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In this paper, we investigate the application of dynamic Bayesian networks (DBNs) to the recognition of
degraded characters. DBNs are an extension of one-dimensional hidden Markov models (HMMs) which
can handle several observation and state sequences. In our study, characters are represented by the
coupling of two HMM architectures into a single DBN model. The interacting HMMs are a vertical HMM
and a horizontal HMM whose observable outputs are the image columns and image rows, respectively.
Various couplings are proposed where interactions are achieved through the causal influence between
state variables. We compare non-coupled and coupled models on two tasks: the recognition of artificially
degraded handwritten digits and the recognition of real degraded old printed characters. Our models
show that coupled architectures perform more accurately on degraded characters than basic HMMs, the
linear combination of independent HMM scores, as well as discriminative methods such as support vector
machines (SVMs).

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Since the seminal work of Rabiner [1], stochastic approaches
such as hidden Markov models (HMMs) have been widely applied to
speech recognition, handwriting [2,3] and degraded text recognition
[4,5]. This is largely due to their ability to cope with incomplete in-
formation and non-linear distorsions. These models can handle vari-
able length observation sequences and offer joint segmentation and
recognition which are useful to avoid segmenting cursive words into
characters [6]. However, HMMs may also be used as classifiers for
single characters [7,8] or characters segmented from words by an
"explicit'' segmentation method [9]: the scores output for each char-
acter and each class are combined at the word level. Another prop-
erty of HMMs is that they belong to the class of generative models.
Generative models better cope with degradation since they rely on
scores output for each character and each class while discriminative
models, like neural networks and support vector machines (SVMs),
are powerful to discriminate classes through frontiers. In case of
degradation, characters are expected to be still correctly classified
by generative models even if lower scores are given.

Noisy and degraded text recognition is still a challenging task
for a classifier [10]. In the field of historical document analysis, old
printed documents have a high occurence of degraded characters,
especially broken characters due to ink fading. When dealing with
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broken characters, several options are generally considered: restor-
ing and enhancing characters [11--13] or recovering characters
through sub-graphs within a global word graph optimization scheme
[14]. Another solution is to combine classifiers or to combine data.
Several methods can be used for combining classifiers [15], one of
them consists of multiplying or summing the output scores of each
classifier. In the works of [16,17], two HMMs are combined to rec-
ognize words. A first HMM, modeling pixel columns, proposes word
hypotheses and the corresponding word segmentation into charac-
ters. The hypothesized characters or sub segments are then given to
a second HMM modeling pixel rows. This second HMM normalizes
and classifies single characters. The results of both HMMs are com-
bined by a weighted voting approach or by multiplying scores. Our
approach differs with restoration methods as it aims at enhancing
the classification of characters without restoration. This is moti-
vated by the fact that preprocessing may introduce distortions to
character images. In our previous work [18], we compared data and
decision fusion and showed that data fusion yields better accuracy
than decision fusion for HMM-based printed character recognition.
The present dynamic Bayesian network (DBN) approach is a data
fusion scheme which couples two data streams, image columns and
image rows into a single DBN classifier. It differs from the approach
presented in [16,17] where two classifiers are coupled (one classi-
fier per stream) in a decision fusion scheme, and from a data fusion
scheme consisting of a multi-stream HMM which would require
large and full covariance matrices in order to take into account
dependencies between the streams [18].

Our study consists of building DBN models which include in a
single classifier two sequences of observations: the pixel rows and
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the pixel columns. It can be seen as coupling two HMMs into a
single DBN classifier, as opposed to combining the scores of two
basic HMM classifiers in a decision fusion scheme. The two HMM
architectures, each including an observation stream associated with
state variables, are linked in a graphics-based representation. Two
different streams are jointly observed and the model parameters
(state transition matrices) reflect the spatial correlations between
these observations.

We apply the DBN models to broken character recognition. As
generative models, DBNs are adapted to degraded character recog-
nition. These models also provide a certain robustness to degra-
dation due to their ability to cope with missing information. They
have the ability to exploit spatial correlations between observa-
tions. Thus a corrupted observation in the image can be compen-
sated by an uncorrupted one. We compare several DBN architectures
among themselves, with other fusion models like the combination of
independent HMMs, and with a SVM classifier.

The paper is organized as follows. In Section 2, we briefly intro-
duce Bayesian networks (BN) and DBNs. In Section 3, we present
several independent or coupled models. In Section 4, we apply these
models to the problem of broken character recognition (artificial
and real). We conduct several experiments to show the advantages
of DBNs by comparing their performance with the combination of
HMM scores and with a SVM classifier. Conclusions are drawn in
Section 5.

