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Chapter 1

Introduction

1.1 Aspect “Signal”

Signal = représentation physique d’une information envoyée d’une source vers un desti-
nataire. En pratique résultat d’une mesure par un capteur.

Exemple : signaux de parole (figures 1.1) et de musique (figures 1.2), signaux au-
diofréquences, variation d’une pression en fonction du temps.

1.1.1 Signal de parole

• Trois types de sons : voisés (signaux périodiques sur une durée inférieure à 100 ms,
existence d’une fréquence fondamentale, d’harmoniques), non-voisés (variations plus
rapides, signal plus “hautes fréquences”), plosives (support temporel très étroit).

En 64 ms, environ 12 “périodes” ⇒ 5 ms par période soit un premier pic à approxi-
mativement 200 Hz ⇒ voix féminine.

On privilégie dans ce cours l’étude de la représentation fréquentielle des signaux.
L’outil de base est la transformée de Fourier. Le module au carré donne la répartition
de la puissance en fonction de la fréquence (spectre).

• Signal non-stationnaire : les propriétés statistiques évoluent au cours du temps. Sig-
nal localement stationnaire sur des durées inférieures à une centaine de ms. Nécessité
d’utiliser des fenêtres de pondération.

La transformée de Fourier n’est pas utilisable directement. Nécessité de définir de
nouveaux outils.

• Mémorisation puis tracé par une machine d’un signal “à temps continu” (x(t) avec
t ∈ R) ⇒ signal “à temps discret” (x(nT ) avec n ∈ Z).

On privilégie très fortement dans ce cours l’étude des signaux à temps discret. Ex-
istence d’une transformée de Fourier à temps discret.
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Figure 1.1: Exemple d’un signal de parole : début d’une phrase (“Des gens ...”) prononcée
par un locuteur féminin. Effet de zoom et représentation fréquentielle du signal correspon-
dant.

• Choix de la fréquence d’échantillonnage. Recherche de conditions de telle sorte qu’il
n’y ait pas perte d’information par échantillonnage (que l’on puisse revenir au signal
de départ).

En pratique c’est le résultat d’un compromis. Le signal de parole est échantillonné
soit à 8 kHz (réseau téléphonique commuté, bande téléphonique) soit à 16 kHz
(téléconférences, communications de groupe, bande élargie).

Dans ce cours, importance des ordres de grandeur. Ce n’est pas un cours abstrait.

1.1.2 Signal de musique

• Bande Hi-Fi : l’oreille est sensible à des fréquences comprises entre 20 Hz et 20
kHz ⇒ fe = 32 kHz (bande FM, un peu juste), 44.1 kHz (CD), 48 kHz (studio
production).

• Timbre d’un instrument caractérisé par les pics dans le spectre.

• Importance de la représentation fréquentielle. Interprétation généralement plus facile
dans le domaine fréquentiel que dans le domaine temporel. Exemple d’un signal
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Figure 1.2: Exemple d’un signal de musique : violon. Effet de zoom et représentation
fréquentielle du signal correspondant.

dégradé par une opération de compression.

1.1.3 Autres signaux

• Images. Luminance : fonction de deux variables spatiales et du temps l(x, y, t).
Signal vidéo : définition d’un balayage de façon à se ramener à une fonction d’une
seule variable, le temps.

Ordre de grandeur de la “largeur de bande”. 625 lignes, 25 fois par seconde ⇒ 64 µs
par ligne. Écran très bonne définition : 1024 points (pixels) par ligne ⇒ fréquence
max : 512×(blanc, noir) ⇒ période max = 64/512 = 1/8 µs ⇒ 8 MHz. Largeur de
bande 1000 fois plus importante que la parole. Problème du traitement temps réel
dans une machine. A complexité de traitement équivalente, il faudra un processeur
1000 fois plus puissant pour traiter des images que pour traiter du signal de parole.
Dans la pratique, généralement traitements plus élaborés en parole qu’en image ...

• Signaux biomédicaux : EEG, ECG ...

• Radar, sonar ...

• Signaux sismiques (recherche pétrolière) ...



6 CHAPTER 1. INTRODUCTION

1.2 Aspect “système”

• Système = organe physique qui transforme un signal d’entrée en un signal de sortie.
Représentation par une bôıte noire. Exemple : système phonatoire (entrée = vibra-
tions des cordes vocales, système = conduit vocal, sortie = pression acoustique).

• Systèmes à temps continu et à temps discret.

• Traitement de base : opération de filtrage.

• Pour caractériser un système, autres outils que la transformée de Fourier : trans-
formée de Laplace pour les systèmes à temps continu et la transformée en z pour les
systèmes à temps discret.

1.3 Exemples de traitement

• Parole : compresser (transmission : téléphone mobile, GSM), synthétiser (serveurs
vocaux), reconnâıtre (commande vocale), améliorer la prise de son (filtrage d’antenne)
...

• Musique : compresser (diffusion, stockage, MPEG-Audio), modéliser, simuler synthétiser
(instruments, salle), corriger des enregistrements dégradés ...

• Images : compresser (archiver, MPEG), reconstruire (tomodensitométrie, scanner),
reconnâıtre (analyse de scènes, robotique), corriger ...

• Radar, sonar : détecter (applications militaires).

• Signaux sismiques : prospecter.

• Signaux biomédicaux : analyser, archiver.

• Autres applications : correction du canal de transmission (trajets multiples, in-
terférences), surveillance (non-destructive) de machines ...

1.4 Plan du cours, idées directrices

• Etude des signaux et des systèmes monodimensionnels.

• Etude très superficielle des signaux et des systèmes à temps continu. Cette étude
réclame un développement important pour être traitée correctement (distribution).
Plus de problèmes mathématiques délicats si on se restreint à l’étude des signaux
et des systèmes à temps discret. C’est un cours de base en traitement du signal
et non en théorie du signal. Impasse presque totale sur les filtres à temps continu
(analogiques) : vu dans d’autres cours. Uniquement quelques qualificatifs et notion
de réponse impulsionnelle et de réponse en fréquence. Impasse totale sur l’étude de
la transformée de Laplace.
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Etude des signaux et des systèmes à temps continu faite uniquement pour rappeler et
interpréter physiquement quelques propriétés de la transformée de Fourier (signaux
de module et carré sommables) et du développement en série de Fourier (signaux
périodiques).

• Etude des signaux et des systèmes à temps discret en privilégiant l’interprétation
fréquentielle (ce n’est pas un cours de théorie des systèmes) :

– Comment passe-t-on de la transformée de Fourier à temps continu (TFTC) à
la transformée de Fourier à temps discret (TFTD), à la transformée de Fourier
discrète (TFD, FFT) et à la transformée de Fourier à court terme (introduction)
? Cf table 1.1.
Importance pratique de ces transformées.

– Comment filtre-t-on des signaux à temps discret ?

• Introduction aux processus aléatoires.
Densité spectrale de puissance. Filtrage.
Modélisation paramétrique.

TFTC d’une fonction x(t) ∈ L1 ∩ L2

x(t) =
∫ +∞

−∞
X(f)ej2πftdf avec X(f) =

∫ +∞

−∞
x(t)e−j2πftdt

DSF d’une fonction x(t) périodique (T0)

x(t) =
+∞∑

k=−∞
X(k)ej2πkt/T0 avec X(k) =

1
T0

∫ +T0/2

−T0/2
x(t)e−j2πkt/T0dt

TFTD d’une suite x(n) (série convergente)

x(n) =
∫ +1/2

−1/2
X(f)ej2πfndf avec X(f) =

+∞∑
n=−∞

x(n)e−j2πfn

TFD d’une suite x(n) périodique (N0)

x(n) =
1

N0

N−1∑

k=0

X(k)ej2πkn/N0 avec X(k) =
N0−1∑

n=0

x(n)e−j2πkn/N0

Table 1.1: Résumé de quelques résultats (futurs) du cours
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Chapter 2

Signaux à temps continu : Analyse
et filtrage

2.1 Introduction

• Signaux déterministes à temps continu : modélisables par une fonction x(t) avec
t ∈ R à valeurs réelles ou complexes. Ce sont soit des signaux “test” (fonction
rectangle, sinusöıde), soit des “réponses impulsionnelles” de filtre.

• Classification de type continuité, dérivabilité peu utile. Distinction entre signaux
d’énergie finie et de puissance finie.

• Définitions :

Puissance instantanée = |x(t)|2
Energie =

∫ +∞
−∞ |x(t)|2 dt

Puissance moyenne = limT→∞ 1
T

∫ +T/2
−T/2 |x(t)|2 dt

2.2 Signaux d’énergie finie

2.2.1 Transformée de Fourier à temps continu (TFTC)

Existence de la transformée de Fourier. Notations

x(t) =
∫ +∞

−∞
X(f)ej2πftdf ­ X(f) =

∫ +∞

−∞
x(t)e−j2πftdt

Interprétation : X(f) est la projection du signal sur l’exponentielle complexe à la fréquence
f . Le signal est décomposé sur une base continue d’exponentielles complexes. Le paramètre
f s’interprète comme une “fréquence” au sens habituel (l’inverse d’une période) à un détail
près : existence de fréquences négatives. C’est dû à la projection sur des exponentielles
complexes plutôt que sur des sinusöıdes.
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Problèmes mathématiques délicats : on projette sur une fonction qui n’est pas elle
même d’énergie finie.

Exemple : fenêtre rectangulaire x(t) = rectT (t).

X(f) =
sin(πfT )

πf
= Tsinc(fT ).

Observation : x(t) de “durée” finie (support de x(t)), X(f) de “bande” infinie (support
de X(f)). Existence de relations d’incertitude.

2.2.2 Principales propriétés et commentaires

x(t) ­ X(f)

Linéarité

Homothétie temporelle : x(at) ­ X(f/a)/a

Exemple : magnétophone ralenti ⇒ perception plus graves des fréquences.

Translation temporelle : x(t− t0) ­ X(f) e−j2πft0

Amplitude conservée, phase modifiée. La phase est directement reliée à l’origine des
temps.

Modulation : x(t) ej2πf0t ­ X(f − f0)

Opération fondamentale en transmission. Création d’un “multiplex fréquentiel” :

y(t) =
K∑

k=1

xk(t) ej2πfkt ­ Y (f) =
K∑

k=1

Xk(f − fk)

Transmission de plusieurs signaux distincts sur un même support (fil de cuivre,
liaison hertzienne) à la condition que ces signaux soient à “bande limitée”.

Pondération par une fenêtre : x(t)× y(t) ­
∫ +∞
−∞ X(λ)Y (f − λ) dλ

Résultat très utile pour formaliser l’extraction d’une portion de signal. Cf exemple
d’un signal de parole en introduction. Utilisation de la fonction rectangle.

y(t) = rectT (t) ­ Y (f) = T
sin(πfT )

πfT
= Tsinc(fT )

Interprétation graphique de
∫ +∞
−∞ X(λ)Y (f − λ) dλ pas tout à fait évidente. Etude

détaillée plus tard.

Convolution : x(t) ∗ y(t) =
∫ +∞
−∞ x(τ)y(t− τ) dτ ­ X(f)× Y (f)

Opération fondamentale dans l’étude des systèmes : opération de filtrage.
Exemple : Y (f) = rectB(f) ⇒ filtrage passe-bas “idéal”.
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Parseval :
∫ +∞
−∞ |x(t)|2 dt =

∫ +∞
−∞ |X(f)|2 df

Conservation de l’énergie, isométrie.

Signal réel : X(−f) = X∗(f) ⇒ |X(f)|2 = X(f)X(−f)

Symétrie hermitienne.

2.2.3 Autres définitions

• SX(f) = |X(f)|2 s’appelle la “densité spectrale énergétique” ou “spectre”. C’est
une fonction à valeur réelle, positive, paire. Interprétation physique fondamentale.
On a perdu toute information relative à la phase. Généralement la phase joue un
rôle beaucoup moins important surtout lorsque le récepteur est l’oreille (peu sensible
à la phase).

• Le support de x(t) s’appelle la “durée” du signal.

• Le support de X(f) s’appelle la “largeur de bande” (ou bande) du signal.

• Un signal vérifiant X(f) = 0 pour f 6∈ [−B1, B2] est “à bande limitée”. Si x(t) ∈ R
alors B1 = B2.

• Signal “bande étroite” : X(f) 6= 0 pour f0 − B < |f | < f0 + B avec B << f0.
Importance des ordres de grandeur, exemple : pour une châıne de radio FM, f0 ≈ 100
MHz et B ≈ 20 kHz.

2.2.4 Théorème de Bernstein

Existence de “relations d’incertitude” entre les supports temporels et fréquentiels. Ex-
emple du signal rectangulaire, figure ??. A un support fini dans le domaine temporel
correspond un support infini dans le domaine fréquentiel. Conclusion : un signal à bande
limitée n’existe pas (en théorie). En pratique, importance des ordres de grandeur.

Le théorème de Bernstein donne des relations entre la largeur de bande du signal et les
dérivées n-èmes du signal (plus la bande du signal est importante, plus il est susceptible
de varier rapidement).

Autre interprétation : plus un signal est impulsif (concentré dans le temps) plus son
spectre est large (et réciproquement).

2.3 Signaux périodiques

Nécessité de définir une “fonction” qui chiffre la distribution de la puissance en fonction
de la fréquence.
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2.3.1 Développement en série de Fourier (DSF)

Energie infinie ⇒ pas de transformée de Fourier au sens des fonctions. Existence d’un
développement en série de Fourier.

Si x(t) est une fonction périodique de période fondamentale T , i.e. le plus petit réel
positif vérifiant x(t + T ) = x(t) ∀t, alors

x(t) =
+∞∑

k=−∞
X(k) ej2πkt/T avec X(k) =

1
T

∫ T/2

−T/2
x(t) e−j2πkt/T dt

Propriétés similaires à celles de la TFTC.

2.3.2 Densité spectrale de puissance

Quelques commentaires relatifs à Parseval uniquement :

P =
1
T

∫ T/2

−T/2
|x(t)|2dt =

+∞∑

k=−∞
|X(k)|2

On aimerait avoir une représentation de la distribution de la puissance suivant un axe
fréquentiel comme pour les signaux d’énergie finie. Utilisation des distributions nécessaire
ici. Sinon les distributions sont utiles dans le reste du cours uniquement pour obtenir
quelques formules sous une forme simple ⇒ utilisation très réduite et très formelle.

On appelle “densité spectrale de puissance” (ou spectre) du signal périodique x(t) de
fréquence fondamentale f0

SX(f) =
+∞∑

k=−∞
|X(k)|2 δ(f − kf0)

Le spectre d’un signal périodique est un “spectre de raies”.
Quelques transformées de Fourier “au sens des distributions” :

δ(t) ­ 1(f)
ej2πf0t ­ δ(f − f0)

a cos(2πf0t) ­ a

2
[δ(f − f0) + δ(f + f0)]

+∞∑
n=−∞

δ(t− nT ) =
1
T

+∞∑
n=−∞

ej2π n
T

t ­ 1
T

+∞∑

k=−∞
δ(f − k

T
).

2.3.3 Exemple

On désire avoir une représentation fréquentielle d’un signal d’horloge de la forme :

y(t) =
+∞∑

k=−∞
x(t− kT2)
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avec
x(t) = rectT1(t).

On a

y(t) =
+∞∑

k=−∞
Y (k) ej2πkt/T2 avec Y (k) =

1
T2

∫ T2/2

T2/2
y(t) e−j2πkt/T2dt

Y (k) =
1
T2

∫ +∞

−∞
x(t) e−j2πkt/T2dt =

1
T2

X(f =
k

T2
) =

T1

T2
sinc(

kT1

T2
)

ce qui donne comme transformée de Fourier “au sens des distributions”

Y (f) =
T1

T2

+∞∑

k=−∞
sinc(

kT1

T2
) δ(f − k

T2
).
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Figure 2.1: Transformée de Fourier de la fonction rectangle x(t) et de la fonction rectangle
périodisée y(t).

2.4 Filtrage linéaire

2.4.1 Définitions

Un système est un organe physique (une bôıte noire) qui transforme un signal d’entrée en
un signal de sortie. Existence d’une relation fonctionnelle : y(t) = F{x(t)}.

Exemples : système phonatoire (entrée : mouvement des cordes vocales, sortie : vari-
ation d’une pression acoustique), châıne Hi-Fi (ce qui va nous intéresser c’est surtout
l’égaliseur et non l’ampli qui est modélisable par un simple gain).

Représentation par des diagrammes fonctionnels. Vision très ingénieur (ce que cache la
bôıte est très relatif). Systèmes en châıne directe. Systèmes asservis (exemple : rebouclage
HP-micro avec risque d’effet Larsen).
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2.4.2 Propriétés d’un système

Sans/avec mémoire : Exemple : résistance/capacité. Premier cas très peu intéressant.

Linéarité : Il vérifie le principe de superposition.
Si x1(t) → y1(t) et si x2(t) → y2(t) alors αx1(t) + βx2(t) → αy1(t) + βy2(t) ∀α, β.

Notion très relative, exemple : ampli. Les amplitudes des signaux d’entrée ne doivent
pas être trop élevées sinon on risque des saturations, ni trop faibles sinon on risque
de manquer de précision. La notion de modèle est très relative. Un “bon” modèle
est le résultat d’un compromis simplicité-performances.

Invariance : Les caractéristiques de la relation d’entrée-sortie ne changent pas au cours
du temps. Si x(t) → y(t) alors x(t + τ) → y(t + τ) ∀τ . Exemple d’un système
non-invariant : système phonatoire.

Causalité : A chaque instant, la sortie ne dépend que de l’entrée à des instants présents
ou passés. Systèmes non-anticipatifs. Propriété respectée pour tous les systèmes réels
mais pas obligatoire lors de simulation. Exemple : amélioration d’enregistrements
dégradés.

Stabilité : Nombreuses définitions : stabilité locale, globale, asymptotique. Ici, simple-
ment définition de la stabilité au sens “entrée bornée - sortie bornée” :
Si ∀M, t tels que |x(t)| < M ⇒ ∃N, t0 tels que |y(t)| < N ∀t > t0, alors le système
sera stable “EB-SB”.

