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Abstract — This paper proposes an approach for
segmenting a Web page into its semantic parts. Such analysis
may be useful for adapting blog or other pages on small
devices. In this approach, we take advantage of both
dynamic layout after rendering and textual information.
Our method segments the page into blocks and then
classifies the blocks. A classification in semantic parts is
performed thanks to a SVM-based machine learning
approach using a set of 30 textual and visual-based features.
Evaluation is conducted on a Web blog database. Results are
provided for both block classification and blog segmentation
into articles.
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1. INTRODUCTION

Web Document Analysis (WDA) plays an important
role to the Web ecosystem. Not only is the WDA used to
understand Web content for search engines, but also it is
for restructuring a new visual representation, especially
for adapting a Web page on mobile devices.

Web documents have several representations. They
can be analyzed through Document Object Model (DOM)
or as images displayed by a browser. Image representation
is lacking textual and tag information present in Web
documents. On the other hand, methods for WDA based
on DOM tree obviously avoid this lack. In addition, we
can take advantage of visual information defined in
HyperText Markup Language (HTML) or by JavaScript
and Cascading Style Sheet (CSS) associated to layout
Web elements. The visual information includes positions,
colors, font styles, font sizes, and borders of the elements.
That’s why there is a lot of research work already done
concerning WDA by taking care about visual information
on DOM tree. As an example, in [1], visual representation
on DOM tree is used to extract the Web page’s content
structure. In contrast, [3] proposes an approach to
understand semantic Web page structure based on features
such as DOM tree structure feature (path from root to
leaf), geometric features, neighboring nodes, HTML
attributes (encoding visual information), and linguistic
features. [5] takes into account both visual and structural
features to segment a Web page. [2] is more specific and
uses both content and structure to analyze HTML medical
articles. They define a model of HTML medical articles,
and then they recognize each part of the article following
this model.

In our approach for WDA, not only we take care about
visual representation, but we also consider information
present within the DOM tree. This combination helps us
in segmenting more conveniently the Web page. In this
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study, we focus on blog Web pages, but parts of our
approach could be applied to other text-based Web pages.

Overview of the system is showed in Fig. 1. We first
extract information contained in DOM just after rendering
a page on a browser. We next construct a properties tree.
From this tree, we extract elementary blocks. Features are
extracted from elementary blocks and elementary blocks
are semantically labeled using Support Vector Machine
(SVM). For the blog case, we finally group elementary
blocks into articles based on semantics. The rules and the
features involved in the block segmentation and
classification are defined according to the principles of
web page design that are described in many books and
web sites such as in [4]. Designers follow these principles
when choosing page layout and typography to make
content easy to read and to understand by the users.

The remainder of this paper is the following. In
Section 2, we describe the page decomposition process
into elementary blocks. In Section 3, elementary blocks
features are presented. Such features are used for training
a SVM classifier. Section 4 describes how block labels
can be corrected through a post-processing and how the
final segmentation into blog articles is obtained. In
Section 5, we present experiments and show our results.
Section 6 concludes the paper.

2. SEGMENTATION OF WEB PAGES BASED ON
VISUAL INFORMATION

We first present our architecture which takes
advantage of page rendering and image capture while
using DOM analysis. Our architecture is easily
compatible with Web pages in HTML 5 [9] and CSS 3
[10]. In fact, we do it by directly extracting the DOM
information contained in a Web page when rendering the
page by the Firefox browser [7]. The extracted
information includes position, color, border, font family,
font size, node name, and content of HTML element. The
attributes extraction is performed by extra scripts in
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JavaScript automatically added into the Web page. An
example about calculating the left edge coordinate of an
HTML element is shown in Fig. 2. After rendering the
Web page, we calculate these attributes for every node on
DOM tree. Then, we construct the Properties Tree (PT) in
which each node corresponds with one of DOM tree,
but also contains information related to their rendering.
Thus, each node of the PT includes both tag and rendering
information. Such information will be used for classifying
blocks into semantic labels (cf. Section 3). In the rest of
this paper, if we mention a node, it means one on the PT,
except we explicitly indicate one on DOM tree.

2.1. Elementary blocks of a Web page

We define an Elementary Block (EB) as a node of the
PT whose content is as structurally autonomous as
possible. We mainly rely on tag information. Thus, we
recursively do a depth-first traversal of the PT (from the
root to its children) and create an Elementary Block
corresponding to a node if the node is one of the
following nodes: heading node (<h>), anchor node (<a>),
paragraph node (<p>), user list node (<ul>). Leaf nodes'
and border nodes? are also associated to EBs. If a node is
used to create an EB, we resume the traversal to its
siblings. Examples of EBs are shown in Fig. 3.