2. Dynamic Bayesian networks

A (static) BN associated with a set of random variables X =
(X1, X2, . . . , XN) is a pair: B = (G, �) where G is the structure of the
BN i.e., a directed acyclic graph (DAG) whose nodes correspond to
the variables Xi ∈ X and whose edges represent their conditional
dependencies, and � represents the set of parameters encoding the
conditional probabilities of each node variable given its parents. The
distributions are represented either by a conditional probability ta-
ble (CPT) when a node and its parents represent discrete variables,
or by a conditional probability distribution (CPD) when a node rep-
resents a continuous variable. Each CPD usually follows a Gaussian
probability density function (pdf). A key property of BNs is that the
joint probability distribution factors as

P(X1, X2, . . . , XN) =
N∏

i=1

P(Xi | Pa(Xi))

where Pa(Xi) denotes the parents of Xi. This property is central in
the development of fast inference algorithms. Static BNs have been
applied to on-line character recognition and signature authentication
for modelling dependencies between stroke positions or signature
components [19--21].

DBNs are an extension of static BNs to temporal processes occur-
ing at discrete times t �1. In the following, we consider DBN models
which have two observation streams. We will use indices i = 1,2 to
denote the two streams. The variables Xi and Yi denote the respective
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Fig. 1. Because of parameter tying, a DBN can be represented by only two time slices (left). To fit the two observation sequences {Y1} and {Y2} of length T = 3, the DBN is
unrolled and represented on 3 time slices (right).

hidden state and observation attributes in stream i. Xi
t and Yi

t are the
random variables (nodes) for Xi and Yi at time t.

We assume that the process modelled by DBNs is first-order
Markovian and stationary. In practice, this means that the parents
of any variable Xi

t or Yi
t belong to the time-slice t or t − 1 only, and

that model parameters are independent of t. Parameters are thus
tied and a DBN can be represented by the first two time slices as in
Fig. 1. For each observation sequence, the network is repeated as
many times as necessary. Fig. 1 shows an example of unrolled DBN
for an observation sequence of length T = 3: the initial network is
repeated T times. Parameters for this model are given by CPTs and
CPDs: the three CPTs are the initial state distribution encoding P(X1

1 ),

the conditional state distribution P(X2
t | X1

t ), the state transition dis-
tribution P(X2

t | X2
t−1) and the two CPDs are the Gaussian pdfs P(Yi

t |
Xi

t), i = 1,2.
DBNs provide general-purpose training and decoding algorithms

based on the expectation-maximization (EM) algorithm and on infer-
ence mechanisms [22]. Model training consists of estimating model
parameters, CPTs and CPDs. Inference algorithms are performed on
the network to compute the best state sequences or the likelihoods
of observation sequences.

An HMM is a particular case of DBN where there is only one ob-
servation stream and one state sequence. The dynamic character of
DBNs makes it suitable for applications such as speech and charac-
ter recognition. In [23,24], DBNs are used to model the interactions
between speech observations at different frequency bands in a way
that is robust with respect to noise.

3. Independent and coupled architectures

In this study, we couple data streams into single DBN classi-
fiers.This coupling is performed through various DBN architectures
(graphical representations) which combine two basic HMMs: the
vertical HMM whose outputs are the columns of pixels and the
horizontal HMM whose outpouts are the image rows. In our mod-
els, the interactions are usually (but not only) performed through
states, leading to efficient models in terms of model complexity (see
Section 3.3). Brand et al. [25] have proposed coupled architectures
"coupled HMMs'' for modeling human interactions: in their models,
a state of one HMM is linked to all other HMM states of the adjacent
time-slice. This yields symmetric architectures while our coupled
architectures are highly non-symmetric.

In our framework, all character classes share the same DBN ar-
chitecture. Admissible architectures do not include continuous vari-
ables with discrete children (for exact inference purposes [23]) and
have also a small number of parameters (in order to get a tractable
inference algorithm). One approach consists of learning network ar-
chitecture from data [26]. This approach is tractable for static BNs
when dealing with a few observed variables but becomes rapidly too
complex in the presence of hidden state variables. Automatic archi-
tecture learning is beyond the scope of this paper and our strategy
consists of heuristically looking for various admissible architectures
and selecting those which provide the best recognition performance.
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Fig. 2. Independent HMMs represented as DBNs: (a) vertical-HMM and (b) horizontal-HMM.

Fig. 3. Horizontal and vertical observation sequences obtained by scanning digit 3 from top to bottom and from left to right, respectively. Digit images are normalized to
size d × d. Length of observation sequences is T = d, length of observation vectors is also d.

3.1. Independent architectures

We construct two basic HMMs using the DBN formalism. The ver-
tical (resp. horizontal) HMM is constructed using the vertical (resp.
horizontal) writing stream, as depicted in Fig. 2a and b. Observations
for the vertical (resp. horizontal) HMM consist of columns (resp.
rows) of pixels (normalized values) obtained from scanning the char-
acter image from left to right (resp. top to bottom) as shown in Fig. 3.
Characters are normalized to a square of size d×d pixels (see Section
4). Thus the length T of each observation sequence, either horizontal
or vertical, is T = d and the length of observation vectors is also d.