Dans ce cours, uniquement étude des systèmes linéaires, invariants et stables ⇒ filtre.

2.4.3 Caractérisation d’un filtre

On a cherché à représenter un signal comme une combinaison linéaire de quelques signaux
de base. Il suffit de connâıtre la réponse d’un filtre à ces signaux de base. Pour connâıtre
la sortie à une entrée quelconque, il suffira d’appliquer le principe de superposition.

Réponse impulsionnelle

On appelle réponse impulsionnelle d’un filtre, la réponse du filtre à l’entrée particulière
x(t) = δ(t). On la notera par la suite h(t). Cette réponse est-elle suffisante pour car-
actériser le filtre, i.e. connaissant h(t) peut-on calculer y(t) quelque soit x(t) ?

Pseudo-démonstration via l’intégrale de Riemann. On suppose x(t) “suffisamment
régulière” pour pouvoir définir

xT (t) =
+∞∑

n=−∞
x(nT ) rectT (t− nT ) =

+∞∑
n=−∞

x(nT )
1
T

rectT (t− nT ) T.
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Appelons hT (t) la réponse du filtre à l’entrée (1/T )rectT (t). En appliquant la propriété
de linéarité et d’invariance, on obtient

xT (t) → yT (t) =
+∞∑

n=−∞
x(nT ) hT (t− nT ) T

Par passage à la limite et en supposant des propriétés de “continuité”, on obtient

x(t) → y(t) =
∫ +∞

−∞
x(τ) h(t− τ) dτ = h(t) ∗ x(t).

On dit qu’un filtre est un convolueur.

Remarques :

• Filtre causal. La réponse impulsionnelle est nulle pour t < 0. On a

y(t) =
∫ t

−∞
x(τ) h(t− τ) dτ.

• Filtre stable. On montre qu’une CNS est que
∫ +∞
−∞ |h(τ)| dτ < ∞.

• Mémoire d’un filtre causal et stable. Le support de h(t) est l’intervalle [0,∞[ à cause
de la causalité et h(t) tend vers zéro à cause de la stabilité. Dans la pratique, la
réponse impulsionnelle peut être considérée comme nulle à partir d’un certain instant
t0. On appelle alors l’intervalle [0, t0] la mémoire du filtre (notion très relative).
Dans la construction de y(t) seules les valeurs de l’entrée dans l’intervalle [t − t0, t]
interviendront.

Réponse en fréquence, gain complexe

Entrée particulière : x(t) = x0 ej2πf0t. Sortie correspondante :

y(t) = x0

∫ +∞

−∞
h(τ)ej2πf0(t−τ) dτ = x0 ej2πf0t

∫ +∞

−∞
h(τ)e−j2πf0τ dτ

y(t) = x(t) H(f0) avec H(f) =
∫ +∞

−∞
h(τ)e−j2πfτ dτ.

On appelle H(f) la réponse en fréquence ou gain complexe du filtre. C’est la transformée
de Fourier de la réponse impulsionnelle.

Remarques :

• La relation y(t) = x(t) H(f0) si x(t) = x0 ej2πf0t veut dire que les exponentielles
complexes sont les “fonctions propres” des filtres et que H(f0) est la “valeur propre”
correspondante.
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• Il est possible de caractériser un filtre en faisant une série de mesure. On fait une
“analyse harmonique” en mesurant l’amplitude y0 et le déphasage φ0 de la sinusöıde
de sortie et en écrivant |H(f0)| = y0/x0 et Arg H(f0) = φ0. Lieu de transfert.

• La relation Y (f) = H(f) X(f) traduit l’opération de filtrage. Suivant la forme du
module de H(f), on parle de filtres passe-bas, passe-haut, passe-bande ...

• Dans la pratique, c’est l’application qui impose la forme du module de H(f). Le
problème consiste alors à déterminer les caractéristiques du filtre dans le domaine
temporel. On parle de synthèse de filtre. Définition d’un gabarit nécessaire car un
filtre passe-bas du type H(f) = rectT (f) impossible.

La réponse impulsionnelle du filtre n’est pas la bonne réponse car on ne sait pas
“implanter” un produit de convolution. On montre qu’une équation différentielle à
coefficients constants est une autre façon de caractériser un filtre et que cette forme
(ou plutôt) l’équation intégrale correspondante s’implante à l’aide d’amplificateurs
opérationnels, de résistances et de capacités.

• Tous ces problèmes seront abordés lors de l’étude des systèmes à temps discret (étude
plus simple dans ce cas) et on dira que pour les systèmes à temps continu c’est la
même chose (plutôt que l’inverse).

2.4.4 Exos

Intégrateur

Système défini par la relation

y(t) =
1
T

∫ t

t−T
x(τ) dτ.

Lissage des variations brusques de x(t).
Système linéaire, invariant, causal, stable.
Réponse impulsionnelle : h(t) = 1/T si t ∈ [0, T ], h(t) = 0 sinon.
Réponse en fréquence H(f) = sinc(fT ) e−jπfT . Interprétation ...

Filtre passe-bas idéal

Etude du filtre passe-bas idéal H(f) = rect2B(f) e−j2πft0 soumis à l’entrée x(t) = rectT (t).
Réponse impulsionnelle : h(t) = 2B sinc(2B(t− t0)). Par la suite t0 = 0 pour simplifier.
Réponse à l’entrée rectangulaire :

y(t) =
∫ T/2

T/2
2B sinc(2B(t− τ)) dτ =

∫ 2B(t+T/2)

2B(t−T/2)
sinc(u) du

y(t) = g(2B(t + T/2))− g(2B(t− T/2)) avec g(x) =
∫ x

0
sinc(u) du
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Le tracé de g(x) puis de y(t) permet de constater que le temps de montée d’un filtre
passe-bas est de l’ordre de 1/B.
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Chapter 3

Echantillonnage

3.1 Introduction

Numérisation = discrétisation de l’axe temporel (échantillonnage) + discrétisation des
amplitudes (quantification, codage de source).

Intérêt d’un signal mis sous forme numérique : grande immunité au bruit, stockage
(reproductibilité indéfinie), transmission possible avec a priori un taux d’erreur aussi faible
que l’on veut, possibilité de traitements très élaborés, arrivée du “tout numérique” pour
des raisons économiques (existence de circuits performants et peu coûteux).

Inconvénients : distorsions introduites lors de la numérisation, plus large occupation
spectrale lors de la transmission.

Exemple : CD. Bande “Hi-Fi” [20 Hz - 20 kHz]. Echantillonnage caractérisé par
un paramètre : la fréquence d’échantillonnage fe = 1/T = 44.1 kHz. Quantification
caractérisée par un paramètre : la résolution b = 16 bits/ech. Débit = 44.1 × 16 = 705
kbits/s (par voie). Nécessité de codes correcteurs d’erreur (codage de canal). Lecteur de
CD ≡ récepteur d’une châıne de communication. Exemple d’un traitement : “MPEG-
Audio”. Actuellement possibilité de réduire le débit d’un signal par un facteur 10 (ordre
de grandeur) sans perte de qualité grâce à un traitement sophistiqué.

3.2 Théorème d’échantillonnage

3.2.1 Problème

On part d’un signal à temps continu x(t) dont on suppose connue la transformée de Fourier
X(f). On construit une suite {x(nT )} en prélevant des valeurs à des instants régulièrement
espacés (multiples de T ). Quelles conditions à imposer à x(t) (un paramètre important :
sa largeur de bande B) et à T (ou fe) pour qu’il n’y ait pas perte d’information, i.e. que
l’on garde la possibilité de reconstruire x(t) à partir des échantillons {x(nT )} ?

19
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3.2.2 Résultat intermédiaire : formule de Poisson

Si X(f) est la transformée de Fourier du signal à temps continu x(t), quel que soit T et
quel que soit le support de X(f), on a

1
T

+∞∑

k=−∞
X(f − k

T
) =

+∞∑
n=−∞

x(nT )e−j2πfnT (3.1)

à la condition que ces sommations aient un sens (aucune difficulté dans la pratique). On
appellera Y (f) cette expression.

Démonstration : Y (f) est une fonction périodique, de période 1/T , donc développable
en série de Fourier

Y (f) =
1
T

+∞∑

k=−∞
X(f − k

T
) =

+∞∑
n=−∞

cnej2πfnT

avec

cn = T

∫ 1/2T

−1/2T

1
T

+∞∑

k=−∞
X(f − k

T
)e−j2πfnT df =

+∞∑

k=−∞

∫ 1/2T−k/T

−1/2T−k/T
X(u)e−j2πunT du

cn =
∫ +∞

−∞
X(u)ej2πu(−nT )du = x(−nT )

ce qui entrâıne (3.1).

-

6 6

-

−fe +fe ff

X(f) Y (f)

Figure 3.1: Transformée de Fourier périodisée.

3.2.3 Conditions suffisantes

Si on est dans le cas particulier montré figure 3.2, on constate qu’il suffit de multiplier
Y (f) par H(f) = T × rectfe(f) pour obtenir X(f).
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6

−fe +fe f

Y (f)

-

H(f)

−B +B

Figure 3.2: Conditions suffisantes pour qu’il n’y ait pas perte d’information.

On a donc

X(f) = H(f)
1
T

+∞∑

k=−∞
X(f − k

T
).

En appliquant la formule de Poisson, on obtient

X(f) =
+∞∑

n=−∞
x(nT )H(f)e−j2πfnT

ce qui entrâıne

x(t) =
+∞∑

n=−∞
x(nT )h(t− nT )

avec

h(t) = T

∫ 1/2T

−1/2T
ej2πftdf = sinc(

t

T
).

On en déduit le “théorème d’échantillonnage ”. Si les deux conditions suivantes sont
respectées :

• x(t) est un signal à bande limitée [−B, +B], i.e. si X(f) = 0 pour |f | > B

• et si fe ≥ 2B,

alors il n’y a pas de perte d’information par échantillonnage parce que l’on peut recon-
struire exactement le signal x(t) à partir de ses échantillons

x(t) =
+∞∑

n=−∞
x(nT )sinc(

t− nT

T
). (3.2)

C’est la “formule d’interpolation” dont le principe est visualisé figure 3.3 en se limitant à
une somme de 3 termes. Interpolation au sens “signal à bande la plus limitée”. La plus
petite fréquence d’échantillonnage possible s’appelle la “fréquence de Nyquist”.
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Figure 3.3: Interpolation.

3.3 Remarques et interprétations

3.3.1 Recouvrement des spectres

Si le signal x(t) n’est pas à bande limitée, alors

Y (f) 6= X(f) pour |f | < fe

2
.

Phénomène de “recouvrement des spectres” (aliasing). Il s’agit la plupart du temps d’une
dégradation (phénomène désagréable pour des signaux de parole ou de musique par ex-
emple) excepté de rares cas où ce phénomène est directement exploité (exemple de la
stroboscopie).

En effet (sous forme d’exo)
Soit x1(t) = cos(2πf1t). On choisit fe = 4f1. Expression de x1(nT ), X1(f) et Y1(f) ?
Soit x2(t) = cos(2πf2t) avec f2 = f1 + fe. Expression de x2(nT ), X2(f) et Y2(f) ?
Quel est le signal dont la transformée de Fourier est rectfe(f)Y2(f) ? Quel est le signal

dont la transformée de Fourier est [rectfe/2(f − 5fe/4) + rectfe/2(f + 5fe/4)]Y2(f) ?
Conclusion : après l’échantillonneur, on ne fait pas la différence. La fréquence f2 est

vue comme la fréquence f1. L’échantillonneur est un opérateur modulo fe.

3.3.2 Fréquence numérique

Connaissant la suite {x(nT )}, il existe une infinité de fonctions prenant les valeurs x(nT )
aux instants d’échantillonnage. Exemple précédent : toutes les fonctions xk(t) = cos(2π(f1+
kfe)t) prennent les valeurs {1, 0,−1, 0, · · ·} aux instants nT . On dira que la suite {1, 0,−1, 0, · · ·}
a toute sa puissance concentrée aux deux “fréquences” +1/4 et -1/4. On introduit le
paramètre

ftd =
ftc

fe
.
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La fréquence “analogique” (à temps continu) ftc est exprimable en Hertz. La fréquence
“numérique” (à temps discret) ftd est sans dimension.

3.3.3 Conditions non nécessaires (sous forme d’exo)

Exemple : On considère un signal x(t) à bande limitée [−B, +B]. On multiplie ce signal
par cos(10πBt). La fréquence d’échantillonnage fe ≥ 12B est-elle nécessaire ?

Réponse : non. Si fe = 4B, 6B ou 7B, la reconstruction reste possible.

3.4 Dans la pratique

3.4.1 Deux problèmes

• Un signal à bande limitée n’existe pas. Contre-exemple apparent : une sinusöıde
mais elle est de durée infinie. Dans la pratique, on ne peut observer une sinusöıde
que pendant une durée finie ⇒ sinusöıde×fenêtre, i.e., dans le domaine fréquentiel,
deux sinus cardinaux centrés en −f1 et +f1.

Il faut toujours filtrer avant échantillonnage. On montre que le filtre G(f) minimisant
l’erreur quadratique ∫ +∞

−∞
|x(t)− x̂(t)|2dt

est G(f) = rectfe(f) mais il est lui-même irréalisable !

• La formule d’interpolation est irréaliste. Pour reconstruire le signal à temps continu
à l’instant t à partir de ses échantillons, il faut connâıtre tous les échantillons de
−∞ à +∞. Il en résulte deux nouveaux problèmes. La limitation à un nombre fini
d’échantillons entrâıne une approximation

x̂(t) =
+N∑

n=−N

x(nT )sinc(
t− nT

T
) ≈ x(t).

Le “délai de reconstruction” est égal à NT . C’est grave ou pas suivant les applica-
tions. Communications mono-directionnelles (diffusion) : pas grave. Communica-
tions bi-directionnelles (conversation téléphonique) : grave si NT est trop important.

3.4.2 Bloqueurs

Dans la pratique, on emploie des bloqueurs

Bloqueur d’ordre 0 : x̂(t) = x(nT ) pour nT ≤ t < (n + 1)T .

Bloqueur d’ordre 1 : x̂(t) = ax(nT ) + bx((n− 1)T ) pour nT ≤ t < (n + 1)T .

Etc.
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On peut chercher à caractériser le type de dégradation apportée lorsque l’on utilise un
bloqueur d’ordre 0 (convertisseur N/A). Il s’exprime sous la forme

x̂(t) =
+∞∑

n=−∞
x(nT )h(t− nT )

avec h(t) = rectT (t− T/2). Donc

X̂(f) =
+∞∑

n=−∞
x(nT )H(f)e−j2πnT = H(f)Xtd(f)

avec
|H(f)| = Tsinc(fT ).

Le tracé de la figure 3.4 montre que la dégradation apportée par l’utilisation d’un bloqueur
d’ordre 0 est une distorsion dans la bande [−fe/2, fe/2], une création de puissance hors
de cette bande. A comparer avec la formule d’interpolation. Cas dual. Autres formules

−fe +fe f

-

Figure 3.4: Bloqueur d’ordre 0.

d’interpolation : fonctions splines, ...

3.5 Autre exo

Phénomène de stroboscopie. On considère un signal “haute fréquence” périodique de
période T0 très petite. On l’échantillonne à la fréquence fe = 1/T avec T = T0 + ∆.
Montrer qu’il est possible de “reconstruire” le signal à l’aide des échantillons x(nT ) de
telle façon que l’on obtienne un signal y(t) de même forme mais plus “lent” i.e. y(t) = x(αt)
avec α < 1.

Exemple : x(t) = a + b cos(2πt/T0).



Chapter 4

Transformées

4.1 Transformée de Fourier à temps discret (TFTD)

4.1.1 Définition

Existence de signaux à temps discret qui ne sont pas forcément le résultat de l’échantillonnage
d’un signal à temps continu. Notation de tels signaux {x(n)} avec n ∈ Z. Equivalence
avec {x(nT )} : il suffit de poser T = 1. On cherche un outil permettant de les analyser :
on utilise la formule de Poisson.

Définition. On appelle transformée de Fourier à temps discret d’un signal à temps
discret {x(n)} l’expression (si elle existe)

X(f) =
+∞∑

n=−∞
x(n)e−j2πfn. (4.1)

X(f) est une fonction périodique de période 1 (il suffit de connâıtre X(f) pour f ∈
[−1/2, 1/2]). La formule précédente est simplement le développement d’une fonction
périodique en série de Fourier. On a donc

x(n) =
∫ 1/2

−1/2
X(f)e+j2πfndf. (4.2)

4.1.2 Justification

Considérons un signal x(t) et sa transformée de Fourier à temps continu Xtc(f). On a la
relation

x(t) =
∫ +∞

−∞
Xtc(f)e+j2πftdf.

Si x(t) est à bande limitée [−B, +B] et si 1/T = fe ≥ 2B, on peut écrire

x(nT ) =
∫ +fe/2

−fe/2
Xtc(f)e+j2πfn/fedf.

25
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Si on fait la distinction entre “fréquences à temps continu” exprimées en Hz et “fréquences
à temps discret” (des fréquences normalisées) ftd = ftc/fe, on obtient la relation

x(nT ) = fe

∫ +1/2

−1/2
Xtc(ftdfe)e+j2πftdndftd

qui est cohérente avec l’équation (4.2).
Si, à partir d’un signal à temps discret {x(n)}, on construit un signal à temps continu

x(t) qui prenne les valeurs x(n) aux instants nT avec T = 1 avec la contrainte : il est à
bande limitée [−fe/2, fe/2] avec fe = 1, alors

• pour f ∈ [−1/2, 1/2], Xtd(f) = Xtc(f).

• pour f 3 [−1/2, 1/2], Xtc(f) = 0 et Xtd(f) = Xtd(f mod 1).

4.1.3 Propriétés

On donne, table 4.1, les principales propriétés de la transformée de Fourier à temps discret
en les comparant à celles de la transformée de Fourier à temps continu.

