_ﬂ’r%l. (B.1)
l=—00

On ne considérera par la suite que ce cas.
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B.3 Interprétation par bancs de filtres

Si dans l’expression précédente (B.1) on fixe la fréquence, c’est-a-dire l'indice k, Xy(n)
s’interprete comme un signal. Il est de la forme

+o00
= > h(n—Uy(l) avec (D) = z(1)e 27w,

l=—00

Il s’agit d’une opération de modulation du signal z(n) par I’exponentielle complexe a
la fréquence (—k)/N suivie d’une opération de convolution. La transformée de Fourier
discrete a court terme s’interpréete comme une translation vers la gauche du spectre du
signal z(n) suivie par un filtrage caractérisé par la réponse en fréquence H (f), transformée
de Fourier a temps discret de h(n). Lorsque I'on utilise une fenétre rectangulaire, il s’agit
d’un filtrage passe-bas comme le montre le tracé de la figure 4.1. Il en est de méme pour
tout autre type de fenétre (Hamming, Kaiser ...). Ce filtrage passe-bas est d’autant plus
sélectif que la fenétre d’analyse est longue. La résolution fréquentielle est donc directement
fonction de la longueur de I'observation. Le choix de N est le résultat d’'un compromis
car on désire généralement avoir aussi des fenétres courtes pour pouvoir analyser des
phénomenes courts.

Si I'on met en parallele N filtres de méme réponse en fréquences H(f), on obtient
un banc de filtres appelé banc de filtres d’analyse. Il extrait du signal sa contribution
fréquentielle dans toutes les sous-bandes centrées aux fréquences multiples de 1/N.

Il existe une deuxiéme interprétation en écrivant Xy(n) sous la forme

Xi(n) = e 927 wn io [h(n — 1)ed2™ N (=D]a(1)
l=—00
+oo
Xp(n) = e "N N " [h(1)e’* ¥ |z (n — 1)
l=—0

La transformée de Fourier discrete a court terme s’interpréete maintenant comme un filtrage
passe-bande de z(n) par un filtre de réponse en fréquence H(f — k/N) suivi par une
translation du spectre du signal. Les deux interprétations sont équivalentes. Le banc de
filtres est dit uniforme.

B.4 Fenétre glissante et reconstruction

Connaissant X (n) pour k = 0--- N —1, a l'instant n, il est possible de calculer h(n—1)z(l)
pour toutes valeurs de [ € [n — N + 1---n| pourvu que h(n — () soit différent de zéro. On
obtient

:U(l): n—l ZXk 672” 1.

Cette expression montre qu’il n’est pas nécessaire de calculer X (n) & tous les instants n.
La connaissance de X (n) pour n multiple de N semble suffire a priori pour reconstruire
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le signal. On donne dans ce paragraphe un premier élément de réponse a ce probleme de
reconstruction [?].
On appelle

N—
_1 Z (n)e2m P
N

k=0

Péchantillon & 'instant p provenant d’une transformée de Fourier discréte inverse de X (n)
obtenu a l'instant n. Si 'on pondére cet échantillon par la valeur f(p —n) ou f(n) est
une nouvelle fenétre de pondération et que I'on additionne les différentes contributions a
I'instant p, on obtient le signal

+oo
> flp—n)E(n,p)

n=—0oo

N-1
Z f(p—n) 1 ZXk(n)ejz’T%p. (B.2)
N

n=—oo =

Le signal reconstruit #(p) a I'instant p est obtenu par "recouvrement et addition” (overlap-
add). Donnons a la fenétre d’analyse la possibilité de glisser a chaque étape de M
échantillons avec 1 < M < N, c’est-a-dire que 'on évalue une transformée de Fourier
discréte a court terme tous les mM échantillons. Les relations (B.1) et (B.2) deviennent

Z h(mM — Da(l)e 92N

l=—0

2

1 ok
Z f(p—mM) < " Xy ()
0

=
Il

m=—0oQ

Cherchons les conditions que doivent remplir les deux fenétres de pondération h(n) et f(n)
de fagon que l'on puisse reconstruire exactement le signal. On a

400 N—-1 4oc0 &
Z flp—mM)— Z Z h(mM — l)z(l)e” 92m 1 gi2m 3P

“+oo “+oo

N-1
z(p) = Z Z f(lp—mM)h(mM —1)— ! Zeﬂ” |z(1).
N =

l=—00 m=—00
La condition de reconstruction parfaite est donc

N—

,_.

