
Handwriting Recognition of Historical Documents with few labeled data

Edgard Chammas and Chafic Mokbel

University of Balamand
El-Koura, Lebanon

{edgard,chafic.mokbel}@balamand.edu.lb

Laurence Likforman-Sulem

Institut Mines Telecom, Telecom ParisTech and Université Paris-Saclay
Paris, France

laurence.likforman@telecom-paristech.fr

Abstract—Historical documents present many challenges
for offline handwriting recognition systems, among them, the
segmentation and labeling steps. Carefully annotated text-
lines are needed to train an HTR system. In some scenarios,
transcripts are only available at the paragraph level with no
text-line information. In this work, we demonstrate how to
train an HTR system with few labeled data. Specifically, we
train a deep convolutional recurrent neural network (CRNN)
system on only 10% of manually labeled text-line data from a
dataset and propose an incremental training procedure that
covers the rest of the data. Performance is further increased
by augmenting the training set with specially crafted multi-
scale data. We also propose a model-based normalization
scheme which considers the variability in the writing scale at
the recognition phase. We apply this approach to the publicly
available READ dataset1. Our system achieved the second
best result during the ICDAR2017 competition [1].

Keywords-CRNN, handwriting recognition, historical docu-
ments, variability, multi-scale training, model-based normal-
ization scheme, limited labeled data

I. INTRODUCTION

Most state-of-the-art offline handwriting text recognition

(HTR) systems work at the line level by transforming

the text-line image into a sequence of feature vectors.

These features are fed into an optical model (e.g, recurrent

neural network) in order to recognize the handwritten

text. Recent work on text detection and localization [2]

at the document level, and joint line segmentation and

recognition at the paragraph level [3] showed promising

results. However, the best recognition results are still

achieved by the systems working at the line level [4]. The

automatic segmentation of paragraphs into lines is even

more challenging on historical documents. Old manuscripts

are often acquired as low resolution images with degraded

quality, with overlapping characters across adjacent text-

lines (see figure 1). Supervised (or at least semi-supervised)

paragraph segmentation is needed to label each text-line in

order to train an HTR system. However, this is a tedious

and time consuming task that is not always feasible for

different reasons (budget, time, priority, and availability of

text data). When transcriptions are primarily provided at

the paragraph level, the first challenge consists in aligning

the training transcription data with the corresponding lines

in the image. In this paper, we propose to perform such

an alignment after training a first recognition system on a

limited amount of annotated data. The first system serves

to bootstrap the whole process. We also suggest to augment

1https://read.transkribus.eu/

the amount of data by generating multiscale synthetic data

in order to better consider the scale factor in the test

images. We apply this approach to the READ dataset, a

multilingual Latin offline handwriting dataset. The training

data provided during the ICDAR2017 competition2 were

part of the Alfred Escher Letter Collection (AEC), with

a large vocabulary of more than 130k words. The test

data were letter documents from the same period of

AEC. In section II, we present our state of the art deep

convolutional recurrent neural network (CRNN) that we

used in ICDAR2017 competition on handwritten text

recognition. During the competition, 10000 pages were

available for training with transcriptions provided at the

paragraph level only. In section III, we demonstrate how

to train an HTR system by using a small amount of

manually segmented and labeled text-lines to create a

bootstrap model. We further improve the performance of

our system by augmenting the training set with specially

crafted synthetic data, explicitly taking into consideration

the variability in the writing scale (section IV). In section

V, we propose a model-based normalization scheme that

considers the writing scale variability in the test data.

Our system achieved the second best result during the

ICDAR2017 competition.

Figure 1: Old manuscripts from the READ 2017 dataset.

2https://scriptnet.iit.demokritos.gr/competitions/8/

2018 13th IAPR International Workshop on Document Analysis Systems

978-1-5386-3346-5/18 $31.00 © 2018 IEEE

DOI 10.1109/DAS.2018.15

43

II. CRNN SYSTEM DESCRIPTION

Our system is a deep Convolutional Recurrent Neural

Network (CRNN) inspired from the VGG16 architecture

[5] used for image recognition. We use a stack 13

convolutional (3× 3 filters, 1× 1 stride) layers followed

by three Bidirectional LSTM layers with 256 units per

layer. Each LSTM unit has one cell with enabled peephole

connections. Spacial pooling (max) is employed after

some convolutional layers. To introduce non-linearity, the

Rectified Linear Unit (ReLU) activation function was

used after each convolution. It has the advantage of being

resistant to the vanishing gradient problem while being

simple in terms of computation, and was shown to work

better than sigmoid and tanh activation functions [6]. A

square shaped sliding window is used to scan the text-line

image in the direction of the writing. The height of the

window is equal to the height of the text-line image, which

has been normalized to 64 pixels. The window overlap

is equal to 2 pixels to allow continuous transition of the

convolution filters. For each analysis window of 64× 64
pixels in size, 16 feature vectors are extracted from the

feature maps produced by the last convolutional layer and

fed into the observation sequence. It is worth noting that

the amount of feature vectors extracted from each sliding

windows is important. The number must be reasonable

as to provide a good sampling for the image. Based on

previous experiments, we found out that oversampling

(32 feature vectors per window) and under-sampling (8

feature vectors per window) will decrease the performance.