Transformée de Fourier Transformée de Fourier
à temps continu à temps discret

Définition x(t) ­ X(f) x(n) ­ X(f)∫ +∞
−∞ x(t)e−j2πftdt

∑+∞
n=−∞ x(n)e−j2πfn

Modulation ej2πf0tx(t) ej2πf0nx(n)
X(f − f0) X(f − f0)

Translation x(t− t0) x(n− n0)
temporelle e−j2πft0X(f) e−j2πfn0X(f)
Convolution

∫ +∞
−∞ x(τ)y(t− τ)dτ

∑+∞
m=−∞ x(m)y(n−m)

X(f)Y (f) X(f)Y (f)
Produit x(t)y(t) x(n)y(n)∫ +∞

−∞ X(λ)Y (f − λ)dλ
∫ +1/2
−1/2 X(λ)Y (f − λ)dλ

Signal réel X(−f) = X∗(f) X(−f) = X∗(f)
Parseval

∫ +∞
−∞ |x(t)|2dt =

∫ +∞
−∞ |X(f)|2dt

∑+∞
n=−∞ |x(n)|2 =

∫ +1/2
−1/2 |X(f)|2df

Table 4.1: Principales propriétés de la transformée de Fourier à temps continu et à temps
discret.

4.1.4 Exemples

“Impulsion à temps discret”
x(n) = 1 si n = 0, x(n) = 0 sinon. On a X(f) = 1 ∀f .
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Signal rectangulaire
x(n) = 1 pour 0 ≤ n ≤ N − 1, sinon 0.

X(f) =
N−1∑

n=0

e−j2πfn =
1− e−j2πfN

1− e−j2πf
= e−jπf(N−1) sin(πfN)

sin(πf)
.

A comparer avec la transformée de Fourier à temps continu de la fonction x(t) =
rectT (t) qui est égale à Tsinc(fT ).

−1.5 −1 −0.5 0 0.5 1 1.5
0

2

4

6

8

10

12

Figure 4.1: TFTD (module) d’un signal rectangulaire avec N = 10.

Remarque : x(n) peut être vu comme le résultat de l’échantillonnage de la fonction
rectNT (t− (N − 1)T/2) avec T = 1. On a donc

X(f) =
+∞∑

k=−∞
U(f − k) avec U(f) = N sinc(fN) e−jπf(N−1).

Que se passe-t-il lorsque N → ∞ ? Convergence particulière : convergence non-
uniforme, phénomène de Gibbs.

Cosinus
x(n) = cos(2πf1n) pour 0 ≤ n ≤ N − 1, sinon 0.

X(f) =
N−1∑

n=0

cos(2πf1n)e−j2πfn =
1
2

N−1∑

n=0

[e−j2π(f−f1)n + e−j2π(f+f1)n]

X(f) =
1
2

N−1∑

n=0

[e−jπ(f−f1)(N−1) sin(π(f − f1)N)
sin(π(f − f1))

+ e−jπ(f+f1)(N−1) sin(π(f + f1)N)
sin(π(f + f1))

].
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Que se passe-t-il lorsque N →∞ ? On admettra le résultat suivant

X(f) =
1
2

+∞∑
n=−∞

[e−j2π(f−f1)n + e−j2π(f+f1)n] =
1
2

+∞∑

k=−∞
[δ(f − f1− k) + δ(f + f1− k)]

Problèmes mathématiques délicats. Convergence “au sens des distributions”.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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Figure 4.2: TFTD (module) du signal x(n) = cos(2πf1n) pour 0 ≤ n ≤ N − 1, sinon 0
avec f1 = 0.123 et N = 10.

4.1.5 Exos

Soit x(n) un signal à temps discret de bande [−1/9, 1/9]. Tracer symboliquement le spectre
du signal y(n) = x(n)× cos(4πn/3).

4.2 Transformée de Fourier discrète (TFD)

4.2.1 Introduction

Plusieurs présentations possibles

• Comme une approximation de la TFTD. La transformée de Fourier à temps discret
X(f) =

∑+∞
n=−∞ x(n)e−j2πfn n’est pas implantable directement dans une machine

pour deux raisons : la sommation est infinie et le paramètre f est à valeurs continues.
Il faut se limiter à un nombre fini d’échantillons et discrétiser l’axe fréquentiel.

• Comme une transformation unitaire avec une interprétation fréquentielle.
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4.2.2 La TFD vue comme une approximation de la TFTD

Limitation à un nombre fini d’échantillons

Formalisation simple en employant une “fenêtre de pondération” de durée N .

y(n) = x(n)× v(n) avec v(n) = 0 pour n 6= 0 · · ·N − 1

(choix d’une fenêtre non-centrée pour simplifier les notations par la suite). L’approximation
réalisée peut être étudiée en exploitant la relation

Y (f) =
∫ +1/2

−1/2
X(λ)V (f − λ)dλ.

Apparition d’“ondulations”, cf figure 4.2. Existence de nombreuses fenêtres ayant des
“bords plus doux” (Hamming, etc, cf chapitre 5).

Discrétisation de l’axe fréquentiel

On évalue Y (f) pour M fréquences uniformément réparties entre 0 et 1.

Y (f =
k

M
) =

N−1∑

n=0

x(n)e−j2π k
M

n pour k = 0 · · ·M − 1.

Quel est le type d’approximation réalisée ? Problème difficile.

Exemple

On part d’un cosinus de durée infinie x(n) = cos(2πf1n). Sa transformée de Fourier à
temps discret est un double peigne de Dirac

X(f) =
1
2

+∞∑

k=−∞
[δ(f − f1 − k) + δ(f + f1 − k)].

La discrétisation de l’axe fréquentiel de la courbe de la figure 4.2 avec M = 20 donne le
tracé de la figure 4.3. On observe que les M valeurs Y (0) · · ·Y ((M − 1)/M) paraissent
une mauvaise approximation de X(f) sauf si la fréquence f1 est un multiple de 1/M et si
M = N .

Conclusion

On montre que la TFTC, la TFTD et la TFD donnent des résultats “cohérents” si le
signal à temps continu x(t) est périodique (période T0), à bande limitée (nombre fini de
raies), si la fréquence d’échantillonnage fe = 1/T est supérieure à la fréquence de Nyquist
et si N est choisi de façon que T0 = NT . Alors la TFTC est composée de N raies espacées
de 1/NT et les N valeurs de la TFTD sont précisément les coefficients du développement
en série de Fourier.
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Figure 4.3: TFD (module) du signal x(n) = cos(2πf1n) avec f1 = 0.123, N = 10 et
M = 20.

Dans la pratique, ces conditions ne sont jamais vérifiées. On cherche par exemple à
détecter plusieurs sinusöıdes dans du bruit. Problème de la résolution spectrale. Condition
suffisante (pas forcément nécessaire) pour discriminer deux sinusöıdes : que leur fréquences
(normalisées) respectives f1 et f2 vérifient |f1 − f2| > 2/N .

4.2.3 Définition directe de la TFD

On appelle transformée de Fourier discrète de la séquence x(0) · · ·x(N − 1) une autre
séquence X(0) · · ·X(N − 1) avec

X(k) =
N−1∑

n=0

x(n)e−j2πnk/N .

Ces N relations s’écrivent de façon matricielle



X(0)
X(1)

...
X(N − 1)


 =




1 1 · · · · · · 1
1 W 1 · · · · · · W (N−1)

...
...

...
...

...
1 W (N−1) · · · · · · W (N−1)(N−1)







x(0)
x(1)

...
x(N − 1)


 (4.3)

où W = e−j2π/N est la N eme racine de l’unité.
La matrice précédente, notée A, caractérise une transformation linéaire. C’est une

matrice carrée de dimension N ∗ N à valeurs complexes. Elle est composée de vecteurs
orthogonaux 2 à 2 et de norme

√
N . C’est une matrice unitaire, à un coefficient près,

1
N

A(A∗)t = I.
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On peut donc calculer les N valeurs x(0) · · ·x(N − 1) à partir de X(0) · · ·X(N − 1). La
transformée de Fourier discrète inverse a pour expression

x(n) =
1
N

N−1∑

k=0

X(k)e+j2πnk/N .

On remarque que x(n + mN) = x(n). Toute suite périodique de période N peut s’écrire
sous la forme d’une somme de N exponentielles complexes.

Prenons l’exemple du “peigne de Dirac” à temps discret de période N ,

x(n) =
+∞∑

m=−∞
λ(n−mN)

avec λ(n) = 1 si n = 0 et λ(n) = 0 sinon (symbole de Kronecker)1. Ce signal s’écrit aussi

x(n) =
1
N

N−1∑

k=0

X(k)ej2π k
N

n. (4.4)

avec

X(k) =
N−1∑

n=0

λ(n)e−j2π k
N

n = 1.

On obtient
N−1∑

n=0

λ(n−mN) =
1
N

N−1∑

n=0

ej2π k
N

n.

Il est intéressant de relier ce résultat à la transformée de Fourier à temps discret et à la
transformée de Fourier à temps continu d’un peigne de Dirac. La transformée de Fourier
à temps discret de x(n) a pour expression

X(f) =
1
N

N−1∑

k=0

+∞∑
m=−∞

δ(f − k

N
−m)

X(f) =
1
N

+∞∑

k=−∞
δ(f − k

N
).

La relation
+∞∑

m=−∞
λ(n−mN) =

1
N

N−1∑

k=0

ej2π k
N

n

est la version à temps discret de

+∞∑
m=−∞

δ(t−mT ) =
1
T

+∞∑

k=−∞
ej2πk t

T .

1Au niveau des notations, on distingue volontairement le symbole de Kronecker λ(n) qui ne présente
aucun problème mathématique de l’impulsion de Dirac δ(t) (ou δ(f)) qui réclame de grandes précautions.
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4.2.4 Propriétés

On retrouve, table 4.2, toutes les propriétés habituelles à la condition de calculer tous les
indices modulo N (lorsque l’indice courant sort de l’intervalle [0 · · ·N − 1]).

Définition x(0) · · ·x(N − 1) ­ X(0) · · ·X(N − 1)∑N−1
n=0 x(n)e−j2π k

N
n

Modulation ej2π l
N

nx(n)
X[(k − l) mod N ]

Translation x[(n− n0) mod N ]
temporelle e−j2π k

N
n0X(k)

Convolution
∑N−1

m=0 x(m)y[(n−m) mod N ]
X(k)Y (k)

Produit x(n)y(n)
[
∑N−1

l=0 X(l)Y [(k − l) mod N ]]/N
Signal réel X(N − k) = X∗(k)
Parseval

∑N−1
n=0 |x(n)|2 = [

∑N−1
k=0 |X(k)|2]/N

Table 4.2: Principales propriétés de la transformée de Fourier discrète.

Remarque concernant le produit de convolution. Ce qui nous intéressera par la suite
c’est le produit de convolution

u(n) =
+∞∑

m=−∞
x(m)y(n−m)

de deux signaux à temps discret de durée infinie. La propriété de “convolution” précédente
est relative à deux signaux de durée finie avec un indice courant calculé modulo N

v(n) =
N−1∑

m=0

x(m)y[(n−m) mod N ].

Comme on sera amené par la suite à vouloir calculer u(n) à l’aide de v(n) en exploitant
X(k)Y (k) pour bénéficier de l’algorithme de FFT, on distinguera le produit de convolution
à temps discret u(n) = x(n)?y(n) et le produit de convolution circulaire v(n) = x(n)⊗y(n).

4.2.5 Algorithme FFT

La matrice A a des propriétés très particulières ce qui entrâıne l’existence d’un algorithme
rapide (FFT : Fast Fourier Transform). Montrons le principe de l’algorithme en choisissant
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N = 8. Le système matriciel s’écrit



X(0)
X(1)
X(2)
X(3)
X(4)
X(5)
X(6)
X(7)




=




1 1 1 1 1 1 1 1
1 W 1 W 2 W 3 W 4 W 5 W 6 W 7

1 W 2 W 4 W 6 W 8 W 10 W 12 W 14

1 W 3 W 6 W 9 W 12 W 15 W 18 W 21

1 W 4 W 8 W 12 W 16 W 20 W 24 W 28

1 W 5 W 10 W 15 W 20 W 25 W 30 W 35

1 W 6 W 12 W 18 W 24 W 30 W 36 W 42

1 W 7 W 14 W 21 W 28 W 35 W 42 W 49







x(0)
x(1)
x(2)
x(3)
x(4)
x(5)
x(6)
x(7)




.

On réalise une première décomposition suivant les indices pairs et les indices impairs de
x(n)



X(0)
X(1)
X(2)
X(3)


 =




1 1 1 1
1 W 2 W 4 W 6

1 W 4 W 8 W 12

1 W 6 W 12 W 18







x(0)
x(2)
x(4)
x(6)


 +




1 1 1 1
W 1 W 3 W 5 W 7

W 2 W 6 W 10 W 14

W 3 W 9 W 15 W 21







x(1)
x(3)
x(5)
x(7)







X(4)
X(5)
X(6)
X(7)


 =




1 W 8 W 16 W 24

1 W 10 W 20 W 30

1 W 12 W 24 W 36

1 W 14 W 28 W 42







x(0)
x(2)
x(4)
x(6)


 +




W 4 W 12 W 20 W 28

W 5 W 15 W 25 W 35

W 6 W 18 W 30 W 42

W 7 W 21 W 35 W 49







x(1)
x(3)
x(5)
x(7)




En exploitant la propriété W 8n = Wn, on obtient



X(0)
X(1)
X(2)
X(3)


 = A′




x(0)
x(2)
x(4)
x(6)


 +




1 0 0 0
0 W 1 0 0
0 0 W 2 0
0 0 0 W 3


A′




x(1)
x(3)
x(5)
x(7)







X(4)
X(5)
X(6)
X(7)


 = A′




x(0)
x(2)
x(4)
x(6)


−




1 0 0 0
0 W 1 0 0
0 0 W 2 0
0 0 0 W 3


A′




x(1)
x(3)
x(5)
x(7)




Posons 


U(0)
U(2)
U(4)
U(6)


 = A′




x(0)
x(2)
x(4)
x(6)


 et




U(1)
U(3)
U(5)
U(7)


 = A′




x(1)
x(3)
x(5)
x(7)


 .

On réalise une deuxième décomposition pour calculer [U(0), U(2), U(4), U(6)] (ou pour
calculer [U(1), U(3), U(5), U(7)]).




U(0)
U(2)
U(4)
U(6)


 =




1 1 1 1
1 W 2 W 4 W 6

1 W 4 W 8 W 12

1 W 6 W 12 W 18







x(0)
x(2)
x(4)
x(6)



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[
U(0)
U(2)

]
=

[
1 1
1 W 4

] [
x(0)
x(4)

]
+

[
1 1

W 2 W 6

] [
x(2)
x(6)

]

[
U(4)
U(6)

]
=

[
1 W 8

1 W 12

] [
x(0)
x(4)

]
−

[
W 4 W 12

W 6 W 18

] [
x(2)
x(6)

]

On obtient [
U(0)
U(2)

]
=

[
V (0)
V (4)

]
+

[
1 0
0 W 2

] [
V (2)
V (6)

]

[
U(4)
U(6)

]
=

[
V (0)
V (4)

]
−

[
1 0
0 W 2

] [
V (2)
V (6)

]

On réalise une troisième décomposition pour calculer [V (0), V (4)] etc.

V (0) = x(0) + x(4)

V (4) = x(0)− x(4).

On en déduit le diagramme de la figure 4.4 symbolisant l’ensemble des opérations à ef-
fectuer. Le nombre de multiplications/accumulations (complexes) est égal à N × γ à la

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

U(0)

U(2)

U(4)

U(6)

U(1)

U(3)

U(5)

U(7)

V(0)

V(4)

V(2)

V(6)

V(1)

V(5)

V(3)

V(7)

x(0)

x(4)

x(2)

x(6)

x(1)

x(5)

x(3)

x(7)

W

W

W

W

W

W

W

W

W

W

W

0

1

2

3

0

2

0

2

0

0

0

0
W

-

-

-

-

-

-

-

-

-

-

-

-

Figure 4.4: Diagramme de calcul de l’algorithme FFT.

condition que N = 2γ . Comme le nombre de multiplications/accumulations pour effectuer
le calcul brutal est égal à N2, on voit que cet algorithme est particulièrement performant.
Par exemple lorsque N = 1024, le rapport vaut

N2

N log2(N)
≈ 100.

Nombreuses variantes : entrelacement temporel, fréquentiel, radix 2, 4, etc.

4.3 Transformée en z

4.3.1 Introduction

Présentation “minimale”. Dans ce cours, la présentation de cette transformée n’est pas
nécessaire. Il est bon tout de même d’avoir un peu de vocabulaire car cette transformée
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est largement utilisée par les “traiteurs de signaux”. Formalisme assez commode pour
étudier des filtres “numériques” (à temps discret).

4.3.2 Définition

On appelle transformée en z de la suite {x(n)} la fonction de la variable complexe z définie
par

X(z) =
+∞∑

n=−∞
x(n)z−n

à la condition que cette somme ait un sens. Nécessité de définir le domaine de convergence.
Si on appelle ρ1 le rayon de convergence de la série entière X+(z) =

∑+∞
n=0 x(n)z−n i.e. que

X+(z) existe pour |z−1| < ρ1 et ρ2 le rayon de convergence de X−(z) =
∑−∞

n=−1 x(n)z−n

i.e. que X−(z) existe pour |z| < ρ2, alors la transformée en z est définie sur la couronne
1/ρ1 < |z| < ρ2. Pour une suite à valeurs réelles ρ1 et ρ2 sont des réels positifs. Exis-
tence d’une correspondance biunivoque entre une suite {x(n)} et une série X(z) unique-
ment à l’intérieur du domaine de convergence (s’il est non vide) à cause de l’unicité du
développement en série de Laurent pour une fonction holomorphe dans une couronne.

Intérêt de la transformée en z : être une représentation “compacte” de l’ensemble des
valeurs numériques si on réussit à sommer la série ⇒ manipulation très aisée.

Si le cercle unité appartient au domaine de convergence, alors la transformée de Fourier
à temps discret existe et on a la relation

X(f) = X(z)|z=ej2πf

avec l’abus d’écriture habituel. La transformée en z apparâıt comme une généralisation
de la transformée de Fourier à temps discret.