The parameters of these basic HMMs are CPTs A, CPDs B and
the initial distribution �. CPTs A are associated to nodes Xi

t , t �2,
CPDs B to observed nodes Yi

t
1 and the initial state distribution � is

associated to node X1. They are written for each stream i, vertical
(i = 1) or horizontal (i = 2), and for t �2 as
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ai
j,k

= P(Xi
t = k | Xi

t−1 = j), ∀k, j ∈ [1, Q ]
Bi

k
(yi

t ) = P(Yi
t = yi

t | Xi
t = k)

= N(yi
t ; �i

k
, �i

k
),

�i
1(k) = P(Xi

1 = k), ∀k ∈ [1, Q ].

(1)

Q is the global number of hidden states. CPTs A are state transition
matrices of size Q ×Q . As in classical HMMs, we constrain A to allow
only left-right state transitions for parameter reduction purposes:
the value of Xi

t is either equal to the value of Xi
t−1 or equal to that

of Xi
t−1 + 1. Each observation variable Yi

t follows a single Gaussian

1 Because of the stationarity assumption, all nodes Xi
t share the same CPT A

and all nodes Yt share the same matrix B.

probability density function (pdf) N(yi
t , �i

k
): �i

k
is the mean vector

of length d of the Gaussian pdf associated to the current state k, �i
k

is a full covariance matrix of size d × d (see Section 3.3).
A first limitation of HMMs is the observation independence as-

sumption conditionally to hidden states. However, we can bypass it
by building auto-regressive (AR) architectures where observations
are explicitly dynamically linked in time. An auto-regressive HMM
is determined by its type and the order p of the regression. There
are two types of auto-regressive HMMs: linear predictive models [1]
and switching Markov auto-regressive models [27]. The AR models
proposed here are switching Markov models and the model order
is one. An observed node Yi

t depends on both the current state Xi
t

and the previous observed node Yi
t−1. The two resulting vertical-AR

and horizontal-AR single stream architectures remain however in-
dependent (Fig. 4a and b). The only parameters which differ from
basic HMMs are the CPDs B. The mean �i

k
of the Gaussian proba-

bility density function associated to the current state k is shifted
by Wi

k
yi
t−1 according to the previous observation yi

t−1 and the re-

gression matrix W. Each regression matrix Wi
k
is of size d × d, with

d being the length of observation vectors. Regression matrices for
each stream and each state are estimated during training. Each ob-
servation variable Yi

t follows a Gaussian probability density function
N(yi

t ; �i
k

+ Wi
k

yi
t−1, �i

k
). CPDs B are written for each stream i and

for t �2 as

{
Bi

k
(yi

t , yi
t−1) = P(Yi

t = yi
t | Xi

t = k, Yi
t−1 = yi

t−1), ∀k ∈ [1, Q ]
= N(yi

t ; �i
k

+ Wi
k

yi
t−1, �i

k
).

(2)

The matrix A and the initial distribution � remain the same as for
basic HMMs. The matrix A is still constrained to be left--right. Note
that basic HMMs are a particular case of AR-HMMs with Wi

k
= 0.
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Fig. 4. Independent auto-regressive AR-HMMs represented as DBNs: (a) AR-vertical and (b) AR-horizontal.

Fig. 5. Observation and state sequences for simple O and H shapes on a 5 × 5 grid. Joint configurations of long bars of pixels (observations a) and short bars of pixels
(observations b) occur for different state configurations.

3.2. Coupled architectures

Starting from the previous single stream and independent HMMs,
we now construct several coupled architectures. They are obtained
by adding directed edges between the two streams within the same
time-slice. Edges are directed from the vertical stream to the hori-
zontal one in order to enhance the influence of the vertical stream.
Experiments of Section 5 show that the vertical HMM is more reli-
able than the horizontal one since vertical strokes are predominant
for the shapes considered [28,29]. The coupling proposed here re-
quires that both observation sequences have the same length since
streams are synchronized at each time slice: each image column is
associated with one row. The observation length is T =d as the char-
acter image is previously normalized to a square of size d × d with
d = 28 pixels.

At each time, coupled models are in two states, the state corre-
sponding to the column observation (the vertical state) and the state
corresponding to the row observation (the horizontal state). A tran-
sition to the vertical state X1

t depends only on the value of the pre-
ceding state X1

t−1 like classical left--right HMMs. But a transition to

the horizontal state X2
t depends on both the value of the preceding

state X2
t−1 and the value of the current vertical state X1

t . This de-
pendence between the horizontal and the vertical states expresses
the dependence of the observations, i.e. between row t and column
t. Although row t and column t share only one pixel in common, the
whole row and the whole column of pixels may be correlated. The

more they are correlated the higher the probability of observing one
column configuration captured by the vertical state, in conjunction
with one row configuration captured by the horizontal state. As an
example, consider simple shapes on a 5 × 5 grid belonging to two
classes: H and O shapes, as shown in Fig. 5. We set the number of
states to three and we consider two discrete observation symbols
a and b: Yi

t = a when the number of pixels in column (or row) t is
>3, else Yi

t = b. For H shapes the long central bar (row observation
a) is correlated with short bars (column observation b) in the cen-
tral area of the image. For O shapes, long bars (row observations
a) are correlated with long bars (column observations a) at the top
and bottom of the image. The state/observation sequences shown
for both models in Fig. 5 express these correlations. For O shapes,
when (X1

t =1, X2
t =1) or (X1

t =3, X2
t =3), the probability of observing

long bars (a) in both row and column is high. For H shapes, when
(X1

t = 2, X2
t = 2) the long horizontal bar (a) is observed jointly with

a short bar (b).

