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Estimation of Optimal PDE-Based
Denoising in the SNR Sense

Guy Gilboa, Nir Sochen, and Yehoshua Y. Zeevi

Abstract—This paper is concerned with finding the best partial
differential equation-based denoising process, out of a set of pos-
sible ones. We focus on either finding the proper weight of the fi-
delity term in the energy minimization formulation or on deter-
mining the optimal stopping time of a nonlinear diffusion process.
A necessary condition for achieving maximal SNR is stated, based
on the covariance of the noise and the residual part. We provide two
practical alternatives for estimating this condition by observing
that the filtering of the image and the noise can be approximated
by a decoupling technique, with respect to the weight or time pa-
rameters. Our automatic algorithm obtains quite accurate results
on a variety of synthetic and natural images, including piecewise
smooth and textured ones. We assume that the statistics of the noise
were previously estimated. No a priori knowledge regarding the
characteristics of the clean image is required. A theoretical anal-
ysis is carried out, where several SNR performance bounds are es-
tablished for the optimal strategy and for a widely used method,
wherein the variance of the residual part equals the variance of
the noise.

Index Terms—Image denoising, nonlinear diffusion, signal-to-
noise ratio (SNR), total-variation, variational image processing.

I. INTRODUCTION

THE use of partial differential equations (PDEs) to regu-
larize images is becoming a very active field of research.

The elegance of the formulation, frequently via the calculus of
variations, and the good results, attract researchers and users
alike. For some comprehensive studies and background on the
subject, see [1], [4], [17], [22], [23] and the references therein.
Invariably, these methods require the determination of a signif-
icant parameter in the process. This parameter is the time, or
number of iterations, in diffusion-like processes, or the weight
of the fidelity term of the energy functional in the calculus of
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variations approach. In both cases, a simplification of the image
is achieved via a parameter-dependent PDE. It is desirable that
the “true” signal will not be degraded in the process of this
simplification while noise is removed. In fact, both noise and
signal are being altered in the process. The fact that the signal
is affected is clear, since an image without noise is also altered
in the process. The PDEs are constructed to reduce noise level
at a faster rate than the piecewise smooth image parts are af-
fected. Yet, the process must be stopped before the structure of
the image has been modified too much, for example, textured
segments have become smooth.

It is, thus, important to determine what is the optimal point
of stopping the process. This question is imperative, but, sur-
prisingly, was seriously addressed in the context of PDE-based
image processing only by a few studies [11], [18], [24].

We derive a necessary condition for optimality in the
signal-to-noise ratio (SNR) sense. From a practical viewpoint,
the condition suggests a numerical method that should be
followed for the purpose of maximizing the SNR of the filtered
image. Two algorithms for the parameter calculation are pro-
posed, based on the above condition, yielding fairly accurate
estimates. From a theoretical viewpoint, this facilitates the
computation of upper and lower bounds of the optimal strategy.

Next, we present an analysis of the optimal parameter from
a SNR viewpoint. We also examine the popular denoising
strategy, based on Morozov’s discrepancy principle [13], used
in the field of regularization theory. This method was most
notably used in variational image processing in the seminal
paper by Rudin–Osher–Fatemi (ROF) et al. [18]. The selection
of the weight of the fidelity term is such that the variance of the
residual part equals that of the noise. A lower bound on the SNR
performance of this strategy is established, as well as a proof
of non existence of an upper bound. Examples which illustrate
worst- and best-case scenarios are presented and discussed.

We demonstrate our method and show its advantages with
respect to the methods of [11], [18], and [24].

Our main focus in this paper is on variational denoising
(Sections II–IV). In Section II, we present the variational
denoising model and derive the optimality condition. Two
practical methods are provided for the approximation of this
condition in Section III. In Section IV, an analysis of the SNR
performance is carried out, where lower and upper bounds are
established. In Section V, we present numerical results on a
set of benchmark images. Similar methods are applied to dif-
fusion-like processes in Section VI. A detailed comparison to
other stopping criteria is presented. The comparison is carried
out from both theoretical and empirical viewpoints. Conclu-
sions and future directions are discussed in Section VII. Proofs
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and details of the algorithms are provided in the Appendix. A
short version of the ideas presented here can be found in [10].