4.3.3 Exemples

Exemple d’une suite causale : x(n) = 0 pour n < 0, x(n) = an pour n ≥ 0 avec a ∈ R.

X(z) =
+∞∑

n=0

anz−n =
1

1− az−1

à la condition que
|az−1| < 1 ⇒ |z| > |a|.

Le domaine de convergence est donc dans ce cas l’extérieur du cercle de rayon |a|.
Exemple d’une suite anticausale : x(n) = 0 pour n ≥ 0, x(n) = −an pour n < 0 avec

a ∈ R.

X(z) = −
−1∑

n=−∞
anz−n = 1−

+∞∑

n=0

a−nzn

X(z) = 1− 1
1− a−1z

=
1

1− az−1
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à la condition que
|a−1z| < 1 ⇒ |z| < |a|.

Le domaine de convergence est l’intérieur du cercle de rayon |a|.
Conclusion : la condition de convergence impose “le sens du temps”. On parle de

suites “causales” (x(n) = 0 pour n < 0) et de suites “anti-causales” (x(n) = 0 pour
n ≥ 0). Par la suite, le domaine de convergence sera implicite. Si la suite est causale, le
domaine de convergence est l’extérieur d’un cercle. Si la suite est anti-causale, le domaine
de convergence est l’intérieur d’un cercle. Pour une suite quelconque, le domaine de
convergence est une couronne. Tout le problème sera de savoir si le cercle unité appartient
ou non au domaine de convergence.

4.3.4 Inversion de la transformée en z

De façon générale : utilisation de l’intégrale de Cauchy pour une fonction holomorphe
dans une couronne

x(n) =
1

2πj

∫

Γ
X(z)zn−1dz

où Γ est un contour fermé appartenant au domaine d’holomorphie (le cercle unité pour les
“bons” signaux).

Habituellement X(z) se présente sous la forme d’une fraction rationnelle de deux
polynômes en z. Expression habituelle pour une suite causale

X(z) =
b0 + b1z

−1 + · · ·+ bQz−Q

1 + a1z−1 + · · ·+ aP z−P
.

avec P et Q deux entiers positifs quelconques. La méthode la plus standard consiste à
réaliser une décomposition en éléments simples.

Exemple : quel est le signal causal ayant comme transformée en z

X(z) =
z − a

(z − b)(z − c)
.

On a

X(z) =
b− a

(b− c)(z − b)
+

c− a

(c− b)(z − c)

Comme on cherche un signal causal, il faut développer suivant les puissances négatives de
z. On écrit

X(z) =
z−1

b− c
[

b− a

1− bz−1
+

a− c

1− cz−1
]

X(z) =
z−1

b− c
[(b− a)(1 + bz−1 + b2z−2 + · · ·) + (a− c)(1 + cz−1 + c2z−2 + · · ·)].

Donc
x(n) =

1
b− c

[(b− a)bn−1 + (a− c)cn−1].
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4.3.5 Quelques propriétés

Translation temporelle
Si y(n) = x(n− k), alors

Y (z) =
+∞∑

n=−∞
x(n− k)z−n = z−kX(z).

Remarque : z−1 apparâıt comme l’opérateur de retard élémentaire.

Produit de convolution
Si

y(n) =
+∞∑

k=−∞
x(k)h(n− k)

alors

Y (z) =
+∞∑

n=−∞

+∞∑

k=−∞
x(k)h(n− k)z−n = X(z)H(z).

Généralement pas de problème dû au domaine de convergence car pour les signaux
habituels le cercle unité appartient au domaine de convergence de x(n) et de h(n)
donc de y(n).

Autres propriétés
Translation temporelle, produit, parité, Parseval.
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Chapter 5

Signaux à temps discret : Filtrage

5.1 Filtres discrets (numériques)

5.1.1 Définition

Système discret : à partir d’un signal à temps discret {x(n)} création d’un autre signal à
temps discret {y(n)} obéissant à une relation fonctionnelle

y(n) = F(· · · , x(n− 1), x(n), x(n + 1), · · · ; n).

Comme pour les systèmes à temps continu, si un système est linéaire (il vérifie le principe
de superposition) et invariant (la relation fonctionnelle est indépendante de n), alors le
système est appelé un filtre. Un filtre peut être causal (y(n) ne dépend pas de x(n+1), · · ·)
ou non et stable (entrée bornée ⇒ sortie bornée) ou non.

On se limite dans le cadre de ce cours à la sous-classe des filtres décrits par une équation
récurrente à coefficients (réels) constants

y(n) + a1y(n− 1) + · · ·+ aP y(n−P ) = b−Q1x(n + Q1) + · · ·+ b0x(n) + · · ·+ bQ2x(n−Q2)

avec P, Q1, Q2 trois entiers positifs quelconques.
Remarques

• Cette forme est restrictive (en théorie mais pas en pratique) car elle traduit le fait
que l’on s’intéresse uniquement à une solution causale (n croissant) : on calcule y(n)
en fonction de l’entrée et de la sortie uniquement aux instants précédents.

• Pour simplifier les notations par la suite, on supposera en plus le filtre causal

y(n) =
Q∑

i=0

bix(n− i)−
P∑

i=1

aiy(n− i). (5.1)

Un filtre dans une machine c’est constamment calculer cette expression (souvent en
temps réel, c’est à dire au rythme d’arrivée des x(n)).

39
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• Si l’entrée est elle-même causale (on démarre la récurrence à l’instant n = 0), les
conditions initiales associées à l’équation récurrente doivent être prises nulles pour
respecter le principe de superposition. L’introduction de conditions initiales non
nulles posent un problème (représentation des systèmes en “variables d’état” non
abordée dans ce cours).

• Terminologie

P = 0, Q > 0 : Filtre RIF (réponse impulsionnelle finie), MA (moving average),
tout zéro, non-récursif.

P > 0, Q = 0 : Filtre AR (auto-régressif), tout pôle.

P > 0, Q > 0 : Filtre RII (réponse impulsionnelle infinie), ARMA.

• Ce n’est qu’une façon de caractériser un filtre. Il en existe trois autres.

5.1.2 Réponse impulsionnelle, produit de convolution

On appelle réponse impulsionnelle d’un filtre la réponse de ce filtre à l’entrée partic-
ulière λ(n) = 1 si n = 0 sinon 0 (symbole de Kronecker). On la notera par la suite
systématiquement h(n). La connaissance de la réponse impulsionnelle est suffisante pour
caractériser un filtre puisque, connaissant h(n), quelle que soit l’entrée x(n), on peut
calculer la sortie

y(n) = h(n) ∗ x(n) =
+∞∑

k=−∞
h(k)x(n− k) =

+∞∑

k=−∞
h(n− k)x(k).

En effet si (cas d’une entrée causale, tous les indices commencent à 0)

{x(n)} = {1, 0, · · ·} ⇒ {y(n)} = {h(0), h(1), · · ·}
alors, à cause de la propriété d’invariance,

{x(n)} = {0, · · · , 0, 1, 0, · · ·} ⇒ {y(n)} = {0, · · · , 0, h(0), h(1), · · ·}.
On utilisant la propriété de linéarité, on voit que la sortie y(n) à l’instant n est la somme
de la contribution de x(n) pondérée par h(0), plus la contribution de x(n − 1) pondérée
par h(1), plus etc.

Exemple d’un filtre défini par (5.1) avec P = 0

h(n) = bn si 0 ≥ n ≥ Q

= 0 sinon.

La réponse impulsionnelle est à support fini d’où la terminologie filtre RIF. Dans ce cas
particulier, le produit de convolution et la relation de récurrence ont exactement la même
forme

y(n) =
Q∑

i=0

bix(n− i).
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Dans le cas général, il existe deux façons de calculer le même résultat. L’équation
récurrente est beaucoup plus intéressante dans la pratique car elle ne met en jeu que
des sommations finies.

5.1.3 Réponse en fréquence, gain complexe

On soumet le filtre à l’entrée non causale x(n) = aej2πf1n. On suppose connue la réponse
impulsionnelle h(n). On obtient

y(n) =
+∞∑

k=−∞
h(k)x(n− k) = aej2πf1n

+∞∑

k=−∞
h(k)e−j2πf1k.

On reconnait la transformée de Fourier à temps discret de la réponse impulsionnelle évaluée
à la fréquence f = f1. Cette transformée H(f) s’appelle la réponse en fréquence ou le
gain complexe du filtre. On a

y(n) = aej2πf1nH(f1) = a|H(f1)|ej[2πf1n+Arg(H(f1))].

Les exponentielles complexes sont les fonctions propres des filtres.
Ce développement se généralise sans difficulté au cas d’une entrée comportant un

nombre fini d’exponentielles. Si

x(n) =
L∑

l=1

ale
j(2πfln+φl)

alors

y(n) =
L∑

l=1

ale
j(2πfln+φl)H(fl) =

L∑

l=1

al|H(fl)|ej(2πf1n+φl+Arg(H(f1)).

Ce développement se généralise aussi au cas d’une entrée comportant un nombre infini
d’exponentielles. On trouve

y(n) =
∫ +1/2

−1/2
Y (f)ej2πfndf =

∫ +1/2

−1/2
H(f)X(f)ej2πfndf.

On retrouve la relation standard Y (f) = H(f)X(f).
La réponse en fréquence caractérise l’opération de filtrage. Elle est accessible à la

mesure (analyse harmonique).

5.1.4 Fonction de transfert

Cherchons la transformée en z de y(n) donnée par (5.1). On obtient

Y (z) =
+∞∑

n=−∞
y(n)z−n =

Q∑

i=0

bi

+∞∑
n=−∞

x(n− i)z−n −
P∑

i=1

ai

+∞∑
n=−∞

y(n− i)z−n
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Y (z) =
Q∑

i=0

biz
−iX(z)−

P∑

i=1

aiz
−iY (z)

Y (z)
X(z)

=
∑Q

i=0 biz
−i

1 +
∑P

i=1 aiz−i
.

Le rapport H(z) = Y (z)/X(z) est indépendant de l’entrée. On l’appelle la fonction de
transfert du filtre. Il apparâıt comme une fraction rationnelle de deux polynômes en z−1

(filtre causal). Il se factorise sous la forme

H(z) =
∏Q

i=1(1− βiz
−1)∏P

i=1(1− αiz−1)
.

On appelle {β1 · · ·βQ} les zéros de la fonction de transfert et {α1 · · ·αP } les pôles. Les
coefficients des polynomes en z−1 étant supposés à valeurs réelles, les zéros et les pôles
apparâıssent par paires (βi, β

∗
i ) et (αi, α

∗
i ).

H(z) s’interprète comme étant la transformée en z de y(n) lorsque X(z) = 1 i.e.
x(n) = λ(n). H(z) est donc la transformée en z de la réponse impulsionnelle.

5.1.5 Relations

• La réponse en fréquence est la transformée de Fourier à temps discret de la réponse
impulsionnelle.

• La fonction de transfert est la transformée en z de la réponse impulsionnelle.

• Interprétation géométrique du module de la réponse en fréquence. Exemple

H(z) =
(1− βz−1)

(1− αz−1)(1− α∗z−1)
.

|H(f)| = |(1− βe−j2πf )|
|(1− αe−j2πf )|.|(1− α∗e−j2πf )| =

MC

MA.MB

où M, A, B et C sot respectivement les images de ej2πf , des poles et du zéro comme
le montre le tracé de la figure 5.1. Cette interprétation est intéressante car elle
permet un tracé approximatif de |H(f)|. Toutes les propriétés des filtres peuvent
être appréciées qualitativement par simple inspection de la position des pôles et des
zéros. Les pôles proches du cercle unité entrâınent des “pics”. Les zéros proches du
cercle unité entrâınent des “vallées”.

5.1.6 Notion de stabilité

Problème difficile si on veut le traiter de façon rigoureuse. Notion de stabilité locale,
globale, asymptotique, non-asymptotique, etc. On dira simplement qu’un filtre est stable
si à toute entrée bornée correspond une sortie bornée.

Deux CNS :
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Figure 5.1: Interprétation géométrique du module de la réponse en fréquence.

• h(n) est de module sommable :
∑+∞

n=−∞ h(n) < +∞
En effet, la condition est suffisante. Si

∑+∞
n=−∞ h(n) < A et si |x(n)| < B ∀n, alors

|y(n)| = |
+∞∑

k=−∞
h(k)x(n− k)| ≤

+∞∑

k=−∞
|h(k)||x(n− k)| ≤ AB

La condition est également nécessaire car si elle n’est pas vérifiée, le signal x(n) =
signe[h(n)] qui est borné fait diverger le filtre pour n = 0.

• On montre que pour un système causal, une autre CNS est que les pôles de la fonction
de transfert soient strictement à l’intérieur du cercle unité.

La réponse en fréquence d’un filtre n’a un sens que si le filtre est stable. La fonction de
transfert d’un filtre instable existe mais le domaine de convergence de H(z) n’inclut pas
le cercle unité.

Existence de critères algébriques.

5.1.7 Exemples sous forme d’exo

Filtre AR du 1er ordre

y(n) + a1y(n− 1) = x(n)

Réponse impulsionnelle :

{h(n)} = {1,−a1, a
2
1, · · · , (−a1)n, · · ·}

Réponse en fréquence :

H(f) =
+∞∑

n=0

(−a1)ne−j2πfn = 1/(1 + a1e
−j2πf ) si |a1| < 1
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Module :
|H(f)|2 = 1/(1 + 2a1cos(2πf) + a2

1)

Comme
|H(0)| = 1/|1 + a1| et |H(1/2)| = 1/|1− a1|

on remarque que l’on obtient un filtre passe-bas si −1 < a1 < 0 et un filtre passe-haut si
0 < a1 < 1.
Fonction de transfert :

H(z) = 1/(1 + a1z
−1)

Pôle = −a1 (si à l’intérieur du cercle unité ⇒ stabilité sinon instabilité (la réponse impul-
sionnelle est une suite divergente)).

Filtre RIF

y(n) = x(n) + 2x(n− 1) + 3x(n− 2) + 4x(n− 3) + 3x(n− 4) + 2x(n− 5) + x(n− 6)

Réponse impulsionnelle :

{h(n)} = {1, 2, 3, 4, 3, 2, 1, 0, · · ·}

Fonction de transfert :

H(z) = 1 + 2z−1 + 3z−2 + 4z−3 + 3z−4 + 2z−5 + z−6 = [(1 + z−1)(1 + z−2)]2

Zéros doubles en -1, +j, -j.
Réponse en fréquence :

H(f) = [(1 + e−j2πf )(1 + e−j4πf )]2 = [e−j3πf (ejπf + e−jπf )(e2jπf + e−j2πf )]2

H(f) = 16 cos2(πf) cos2(2πf) e−j6πf .

Le tracé de la figure 5.2 montre que, très grossièrement, ce filtre laisse passer les basses
fréquences et coupe les hautes fréquences. C’est un filtre passe-bas (pas très efficace). On
peut chercher à calculer la chute en dB entre le lôbe principal et le lôbe secondaire. On
trouve 22 dB. C’est peu. Pour filtrer du signal de parole en bande téléphonique, il faut au
moins 50 dB, pour de la musique 100 dB (l’oreille est sensible à des variations de puissance
de plus de 100 dB). Par contre, il supprime totalement la fréquence 1/4.
Exemple de l’aspect manipulatoire de la transformée en z

Y (z) = [(1 + z−1)(1 + z−2)][(1 + z−1)(1 + z−2)]X(z)

s’écrit

U(z) = [(1 + z−1)(1 + z−2)]X(z)
Y (z) = [(1 + z−1)(1 + z−2)]U(z)
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Figure 5.2: Module de la réponse en fréquence du filtre RIF suivant une échelle linéaire
(à gauche) ou une échelle en dB (à droite).

ce qui entrâıne

u(n) = x(n) + x(n− 1) + x(n− 2) + x(n− 3)
y(n) = u(n) + u(n− 1) + u(n− 2) + u(n− 3).

La factorisation de H(z) permet d’en déduire de façon exhaustive tous les systèmes
d’équations récurrentes équivalents à la relation initiale.

Filtre réjecteur

La fonction de transfert comportant deux zéros sur le cercle unité s’écrit

H(z) = (1− z0z
−1)(1− z∗0z

−1) avec z0 = ej2πf0

soit
H(z) = 1− 2 cos(2πf0)z−1 + z−2

ce qui donne dans le domaine temporel

y(n) = x(n)− 2 cos(2πf0)x(n− 1) + x(n− 2).

L’interprétation géométrique du module de la réponse en fréquence indique qu’un signal
comportant une composante à la fréquence f0 verra cette composante totalement sup-
primée. On peut effectivement remarquer que la sortie du filtre est nulle quel que soit n
pour une entrée de la forme x(n) = 2 cos(2πf0n + φ).

Filtre AR du 2ème ordre

y(n) + a1y(n− 1) + a2y(n− 2) = b0x(n)
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H(z) =
1

(1− ρejφz−1)(1− ρe−jφz−1)
=

1
1− 2ρ cos(φ)z−1 + ρ2z−2

.

h(n) = ρn sin[(n + 1)φ]
sin(φ)

On donne, figure 5.3, la réponse impulsionnelle et le module de la réponse en fréquence
lorsque ρ = 0.9 et φ = π/4.
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Figure 5.3: Réponse impulsionnelle et module de la réponse en fréquence du filtre AR du
2ème ordre lorsque ρ = 0.9 et φ = π/4.

5.2 Synthèse des filtres

Connaissant la réponse en fréquence H(f) imposée par une application, on veut en déduire
les coefficients de l’équation récurrente correspondante pour pouvoir “implanter” le filtre
dans un processeur. Il existe de nombreuses méthodes. Dans le cadre de ce document,
on se limite à la méthode la plus simple (mais pas la plus efficace) : la méthode dite de
la fenêtre. En particulier, on impose que le filtre soit un filtre RIF (nécessaire si on veut
“une phase linéaire”).

Exemple. On désire synthétiser un filtre passe-bas de fréquence de coupure 1/2M
(utilisation assez fréquente en TS). On parle de filtre “demi-bande” si M = 2, “quart de
bande” si M = 4, etc.