• To obtain the first coupled architecture, called the state-coupled
model (ST_CPL), we add directed edges between the hidden state
nodes of the vertical and horizontal HMMs as shown in Fig. 6a. The
parameters of ST_CPL are the CPDs bi and CPTs A and U. The con-
ditional probability table A capturing the HMM left-right structure
of the vertical sequence {X1} can be written:

Aj,k = P(X1
t = k | X1

t−1 = j) ∀k, j ∈ [1, Q ],
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Fig. 6. Coupled architectures represented as DBNS: (a) state-coupled: ST_CPL, (b)
general-coupled: GNL_CPL, and (c) auto-regressive coupled: AR_CPL.

where Aj,k is a left-right state transition matrix as for classical left-
right HMMs. The value k of the current state is either equal to the
value j of the preceding state or to j + 1. For t �2, we write:

{
Uj,k,l = P(X2

t = l | X2
t−1 = j, X1

t = k) ∀k, j, l ∈ [1, Q ],
bi
k
(yi

t ) = P(Yi
t = yi

t | Xi
t = k) for i = 1,2.

(3)

the CPD bi
k

is a single Gaussian pdf N(yi
t ; �i

k
, �i

k
) as for basic

HMMs. The CPTs U are more complex and of larger size than the
CPTs A: The CPTs U are a set of Qmatrices (one for each value of X2

t )
of size Q×Q . Left--right transitions are allowed for state transitions
within stream 2 while ergodic transitions are allowed for state
transitions from stream 1 to stream 2 as shown in Fig. 7(a). All state
values increase through time because of the left--right constraint.
On the other hand, the value of X2

t can be equal to, greater than or
less than the value of X1

t because of the ergodic property (all state
transitions are allowed between X1

t and X2
t ). In practise, the values

of X2
t and X1

t follow each other as can be seen in Fig. 7(b) during the
decoding of a sample digit, but without predefined order. Sample
values from CPT U of the digit four model are shown in Fig. 8. A
transition can be made to state X2

t =8 from states (X2
t−1, X1

t ) only if

X2
t−1 equals 7 or 8 because of the left--right assumption. To transit

to state X2
t = 8, the highest transition probability is 0.9052 from

states (X2
t−1 = 7, X1

t = 8).

The initial state distributions �1 and �2 for the vertical and the
horizontal streams, respectively, can be written:

{
�1(k) = P(X1

1 = k), ∀k ∈ [1, Q ],
�2(j, k) = P(X2

1 = k | X1
1 = j), ∀k, j ∈ [1, Q ]. (4)

The conditional probability table �1 is of length d while CPT �2

is of size d × d. �2 expresses interdependence of the states of the
horizontal stream and those of the vertical stream, at t = 1.

• Starting from the previous architecture, the second coupled ar-
chitecture is obtained by adding an edge from hidden states of
the horizontal stream X2

t to observation variables of the vertical
stream Y1

t . This architecture is called the general coupled model
(GNL_CPL, see Fig. 6b). In the GNL_CPL model, the importance of
vertical observations is stressed as they are controlled by the states
of both horizontal and vertical streams in the same time slice. The
mathematical form of CPTs A, U and � are identical for ST_CPL and
GNL_CPL. The difference lies in the Gaussian CPDs which are
written:

⎧⎪⎨
⎪⎩

b1
j,k

(y1t ) = P(Y1
t = y1t | X1

t = j, X2
t = k)

= N(y1t ; �1
j,k

, �1
j,k

),

b2
k
(y2t ) = P(Y2

t = y2t | X2
t = k) = N(y2t ; �2

k
, �2

k
).

(5)

The form of the distribution of the horizontal observations is the
same as in the previous ST_CPL model. The distribution of vertical
observations b1 is a single pdf with mean �1

j,k
of length d and d×d

covariance matrix �1
j,k

. But one needs Q × Q mean vectors and

covariance matrices to account for the cartesian product of states
to describe b1, and only Q mean vectors and covariance matrices
to describe b2.

• Last, we construct an auto-regressive coupled architecture
(AR_CPL) by coupling the vertical and horizontal AR HMMs as
shown in Fig. 6c. Parameters for this model are CPTs A, U and �
which are identical for all coupled models. The CPDs are repre-
sented by two Gaussian pdfs, which are defined for each stream i
and for t �2 by

{
Bi

k
(yi

t , y
i
t−1) = P(Yi

t = yi
t | Yi

t−1 = yi
t−1, Xi

t = k) for i = 1,2

= N(yi
t ; �i

k
+ Wi

k
yi
t−1, �i

k
).

(6)
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Fig. 7. (a) Types of transitions (ergodic or left-right) allowed between the different state variables. (b) Example of state value sequences for both streams (horizontal and
vertical) during decoding of digit 4. Horizontal and vertical state values increase through time (left--right assumption) but at time t the value of the horizontal state can be
equal, greater or less than the value of the vertical state.