2.2. Macro-elements extraction in the blog case

The objective of blog segmentation is to separate the
different blog’s articles and to classify the different blocks
within each article. Blog’s articles can be found between
a header and footer and on the left or right of side bars.
Thus blog’s articles belong to a so-called main content
block. The process consisting of segmenting the blog page
into these macro elements (header/footer/side bar/main
content) is called the principal segmentation. It can be
useful for Web pages other than blog pages. EBs within
footer and header and side bars are discarded. Only the
EBs found in the main block will be classified by the
SVM classifier.

Principal segmentation

In a blog page, its overview often can be defined as in
Fig. 4: header and footer elements can be extracted by a
horizontal cut considering blocks’ positions saved on the
PT. The others macro-elements including the main
content block and sidebar(s) almost spreading through the
page’s height can be extracted by a vertical cut. Hence,
the principal segmentation is performed when there is a
change of cut direction from horizontal cut to vertical cut,
and the main content block is the biggest sub-block found
in the principal segmentation. In reality, it is essential to
take a threshold to filter misrecognition of main block
because sometimes, some elements (e.g. image for
statistic’) might cause more than a change of cut direction.

! Leaf node is a node which has no child and whose node name is not
o
2 Border node is a node which has a border and node’s size in terms of
?ixel is smaller than a threshold.

Wordpress [8] has a small image to calculate the statistic view for the
blog.
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3. ELEMENTARY BLOCK CLASSIFICATION

In this section, we describe how elementary blocks are
labeled into their semantic function. Elementary blocks
resulting from the main content extraction (cf. Section
2.1) are labeled. We consider eight labels: fitle, date,
author, category, content item, rest of article, comment,
and other. These labels correspond to semantic functions
of elementary blocks. To classify elementary blocks
according to labels, a feature vector of length 30 is
extracted on each elementary block. Amongst them, we
distinguish contextual features which capture information
from neighboring EBs from the others.

3.1. Non-contextual features

Author feature
This feature indicates whether an EB possibly includes
a name entity. We use predefined keywords commonly

function calcLeft (element) {
var el = element;
var left = 0;
while (true) {
var parent = el.offsetParent;
left += el.offsetleft;
if (parent != null) {
el = parent;
} else {
break;

return left;

Figure 2 Calculation of the left edge coordinate of an HTML element
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used in name patterns, e.g. posted by, written by, created
by, by. These keywords are defined in a resource file; we
can add a new one and remove an existed one from the
resource file. Keywords belong to different languages,
e.g. in French: publié par, créé par, etc. If the EB’s text
contains one of these patterns, the feature’s value is
accredited to 1, otherwise to 0.

Date feature

The date feature examines whether an EB probably
contains a date by which the article was published. Hence,
if the EB’s text involves a date, the feature’s value is
assigned to 1, otherwise 0. In reality, there are blog sites
displaying the published date with abbreviation forms or
long formats, e.g. “10 jan”, “Thursday, December 15",
20107, etc. Therefore, we use regular expression to match
a published date displayed on the browser and the one
understood by machine by using two resource files
containing month’s abbreviation and date patterns.

Readmore feature

Long articles in a blog may be displayed through
several pages. Readmore feature aims at, if an EB has a
link indicating that we can pursue the link to continue
reading an article. Firstly, the readmore’s keywords (e.g.
continue reading, read the rest, read more, etc.)
predefined by a resource file are looked up in the EB’s
text. The feature’s value is accredited to 1 if a keyword is
found in the text, otherwise to 0.

Heading feature

The article’s title is very often described by a heading
node. In addition, some blog sites also use a heading node
to place a published date. Heading feature examines
whether an EB contains heading nodes (possibly multiple
ones when they are wrapped in a paragraph node or a user
list node). This feature’s value is assigned to the
percentage of the length of text being contained in the
heading nodes and the one of all the EB’s text. The
percentage is used because for a real title, its value is
often 1; otherwise in some cases, e.g. an EB contains a
paragraph node (<p>) and this node contains some child-
nodes (one of them is a heading node), its value does not
equal to 1.

Link feature

The article’s title, comment, rest and category almost
contain an anchor node (<a>). Link feature examines if an
EB contains anchor nodes (multiple ones when they are
wrapped in a paragraph node, a user list node, etc.). This
feature’s value is set to 1 if there is an anchor node found
in the EB, otherwise to 0.