5.2.1 Principe

On rappelle que H(f) est nécessairement une fonction périodique. Comme H(f) est
la transformée de Fourier à temps discret de la réponse impulsionnelle, on en déduit
directement

h(n) =
∫ +1/2

−1/2
H(f)ej2πfndf.
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Exemple du filtre passe-bas (idéal) de fréquence de coupure 1/2M

H(f) = M si |f | < 1/2M

= 0 si 1/2M < |f | < 1/2.

On en déduit

h(n) = M

∫ +1/2M

−1/2M
ej2πfndf =

sin(πn/M)
πn/M

= sinc(
n

M
).

En théorie, la sortie du filtre y(n) est directement donnée par

y(n) =
+∞∑

k=−∞
h(k)x(n− k). (5.2)

On montre, figure 5.4, la réponse impulsionnelle d’un filtre quart de bande.
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Figure 5.4: Réponse impulsionnelle d’un filtre quart de bande (M = 4) et fenêtre de
Hamming sur 41 échantillons.

5.2.2 Mise en œuvre

Limitation à un nombre fini de termes

Le produit de convolution (5.2) n’est pas directement implantable dans une machine. Il
faut se limiter à un nombre fini d’opérations. Pour garder la propriété de symétrie de
h(n), on choisit

ŷ(n) =
+N∑

k=−N

h(k)x(n− k) (5.3)

et non pas

ŷ(n) =
+2N∑

k=0

h(k)x(n− k).
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Pour évaluer l’approximation réalisée, il faut comparer la nouvelle réponse en fréquence
Ĥ(f) à celle du filtre idéal. Comme

ŷ(n) =
+∞∑

k=−∞
h(k)v(k)x(n− k) =

+∞∑

k=−∞
ĥ(k)x(n− k)

en utilisant une “fenêtre de pondération”, on obtient dans le domaine fréquentiel

Ĥ(f) =
∫ 1/2

−1/2
H(λ)V (f − λ)dλ.

Le tracé de la figure 5.5 montre l’introduction d’ondulations lorsque l’on utilise une fenêtre
rectangulaire particulièrement au voisinage des sauts brusques de H(f). Ces ondulations
sont dues à celles présentes dans V (f) (cf figure 4.1). Pour atténuer l’importance de
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Figure 5.5: Réponse en fréquence d’un filtre quart de bande avec N ′ = 2N + 1 = 41 après
pondération par une fenêtre rectangulaire (trait plein) ou par une fenêtre de Hamming
(trait pointillé). Les amplitudes sont données en échelle linéaire (à gauche) ou en décibel
(à droite).

ces ondulations, on peut être tenté d’augmenter le paramètre N . Les ondulations ne
disparâıssent pas. Elles sont juste localisées dans une bande de fréquence de plus en plus
étroite. C’est le “phénomène de Gibbs”. On voudrait que V (f) ait un lobe principal le
plus étroit possible et des lobes secondaires les plus petits possibles. C’est contradictoire.
Un bon compromis est donné par la fenêtre de Hamming, montrée figure 5.4, comme on
peut le constater, figure 5.5, où on compare la réponse en fréquence Ĥ(f) lorsque l’on
utilise une fenêtre rectangulaire et une fenêtre de Hamming.

On donne, table 5.1, les “performances” de quelques fenêtres.

Filtre causal

Le produit de convolution (5.3) caractérise un filtre non-causal. Si on veut rendre causal
le filtre, il suffit de différer le résultat de N échantillons en posant

ỹ(n) = ŷ(n−N).
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Fenêtre Largeur Taux
du lobe principal d’ondulation

rectangulaire 2/N ′ 22 %
Hamming 4/N ′ 2 %
Blackman 6/N ′ 0.1 %

Table 5.1: Performances de quelques fenêtres avec N ′ = 2N + 1.

On obtient
{h̃(0) · · · h̃(2N)} = {ĥ(−N) · · · ĥ(N)}

H̃(f) = e−j2πfNĤ(f).

C’est très artificiel. On n’a rien changé exceptée la définition de l’origine des indices n !

Gabarit

Le développement précédent montre que la réponse en fréquence d’un filtre ne peut pas être
parfaitement plate ni en bande passante, ni en bande affaiblie et que la bande de transition
ne peut pas être infiniment étroite. Il faut donc introduire des degrés de liberté : on définit
un “gabarit” en précisant le taux d’ondulation en bande passante, le taux d’ondulation en
bande affaiblie (ou le taux de réjection) et la largeur de la bande de transition en fonction
de l’application.

Dans l’exemple précédent, le taux de réjection est de l’ordre de 50 dB si l’ordre du
filtre RIF est égal à N ′ = 41 et si on utilise une fenêtre de Hamming. C’est suffisant si
on désire filtrer du signal de parole en bande téléphonique (dynamique en puissance de
l’ordre de 50 dB). C’est insuffisant pour du signal de musique (dynamique en puissance
de l’ordre de 100 dB). Il faut alors augmenter l’ordre.

Implantation temps réel dans un processeur

Peut-on prendre des ordres très élevés ? Cela dépend de la fréquence d’échantillonnage du
signal et de la puissance de calcul du processeur utilisé. Par exemple, pour du signal de
musique échantillonné à 44.1 kHz et filtré dans un microprocesseur capable d’effectuer 107

multiplications/accumulations par seconde1, on trouve que N ′ doit vérifier 44100N ′ ≤ 107

soit N ′ ≤ 200.

5.2.3 Autres méthodes de synthèse

Algorithme de Remez. La réponse impulsionnelle est obtenue en utilisant des algorithmes
d’optimisation

min
h(n)

[ max
f∈[0,1/2]

W (f)|H(f)− Ĥ(f)|]

où W (f) est une fonction de pondération. On montre, figure 5.6, la réponse en fréquence
d’un filtre quart de bande après pondération par une fenêtre de Hamming (trait plein) ou

1Ordre de grandeur pour les processeurs actuels ?
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après utilisation de l’algorithme de Remez (trait pointillé). L’ordre du filtre et la bande
de transition ont été choisis identiques. Conclusion !
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Figure 5.6: Réponse en fréquence d’un filtre quart de bande après pondération par une
fenêtre de Hamming (trait plein) ou après utilisation de l’algorithme de Remez (trait
pointillé).

5.3 Un exemple applicatif

On dispose d’un signal de musique échantillonné à 48 kHz. On veut en obtenir une version
échantillonnée à 32 kHz minimisant la distorsion.

Techniques de sous et sur-échantillonnage largement utilisées en TS : bancs de filtres,
codage de source, changement de fréquences d’échantillonnage, etc.

5.3.1 Sous-échantillonnage par un facteur M

A partir d’un signal à temps discret x(n), on construit un nouveau signal y(m) en prélevant
un échantillon sur M : y(m) = x(mM). On recherche la relation existant entre la trans-
formée de Fourier à temps discret X(f) du signal x(n) et la transformée de Fourier à
temps discret Y (f) du signal y(m). Pour formaliser l’opération de sous-échantillonnage, il
est commode de créer un signal intermédiaire v(n) qui prend les valeurs x(n) si n = mM
et qui est égal à zéro sinon. Il a perdu de l’information contenue dans x(n) mais il reste
à la même cadence. On a

v(n) = x(n)
+∞∑

m=−∞
λ(n−mM)

En exploitant la formule (4.4), on obtient

v(n) = x(n)
1
M

M−1∑

k=0

ej2π k
M

n.
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Donc

V (f) =
1
M

M−1∑

k=0

+∞∑
n=−∞

x(n)e−j2π(f−k/M)n =
1
M

M−1∑

k=0

X(f − k

M
).

La transformée de Fourier du signal à temps discret y(m) qui est le signal v(n) débarrassé
des termes nuls, s’écrit

Y (f) =
+∞∑

m=−∞
y(m)e−j2πfm =

+∞∑
m=−∞

v(mM)e−j2π f
M

mM = V (
f

M
).

Donc

Y (f) =
1
M

M−1∑

k=0

X(
f − k

M
).

Conclusion : on observe deux phénomènes, un phénomène de recouvrement des spectres
et un phénomène de dilatation des fréquences comme le montre le dessin de la figure 5.7.

Figure 5.7: Phénomène de recouvrement dû au sous-échantillonnage.

Il est possible de supprimer le phénomène de recouvrement des spectres en filtrant la
séquence x(n) par un filtre passe-bas de fréquence de coupure 1/2M mais bien sûr on perd
alors de l’information. On appelle ce filtre, le filtre décimateur.

Interprétation du phénomène de dilatation des fréquences en prenant l’exemple du
signal à temps discret {· · · , 1, 0,−1, 0, 1, · · ·}. Toute sa puissance est localisée à la fréquence
1/4. Si on le sous-échantillonne par un facteur 2, on obtient {· · · , 1,−1, 1, · · ·}. Toute sa
puissance devient localisée à la fréquence 1/2.

Remarque

On considère un signal à temps continu x(t) admettant comme transformée de Fourier à
temps continu Xtc(ftc). On suppose que x(n) est obtenu par échantillonnage de x(t) à la
fréquence fe.

La transformée de Fourier à temps discret du signal x(t) échantillonné à la fréquence
fe = 1/T en fonction de la fréquence ftc relative à des signaux à temps continu est donnée
par

Xtd(ftc) =
1
T

+∞∑

k=−∞
Xtc(ftc − kfe) =

+∞∑
n=−∞

x(nT )e−j2π
ftc
fe

n
.
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Le signal à temps discret y(m) est obtenu par échantillonnage de x(t) à la fréquence
f ′e = fe/2. On a

Ytd(ftc) =
1

2T

+∞∑

k=−∞
Xtc(ftc − k

fe

2
) =

+∞∑
m=−∞

y(mT ′)e−j2π
ftc
f ′e

m
.

En décomposant la sommation sur k en indices pairs et indices impairs, on obtient

Ytd(ftc) =
1
2
[Xtd(ftc) + Xtd(ftc − fe

2
)].

Il reste une ambigüıté au niveau du paramètre f . Dans les formules précédentes, ftc reste
une fréquence exprimée en Hertz. On veut utiliser la fréquence normalisée f = ftc/f ′e.
Comme

+∞∑
m=−∞

y(mT ′)e−j2π
ftc
f ′e

m
=

+∞∑
n=−∞

x(nT )e−j2π
ftc
fe

n +
+∞∑

n=−∞
x(nT )e−j2π

ftc−fe/2
fe

n

+∞∑
m=−∞

y(mT ′)e−j2π
ftc
f ′e

m
=

+∞∑
n=−∞

x(nT )e
−j2π

ftc
2f ′e

n
+

+∞∑
n=−∞

x(nT )e
−j2π

ftc−2f ′e/2

2f ′e
n

On en déduit
Y (f) =

1
2
[X(

f

2
) + X(

f − 1
2

)].

5.3.2 Sur-échantillonnage par un facteur M

A partir de la séquence x(n), on crée la séquence y(m) en intercalant des zéros

y(nM) = x(n)
y(nM + l) = 0 pour l ∈ {1 · · ·M − 1}.

Contrairement au cas précédent, le sur-échantillonnage n’entrâıne pas de perte d’information
(ni de création d’ailleurs).

Relation entre les transformées de Fourier

La transformée de Fourier à temps discret de y(m) est égale à

Y (f) =
+∞∑

m=−∞
y(m)e−j2πfm =

+∞∑
n=−∞

y(nM)e−j2πfnM = X(Mf).

Il y a création d’images et un phénomène de rétrécissement des fréquences comme le montre
la figure 5.8. Le dessin semble montrer que les spectres sont “identiques”. Ils n’ont pas la
même interprétation. Si x(n) est obtenu par échantillonnage à la fréquence fe d’un signal
à temps continu x(t) et si y(m) est obtenu par échantillonnage à la fréquence f

′
e = Mfe

d’un signal à temps continu y(t), on remarque que les deux signaux x(t) et y(t) ne sont
pas “identiques” comme le montre le tracé de la figure 5.9. Si l’on veut que x(n) et y(m)
aient des spectres “identiques”, il faut filtrer y(m) par un filtre passe-bas de fréquence de
coupure 1/2M appelé filtre interpolateur.
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Figure 5.8: Spectres avant et après sur-échantillonnage lorsque M = 2.

Figure 5.9: Comparaison entre x(t) et y(t).

Filtrage interpolateur

La sortie du filtre interpolateur est donnée par

v(m) =
+∞∑

k=−∞
h(m− k)y(k)

v(m) =
+∞∑

k=−∞
y(k)sinc(

m− k

M
).

En posant m = nM + l et k = pM + q, on obtient

v(nM + l) =
+∞∑

p=−∞

M−1∑

q=0

y(pM + q)sinc(
nM + l − pM − q

M
).

Puisque

y(pM) = x(p)
y(pM + q) = 0 pour q ∈ {1 · · ·M − 1}

on obtient

v(nM + l) =
+∞∑

p=−∞
x(p)sinc(n− p +

l

M
). (5.4)

On remarque que v(nM) = x(n) puisque

sinc(n− p) = 0 pour p 6= n.

La formule (5.4) est simplement la formule d’interpolation (3.2)

x(t) =
+∞∑

p=−∞
x(pT )sinc(

t− pT

T
)

évaluée aux instants
t = (n +

l

M
)T.
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5.3.3 Conclusion

Pour passer d’un signal de musique échantillonné à 48 kHz à un signal échantillonné à 32
kHz, il faut d’abord sur-échantillonner par un facteur 2 puis sous-échantillonner par un
facteur 3. Le filtre interpolateur qui suit le sur-échantillonneur doit être un filtre demi-
bande et le filtre décimateur qui précède le sous-échantillonneur doit être un filtre tiers de
bande. Il suffit donc d’intercaler entre le sur-échantillonneur et le sous-échantillonneur un
unique filtre tiers de bande.

5.3.4 Un autre exemple : convertisseur A/N “sigma-delta 1 bit”

Comment un convertisseur analogique/numérique sur 1 bit peut-il devenir aussi précis
qu’un convertisseur sur 16 bits ? Réponse : en utilisant une fréquence d’échantillonnage
bien supérieure à la fréquence de Nyquist et en réalisant un traitement numérique. Intérêt
? Le coût (prix, fiabilité, etc) d’un traitement analogique est supérieur au coût d’un traite-
ment numérique. On a donc intérêt à déplacer au maximum le traitement de l’analogique
vers le numérique.

Le schéma de la figure 5.10 donne le principe d’un convertisseur A/N “sigma-delta”.
L’entrée x(n) est un nombre réel de précision infinie (compris entre -1 et +1), la sor-
tie xa(m) est une version arrondie, le signal intermédiaire (à temps discret et à valeurs
discrètes) y(n) ∈ {−1,+1} est une représentation binaire.

m m- - - - - - -

66

x(n) u(n)
z−1

v(n) y(n)
H(f)

w(n)
?M

xa(m)− +

Figure 5.10: Schéma de principe d’un convertisseur A/N “sigma-delta 1 bit”.

On a

v(n) = u(n− 1) + v(n− 1)
y(n) = 1 si v(n) ≥ 0

= −1 si v(n) < 0
u(n) = x(n)− y(n) (5.5)

On montre, figure 5.11, la “représentation binaire” d’une sinusöıde à temps discret de
fréquence 1/50. On montre, figure 5.12, le signal w(n) lorsque H(f) est un filtre passe-bas
de fréquence de coupure 1/2M avec M = 4 ou 8 (pour rendre le tracé lisible, on représente
w(n) comme s’il était un signal à temps continu).

Pourquoi ? Prématuré. Il faut remplacer dans (5.5) y(n) par y(n) = v(n) + q(n) où
q(n) est une source de bruit.
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Figure 5.11: Représentation binaire d’une sinusöıde de fréquence 1/50.
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Figure 5.12: Versions arrondies (traits pleins) d’une sinusöıde (trait pointillé) de fréquence
1/50 lorsque M = 4 ou 8.



56 CHAPTER 5. SIGNAUX À TEMPS DISCRET : FILTRAGE



Chapter 6

Processus aléatoires : une
introduction

6.1 Introduction

Nécessité d’un modèle probabiliste. Exemple d’une châıne de communication. Une source
émet de l’information. Cette information passe dans un canal (sous la forme d’un signal
déterministe). Le récepteur observe la sortie du canal et cherche à récupérer l’information
émise. Ce signal est imprévisible pour (au moins) deux raisons :

• le message est inconnu pour le récepteur (sinon quelle est l’utilité de cette transmis-
sion),

• le message a subi des perturbations

– de nature déterministe (le canal peut être assimilé à une opération de filtrage),

– de nature aléatoire (addition de bruits).

Un modèle pour le signal reçu : un processus aléatoire à temps continu.
Autre exemple : cf figures 1.1 et 1.2. Problème : comment synthétiser de la parole

(par un filtre AR excité par un bruit blanc), de la musique (quelques sinusöıdes plus du
bruit).

Dans ce développement (très sommaire), étude de quelques propriétés d’un processus
aléatoire à temps discret X(n) :

• Que veut dire processus aléatoire à temps discret stationnaire (au 2ème ordre au sens
large), centré, gaussien (laplacien,...), de puissance σ2

X , de fonction d’autocovariance
RX(k), de densité spectrale de puissance SX(f), ergodique dont une réalisation
(trajectoire) est le signal (observé) x(n) ?

• Quelles sont les propriétés des processus aléatoires à temps discret après une opération
de filtrage ?

57
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Rappel : Variable aléatoire = application mesurable (de Ω → R telle que l’image
réciproque X−1(B) ∈ A ∀ borélien de R) définie sur un espace probabilisé(Ω, A, P )
où Ω est l’ensemble des évènements, A un sous-ensemble de Ω possédant une structure
particulière et P une mesure de probabilité.

6.2 Processus aléatoire

6.2.1 Définition

Processus aléatoire à temps discret : famille de v.a. indexée par n ∈ Z. Notation :
X(n, ω).

• Interprétation statistique. On fixe un (ou plusieurs) instant d’observation n = n1,
on obtient une (ou plusieurs) variable aléatoire X(n1, ω) qui se prête bien à un calcul
(théorique).

• Interprétation temporelle. On fixe une épreuve particulière ω = ω1, on obtient
une observation (réalisation, trajectoire) particulière x(n, ω1) qui a une signification
physique (on interprète le signal que l’on cherche à traiter comme la réalisation d’un
processus aléatoire).