Fig. 8. Sample values from CPT U which includes state transition probabilities to
state X2

t from states X2
t−1 and X1

t .

As in the case of AR independent models, the mean associated to
the current state k is shifted by Wi

k
yi
t−1 according to the previous

observation yi
t−1 and the regression matrix W. This model benefits

from both the predicting abilities of AR- models and the fusion of
observations performed by the coupling through states.

3.3. Complexity

The above architectures, associated to their parameters (CPTs and
CPDs) provide character models. In order to limit the number of pa-
rameters and to follow the HMM paradigm, we assume that the ma-
trix A is left-right for all models. We also assume that for each CPT
U (which can couple up to three states together), state transitions
within the same stream are left--right whereas state transitions be-
tween different streams can be ergodic (see Section 3.2). Covariance

Table 1
Space and time complexity of independent and coupled models as functions of Q
(number of states) and d (length of observation vectors)

Model Cov + Mean A U W Decoding

Single HMM Qd2 + Qd Q − 1 O(Qd)

Single AR-HMM Qd2 + Qd Q − 1 Qd2 O(Qd)

ST_CPL 2(Qd2 + Qd) Q − 1 2Q2 O(Q2d)

GNL_CPL (Q2 + Q)(d2 + d) Q − 1 2Q2 O(Q2d)

AR_CPL 2(Qd2 + Qd) Q − 1 2Q2 2Qd2 O(Q2d)

matrices for Gaussian pdfs may be full matrices. The space complex-
ity for all models is given in Table 1 as a function of the common
number of states Q and of the length d of observation vectors. Be-
cause of character size normalization, the length of the observation
sequence is T = d. Since the number of states Q is inferior to the
length of the observation sequences T, Q < T as in classical HMMs,
the coupled model with lowest complexity is ST_CPL: its complexity
is of order O(Qd2), similar to that of the AR_CPL model. Though the
AR-coupled model has the most dependence between observations,
the GNL_CPL model is the one with highest space complexity: its
complexity is of order O(Q2d2), since the dimension of the space of
conditioning states for the observations {Y1

t } is Q ×Q in this case. The
computational time complexity is dominated by inference. Indeed,
inference complexity depends both on the size of the cliques in the
junction tree and on their number [23,30]. Since all coupled models
share the same number of cliques, only clique sizes may be differ-
ent. Time complexity is of order O(TQp+1) where p is the maximum
number of parents for hidden state variables in the original graph.
This complexity is reduced by a factor Q in our models because the
state space is reduced in the cliques which include the hidden state
variables: there is always one hidden variable related to its par-
ent in a left--right transition. Inference time complexity is shown in
Table 1 for the decoding (likelihood of an observation set) of a single
character. Our time estimation does not include the computation of
the observation pdfs for all states in each time-slice.
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4. Datasets and training

We apply the DBN architectures to broken character recognition.
We first consider artificially broken handwritten digits. Breaks are
created within characters according to a degradationmodel. We then
consider real degraded characters. These characters are extracted
from an historical printed book [31] and are naturally broken due to
ink fading. This section describes the two datasets and the training
process.

4.1. Artificially degraded handwritten digits

We start from the MNIST database of handwritten digits [32]
which provide separate training and test sets. A training set of 5000
digits is used to train DBNmodels (see Section 4.3) and the test set in-
cludes 10,000 samples. Degradations are obtained by creating breaks
within digit strokes. The degradation model we propose shares some
similarities with the process related to the `sensitivity' parameter of
Baird's image defect model [33]. Random pixel values are added to
original ones within a 5 × 5 window. Window position is randomly
chosen, following a uniform distribution in the 28×28 character im-
age. If the resulting window is centered on a background pixel, the
nearest writing pixel is searched and the window is moved toward
this pixel. The values added to each pixel within the window are
distributed according to a Gaussian pdf, with mean � and standard
deviation �. The number of windows applied to each character is w.
In the following experiments, we set � = 0.015, � = 0 and w = 0,1
or 2. The value � = 0 corresponds to changing the pixels within the
window to background pixels as normalized pixel values vary from
0 to 1. The value w = 0 corresponds to the original handwritten dig-
its. When w = 1, one break is created and when w = 2, two breaks
are created within digit strokes. Fig. 9 shows samples of original and
degraded characters.

4.2. Real degraded old printed characters

The set of old printed characters is extracted from the British Li-
brary's collection of digitized Renaissance festival books [31]. This
collection describes the ceremonies that took place in Europe be-
tween the 15th and 17th centuries. The book we have selected is
written in French and describes the reception in 1636 of the Duke
of Parma in Fontainebleau by King Louis XIII. It was printed in 1656
in Paris and written in Roman type. The set of lowercase characters
then included long s which were used instead of usual `s' if occur-
ring at the beginning or in the middle of a word. Characters `j' and
`k' were not in use and v was often printed instead of u. There were
also many ligatures such as (long s+ t, or two long s) as can be seen
in the sample document in Fig. 10.