“+o00
1
> flp—mM)h (mM — 1)~ e=32mx (=P) — \(p — ).

m=—00 k=0
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Comme

N
N Z e I2mn(=p) = 1 &= p+gN
k=0
= 0 sinon
cette condition se traduit par
400
Y fp—mM)h(mM ~p—qN) = Aq).
m=—00

En pratique, comment remplir cette condition ? Supposons que les deux fenétres sont de
durée finie et de méme durée N. On peut vérifier que cette condition est remplie, par
exemple,

e si les deux fenétres sont des fenétres rectangulaires avec N = M,
o si M = N/2 et si

f(n)h(—n) = sinQ(%) pour0 <n <N -1

= 0 sinon.

La théorie dite des bancs de filtres a reconstruction parfaite permet de généraliser cette
étude.



Appendix C

Egalisation

C.1 Introduction
e Emetteur : d(n) € {0,1}, a(n) € {—1,1}, h.(t) = filtre d’émission.
ze(t) = Z a(n)he(t —nT)

n

T = temps bit, 1/T" = débit.
e Canal : Canal convolutif bruité

p(t) = he(t) % ze(t) +b(t) = > a(n)h(t — nT) + b(t)

n

avec h(t) = he(t) * he(t).

e Récepteur : Structure “optimale” dans le cas d’un bruit gaussien : z,(¢) filtré par
hy(t) puis échantillonné a la cadence T' = z(nT') puis une prise de décision =
a(n) € {—1,1} ou d(n) € {0,1}.

Conclusion : “Canal numérique équivalent” = boite noire recevant en entrée a(n),
caractérisé par une réponse impulsionnelle globale (a temps discret) g(n), bruitée par
b(n), fournissant en sortie

z(n) = g(k)a(n — k) + b(n).
k

Hypotheses :

e b(n) = bruit blanc centré gaussien de puissance o%.

e ¢g(n) = filtre causal de durée finie L prenant en compte I’ensembles filtre d’émission/filtre
caractérisant le canal/filtre de réception.

z(n) = g(0)a(n) + g(Va(n—1)+---+g(L — 1)a(n — L + 1) 4+ b(n).

x(n) dépend non seulement de a(n) mais aussi des symboles précédents. On parle
d’Interférence Entre Symboles (IES).
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Probleme (cf figure C.1) : Détermination d’un filtre supplémentaire de réponse impul-
sionnelle w(n) atténuant I'ITES de fagon a simplifier la prise de décision.

Lb(n)
a(n) s(w) A o(n) v [T — )

Figure C.1: Canal numérique équivalent.

e leére idée : “égaliseur zero forcing” = “inverser” le filtre g(n). Si le bruit est de tres
faible puissance, il suffit de filtrer z(n) par le filtre w(n) tel que W(z) = 1/G(z)
pour obtenir y(n) ~ a(n).

e 2¢me idée : “bgaliseur de Wiener” = minimiser E{|A(n) — Y (n)[?}.

Préalable : estimer g(n) a partir de z(n) connaissant a(n). En effet, dans la pratique,
on connait les filtres d’émission et de réception mais pas le filtre caractérisant le canal (qui
peut varier fortement au cours du temps).

C.2 Propriétés des signaux

e a(n): réalisation d’une suite de v.a. A(n) € {—1, 1}, équiprobables et indépendantes.
On adonc E{A(n)} =(—1)*1/2+1x%(1/2) =0 et E{A(n)A(n+k)} = (k).

e x(n) : réalisation d'un p.a. X(n).

E{X(n)} = Zgn— JE{A(k)} + E{B(n)} =0
E{X(n)X(n+k)} = E{Zgn—l Zgn—Hc p)A(p) + B(n+k)]}
=3 g(n—gn+k—p)E{A()A(p)} + E{B(n)B(n + k)}

l p

—Zg (I+ k) + oBd(k).

C.3 Identification du canal

Exploitation d’une “séquence d’apprentissage” (systéme GSM : 23 symboles tous les 126
7). Deux méthodes :
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C.3.1 Expression de l’intercorrélation
Rax(k) = E{A(n)X(n+k)} = E{A(n Zg n+k—DA()+ A(n)B(n +k)}

Rax(k) =3 gln+k — DE{A() A1)} = g(k).
l

L’hypothese d’ergodicité veut dire

+N

Z a(n)z(n + k).

n=—

9Uk) = Rax(h) = Jim 5oy

7

Dans la pratique, le nombre d’échantillons observés est fini. On utilise I’ “estimateur

z(n+k) pour k=0---L—1.

||P12

Pour garder un effet de moyenne, il faut que N > L par exemple N ~ 10L.