6.2.2 Interprétation statistique

Statistique du 1er ordre

On fixe un instant particulier n = n1. On obtient une variable aléatoire X(n1, ω). Si on
connâıt sa fonction de répartition

FX(x;n1) = P{X(n1) ≤ x}

ou la densité de probabilité pX(x; n1) (si la fonction de répartition est différentiable par
rapport à x), on peut calculer tous les moments d’ordre M

E{XM (n1)} =
∫ +∞

−∞
xMpX(x;n1)dx.

Dans la pratique, on utilise les deux premiers moments, la moyenne

mX(n1) = E{X(n1)}

et la variance (le moment d’ordre 2 centré)

σ2
X(n1) = E{(X(n1)−mX(n1))2}.
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Statistique du 2ème ordre

On fixe deux instants particuliers n = n1 et n = n2. On obtient deux variables aléatoires
X(n1, ω) et X(n2, ω). Si on connâıt la fonction de répartition conjointe

FX(x1, x2; n1, n2) = P{X(n1) ≤ x1 et X(n2) ≤ x2}

et la densité de probabilité conjointe pX(x1, x2; n1, n2), on peut en déduire tous les mo-
ments d’ordre M et M ′

E{XM (n1)XM ′
(n2)} =

∫ +∞

−∞

∫ +∞

−∞
xM

1 xM ′
2 pX(x1, x2; n1, n2)dx1dx2.

Dans la pratique, on utilise le premier moment conjoint centré (fonction d’autocovariance)

RX(n1, n2) = E{[X(n1)−mX(n1)][X(n2)−mX(n2)]}

RX(n1, n2) =
∫ +∞

−∞

∫ +∞

−∞
[x1 −mX(n1)][x2 −mX(n2)]pX(x1, x2; n1, n2)dx1dx2.

Statistique d’ordre supérieur

Généralisation délicate pour un nombre infini (mais dénombrable pour les p.a. à temps
discret) d’instants d’observation.

Processus stationnaire au sens large (SSL)

Si la moyenne et la variance ne dépendent pas de l’instant d’observation n, si la variance est
bornée et si l’autocovariance ne dépend que de l’écart entre les deux instants d’observation,
alors on dit que le processus X(n) est stationnaire au 2ème ordre au sens large. On
supposera cette propriété vérifiée dans toute la suite.

On notera la moyenne, la variance et la fonction d’autocovariance respectivement

mX = E{X(n)}

σ2
X = E{(X(n)−mX)2}

RX(k) = E{(X(n)−mX)(X(n + k)−mX)}.

La puissance du processus est donnée par

E{X2(n)} = σ2
X + m2

X = RX(0) + m2
X .
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Processus stationnaire gaussien

Chaque variable aléatoire X(n1) suit une loi gaussienne, toute combinaison linéaire de
X(n1) · · ·X(nN ) avec n1 · · ·nN et N quelconque suit une loi gaussienne. Un processus
aléatoire stationnaire gaussien est complètement caractérisé par sa moyenne mX et sa
fonction d’autocovariance RX(k) ou sa matrice de covariance

ΓX(N) =




RX(0) RX(1) · · · RX(N − 1)
RX(1) · · · · · · · · ·
· · · · · · · · · RX(1)

RX(N − 1) · · · RX(1) RX(0)




pour N “suffisamment grand”. Si x = [x1 · · ·xN ]t

pX(x) =
1

(2π)N/2
√

det(Γ)
e−

1
2
(x−mX)tΓ−1

X (x−mX)

Pour N = 1, on retrouve la formule classique

pX(x) =
1√

2πσ2
X

e−(x−mX)2/2σ2
X

6.2.3 Interprétation temporelle

On dispose d’une réalisation (trajectoire)
Moyenne temporelle

mX(ω) = lim
N→+∞

1
2N + 1

+N∑

n=−N

x(n)

Corrélation temporelle

RX(k, ω) = lim
N→+∞

1
2N + 1

+N∑

n=−N

x(n)x(n + k)

L’hypothèse d’ergodicité permet d’affirmer que mX(ω) et RX(k, ω) sont indépendants de
ω et que les moments statistiques sont presque sûrement égaux aux moyennes temporelles.

6.2.4 Densité spectrale de puissance

Propriétés de l’autocovariance

X(n, ω) : p.a. (SSL) à valeurs réelles et centré (pour simplifier)

RX(k) = E{X(n)X(n + k)}

• Expression déterministe
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• symétrique RX(−k) = RX(k)

• bornée |RX(k)| ≤ RX(0) = σ2
X

En effet
E{[X(n) + λX(n + k)]2 } ≥ 0 ∀λ

RX(0) + 2λRX(k) + λ2RX(0) ≥ 0 ∀λ
R2

X(k)−R2
X(0) ≤ 0 ∀k

• limk→+∞RX(k) = 0

• La matrice d’autocovariance

ΓX(N) = E{



X(n)
· · ·

X(n + N − 1)


 [X(n) · · ·X(n+N−1)]} =




RX(0) · · · RX(N − 1)
· · · · · · · · ·

RX(N − 1) · · · RX(0)




est semi-définie positive puisque E{[∑N−1
k=0 λkX(n + k)]2} ≥ 0 ∀λk

Définition de la densité spectrale de puissance

On appelle densité spectrale de puissance (ou spectre de puissance ou spectre tout court)
la transformée de Fourier à temps discret de la fonction d’autocovariance

SX(f) =
+∞∑

k=−∞
RX(k)e−j2πfk.

Existence si RX(k) est une suite de module sommable.

Propriétés de la densité spectrale de puissance

• Fonction périodique (période 1)

RX(k) =
∫ +1/2

−1/2
SX(f)e+j2πfkdf.

• Fonction réelle et paire : SX(f) = RX(0) + 2
∑+∞

k=1 RX(k) cos(2πfk).

• Fonction positive : théorème de Bochner SX(f) ≥ 0 ∀f .

• La puissance (totale) est donnée par

E{X2(n)} = RX(0) + m2
X =

∫ +1/2

−1/2
SX(f)df + m2

X .

• Relation avec la transformée en z de la fonction d’autocovariance

SX(z) =
+∞∑

k=−∞
RX(k)z−k

(domaine d’existence : une couronne comprenant le cercle unité). Evaluation de la
transformée en z sur le cercle unité.
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6.2.5 Exemples de processus aléatoires

Bruit blanc

Processus aléatoire centré vérifiant

RX(0) = σ2
X

RX(k) = 0 pour k 6= 0.

La densité spectrale de puissance est donc constante sur tout l’axe des fréquences

SX(f) = σ2
X .

Suite i.i.d. (suite indépendante et identiquement distribuée)

• Chaque élément de la suite a même loi de probabilité à chaque instant

pX(x; n) = pX(x) ∀n.

• ∀n1, n2, les v.a. X(n1) et X(n2) sont mutuellement indépendantes, donc décorrélées
(réciproque non vraie). C’est donc un bruit blanc.

Sinusöıde à phase aléatoire

X(n, ω) = a cos(2πf1n + Φ(ω))

avec a et f1 constants et Φ(ω) équirépartie entre 0 et 2π.
Moyenne statistique

mX(n) = E{X(n)} =
∫ 2π

0
a cos(2πf1n + φ)

dφ

2π
= 0 ∀ n

Moyenne temporelle

mX(ω) = lim
N→+∞

1
2N + 1

+N∑

n=−N

a cos(2πf1n + Φ(ω)) = 0 ∀ Φ(ω)

Corrélation statistique

RX(n, k) = E{X(n)X(n + k)} =
∫ 2π

0
a2 cos(2πf1n + φ) cos(2πf1(n + k) + φ)

dφ

2π

RX(n, k) =
a2

2
[
∫ 2π

0
cos(2πf1(2n + k) + 2φ)

dφ

2π
+

∫ 2π

0
cos(2πf1k)

dφ

2π
]

RX(n, k) =
a2

2
cos(2πf1k).
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Corrélation temporelle

RX(ω) = lim
N→+∞

1
2N + 1

+N∑

n=−N

a2 cos(2πf1n + Φ(ω)) cos(2πf1(n + k) + Φ(ω))

RX(ω) =
a2

2
lim

N→+∞
1

2N + 1

+N∑

n=−N

[cos(2πf1(2n + k) + 2Φ(ω)) + cos(2πf1k)]

RX(ω) =
a2

2
cos(2πf1k).

Conclusion : processus stationnaire et ergodique au 2ème ordre (au sens large) de densité
spectrale de puissance

SX(f) =
a2

4

+∞∑

k=−∞
[δ(f − f1 − k) + δ(f + f1 − k)].

Deux cas extrêmes : une suite i.i.d. est totalement imprévisible (source “sans mémoire”),
une sinusöıde à phase aléatoire est presque totalement prévisible.

6.2.6 Intérêt d’un modèle probabiliste : un exemple

Quantification = codage de source = discrétisation des amplitudes. Paramètre fondamen-
tal = b = résolution = nombre de bits par échantillon (en moyenne).

Considérons un signal à temps discret x(n) prenant ses valeurs dans l’intervalle [−A,+A].
La démarche la plus naturelle pour définir un quantificateur consiste à

1. partitionner l’intervalle [−A, +A] en L = 2b intervalles distincts de même longueur
∆ = 2A/2b,

2. numéroter chaque intervalle,

3. définir un représentant par intervalle, par exemple le milieu de l’intervalle.

La procédure d’encodage consiste à décider à quel intervalle appartient x(n) puis à lui
associer le numéro i(n) ∈ {1 · · ·L = 2b} correspondant. C’est le numéro de l’intervalle
choisi, le symbole canal, qui sera transmis ou stocké. La procédure de décodage con-
siste à associer au numéro i(n) le représentant correspondant x̂(n) = x̂i(n) choisi parmi
l’ensemble des représentants {x̂1 · · · x̂L}. On appelle l’ensemble des représentants un dic-
tionnaire (codebook). Les procédures d’encodage et de décodage de ce quantificateur sont
schématisées figure 6.1.

L’erreur de quantification a pour expression

q(n) = x(n)− x̂(n).

Pour caractériser la dégradation apportée par l’opération de quantification, il faut définir
un critère et proposer un modèle simple pour les signaux intervenant dans ce critère. On
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Figure 6.1: Quantificateur scalaire uniforme.

suppose que x(n) est la réalisation d’un processus aléatoire X(n). Comme critère, on
choisit le rapport signal sur bruit

Rsb =
E{X2(n)}

E{[X(n)− x̂(n)]2} .

A priori l’erreur de quantification q(n) n’est pas de nature probabiliste puisque q(n) est
une fonction déterministe de x(n). Pour simplifier cette étude, on prend comme modèle
pour représenter cette erreur de quantification q(n), un processus aléatoire Q(n) avec les
hypothèses suivantes.

• Il prend ses valeurs de façon équiprobable dans l’intervalle [−∆/2,+∆/2].

• Q(n), Q(n− 1), ... sont indépendants entre eux.

• Q(n) et X(n) sont indépendants.

Le processus aléatoire Q(n) est une suite de variables aléatoires indépendantes et iden-
tiquement distribuées (une suite i.i.d.). La moyenne de l’erreur de quantification est nulle,
sa variance est donnée par

σ2
Q = E{Q2(n)} =

∫ ∆/2

−∆/2
x2 1

∆
dx =

∆2

12
=

1
12

(
2A

2b

)2

=
A2

3
2−2b.

Si on suppose X(n) uniformément réparti dans l’intervalle [−A, +A], hypothèse irréaliste
pour un signal quelconque mais cela entrâıne un calcul simple, sa moyenne est nulle et sa
variance a pour expression

σ2
X = E{X2(n)} =

∫ A

−A
x2 1

2A
dx =

A2

3
.
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On obtient la relation qui donne la puissance de l’erreur de quantification en fonction de
la puissance du signal et de la résolution b

σ2
Q = σ2

X 2−2b.

Le rapport signal sur bruit a pour expression

10 log10

E{X2(n)}
E{Q2(n)} = 10 log10 22b = 6, 02 b.

Le fait de rajouter un bit revient donc à augmenter le rapport signal sur bruit de 6 dB.
Exemple du CD : entre le seuil d’audition absolu et le seuil de douleur, l’oreille a une
dynamique en puissance de l’ordre de 120 dB. Il aurait donc fallu que le CD réalise une
quantification scalaire sur 20 bits (au lieu de 16) !

Si on suppose X(n) gaussien, on obtiendrait

σ2
Q = c σ2

X 2−2b avec 10 log10(c) ≈ 4.3 dB

6.3 Filtrage d’un processus aléatoire

6.3.1 Problème

Connaissant les propriétés (au 2ème ordre) du processus stationnaire X(n), i.e. sa moyenne
mX , sa variance σ2

X , sa fonction d’autocovariance RX(k) et/ou sa densité spectrale de
puissance SX(f), quelles sont les propriétés du processus filtré Y (n) par le filtre (stable)
de réponse en fréquence H(f) ? Le processus Y (n) est-il stationnaire (au 2ème ordre au
sens large) ? Si oui, expression de mY , σ2

Y , RY (k) et SY (f).
Problème mathématique délicat pour définir proprement le filtrage d’un processus

aléatoire. On se contentera d’admettre que l’opération de filtrage d’une réalisation

y(n) =
+∞∑

k=−∞
h(k)x(n− k)

se généralise

Y (n) =
+∞∑

k=−∞
h(k)X(n− k)

ou que l’on se limite à l’étude d’un filtrage d’un p.a. par un filtre RIF (combinaison linéaire
d’un nombre fini de v.a.). On rappelle qu’une condition de stabilité du filtre est que la
réponse impulsionnelle soit de module sommable.

6.3.2 Formule de filtrage

Moyenne

E{Y (n)} = E{
+∞∑

k=−∞
h(k)X(n− k)} =

+∞∑

k=−∞
h(k)E{X(n− k)}



66 CHAPTER 6. PROCESSUS ALÉATOIRES : UNE INTRODUCTION

E{Y (n)} = mX

+∞∑

k=−∞
h(k) = mXH(0).

Cette moyenne ne dépend pas de l’instant d’observation n. Si le processus d’entrée est
centré, le processus de sortie l’est aussi.

Intervariance entrée-sortie

On supposera X(n) centré par la suite (pour simplifier). Appelons

RXY (n, k) = E{X(n)Y (n + k)} = E{X(n)
+∞∑

l=−∞
h(l)X(n + k − l)}

RXY (n, k) =
+∞∑

l=−∞
h(l)E{X(n)X(n + k − l)} =

+∞∑

l=−∞
h(l)RX(k − l)}.

Cette intercorrélation ne dépend pas de n, elle ne dépend que de k. Comme

RXY (k) = h(k) ∗RX(k)

on obtient
SXY (f) = H(f)SX(f).

Autocovariance de la sortie

RY (n, k) = E{Y (n)Y (n + k)} = E{Y (n)
+∞∑

l=−∞
h(l)X(n + k − l)}

RY (n, k) =
+∞∑

l=−∞
h(l)E{Y (n)X(n + k − l)} =

+∞∑

l=−∞
h(l)RY X(k − l).

L’autocovariance est indépendante de n, elle ne dépend que de k. La propriété de station-
narité se conserve donc par filtrage. On a

RY (k) = h(k) ∗RY X(k)

SY (f) = H(f)SY X(f)

Comme
RY X(k) = E{Y (n)X(n + k)} = E{X(n)Y (n− k)} = RXY (−k)

et que

SY X(f) =
+∞∑

k=−∞
RXY (−k)e−j2πfk =

+∞∑

k=−∞
RXY (k)e−j2π(−f)k = SXY (−f)
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on obtient

SY (f) = H(f)SXY (−f) = H(f)H(−f)SX(−f)

finalement

SY (f) = H(f)H(−f)SX(f) = |H(f)|2SX(f)

puisque SX(f) est une fonction paire et que H(f) a la propriété de symétrie hermitienne.

6.3.3 Remarques et interprétation

Généralisations

Généralisation à un processus à temps continu

SY (f) = TFTC{E{X(t)X(t + τ)}} = |H(f)|2SX(f).

Utilisation de la transformée en z

SY (z) = H(z)H(z−1)SX(z).

Processus gaussien

Le caractère gaussien se maintient par filtrage

Densité spectrale de puissance

Considérons un filtre passe-bande (idéal) autour d’une fréquence f1

H(f) = 1 si |f | ∈ [f1 −∆/2, f1 + ∆/2]
= 0 sinon.

Comme

SY (f) = SX(f) si |f | ∈ [f1 −∆/2, f1 + ∆/2]
= 0 sinon,

on obtient ∫ +1/2

−1/2
SY (f)df ≈ 2SX(f1)∆

pour ∆ suffisamment petit. Comme le premier membre est nécessairement positif (ou
nul), on remarque que SX(f) ≥ 0 ∀f . SX(f) s’interprète comme une densité spectrale de
puissance.
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Processus ARMA

Si le processus d’entrée X(n) est un bruit blanc centré de variance σ2
X , la sortie Y (n) est un

processus de densité spectrale de puissance SY (f) = |H(f)|2σ2
X . Par exemple, si le filtre

est un filtre AR(4) avec deux fois deux pôles complexes conjugués de module légèrement
inférieur à 1 et d’argument +/ − π/8 et +/ − π/4, on obtiendra en sortie un processus
aléatoire ayant de la puissance surtout concentrée dans deux bandes de fréquence voisines
de f = 1/8 et f = 1/4. On voit qu’il est facile de créer un signal synthétique ayant des
composantes spectrales particulières.

6.3.4 Exemple sous forme d’exo

Filtre défini par la relation de récurrence

y(n)− ay(n− 1) = bx(n).

Processus d’entrée X(n) : processus stationnaire centré de fonction d’autocovariance

{RX(0), RX(1), RX(2), · · ·} = {σ2
X , cσ2

X , 0, · · ·}.