Other feature

EBs that do not contain useful information should be
assigned to an “other” label. The “other” feature’s value is
accredited to 1 if the EB’s text equals to one of the
keywords predefined in a resource file such as “on”,
“tagged”, “categories:”, so on. Otherwise, the feature’s
value is assigned to 0.
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Attribute features

Eight attribute features aim at characterizing blocks
which include descriptive information related to 8
functions: date, author, title, category, content, remainder,
comment and other. We exploit such descriptive
information embedded in CSS and HTML element’s
attributes. These attributes are id='date’, rel="category
tag’, class=’entry’ and so on. Thus, attribute features
examine whether an EB has the descriptive information.
The attribute features’ value is assigned to 1 if a keyword
predefined in resource files is found in HTML element’s
attributes such as id, class, rel, title, href, otherwise to 0.

3.2. Contextual features

Classifying an EB may be dependent of its context.
The following features include information on EBs
themselves and also from their neighborhood. For each
EB, there are at most four neighbors: at its left, right,
above or under. Hence, there are four features for color,
font family, font size, and parent level. In total, we have
sixteen contextual features.

Color features

Color features indicate if the neighbors’ color is
identical to the EB’s. For lacking neighbor(s), we assign a
value corresponding with it (them) to -1. Otherwise, the
value 0 is assigned if the color of neighbor is different,
and 1 if it is identical. Therefore, the color features
include four values for each neighbor.

Font Family features

Font family features estimate the identity between the
EB’s font name and its neighbors’. The font family
features’ value is calculated as the color features’ one.

Font Size features

Font size features examine the comparison of font size
between an EB and its neighbors. For lacking neighbor(s),
we accredit -1 to its (their) feature(s)’s value. Otherwise,
the font size features’ value is respectively accredited to -
0.5, or 0, or 1 for smaller, equal, or greater font size of
neighbors compared to the one of the EB.

Parent Level features

Parent Level features measure the structural
differences in terms of number of parents from the node
used to create an EB to the root node' between the EB and
its neighbors. The parent level features’ value is
calculated like the font size features’.

3.3. SVM classification

Each EB in the main content block is classified thanks
to an SVM machine learning approach. We consider 20
different labels. There are 8 principal labels which are the
labels mentioned earlier (see beginning of Section 3) and
which correspond to single semantic functions. There are
12 combined labels which correspond to multi-function
EBs. Indeed, we have noticed that EBs extracted from
HTML documents may include several types of

1 The root node is the node with the tag name “HTML”.



information. For instance, there are EBs which can be
assigned to both “author” and “date” labels.

To classify an EB, we take LibSVM [6] as the core of
prediction.

4. POST-PROCESSING AND BLOCK GROUPING
INTO ARTICLES

After using SVM which predicts labels of EBs in the
main content block, we launch a post-processing to
correct residual errors. Block context is of high interest
for logical labeling of document images. This still holds
for Web documents. Thus Bayesian network or CRF
(Conditional Random Field) approaches have been
applied to document logical labeling, e.g. in [11] and [12].
We use a simpler ruled-based approach and consider
heuristics based on sequences of consecutive EBs, and
descriptive information patterns given in HTML
element’s attributes such as class, id, rel, href, title. The
rules we apply are described as follows:

e For three sequential EBs, if the first and last EBs are
assigned to label “content item”, the middle EB
which is not assigned to label “title” will be
modified into label “content item”.

An EB assigned to label “rest of article” must be at
the end of consecutive EBs labeled “content item”.
If the prediction for an EB breaks this law, the EB
will be changed to label “other”.
In a blog page, if there is at least one EB assigned to
“title” and having its Title Attribute value equal to 1
(cf. section 3.1), all the other assigned titles should
conform to this criterion. Otherwise the “title” label
is modified into a “content item” label. This rule is
also applied for other labels such as “date”,
“author”, “category” and “comment”.
After post-processing for all the EBs found in the
main block, we group consecutive EBs to compose an
article. Apparently, a blog always has patterns to display
its articles. Sometimes, there are items such as date,
author, category, comment, rest of article, other, or even
content item are missing. However, an article in order to
make sense should have a title. Therefore, we group
consecutive EBs based on the titles predicted by SVM.
Before starting, we define a container block as a block
which can contain an EB or consecutive EBs. First, we
begin from the list of all EBs contained by the main
block. Each EB initializes a container block. The
following process groups container blocks, two by two,
iteratively. Hence, container blocks include one or several
labeled elementary blocks. At the end of the grouping
process, each container block should include a single
blog’s article.