II. DENOISING MODEL AND OPTIMALITY CONDITION

We try to solve the additive noise model, where the input
signal is composed of the original signal and additive un-
correlated noise of variance

(1)

Our aim is to find a decomposition such that approximates
the original signal and is the residual part of

(2)

We accomplish this decomposition by minimizing the following
energy functional:

(3)

is assumed to be convex. For a convex the solution,
exists and is unique [1]. More explanations and examples re-
garding this type of regularization can be seen, e.g., in [1], [6],
[8], [16], [18], [21], and [22]. Some of the following results are
also applicable to the more general case of monotonically in-
creasing . This holds as long as is regularized so that a min-
imizer exists (such as in the discrete case or by convolving the
gradient) and is unique. For the sake of simplicity, we remain in
the convex framework.

The condition is set (corresponding to the
Neumann boundary condition of the evolutionary equations).
This yields . Rescaling by the area of the domain

: , we get

(4)

where is the variance of a signal

and is the mean value

The covariance of two signals is defined as

Note that these quantities are based on the empirical definitions
and, therefore, could be measured for a given image. We recall
the identity

The SNR of the recovered signal is defined as

SNR (5)

where . The initial SNR of the input signal, denoted
by SNR where no processing is carried out , is,
according to (5) and (1)

SNR SNR (6)

A. Condition for Optimal SNR

We proceed by developing a necessary condition for the op-
timal SNR. In this convex problem, we have a single degree
of freedom of choosing [1], [3]. We, therefore, can re-
gard the SNR as a function, SNR , and assume that it is
smooth (see examples of SNR functions of different images in
Fig. 8). A necessary condition for the maximum in the range

is

SNR
(7)

Rewriting as , and using
(7) and (5), yields

(8)

The meaning of this condition may not appear at first glance
to be very clear. We, therefore, resort to our intuition: Let us
think of an evolutionary process with scale parameter . We
begin with and increment the variance of by a
small amount , so that in the next step .
The residual part of , contains now both part of the noise and
part of the signal. As long as in each step the noise is mostly
filtered, that is , then one should
keep on with the process and the SNR will increase. When we
reach the condition of (8), the noise and the signal are equally
filtered and one should, therefore, stop. If filtering is continued,
more signal than noise is filtered (in terms of variance) and the
SNR decreases.

There is also a possibility to have the maximum at the bound-
aries: If the SNR is dropping from the beginning of the process,
we have and the optimal
SNR is SNR . The other extreme case is when the SNR in-
creases monotonically and is maximized for (the
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Fig. 1. Illustration of the direct (patch) method. Left: Input image f . Right: A
patch of pure noise with statistics similar to n is attached to the right side of f .

trivial constant solution ). We shall see later (Proposition
3) that this can only happen when SNR is negative or, equiva-
lently, when .

In light of these considerations, provided that one can esti-
mate , our basic numerical algorithm should be as fol-
lows.

1) Set .
2) . Compute .
3) If then stop.
4) . Goto step 2.
We will now suggest two ways to approximate the covariance

term.

III. ESTIMATING THE OPTIMAL SOLUTION

In order to approximate , we need an estimate of
the noise. We may try to use only segments of the image where
we have high confidence that we are able to distinguish between
the noise and the image. These are typically the smooth regions.
The problem is that, normally, we do not know in advance which
regions of the image are smooth and which are not.

Our observation is that the extent of filtering of additive noise,
with respect to , is not affected much by the underlying image
. What mainly affects the denoising performance is the extent

of filtering of . This property is very natural in the linear case:
, where is the filtering kernel,

and * denotes convolution. We show that, in some sense, a sim-
ilar decoupling can be applied to the nonlinear case. Currently,
we investigate the possibility to obtain an analytic expression
for the approximation error.