Caractéristiques du filtre

H(z) =
b

1− az−1
si |z| > |a|

H(f) =
b

1− ae−j2πf
si |a| < 1

|H(f)|2 =
b2

1− 2a cos(2πf) + a2

{h(0), h(1), h(2), · · ·} = {b, ba, ba2, · · ·}

Caractéristiques du processus d’entrée

SX(z) = σ2
X(cz + 1 + cz−1)

SX(f) = σ2
X(1 + 2c cos(2πf))

Caractéristiques du processus de sortie

SY (z) = b2σ2
X

cz + 1 + cz−1

(1− az)(1− az−1)

SY (f) = b2σ2
X

1 + 2c cos(2πf)
1− 2a cos(2πf) + a2
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Souvent, on désire connâıtre la puissance du processus de sortie

σ2
Y = E{Y 2(n)} = RY (0) =

∫ 1/2

−1/2
SY (f)df

Calcul plus facile en utilisant l’expression en z

σ2
Y = RY (0) =

1
2πj

∫

Γ
SY (z)

dz

z

σ2
Y = b2σ2

X

1
2πj

∫

Γ

cz1 + 1 + cz−1

(1− az)(1− az−1)
dz

z

σ2
Y = b2σ2

X

1
2πj

∫

Γ

cz2 + z + c

z(1− az)(z − a)
dz

et en appliquant le théorème des résidus (deux pôles à l’intérieur du cercle unité z=0 et
z=a)

σ2
Y = b2σ2

X [
c

(−a)
+

ca2 + a + c

a(1− a2)
] = b2σ2

X

1 + 2ac

1− a2

2ème méthode : décomposition en éléments simples puis développement en série de Laurent
de

SY (z) = b2σ2
X

cz + 1 + cz−1

(1− az)(1− az−1)

3ème méthode
σ2

Y = E{
∑

k

h(k)X(n− k)
∑

l

h(l)X(n− l)}

σ2
Y =

∑

k

h(k)[ch(k − 1) + h(k) + ch(k + 1)]σ2
X

6.4 Théorie de l’estimation : une introduction

X(n) p.a. stationnaire et ergodique veut dire

mX = E{X(n)} = lim
N→∞

1
2N + 1

+N∑

n=−N

x(n)

RX(k) = E{X(n)X(n + k)} = lim
N→∞

1
2N + 1

+N∑

n=−N

x(n)x(n + k).

En pratique, on ne dispose qu’une seule réalisation comportant un nombre fini N d’échantillons
[x(0) · · ·x(N − 1)]. Comment utiliser “au mieux” ces données ?
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6.4.1 Moyenne “empirique”

On pose

m̂X =
1
N

N−1∑

n=0

x(n).

m̂X est une v.a. puisqu’elle dépend d’un tirage aléatoire. Elle a une moyenne et une
variance

E{m̂X} = E{ 1
N

N−1∑

n=0

X(n)} =
1
N

N−1∑

n=0

mX = mX

On dit que l’estimateur est “sans biais”.

var{m̂X} = E{[( 1
N

N−1∑

n=0

X(n))−mX ]2} =
1

N2
E{[

N−1∑

n=0

(X(n)−mX)]2}

var{m̂X} =
1

N2

N−1∑

n=0

N−1∑

m=0

RX(n−m) =
1
N

N−1∑

n=0

[1− |n|
N

]RX(n).

Donc var{m̂X} 6= 0 mais on montre que limN→∞ var{m̂X} → 0. On dit que cet estimateur
tend “en moyenne quadratique” vers mX .

6.4.2 Covariance “empirique”

On supposera X(n) centré pour simplifier les notations. On pose

R̂X(k) =
1
N

N−1−k∑

n=0

x(n)x(n + k) pour k = 0 · · ·N − 1.

Comme

E{R̂X(k)} =
1
N

N−1−k∑

n=0

E{X(n)X(n + k)} =
N − k

N
RX(k)

cet estimateur est biaisé mais “asymptotiquement sans biais”. Nécessité de calculer aussi
var{R̂X(k)} mais calcul compliqué.

Remarque : on aurait pu choisir

R̂X(k) =
1

N − k

N−1−k∑

n=0

x(n)x(n + k)

ce qui aurait rendu l’estimateur sans biais mais on montre que la variance est alors beau-
coup plus importante. Globalement l’estimateur biaisé est bien préférable (on lui trouvera
par la suite de nouvelles qualités). Le fait de pondérer la sommation qui comporte en
fonction de k de moins en moins de termes par toujours 1/N permet de tenir de moins en
moins compte de cette somme qui est de moins en moins fiable !
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6.4.3 Un estimateur spectral : le périodogramme

La détermination de la densité spectrale de puissance

SX(f) =
+∞∑

k=−∞
RX(k) exp(−j2πfk)

réclame la connaissance de RX(k) pour k = 0 · · ·∞. Ne disposant que de N données
observées [x(0) · · ·x(N − 1)] on ne peut disposer qu’au plus N termes de la fonction
d’autocovariance (plus ou moins fiables).

En remplaçant dans l’expression précédente RX(k) par R̂X(k), on obtient

ŜX(f) =
N−1∑

k=−N+1

[
1
N

N−1−k∑

n=0

x(n)x(n + |k|)] exp(−j2πfk)

ce qui donne

ŜX(f) =
1
N
|
N−1∑

n=0

x(n) exp(−j2πfn)|2

Si on évalue cette expression aux fréquences f = fk = k/L, on obtient la formule du
“périodogramme”

ŜX(
k

L
) =

1
N
|
N−1∑

n=0

x(n) exp(−j2π
k

L
n)|2 pour k = 0 · · ·L− 1.

Les représentations fréquentielles des signaux de parole et de musique des figures 1.1 et
1.2 ont été calculées de cette façon.

Compléments

• Si L = N , le périodogramme est donné directement par le module au carré de la
transformée de Fourier discrète. Si L > N , on effectue également une TFD mais
avec “zero padding”.

• Emploi d’une fenêtre de pondération dans le domaine temporel :

ŜX(
k

L
) =

1
N
|
N−1∑

n=0

v(n)x(n) exp(−j2π
k

L
n)|2

ou dans le domaine fréquentiel :

ŜX(
k

L
) =

N−1∑

n=−N+1

W (n)R̂X(n) exp(−j2π
k

L
n).
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• La densité spectrale de puissance ŜX(f) reste, pour toutes les valeurs de f possibles,
une variable aléatoire dont il peut être intéressant de déterminer la moyenne et la
variance. Dans le cas d’une pondération par une fenêtre dans le domaine temporel,
la moyenne est donnée par

E{ŜX(f)} =
+∞∑

k=−∞
[
1
N

+∞∑
n=−∞

v(n)v(n− k)E{X(n)X(n− k)}] exp(−j2πfk)

E{ŜX(f)} =
+∞∑

k=−∞
q(k)RX(k) exp(−j2πfk)

avec

q(k) =
1
N

+∞∑
n=−∞

v(n)v(n− k).

On a donc

E{ŜX(f)} = Q(f) ∗ SX(f) =
∫ 1/2

−1/2
Q(λ)SX(f − λ)dλ.

Il existe donc un biais qui disparait si N →∞. Le périodogramme est un estimateur
“asymptotiquement sans biais”.

Il faudrait donner l’expression des intercovariances

E{[ŜX(fk)− E{ŜX(fk)}][ŜX(fl)− E{ŜX(fl)}]} = ...

On peut montrer que ces intercovariances sont nulles si |fk − fl| > 2/N .

6.5 Sinusöıde bruitée sous forme d’exo

6.5.1 Problème

On mesure un signal y(0) · · · y(N − 1) à l’extrémité d’un canal en sachant a priori que
le signal émis à l’entrée est une sinusöıde pure de la forme x(n) = a cos(2πf1n + φ). On
ignore la valeurs numériques prises par a, f1 et φ. De plus, le signal a été perturbé par
son passage dans le canal. On désire calculer les valeurs numériques prises par a et f1 à
partir des valeurs observées. Problème d’“estimation statistique”.

6.5.2 Modélisation

On modélise le signal observé comme étant la réalisation d’un processus aléatoire

Y (n) = a cos(2πf1n + Φ(ω)) + B(n)

où Φ(ω) est une variable aléatoire équirépartie entre 0 et 2π et où B(n) est un bruit blanc
centré de variance σ2 non-corrélé avec X(n) = a cos(2πf1n + Φ(ω)).
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On a vu que X(n) est un processus aléatoire stationnaire au 2ème ordre (et ergodique)
de fonction d’autocovariance

RX(k) =
a2

2
cos(2πf1k).

On en déduit que Y (n) est un processus aléatoire stationnaire centré de fonction d’autocovariance

E{Y (n)Y (n + k)} = E{X(n)X(n + k)}+ E{B(n)B(n + k)}

RY (k) =
a2

2
cos(2πf1k) + σ2δ(k).

Etudions quelques propriétés de la matrice d’autocovariance

ΓY =




RY (0) · · · RY (N − 1)
· · · · · · · · ·

RY (N − 1) · · · RY (0)




On obtient
ΓY = ΓX + σ2I.

La matrice ΓX est de rang non complet. En effet, on a

cos(2πf1k) + cos(2πf1(k − 2)) = 2 cos(2πf1(k − 1)) cos(2πf1)

ce qui entrâıne
RX(k) + α1RX(k − 1) + RX(k − 2) = 0

donc 


RX(0) RX(1) RX(2)
RX(1) RX(0) RX(1)
RX(2) RX(1) RX(0)







1
α1

1


 =




0
0
0




Seuls deux vecteurs colonne de ΓX sont linéairement indépendants ce qui montre que le
rang de ΓX est égal à = 2.

Appelons λ1 et λ2 les deux valeurs propres non-nuls (et positives puisque ΓX est semi-
défini positif) de ΓX et v1 et v2 les deux vecteurs propres correspondants. Appelons
w3 · · ·wN les vecteurs engendrant l’espace nul. Comme

ΓY v = ΓXv + σ2v = (λ + σ2)v

ΓY w = ΓXw + σ2w = σ2w

on en déduit que les valeurs propres de ΓY sont égales à

λ1 + σ2, λ2 + σ2, σ2, · · · , σ2

et que le vecteur propre associé à la plus petite valeur propre doit être de la forme [1, α1, 1]t.
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6.5.3 Algorithme

L’étude précédente donne la démarche. Il faut, dans la pratique, se limiter à la connais-
sance d’un nombre fini de valeurs observées. On en déduit l’algorithme :

1. A partir de y(0) · · · y(N − 1), calculer

R̂X(k) =
1
N

N−1−k∑

n=0

y(n)y(n + k) pour k = 0, 1, 2.

2. Construire la matrice Γ̂X de dimension 3.

3. Calculer le vecteur propre associé à la plus petite valeur propre. Il doit être de la
forme [1, α1, 1]t.

4. En déduire
f1 =

1
2π

Arccos(
−α1

2
).

6.5.4 Autre méthode

1. A partir de y(0) · · · y(N − 1), calculer

Y (k) =
N−1∑

n=0

y(n)e−j2πnk/N pour k = 0, · · · , N − 1.

2. En déduire
f1 =

arg max |Y (k)|
N

.

Comparaison avec la méthode précédente ?



Appendix A

Modélisation AR, prédiction
linéaire

A.1 Processus AR d’ordre P

A.1.1 Définition

Solution de

X(n) + a1X(n− 1) + · · ·+ aP X(n− P ) = W (n)

où W (n) est un processus aléatoire centré, stationnaire au second ordre, blanc, de variance
σ2

W et où le polynôme A(z) = 1 + a1z
−1 + · · · + aP z−P a toutes ses racines à l’intérieur

du cercle unité.

A.1.2 Propriétés

Comme E{W (n)X(n− k)} = 0 pour k > 0 et que E{W (n)X(n)} = σ2
W , on en déduit les

équations “normales” ou de “Yule-Walker”




R(0) R(1) · · · R(P )

R(1) R(0)
. . .

...
...

. . . . . . R(1)
R(P ) · · · R(1) R(0)







1
a1
...

aP


 =




σ2
W

0
...
0


 . (A.1)

A.1.3 Remarque

Pour obtenir une réalisation x(n) de X(n), il suffit de construire une réalisation w(n) de
W (n) (générateur de bruit blanc) puis de réaliser une opération de filtrage (filtre stable
et causal étant données les hypothèses).

75
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A.2 Prédiction linéaire d’ordre P

A.2.1 Définition

X̂(n) = −α1X(n− 1)− · · · − αP X(n− P ) = −
P∑

i=1

αiX(n− i)

où X(n) est un processus aléatoire stationnaire au second ordre, centré, de fonction
d’autocovariance RX(k).

A.2.2 Problème

Recherche des coefficients [α1 · · ·αP ] minimisant l’erreur quadratique E{|X(n)− X̂(n)|2}
entre la vraie valeur X(n) et la valeur prédite X̂(n). On pose

Y (n) = X(n)− X̂(n) = X(n) +
P∑

i=1

αiX(n− i).

Y (n) représente “l’erreur de prédiction”.

σ2
Y = E{|X(n) +

P∑

i=1

αiX(n− i)|2}

σ2
Y = σ2

X + 2[α1 · · ·αP ]




RX(1)
...

RX(P )


 + [α1 · · ·αP ]




R(0) · · · R(P − 1)
...

. . .
...

R(P − 1) · · · R(0)







α1
...

αP




σ2
Y = σ2

X + 2αtr + αtRα

La minimisation de σ2
Y relativement à α entrâıne

r + Rα = 0

et
σ2

Y = σ2
X + 2αtr − αtr = σ2

X + αtr.

Si on regroupe ces deux équations, on remarque que l’on obtient les équations normales
(A.1) où σ2

W est remplacé par σ2
Y .

A.2.3 Filtre blanchissant

On peut montrer que l’erreur de prédiction Y (n) est blanche (plus exactement que le signal
X(n) a été blanchi). En effet, on remarque que

∂E{|Y (n)|2}
∂αi

= 0 ⇒ E{Y (n)X(n− i)} = 0 ∀i = 1 · · ·P.
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Supposons P grand. Comme Y (n) est non corrélé avec tous les X(n − i) précédents et
que Y (n − i) est une combinaison linéaire de ces X(n − i), on en déduit que Y (n) est
non corrélé avec Y (n− i). L’erreur de prédiction Y (n) est donc un bruit blanc mais cette
propriété n’est vérifiée a priori que si P →∞ (comportement asymptotique). On appelle
le filtre donnant Y (n) à partir de X(n) le “filtre blanchissant”.

Si Y (n) a été totalement blanchi, on peut écrire

SY (f) = |A(f)|2SX(f) = σ2
Y

où A(f) est la réponse en fréquence du filtre A(z) = 1 + α1z
−1 + · · ·+ αP z−P . On a donc

SX(f) =
σ2

Y

|A(f)|2 .

A.3 Comparaison

• Processus AR d’ordre P : caractérisée par une opération de filtrage, entrée W (n),
sortie X(n), filtre de fonction de transfert 1/(1 + a1z

−1 + · · ·+ aP z−P ).

• Prédiction linéaire d’ordre P : caractérisée par une opération de filtrage, entrée
X̃(n), sortie Y (n), filtre de fonction de transfert Ã(z) = 1 + α1z

−1 + · · ·+ αP z−P .

• Propriété : si X̃(n) = X(n) ⇒, les coefficients [a1 · · · aP ] et [α1 · · ·αP ] vérifiant le
même système linéaire (les P dernières équations des équations normales) doivent
donc être égaux. Il en est de même pour les deux puissances σ2

Y = σ2
W . On a

donc Ã(z) = A(z), σ2
Y = σ2

W et même Y (n) = W (n). L’erreur de prédiction
est alors un bruit blanc. D’une façon plus générale, la théorie de la prédiction
linéaire permet d’affirmer que si x(n) peut être considéré comme la réalisation d’un
processus aléatoire AR d’ordre P0, alors il existe un filtre de fonction de transfert
A(z) totalement blanchissant dès que son ordre P devient supérieur ou égal à P0.

A.4 Mise en œuvre

On ne dispose que de N échantillons [x(0) · · ·x(N − 1)].

A.4.1 Première démarche : estimation de la fonction d’autocovariance

Rappelons la propriété d’ergodicité pour un processus stationnaire

RX(k) = E{X(n)X(n− k)} = lim
N→∞

1
2N + 1

+N∑

n=−N

x(n)x(n− k).

Une démarche “raisonnable” consiste à calculer

R̂X(k) =
1
N

N−1∑

n=k

x(n)x(n− k) pour k = 0 · · ·P
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puis à résoudre
α = −R−1r

en remplaçant la vraie fonction d’autocovariance par son estimée dans R et r.
Problèmes : La matrice R reste-t-elle inversible ? Le filtre 1/A(z) est il stable ? On

démontre que la propriété (très importante dans la pratique) “les racines du polynôme
A(z) sont à l’intérieur du cercle unité” est liée au caractère défini positif de la matrice
d’autocovariance R. On peut vérifier que cette propriété est vérifiée si on choisit comme
estimateur de la fonction d’autocovariance, l’estimateur précédent !

A.4.2 Deuxième démarche : minimisation directe

Donnons l’expression de l’erreur de prédiction

y(n) = x(n) +
P∑

i=1

aix(n− i)

pour toutes valeurs de l’indice n. On obtient, en choisissant P = 2 pour simplifier l’écriture,



y(0)
y(1)
y(2)

...
y(N − 1)

y(N)
y(N + 1)




=




x(0)
x(1)
x(2)

...
x(N − 1)

x(N)
x(N + 1)




+




x(−1) x(−2)
x(0) x(−1)
x(1) x(0)

...
...

x(N − 2) x(N − 3)
x(N − 1) x(N − 2)

x(N) x(N − 1)




[
a1

a2

]
.

On met en évidence des “conditions initiales” x(−2) x(−1) et des “conditions finales”
x(N) x(N + 1). Si elles sont inconnues, on ne prend en compte que les N − P équations
centrales




y(2)
...

y(N − 1)


 =




x(2)
...

x(N − 1)


 +




x(1) x(0)
...

...
x(N − 2) x(N − 3)




[
a1

a2

]

y = x + Γa.

Il s’agit de calculer le vecteur a minimisant la norme du vecteur y. On écrit

∂

∂a
[(xt + (Γa)t)(x + Γa)] = 0

∂

∂a
[(xtx + 2xtΓa + atΓtΓa)] = 0

Γtx + ΓtΓa = 0.