Characters from seven pages were extracted and manually la-
beled. It should be noted that ligature characters such as `fi' (f + i),
`long s − t' (long s + t), etc. were considered as single characters
and were assigned to additional classes. The first five pages were
standard pages, well contrasted, whereas the other two were de-
graded, including many broken characters due to ink fading. This led
to two sets of characters: a standard set including 2796 characters
from the standard pages and a degraded set including 1216 charac-
ters from the degraded pages. Characters were then binarized, nor-
malized to size 20 × 20 and placed in 28 × 28 images.2 It should
be noted that character normalization and image size follow the
MNIST paradigm [32] so that white borders are added around char-
acter images. In word recognition methods such as in [34], white

2 We intend to make this database publicly available (with permission of the
British Library).

Fig. 9. Pairs of original (left) and degraded (right) characters. Two breaks are created
within each digit (w = 2).

Fig. 10. Sample document from the Renaissance Festival Books collection.

borders are added to training characters in order to deal with intra-
word spaces. In other cases, white borders can be removed as well
as the states representing each border: models with lower com-
plexity are then obtained by reducing the number of states from Q
to Q − 2.

Because some classes had very few samples, we selected the
classes which had enough samples (around 50) within the first three
pages dedicated to training. This led to 16 classes: a, b, c, d, e, i, l,
m, n, o, p, r, s, long s, t and u. Sample characters from standard and
degraded sets are shown in Fig. 11.
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Fig. 11. Sample old printed characters from standard and degraded pages.
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Fig. 12. Performance of independent and coupled models according to the number of states.

4.3. Training and recognition

Observation sequences are obtained by scanning character
images from left to right and top to bottom. Characters are first
preprocessed by a 3 × 3 Gaussian mask with standard deviation
0.5. The resulting pixel values are then normalized in [0.,1.]. Two
observation sequences of length T = 28 are obtained from the re-
spective vertical and horizontal streams. All character models share
a single DBN architecture but their parameters differ for each class.

Parameters are learnt using the EM algorithm and inference. For
independent HMMs, observation parameters are initialized by as-
signing observations to states linearly. For AR models (independent
and coupled), observation parameters are initialized randomly. For
all other models, observation parameters are initialized to a com-
mon value for all states and each stream i.e, the empirical mean and
covariance matrix obtained from the sample data.

The common number of states for hidden variables is denoted
by Q. We study the effect of varying Q on the digit recognition task
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with a training set of 4000 digits and a test set of 1000 digits. The
value of Q ranges from 6-state models to 22-state models. Results
in Fig. 12 show that recognition performance increases with Q until
reaching a maximum for Q = 14 or 18. There is no improvement for
values of Q >18 and a slight improvement is obtained for coupled
models by increasing Q from Q =14 to 18. The price for this improve-
ment is higher space and time complexity: in the following, we set
Q = 14 which offers the best compromise between complexity and
performance.

Fig. 12 also shows that the best performances are always reached
by the AR_CPL model whatever the number of states Q. This shows
the superiority of the AR_CPL model over all independent and other
coupled models (see also Section 5.1).

For training digit models, we used a subset S of 5000 samples (500
per class) from the MNIST training database. Then, we conducted
cross validation experiments in the following way: the subset S was
split into F = 5 sets of 1000 characters. Each DBN architecture was
trained on F −1 sets and tested on the remaining set, F times. Within
each model, the parameters yielding the best cross-validation recog-
nition performance were selected for testing. Testing was performed
on the 10000 digits of the MNIST test set.

For training old printed character models, 50 characters per class
were selected from the first three standard pages. Then character
models were tested on two test sets: a standard test set (test-s) from
the two remaining standard pages and a degraded test set (test-d)
from the two degraded pages. The standard and degraded test sets
include 1009 and 1079 characters, respectively, for the 16 classes
considered.

During recognition, each character was assigned to the class with
the highest log-likelihood value. We use the BayesNet toolbox [35]
which provides general MatLab source code for training and infer-
ence in static and dynamic Bayesian networks.

5. Experimental results

We evaluate the various DBN architectures, independent and
coupled, for the problem of the recognition of degraded characters.
Two off-line recognition tasks are considered. We first evaluate DBN
architectures for the recognition of artificially broken handwritten
digits: their robustness to degradation is evaluated against differ-
ent degradation parameters. We also test these architectures for the
recognition of real degraded printed characters.

5.1. Handwritten digits

5.1.1. Comparison between independent and coupled architectures
Independent and coupled architectures are first tested on the set

of artificially broken digits. We consider three levels of degradation:
no additional degradation using the original MNIST test set (w = 0),
one break createdwithin digits (w=1) and two breaks created (w=2).
Recognition accuracies for each model are given in Table 2.