Throughout grouping, container blocks should respect
the following conditions: i) there is at most one EB
assigned to the “title” category within a container block,
ii) all EBs assigned to the “content item” category in the
container block should be vertically positioned under a
“title” EB. Another condition guiding the grouping
process is that the number of container blocks including a
“title” EB should not decrease. A container block
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including a “title” EB cannot thus fuse with another block
also including a “title” EB.

The grouping process follows the above constraints
and starts by grouping container blocks based on the
ascending distance in pixels between two blocks. At the
end of the process, a number of container blocks in an
article may be ungrouped with the others due to imperfect
distribution of distance among parts of an article and
articles (e.g. the distance between two blocks is greater
than the distance between two articles). Differently
speaking, there are container blocks which don’t probably
contain a “title” EB. Thus, to solve such problem, we
group single container blocks to the nearest container
block (including a title) based on top-down position of
blocks.

5. EVALUATION

In this section, we evaluate the two preceding tasks,
i.e. the classification of elementary blocks and the
segmentation of the Web page into articles. Evaluation
measure is based on precision and recall for the 8
principal categories. For classifying EBs using SVM, we
take a training dataset of 46 blog pages including 7952
EBs. The test dataset consists of 49 blog pages and
includes 9354 EBs. 9719 labels are assigned to these EBs
since more than one label can be assigned to one EB. We
show the results of EB classification in Tables 1 and 2.
Table 1 shows that category “title” is the best predicted
category and there are only few misclassifications. This
result is important since our grouping process of EBs into
articles mostly relies on the SVM classification accuracy
of “title” EBs (cf. Section 4). We also compare the SVM
EB labeling without and with post-processing in Table 2;
we improve recall and precision by less than 1% in
absolute value. But the post-processing phase benefits
more to the “title” category (as seen in the Table 1,
precision is increased by 4%) and thus segmenting the
Web page into articles is more reliable.

For article segmentation, we take all previous test 49
blog sites and group their EBs into distinct articles. As
previously, we compute precision and recall values. We
compare automatically segmented with manually labeled
articles without considering labels assigned to EBs
therein. Results for article segmentation with and without
preprocessing are shown in Table 3. These results
obviously show that the article segmentation task benefits
from post-processing as mentioned earlier. However,
results for article segmentation are lower than for EB
classification since article segmentation is a task of higher
level. We have noticed that errors mostly occur for the
first and last article of a Web page due to extra EBs such
as navigation information.

In Fig. 5 and Fig. 6, we show two automatically
segmented articles along with the EB labels predicted by
SVM. One of these EB is assigned to multi-function
“category + comment”.



Table 1 Experimental results for classifying EBs into 8 categories

Title Date Author | Category | Comment Content Regt of Other
Item article
# manual labels 522 501 399 895 465 5023 77 1837
Precision 95.6 91.5 76 98.5 93.7 87.1 80.9 88.9
Recall 99.6 81.2 54.1 91.1 93.3 94.4 93.5 69.4
Precision (with post.) 99.8 98 82.2 98.7 93.7 86.7 80.9 88.9
Recall (with post.) 99.6 78.2 54.6 90.9 93.1 95.5 93.5 69.4
Table 2 Average results for classifyir.lg. EBs 6. CONCLUSION

4FB #manualP .. nh{ 11PrecmlonRecall . .

S | labels [ "C"SIONRCCAN (506t |(post.) In this paper, we propose an approach for segmenting

9354 | 9719 80 |87.4]| 895 [87.7 blog pages into articles using both visual and textual

Table 3 Experimental results for segmenting blog pages into articles

# articles | Precision | Recall Precision | Recall
(post.) (post.)
522 79.8 77.5 86.4 79.5
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information. Our approach can take advantage of not only
the up-to-date development of Web pages in terms of
using HTML 5 [9] and CSS 3 [10], but also considering
descriptive information wrapped in the DOM tree.
However, our current dataset of core prediction could be
enlarged in order to get more accurate predictions by
SVM. Moreover, it is maybe possible to improve blog
segmentation into articles by using article models to
define special cases in which consecutive EBs will be
grouped into an article if they conform to the models.

For further work, we should try to classify EBs into
labels by using other methods such as neural network,
hidden Markov model, or genetic model and then make a
comparison among them. In addition, there is an
opportunity to expand our work to automatically adapt
blog pages or even general Web pages on mobile devices.
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