On retrouve les équations normales où Γtx est une estimée du vecteur r et où ΓtΓ est une
estimée de R.
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A.4.3 Comparaison

Les deux démarches sont-elles équivalentes ? La réponse est non ! La matrice

ΓtΓ =
[

x2(1) + · · ·x2(N − 2) x(0)x(1) + · · ·+ x(N − 3)x(N − 2)
x(0)x(1) + · · ·+ x(N − 3)x(N − 2) x2(0) + · · ·x2(N − 3)

]

reste symétrique mais elle n’est plus forcément définie positive ce qui n’assure plus forcément
la stabilité du filtre 1/A(z). La première démarche est bien préférable dans la pratique.

A.4.4 Spectre LPC

On a vu que si x(n) peut être considéré comme la réalisation d’un processus aléatoire AR
d’ordre P0, alors il existe un filtre de fonction de transfert A(z) totalement blanchissant
dès que son ordre P devient supérieur ou égal à P0. Dans ce cas, on peut écrire que la
densité spectrale de puissance de X(n) est égale à

SX(f) =
σ2

Y

|A(f)|2 .

Cette formule suggère un deuxième estimateur spectral. A partir des N données ob-
servées, on estime les P premiers coefficients de la fonction d’autocovariance, on résout
les équations normales puis on exploite la formule précédente.

Les tracés de la figure A.1 sont relatifs à un son de parole voisé. On observe dans le
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Figure A.1: Signal de parole : exemple d’un son voisé.

domaine fréquentiel à partir du périodogramme un spectre de raies avec une fréquence fon-
damentale de 250 Hz (correspondant à un locuteur féminin) et les différents harmoniques.
Le spectre LPC ne donne que “l’enveloppe spectrale”. Ces deux estimateurs ne sont pas
équivalents. Le choix entre les deux dépend essentiellement de l’application.
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Appendix B

Transformée de Fourier à court
terme

B.1 Introduction

Les signaux que l’on est amené à traiter dans la pratique (du signal de parole, des sig-
naux biomédicaux, des signaux radar ...) ne sont ni périodiques, ni stationnaires. Les
caractéristiques spectrales du signal à analyser évoluent avec le temps. On cherche une
représentation temps-fréquence adaptée.

B.2 Définitions

On appelle transformée de Fourier à temps discret à court terme la fonction de deux
variables

X(n, f) =
+∞∑

l=−∞
h(n− l)x(l)e−j2πfl

où n est un entier relatif caractérisant le temps, f un réel représentant la fréquence et
h(n) une fenêtre dite d’analyse dont les valeurs seront supposées nulles à l’extérieur de
l’intervalle [0 · · ·N − 1]. Comme la transformée de Fourier est appliquée à un signal de
durée finie, il suffit d’évaluer cette expression pour N fréquences multiples de 1/N . On
obtient la transformée de Fourier discrète à court terme

Xk(n) = X(n, f =
k

N
) =

+∞∑

l=−∞
h(n− l)x(l)e−j2π k

N
l. (B.1)

On ne considérera par la suite que ce cas.
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B.3 Interprétation par bancs de filtres

Si dans l’expression précédente (B.1) on fixe la fréquence, c’est-à-dire l’indice k, Xk(n)
s’interprète comme un signal. Il est de la forme

Xk(n) =
+∞∑

l=−∞
h(n− l)yk(l) avec yk(l) = x(l)e−j2π k

N
l.

Il s’agit d’une opération de modulation du signal x(n) par l’exponentielle complexe à
la fréquence (−k)/N suivie d’une opération de convolution. La transformée de Fourier
discrète à court terme s’interprète comme une translation vers la gauche du spectre du
signal x(n) suivie par un filtrage caractérisé par la réponse en fréquence H(f), transformée
de Fourier à temps discret de h(n). Lorsque l’on utilise une fenêtre rectangulaire, il s’agit
d’un filtrage passe-bas comme le montre le tracé de la figure 4.1. Il en est de même pour
tout autre type de fenêtre (Hamming, Kaiser ...). Ce filtrage passe-bas est d’autant plus
sélectif que la fenêtre d’analyse est longue. La résolution fréquentielle est donc directement
fonction de la longueur de l’observation. Le choix de N est le résultat d’un compromis
car on désire généralement avoir aussi des fenêtres courtes pour pouvoir analyser des
phénomènes courts.

Si l’on met en parallèle N filtres de même réponse en fréquences H(f), on obtient
un banc de filtres appelé banc de filtres d’analyse. Il extrait du signal sa contribution
fréquentielle dans toutes les sous-bandes centrées aux fréquences multiples de 1/N .

Il existe une deuxième interprétation en écrivant Xk(n) sous la forme

Xk(n) = e−j2π k
N

n
+∞∑

l=−∞
[h(n− l)ej2π k

N
(n−l)]x(l)

Xk(n) = e−j2π k
N

n
+∞∑

l=−∞
[h(l)ej2π k

N
l]x(n− l).

La transformée de Fourier discrète à court terme s’interprète maintenant comme un filtrage
passe-bande de x(n) par un filtre de réponse en fréquence H(f − k/N) suivi par une
translation du spectre du signal. Les deux interprétations sont équivalentes. Le banc de
filtres est dit uniforme.

B.4 Fenêtre glissante et reconstruction

Connaissant Xk(n) pour k = 0 · · ·N−1, à l’instant n, il est possible de calculer h(n−l)x(l)
pour toutes valeurs de l ∈ [n−N + 1 · · ·n] pourvu que h(n− l) soit différent de zéro. On
obtient

x(l) =
1

h(n− l)
[
1
N

N−1∑

k=0

Xk(n)ej2π k
N

l].

Cette expression montre qu’il n’est pas nécessaire de calculer Xk(n) à tous les instants n.
La connaissance de Xk(n) pour n multiple de N semble suffire a priori pour reconstruire
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le signal. On donne dans ce paragraphe un premier élément de réponse à ce problème de
reconstruction [?].

On appelle

x̃(n, p) =
1
N

N−1∑

k=0

Xk(n)ej2π k
N

p

l’échantillon à l’instant p provenant d’une transformée de Fourier discrète inverse de Xk(n)
obtenu à l’instant n. Si l’on pondère cet échantillon par la valeur f(p − n) où f(n) est
une nouvelle fenêtre de pondération et que l’on additionne les différentes contributions à
l’instant p, on obtient le signal

x̂(p) =
+∞∑

n=−∞
f(p− n)x̃(n, p)

x̂(p) =
+∞∑

n=−∞
f(p− n)

1
N

N−1∑

k=0

Xk(n)ej2π k
N

p. (B.2)

Le signal reconstruit x̂(p) à l’instant p est obtenu par ”recouvrement et addition” (overlap-
add). Donnons à la fenêtre d’analyse la possibilité de glisser à chaque étape de M
échantillons avec 1 ≤ M ≤ N , c’est-à-dire que l’on évalue une transformée de Fourier
discrète à court terme tous les mM échantillons. Les relations (B.1) et (B.2) deviennent

Xk(m) =
+∞∑

l=−∞
h(mM − l)x(l)e−j2π k

N
l

x̂(p) =
+∞∑

m=−∞
f(p−mM)

1
N

N−1∑

k=0

Xk(m)ej2π k
N

p.

Cherchons les conditions que doivent remplir les deux fenêtres de pondération h(n) et f(n)
de façon que l’on puisse reconstruire exactement le signal. On a

x̂(p) =
+∞∑

m=−∞
f(p−mM)

1
N

N−1∑

k=0

+∞∑

l=−∞
h(mM − l)x(l)e−j2π k

N
lej2π k

N
p

x̂(p) =
+∞∑

l=−∞
[

+∞∑
m=−∞

f(p−mM)h(mM − l)
1
N

N−1∑

k=0

e−j2π k
N

(l−p)]x(l).

La condition de reconstruction parfaite est donc

+∞∑
m=−∞

f(p−mM)h(mM − l)
1
N

N−1∑

k=0

e−j2π k
N

(l−p) = λ(p− l).



84 APPENDIX B. TRANSFORMÉE DE FOURIER À COURT TERME

Comme

1
N

N−1∑

k=0

e−j2π k
N

(l−p) = 1 si l = p + qN

= 0 sinon

cette condition se traduit par

+∞∑
m=−∞

f(p−mM)h(mM − p− qN) = λ(q).

En pratique, comment remplir cette condition ? Supposons que les deux fenêtres sont de
durée finie et de même durée N . On peut vérifier que cette condition est remplie, par
exemple,

• si les deux fenêtres sont des fenêtres rectangulaires avec N = M ,

• si M = N/2 et si

f(n)h(−n) = sin2(
πn

N
) pour 0 ≤ n ≤ N − 1

= 0 sinon.

La théorie dite des bancs de filtres à reconstruction parfaite permet de généraliser cette
étude.



Appendix C

Egalisation

C.1 Introduction

• Emetteur : d(n) ∈ {0, 1}, a(n) ∈ {−1, 1}, he(t) = filtre d’émission.

xe(t) =
∑

n

a(n)he(t− nT )

T = temps bit, 1/T = débit.

• Canal : Canal convolutif bruité

xr(t) = hc(t) ∗ xe(t) + b(t) =
∑

n

a(n)h(t− nT ) + b(t)

avec h(t) = hc(t) ∗ he(t).

• Récepteur : Structure “optimale” dans le cas d’un bruit gaussien : xr(t) filtré par
hr(t) puis échantillonné à la cadence T ⇒ x(nT ) puis une prise de décision ⇒
â(n) ∈ {−1, 1} ou d̂(n) ∈ {0, 1}.

Conclusion : “Canal numérique équivalent” = boite noire recevant en entrée a(n),
caractérisé par une réponse impulsionnelle globale (à temps discret) g(n), bruitée par
b(n), fournissant en sortie

x(n) =
∑

k

g(k)a(n− k) + b(n).

Hypothèses :

• b(n) = bruit blanc centré gaussien de puissance σ2
B.

• g(n) = filtre causal de durée finie L prenant en compte l’ensembles filtre d’émission/filtre
caractérisant le canal/filtre de réception.

x(n) = g(0)a(n) + g(1)a(n− 1) + · · ·+ g(L− 1)a(n− L + 1) + b(n).

x(n) dépend non seulement de a(n) mais aussi des symboles précédents. On parle
d’Interférence Entre Symboles (IES).
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Problème (cf figure C.1) : Détermination d’un filtre supplémentaire de réponse impul-
sionnelle w(n) atténuant l’IES de façon à simplifier la prise de décision.

- m+-
?

- - -Seuil
â(n)a(n)

g(n)
s(n)

b(n)

w(n)
x(n) y(n)

Figure C.1: Canal numérique équivalent.

• 1ère idée : “égaliseur zero forcing” = “inverser” le filtre g(n). Si le bruit est de très
faible puissance, il suffit de filtrer x(n) par le filtre w(n) tel que W (z) = 1/G(z)
pour obtenir y(n) ≈ a(n).

• 2ème idée : “égaliseur de Wiener” = minimiser E{|A(n)− Y (n)|2}.

Préalable : estimer g(n) à partir de x(n) connaissant a(n). En effet, dans la pratique,
on connâıt les filtres d’émission et de réception mais pas le filtre caractérisant le canal (qui
peut varier fortement au cours du temps).

C.2 Propriétés des signaux

• a(n) : réalisation d’une suite de v.a. A(n) ∈ {−1, 1}, équiprobables et indépendantes.
On a donc E{A(n)} = (−1) ∗ 1/2 + 1 ∗ (1/2) = 0 et E{A(n)A(n + k)} = δ(k).

• x(n) : réalisation d’un p.a. X(n).

E{X(n)} =
∑

k

g(n− k)E{A(k)}+ E{B(n)} = 0

E{X(n)X(n + k)} = E{[
∑

l

g(n− l)A(l) + B(n)][
∑

p

g(n + k− p)A(p) + B(n + k)]}

=
∑

l

∑
p

g(n− l)g(n + k − p)E{A(l)A(p)}+ E{B(n)B(n + k)}

=
∑

l

g(l)g(l + k) + σ2
Bδ(k).

C.3 Identification du canal

Exploitation d’une “séquence d’apprentissage” (système GSM : 23 symboles tous les 126
?). Deux méthodes :
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C.3.1 Expression de l’intercorrélation

RAX(k) = E{A(n)X(n + k)} = E{A(n)
∑

l

g(n + k − l)A(l) + A(n)B(n + k)}

RAX(k) =
∑

l

g(n + k − l)E{A(n)A(l)} = g(k).

L’hypothèse d’ergodicité veut dire

g(k) = RAX(k) = lim
N→∞

1
2N + 1

+N∑

n=−N

a(n)x(n + k).

Dans la pratique, le nombre d’échantillons observés est fini. On utilise l’“estimateur”

ĝ(k) =
1
N

N−1∑

n=0

a(n)x(n + k) pour k = 0 · · ·L− 1.

Pour garder un effet de moyenne, il faut que N À L par exemple N ≈ 10L.

C.3.2 Estimateur “des moindres carrés”

On connâıt {a(0) · · · a(N − 1)}. On mesure au récepteur {x(0) · · ·x(N − 1)}.



x(0)
. . .

y(L)
...

y(N − 1)




=




a(0) .. ..
...

. . .
...

a(L) · · · a(0)
... · · · ...

a(N − 1) · · · a(N − L + 1)







g(0)
...

g(L− 1)


 +




ε(0)
...

ε(L)
...

ε(N − 1)




.

x = Ag + ε.

Système sur dimensionné N À L. Critère : minimiser

||ε||2 = xtx− 2xtAg + gtAtAg.

Atx + AtAgopt = 0

gopt = [AtA]−1Atx.

Interprétation géométrique : εopt est orthogonal au sous espace engendré par les vecteurs
colonnes de A.
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C.3.3 Relation entre les deux résultats

g1 = [RAX(0) · · ·RAX(L− 1)]t et g2 = [AtA]−1Atx. Exemple pour L = 2 :

1
N

AtA =
1
N

[
a(0) · · · a(N − 1)

a(−1) · · · a(N − 2)

]



a(0) a(−1)
...

...
a(N − 1) a(N − 2)


 →

[
RAA(0) RAA(1)
RAA(1) RAA(0)

]
=

[
1 0
0 1

]

1
N

Atx →




RAX(0)
RAX(1)

...


 .

Conclusion : g1 et g2 tendent vers la même limite lorsque N tend vers l’infini.

C.4 Egaliseur zero forcing

En absence de bruit, il suffit de prendre w(n) tel que w(n) ∗ g(n) = δ(n) soit W (z) =
1/G(z). La puissance du bruit en sortie est alors donnée par

σ2 =
∫ +1/2

−1/2

σ2
B

|G(f)|2 df.

C.4.1 1er problème

Si |G(f)| ≈ 0 dans une certaine bande de fréquences, la puissance du bruit en sortie peut
devenir très importante. Exemple du “canal à évanouissement” (trajets multiples)

h(t) = 1 + a1δ(t− t1) + a2δ(t− t2) + · · ·

H(f) = 1 + a1 exp(−j2πft1) + · · ·

|H(f)|2 = 1 + 2a1 cos(2πft1) + a2
1 + · · ·

Si le premier écho est presque aussi puissant que le trajet direct, a ≈ 1 et |H(f)|2 ≈ 0
pour ft1 ≈ 1/2.

C.4.2 2ème problème

“Propriété de phase” de G(z). Exemples :

• Si G(z) = 1− (1/2)z−1 ⇒ W (z) = 1 + (1/2)z−1 + (1/2)2z−2 + · · · si |z| > 1/2 ⇒

y(n) = x(n) + (1/2)x(n− 1) + · · ·+ (1/2)Qx(n−Q).
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• Mais si G(z) = 1−2z−1 le pôle de W (z) est à l’extérieur du cercle unité. Il faut trou-
ver un développement (en série de Laurent) dont le domaine d’existence contienne
le cercle unité. Il suffit d’écrire W (z) sous la forme

W (z) =
1

−2z−1(1− (1/2)z)
=

z

2
[1 + (1/2)z + (1/2)2z2 + · · ·] = −z

2
− z2

4
+ · · ·

La réponse implusionnelle du filtre est anticausale :

y(n) = −1
2
x(n + 1)− 1

4
x(n + 2)− · · · − 1

2Q
x(n + Q).

Pas de problème particulier excepté le fait qu’il faille attendre l’arrivée de l’échantillon
à l’instant n + Q pour prendre une décision en fonction du signe de y(n).

C.5 Egaliseur de Wiener

Minimiser E{|A(n)−∑
l w(l)X(n−l)|2} ⇒ 2E{[A(n)−∑

l w(l)X(n−l)]X(n−k)} = 0 ∀k.

E{A(n)X(n− k)} =
∑

l

w(l)E{X(n− l)]X(n− k)}

Comme

E{A(n)X(n− k)} = E{A(n)S(n− k)} =
∑

p

g(p)E{A(n)]A(n− k − p)} = g(−k)

, on obtient ∑

l

w(l)RXX(k − l) = g(−k) ∀k

ce qui donne dans le domaine fréquentiel :

W (f)SXX(f) = G(−f) ⇒ W (f) =
G(−f)

|G(f)|2 + σ2
B

.

Concrètement on résout




RXX(0) .. RXX(Q)
...

. . .
...

RXX(Q) · · · RXX(0)







w(−Q))
...

w(0)
...

w(Q)




=




...
0

g(L− 1)
...

g(0)
0
...




.

où RXX(k) est estimé à partir des données x(n) et g(k) par la procédure précédente
d’identification du canal.
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La puissance de l’erreur est égale à

E{|A(n)− Y (n)|2} =
∫ +1/2

−1/2
|1−G(f)W (f)|2df +

∫ +1/2

−1/2
σ2

B|W (f)|2df

ou en remplaçant W (f) par sa valeur

σ2 =
∫ +1/2

−1/2

σ2
B

|G(f)|2 + σ2
B

df ≤
∫ +1/2

−1/2

σ2
B

|G(f)|2 df.

La puissance du bruit en sortie est plus faible que dans le cas zero forcing mais au détriment
de l’IES.