Sixteen feature vectors were found to work best for our

architecture. Since for each of the 16 columns of the

last 512 feature maps, the columns of height 2 pixels

are concatenated into a feature vector of size 1024 (512×2).

Thanks to the CTC objective function [7], the system is

end-to-end trainable. The convolutional filters and the

LSTM units weights are thus jointly learned within the

back-propagation procedure. We chose to keep the network

simple with a relatively small number of parameters. We

thus combine the forward and backward outputs at the

end of the BLSTM stack [8] rather than at each BLSTM

layer. We also chose not to add additional fully-connected

layers. The LSTM unit weights were initialized as per [9]

method, which proved to work well and helps the network

convergence faster. This allows the network to maintain a

constant variance across the network layers which keeps

the signal from exploding to a high value or vanishing to

zero.

The weight matrix Wij were initialized with a uniform

distribution given as Wij ∼ U(−
√
6

n ,
√
6

n), where n is the

total number of input and output neurons at the layer

(assuming all layers are of the same size).

Adam optimizer [10] was used to train the network with

initial learning rate of 0.001. This algorithm could be

thought of as an upgrade for RMSProp [11], offering

bias correction and momentum [12]. It provides adaptive

learning rates for the stochastic gradient descent update

computed from the first and second moments of the

gradients. It also stores an exponentially decaying average

of the past squared gradients (similar to Adadelta [13] and

RMSprop) and the past gradients (similar to momentum).

Batch normalization as described in [14], was added after

each convolutional layer in order to accelerate the training

process. It basically works by normalizing each batch

by both mean and variance. The network was trained in

an end-to-end fashion with the CTC loss function [7].

A token passing algorithm was used for decoding [15].

It integrates a bigram language model with modified

Kneser-Ney discounting [16], built from the available

training data. It is worth noting that no preprocessing is

needed. The system works directly on raw images. The

full architecture is provided at the end of this paper (figure

5).

III. INCREMENTAL TRAINING WITH FEW LABELED DATA

With no line information provided, few labeled text-

lines are needed to bootstrap the training process. We

used an automatic segmentation algorithm to extract line

images from the document images. The algorithm selects

candidate baselines by analyzing contours distribution. It

then assigns each contour to one of the baselines based on a

number of criteria, related to the average distance between

two lines and the distance between the contour center

and the line (see figure 2). Only 10% of the pages were

manually verified, making sure the line segmentation is

correct, and used to bootstrap the training process. Besides

the 10,000 training pages, 50 annotated pages at the line

level were provided during the competition and were used

for validation in the training process. The initial recognition

system, trained on 10% of the data, achieved 9.2% raw label

error rate (LER). This performance can be considered good

enough to allow an incremental training of the network

from the rest of the data.

Figure 2: Candidate baselines with contours bounding

boxes.

As a next step, the system was set to recognize the

remaining 90% of the segmented line images in the training

set. The recognized lines were mapped to lines in the

ground-truth data for each page, based on the Levenshtein

distance [17] between the text lines. A mapping is consid-

ered valid when the edit distance is less than or equal to

half the length of the reference line. Following this process,

and according to this threshold on the Levenshtein distance,

80% of the available text-lines were selected to retrain the

system, while the rest (20%) were discarded. The retrained

system achieved a relative decrease of 20% in raw LER on

the validation set (see table I). The process could have been

restarted after having trained the system with the new data,

or even iterated. An improved recognition performance

44

could have recovered more training lines. However, we

have noticed that most of the discarded line images in the

first iteration resulted from wrong segmentation (e.g., two

text-lines in a single image, cropped text-line, etc), due

to the fact that the algorithm is sensitive to the writing

skew. Therefore, more advanced segmentation algorithms

are needed to improve the selection/training process, like

the ones based on Seam Carving technique [18] and

dynamic programming, which would have resulted in fewer

segmentation errors and therefore more labeled training

data. The whole process can be summarized at the end of

this paper (algorithm 1).

Table I: System performance on the validation set with

different amount of training data.

System Number of text-lines Label Error Rate (LER)

10% training data ~20k 9.2%
80% training data ~160k 7.4%

IV. INTEGRATION OF MULTI-SCALE TRAINING DATA

To further enhance the performance of the system, we

exploited the variability in the writing scale to augment

the training set with text-line images at multiple scales.