For each degradation level, vertical models perform better than
horizontal ones within each type of independent models (HMM/AR).
This means that columns of character images are more discrimi-
nating than rows for handwritten digits. This is also observed for
old printed characters: there is a predominance of vertical strokes
for these forms of letters and digits [28]. Comparing between inde-
pendent models, the auto-regressive vertical model performs better
than the basic vertical-HMM. This is due to the fact that the basic
HMM assumes conditional independence of observation variables
with respect to hidden states, whereas the AR model assumes ex-
plicit dynamic dependence between observations. For horizontal in-
dependent models, performances of the basic horizontal-HMM and
the horizontal-AR model are comparable. The prediction of image
rows is less efficient than the prediction of image columns.

Table 2
Recognition rates (%) for handwritten digits under different levels of degradation
(w = 0: no additional degradation, w = 1: one break, w = 2: two breaks)

Model w = 0 w = 1 w = 2

Vertical-HMM 90.2 86.9 83.8
Horizontal-HMM 87.4 82.8 75.3
Vertical-AR 93.2 89.8 85.3
Horizontal-AR 87.7 81.6 75.6
ST_CPL 92.4 90.8 87.4
GNL_CPL 93.4 90 86.2
AR_CPL 94.9 93.4 90.9
Combination of HMM scores 93.1 90.6 87
Combination of AR-HMM scores 94.7 91.9 89
SVM 96.1 91.1 85.4

Our results show that coupledmodels perform significantly better
than basic HMMs. Although the horizontal stream is less reliable, its
coupling with the vertical stream improves any corresponding single
stream representation.

The general coupled model (GNL_CPL) differs from the other cou-
pled models because it uses state--observation relations in addition
to state--state relations to express the interdependence of streams.
This model requires more observation parameters, but provides
little recognition improvement compared with ST_CPL. Achieve-
ment of coupling between streams using state--state relations as in
ST_CPL and AR_CPL, rather than state--observation relations as in
GNL_CPL, leads to more efficient models in terms of complexity and
performance. Last, the AR coupled (AR_CPL) model emphasizes the
importance of observations through dynamic linking in time.

Coupled architectures behave better than any independent HMM
(basic and AR) as the level of degradation increases (w = 1 and 2).
Moreover the auto-regressive coupled architecture performs best.
This is because missing observations (such as in broken characters)
may be predicted through auto-regressive models. Coupled architec-
tures may also include at least one uncorrupted stream, horizontal
or vertical, within each time slice and thus better cope with missing
information.

5.1.2. Comparison with the combination of HMM scores
We also compared coupled models with the weighted combina-

tion of HMM scores. The combined score for a pattern given a class
model results from the weighted sum of the log-likelihoods (scores)
provided by eachHMM, vertical and horizontal. Theweights �i, i=1,2
must satisfy the constraints: �i �0 and �2 = 1 − �1. Thus, only the
value � = �1 dedicated to the vertical HMM needs to be optimized.
We search for the optimal � on a validation set of 1000 digits. Fig. 13
shows recognition rates versus � for the combination of basic HMMs.
For digits, the maximum is reached for � = 0.5. We have observed
that log-likelihoods provided by the vertical HMM are in average
higher than those provided by the horizontal HMM. Consequently,
� = 0.5 gives more weight to the vertical HMM.

Results for the test set using the optimal value of � are given
in Table 2. The AR-coupled model outperforms the combination of
HMM scores whatever the level of degradation. When w = 0 (no
degradation), the combination of HMM scores performs better than
the state-coupled model and worse than GNL_CPL and AR_CPL mod-
els. When the level of degradation increases (w =1, w =2), both the
ST_CPL and the AR_CPL models perform better than the combination
of HMM scores. The performance of individual HMMs as well as the
linear combination of them, deteriorates more rapidly as degradation
increases than when they are combined in a coupled DBN model.

5.1.3. Comparison with the combination of auto-regressive HMM scores
We can also compare the AR_CPL model with the weighted com-

bination of auto-regressive HMMs. As previously, the combined score
for a pattern given a class model results from the weighted sum of
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Fig. 13. Combination of HMM scores: recognition rate versus weight factor �.
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Fig. 14. Comparison of the AR_CPL model with the combination of AR-HMM scores
according to degradation.

the scores provided by each AR-HMM, vertical and horizontal. The
optimal weight �, searched on the validation set, is equal to � =0.45
for the AR-HMM combination. Recognition accuracies are given in
Table 2. The AR-coupled model outperforms the combination of
AR-HMM scoreswhatever the level of degradation. The improvement
brought by the AR_CPL model is enhanced for degraded characters
(w >0). This is also observed in Fig. 14 where the performances of
the AR_CPL model and the combination of the AR-HMMs scores are
compared for w ranging from w=0 to 3. An additional level of degra-
dation is provided here: when w=3, three breaks are created within
characters. Results in Fig. 14 show that the improvement brought by
the AR_CPL model increases as the level of degradation w increases.