C.3.2 Estimateur “des moindres carrés”

On connait {a(0)---a(N — 1)}. On mesure au récepteur {z(0)---z(N —1)}.

[ 2(0) ] a(0) €(0)
: : 9(0)
y(L) =| a) a(0) : +| el
: : e : g(L —1) :
Ly(N=1D ] [ aWN-1) -+ a(N-L+1) | (N —1) |
= Ag+e

Systeme sur dimensionné N > L. Critére : minimiser

lel]* = 2’z — 22" Ag + g" A" Ag.

Alz + AP AgPt =0

Pt [AtA]_lAtg.

et . e , v
Interprétation géométrique : €°P! est orthogonal au sous espace engendré par les vecteurs
colonnes de A.
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C.3.3 Relation entre les deux résultats

g =[Rax(0)--- Rax(L —1)]" et g? = [A'A]"' A’z. Exemple pour L =2 :

I a(0) -+ a(N—1) . : Raa(0) Raa(l) | _
NAA— R AA AA }_[

1
N | a(=1) - a(N-2) a(N'i 0 a(N;Q) Raa(1) Raa(0)

. R4x(0)
NAtx — RA)'i'(l)

Conclusion : gl et g2 tendent vers la méme limite lorsque N tend vers 'infini.

C.4 Egaliseur zero forcing

En absence de bruit, il suffit de prendre w(n) tel que w(n) * g(n) = §(n) soit W(z) =
1/G(z). La puissance du bruit en sortie est alors donnée par

+1/2 2
02:/ %8 _ df.
e TeEY

C.4.1 1ler probleme

Si |G(f)| = 0 dans une certaine bande de fréquences, la puissance du bruit en sortie peut
devenir trés importante. Exemple du “canal & évanouissement” (trajets multiples)

h(t) =1+ a16(t —t1) + axd(t —ta) + - -

H(f) =1+ ayexp(—j2mft1) + -
|H(f)|* =1+ 2a; cos(2mft1) +af + - --

Si le premier écho est presque aussi puissant que le trajet direct, a ~ 1 et |H(f)|> ~ 0
pour ft1 ~ 1/2.

C.4.2 2eéme probleme
“Propriété de phase” de G(z). Exemples :
¢ SiG(z)=1—(1/2)z" = W(2) =1+ (1/2)z7 + (1/2)?272 + - - si 2| > 1/2 =

y(n) = z(n) + (1/2)x(n —1) + -+ (1/2)%(n - Q).
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e Mais si G(2) = 1—2z"1 le pole de W (2) est a I'extérieur du cercle unité. Il faut trou-
ver un développement (en série de Laurent) dont le domaine d’existence contienne
le cercle unité. Il suffit d’écrire W (z) sous la forme

1 z

T — WD (/2P = = T

W(z) =

La réponse implusionnelle du filtre est anticausale :

1
— —Qm(n + Q).

y(n) = —ga(n+ 1)~ Jaln+2) -~

2 4

Pas de probleme particulier excepté le fait qu’il faille attendre I’arrivée de I’échantillon
a l'instant n 4+ @ pour prendre une décision en fonction du signe de y(n).

C.5 Egaliseur de Wiener
Minimiser E{|A(n)—Y", w(l)X (n—1)*} = 2E{[A(n)—>, wl) X (n—1)]X(n—k)} =0 Vk.
E{A(n)X(n—k)} = Z DE{X(n—1)]X(n—k)}

Comme

E{A(n)X(n —k)} = E{A(n)S(n —k)} = > g(p) E{A(n)]A(n — k —p)} = g(~k)

, on obtient

S w(l)Rxx(k—1) = g(—k) ¥k
l

ce qui donne dans le domaine fréquentiel :

oy ___G(=))
Concretement on résout
[ w(-Q)) | 0
Rxx(0) .. Rxx(Q) : g(L—1)
SR wo) | =]
Rxx(Q) -+ Rxx(0) : 9(0)
| w(@) ] 0

ou Rxx(k) est estimé & partir des données z(n) et g(k) par la procédure précédente
d’identification du canal.
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La puissance de ’erreur est égale a

+1/2

+1/2
E{|A(n) - Y (n)[?} = / =GP + / L THVOP

-1/

ou en remplacant W (f) par sa valeur

+1/2 2 +1/2 2
02:/ "fﬂzfg/ 75 __df.
“12 G+ —172 1G]

La puissance du bruit en sortie est plus faible que dans le cas zero forcing mais au détriment
de I'TES.