Based on a vertical scale score [19], the training lines were

first classified into 3 classes (Large, Medium and Small)

via Jenks natural breaks optimization algorithm [20]. By

dividing the training set over the three classes, the data

volume per class become smaller. To address this problem,

we expanded the training set for each class by adding

synthetic data resulting from scaling the other classes data.

For example, we reduce the large images and stretch the

small ones (by a predetermined factor for each class) to

expand the number of medium sized images. Or we reduce

the medium and large sized images to extend the set of

small images, etc. To calculate the scaling factors by which

a certain image of a given scale class is enlarged or reduced,

the average scale measurement score is calculated on the

data. For instance, to transform an image I of class X
to an image J of class Y , we scale I by E(Y)/E(X),
where E(X) and E(Y) are the average scale score values

for class X and Y respectively. We retrained the baseline

system on multi-scale data for one epoch and achieved a

6.5% raw LER; a relative improvement by 12% from the

previous system.

Figure 3: An example from the READ dataset where a

text-line classified as Medium scale is transformed into a

Large and Small scale versions.

V. MODEL-BASED NORMALIZATION SCHEME

To further improve the performance, we proposed to

consider the variability in the writing scale in a model-based

normalization scheme, where the test data are equalized

in order to best fit the core model. In general, consider

the recognition phase where a test image characterized by

a specific variability is provided at the input of a system

trained on a general training set. According to the statistical

decision theory, the recognition task identifies the most

likely word sequence given the observations as:

ŝ = argmax
s

Pr(s|X) (1)

where s represents a word sequence, and X the obser-

vation sequence. To cope with a variability factor θ in a

test image, it is supposed that a transformation Tθ(.) exists

with contextual parameter vector θ permitting to reduce this

variability to a minimum. It is assumed that this parameter

is hidden and cannot be measured. A normalized version

of the input image X can be defined as:

X̂ = Tθ(X) (2)

Assuming the contextual parameter vector θ belongs

to a finite set, equation 1 can integrate the normalization

defined in equation 2 to become:

ŝ = argmax
s

∑
θ

Pr(s, θ|X)

= argmax
s

∑
θ

Pr(s|θ,X)Pr(θ|X)

= argmax
s

∑
θ

Pr(s|Tθ(X))Pr(θ|X)

(3)

For all possible normalizations of the input X , the system

produces solutions with the corresponding scores, consid-

ered as posterior probabilities. A combination of the scores

permits to re-select the optimal solution (see figure 4). This

is considered as an approximation of the right-hand term

of equation 3.

Figure 4: Model-based normalization scheme.

We generated multiple versions of the test data by

vertically scaling each text-line image to multiple scales

(0.7, 0.8,..., 1.3). By considering equation 3, we could

write:

ŝ = argmax
s

1.3∑
θ=0.7

Pr(s|Tθ(X))Pr(θ|X) (4)

45

We approximate equation 4 by the means of ROVER

method [21]. The combination of the recognition scores

of the different normalized versions of the test image

has yielded to a relative improvement of 14% in WER

from the baseline system. In Table II, we provide the

word error rate (WER) and character error rate (CER)

obtained with the different systems along with the result

of the BYU (Computer Science Department) team who

won the first place during the competition. The results

show the significant increase in performance using the

incremental training of our CRNN system. They also

show a significant improvement when better considering

the variability of writing scale. Finally, our best system

achieves comparable results with the system ranked first in

the contest. With 5.5% running OOV words [1], we believe

the main difference in performance can be explained by

our use of a bigram word language model. It is worth

noting that our results can further be improved by using a

more performant segmentation, which would also leads to

more training data.

Table II: Effect of multi-scale data on the performance.

System CER WER

CRNN (1) 9.18% 25.07%
CRNN retrained with multi-scale data (2) 7.95% 23.09%
(2) + model-based normalization scheme 7.74% 21.58%

BYU System 7.01% 19.06%

VI. CONCLUSIONS AND PERSPECTIVES

In this work, we presented a state-of-the-art CRNN

system for text-line recognition of historical documents.

We showed how to train such system with few labeled

text-line data. Specifically, we proposed to bootstrap an

incremental training procedure with only 10% of manually

labeled text-line data from the READ 2017 dataset. We also

improved the performance of the system by augmenting the

training set with specially crafted synthetic data at multi-

scale. At the end, we proposed a model-based normalization

scheme by introducing the notion of the variability in the

writing scale to the test data. The combination of the multi-

scale trained system results on multi-scale test data has

yielded the best result. Our system achieved the second

position in ICDAR2017 competition, with comparable

performance to the winning system, while noting that

the overall performance depends on both segmentation

and recognition tasks. Our results can be improved by

improving the segmentation algorithm which will permit

to use more training data. Despite the complex network

architecture, we noticed the large impact of the variability

in the writing scale on the performance. As a future work,

we will be looking into the possibilities for integrating

this variability in the modeling. Possibly via an attention

mechanism.