5.2. Old printed characters

5.2.1. Model comparison
Recognition accuracies for old printed characters are given in

Table 3. Similarily to handwritten digits, the horizontal stream is less
reliable but its coupling with the vertical stream increases perfor-
mance. The vertical-AR model shows some advantage over the basic
vertical-HMM on the set of degraded characters but performances
are comparable on the standard set. The GNL_CPL model deteriorates

Table 3
Recognition rates (%) for standard and degraded old printed characters

Model Standard (test-s) Degraded (test-d)

Vertical-HMM 98.3 93.8
Horizontal-HMM 93.7 88.1
Vertical-AR 97.9 94.5
Horizontal-AR 96.2 91.2
ST_CPL 98.7 95.5
GNL_CPL 98.6 94
AR_CPL 98.8 96
Comb. of HMM scores 98.4 95.4
Comb. of AR-HMM scores 98.7 95.5
SVM 98.4 94.9
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Fig. 15. Comparison of the AR_CPL model with the combination of AR-HMM scores
for old printed characters and several degradation levels.

more rapidly on the degraded set because defects in the vertical ob-
servation disturb both horizontal and vertical state sequences.

The auto-regressive coupled model (AR_CPL) always performs
better than independent models, the state-coupled model and the
combination of HMM scores for which the optimal value of � = 0.65
was found on a validation set of 1038 characters (Fig. 13). As before,
the ST_CPL and AR_CPL coupled architectures better cope with de-
graded characters (test-d) than independent HMMs (basic and AR)
and the combination of HMM scores.

5.2.2. Comparison with the combination of auto-regressive HMM scores
For the combination of auto-regressive HMMs (AR-HMMs), the

optimal weight � searched on the validation set is equal to � = 0.4.
Recognition accuracies are given in Table 3. The AR_CPL model per-
forms better than the combination of AR-HMMs whatever the level
of degradation. However, several classifiers have high performance
on the set of non-degraded characters (test-s): coupled DBN classi-
fiers and the combination of AR-HMM scores perform accurately on
such characters. The improvement brought by the AR_CPL model is
enhanced for degraded characters. To highlight this property, an ad-
ditional set of highly degraded characters is provided by lowering
the binarization threshold of degraded characters by 20%. This leads
to the test − h set (highly degraded) including highly fading charac-
ters. Recognition accuracies are compared in Fig. 15 for all test sets.
The improvement brought by the AR_CPL model over the combina-
tion of AR-HMM scores increases as degradation increases as seen
previously for handwritten digits (see Section 5.1.3).

When characters are broken due to natural fading process or
low binarization threshold, the AR_CPL model performs better than
the other models. This coupled architecture is thus particularly
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convenient for recognizing old printed characters since broken
characters are often found in old printed books.

5.3. Comparison with SVM classifier

However, higher accuracies can be achieved on the MNIST digit
database with discriminative classifiers such as SVMs as reported in
[36,37]. We compare below the influence of defects such as broken
characters on DBN and SVM classifiers respectively. The SVM classi-
fier is implemented with the LIBSVM toolbox [38] with a RBF kernel
and parameters C= 26, � = 25 as suggested in [37]. SVM recognition
accuracies are given in Tables 2 and 3 for handwritten digits and old
printed characters respectively, under different levels of degradation.

For handwritten digits and without any additional degradation
(w = 0), the SVM classifier outperforms other classifiers. When the
level of degradation increases (w = 1), the AR-coupled model out-
performs the SVM classifier. But all coupled models, outperform the
SVM classifier in case of high degradation (w = 2).

For old printed characters (see Table 3), the SVM classifier ob-
tains slightly lower performances than coupled architectures on the
standard data set. On the degraded set (test-d) which includes many
broken characters, SVM performance decreases significantly more
than that of coupled architectures ST_CPL and AR_CPL. Also, perfor-
mances of these coupled architectures remain higher than that of
the SVM on the degraded test set. This shows that state-coupled and
auto-regressive coupled architectures are more robust to degrada-
tion than the SVM classifier in case of highly broken characters.

6. Conclusion

We have presented a new approach for off-line character recog-
nition, based on DBN. The modeling consists of coupling two HMMs
in various DBN architectures. The observations for these HMMs are
the image rows and the image columns, respectively. Interactions
between rows and columns are modeled through state transitions or
state/observation transitions. This results in finer representations of
character images and in improvement of the basic HMM framework.

We first investigated independent HMM and AR models. We
showed that vertical models perform better than horizontal ones
since columns of character images are more discriminating than
rows. Secondly, we coupled these independent models into single
models providing better performance than for the non-coupledmod-
els, as well as for the combination of the scores of the independent
HMMs. We also demonstrated that the coupling through states such
as in ST_CPL is more efficient than the coupling from state to obser-
vation as in GNL_CPL. The AR-coupled architecture which dynami-
cally links observations in time gives the best recognition results.

We applied this approach to the recognition of handwritten dig-
its and old printed characters. We demonstrated the robustness of
this approach in the presence of artificial and real world degrada-
tions. Our experiments show that coupled architectures cope better
with highly broken characters than both basic HMMs and discrimi-
native methods like SVMs. This is because coupled architectures are
able to predict missing information and may provide at least one
uncorrupted stream within time slices.

The proposed coupled DBN architectures are thus particularly
efficient for the recognition of broken characters. We expect further
improvements from an accurate initialization of the parameters.
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