REFERENCES

[1] J. A. Sánchez, V. Romero, A. H. Toselli, M. Villegas,
and E. Vidal, “Icdar2017 competition on handwritten text

recognition on the read dataset,” in Document Analysis and
Recognition (ICDAR), 2017 14th International Conference
on. IEEE, 2017.

[2] B. Moysset, C. Kermorvant, and C. Wolf, “Full-page text
recognition: Learning where to start and when to stop,”
arXiv preprint arXiv:1704.08628, 2017.

[3] T. Bluche, “Joint line segmentation and transcription for end-
to-end handwritten paragraph recognition,” in Advances in
Neural Information Processing Systems, 2016, pp. 838–846.

[4] P. Voigtlaender, P. Doetsch, and H. Ney, “Handwriting recog-
nition with large multidimensional long short-term memory
recurrent neural networks,” in Frontiers in Handwriting
Recognition (ICFHR), 2016 15th International Conference
on. IEEE, 2016, pp. 228–233.

[5] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[6] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai,
T. Liu, X. Wang, and G. Wang, “Recent advances in convo-
lutional neural networks,” arXiv preprint arXiv:1512.07108,
2015.

[7] A. Graves, S. Fernández, F. Gomez, and J. Schmidhu-
ber, “Connectionist temporal classification: labelling un-
segmented sequence data with recurrent neural networks,”
in Proceedings of the 23rd international conference on
Machine learning. ACM, 2006, pp. 369–376.

[8] A. Zeyer, R. Schlüter, and H. Ney, “Towards online-
recognition with deep bidirectional lstm acoustic models.”
in INTERSPEECH, 2016, pp. 3424–3428.

[9] X. Glorot and Y. Bengio, “Understanding the difficulty of
training deep feedforward neural networks,” in Proceedings
of the Thirteenth International Conference on Artificial
Intelligence and Statistics, 2010, pp. 249–256.

[10] D. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

[11] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide
the gradient by a running average of its recent magnitude,”
COURSERA: Neural networks for machine learning, vol. 4,
no. 2, pp. 26–31, 2012.

[12] N. Qian, “On the momentum term in gradient descent
learning algorithms,” Neural networks, vol. 12, no. 1, pp.
145–151, 1999.

[13] M. D. Zeiler, “Adadelta: an adaptive learning rate method,”
arXiv preprint arXiv:1212.5701, 2012.

[14] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,”
in International Conference on Machine Learning, 2015,
pp. 448–456.

[15] A. Fischer, “Handwriting recognition in historical docu-
ments,” PhD diss, 2012.

[16] S. F. Chen and J. Goodman, “An empirical study of smooth-
ing techniques for language modeling,” in Proceedings of
the 34th annual meeting on Association for Computational
Linguistics. Association for Computational Linguistics,
1996, pp. 310–318.

46

[17] V. I. Levenshtein, “Binary codes capable of correcting
deletions, insertions, and reversals,” in Soviet physics
doklady, vol. 10, no. 8, 1966, pp. 707–710.

[18] N. Arvanitopoulos and S. Süsstrunk, “Seam carving for text
line extraction on color and grayscale historical manuscripts,”
in Frontiers in Handwriting Recognition (ICFHR), 2014
14th International Conference on. IEEE, 2014, pp. 726–
731.

[19] E. Chammas, C. Mokbel, and L. Likforman-Sulem, “Ex-
ploitation de léchelle décriture pour améliorer la reconnais-
sance automatique des textes manuscrits arabes,” Document
numérique, vol. 19, no. 2, pp. 95–115, 2016.

[20] G. F. Jenks, “The data model concept in statistical mapping,”
International yearbook of cartography, vol. 7, pp. 186–190,
1967.

[21] J. G. Fiscus, “A post-processing system to yield reduced
word error rates: Recognizer output voting error reduction
(rover),” in Automatic Speech Recognition and Understand-
ing, 1997. Proceedings., 1997 IEEE Workshop on. IEEE,
1997, pp. 347–354.

Algorithm 1 Incremental alignment process

Require: TrainSet: Set of all training pages

Require: RefText: Ground-truth text paragraph for each page

for each page P in TrainSet do
Lines[]← Segment(P)
RefLineIndex← 0
for each line L in Lines do

RecSeq ← Recognize(L)
while RefLineIndex < length(RefText[P]) do

RefSeq ← RefText[P][RefLineIndex]
EditDistance← Levenshtein(RecSeq,RefSeq)
if EditDistance < 0.5× length(RefSeq) then

Map(L,RefSeq)
RefLineIndex← RefLineIndex+ 1

end if
end while

end for
end for

47

Figure 5: Recognition system.

48