A. Direct Estimation

We assume that we have access to a source of a synthetic noise
generator. Instead of finding regions in the image where we can
estimate the noise, we simply extend the image with a “noise
patch.” This patch is an extension of the image in one direction,
by a constant function with additive noise of variance (as
previously mentioned, we assume the noise variance is known
a priori or could be well estimated beforehand) [see Fig. 1].
Knowing, for this patch, both and , we can compute their
covariance. Note that, although is estimated based on
the patch, is measured in the usual way based on the orig-
inal image domain.

B. Indirect Estimation

Another way of estimating is by an indirect manner,
which does not rely on physically attaching a synthetic patch to
the image. Consequently, some minor inferences, which may

Fig. 2. Precomputed function for indirect estimation. @cov(~n; v)=@� is
plotted as a function of � (log scale). Graphs depict plots for values of �: 5, 10,
15, 20, from upper curve to lower curve, respectively.

occur on the image-patch boundary, and which cause some side
affects on the processed image near the patch and which affect
the computations carried within the patch, are avoided.

The idea is to separate the computation into two phases. A
patch of noise with similar statistics to is processed and

is measured with respect to . For the case of white
Gaussian noise, only should be estimated in order to generate

. Then, the input image is processed and the behavior of with
respect to is measured. Combining the information, it is
possible to approximate how behaves with respect to

. In other words, we use the chain rule for differentiation

(9)

The first term on the right-hand side is a precomputed function,
or in the discrete case of can be regarded as a lookup table (see
Fig. 2). The second term is computed while the image is being
processed.

In this scheme, we rely on a very simplistic assumption that
we can estimate the behavior of of any image based on
the very degenerate case where the image is simply pure noise.
Quite extraordinarily, our numerical experiments show that the
estimations are not so far from the ground truth (see Fig. 8, right
side). A more comprehensive approach may accommodate the
computation of the function based on a rep-
resentative collection of natural images.

Numerical examples of both estimation methods are shown
in Section V.

IV. SNR BOUNDS FOR THE SCALAR PROCESS

In this section, we address a few theoretical issues and pro-
vide some bounds on the standard and optimal methods.

Let us denote as the solution of (4) for . For example,
is the solution where .

The decorrelation assumption is taken also between and
with respect to the process:

(10)
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We further assume that the process applied to does
not amplify or sharpen either or . This can be formulated in
terms of covariance as follows:

(11)

Both of the above assumptions were verified numerically on a
collection of natural images.

We are investigating the possibility to characterize in an ana-
lytical manner the appropriate spaces of and such that (10)
and (11) are followed. In this paper, this question is left open
and we resort to the following definition.

Definition 1: [ pair] An pair consists of two un-
correlated signals and which obey conditions (10) and (11).

Theorem 1: For any pair and a convex in-
creasing , the covariance matrix of

has only nonnegative elements.
For proof, see the Appendix. Theorem 1 implies that the

denoising process has smoothing properties and that, con-
sequently, there is no negative correlation between any two
elements of . This basic theorem will be later used to establish
several bounds in our performance analysis.

Let us define the optimal SNR of a certain process applied
to an input image as

SNR SNR (12)

where attains the minimal energy of (4) with weight pa-
rameter (for a given is implied). We denote by
the decomposition pair that reaches SNR , and define

.
Equivalently, the desired variance could be set as ,

where is some constant, and then (4) is reformulated to a
constrained convex optimization problem

(13)

In this formulation is viewed as a Lagrange multiplier. The
value can be computed using the Euler–Lagrange equations
and the pair

(14)

The problem then transforms to which value should be im-
posed (see [1] and [3] for details).

A popular denoising strategy [13], [18] is to assume
and, therefore, impose

(15)

We define

SNR SNR (16)

and denote by the pair that obeys (15) and
minimizes (4). We shall now analyze this method for selecting

in terms of SNR.
Proposition 1 (SNR Lower Bound): Imposing (15), for any

-pair, SNR is bounded from below by

SNR SNR dB (17)

where we use the customary notation 3 dB for .
Proof: From Theorem 1, we have , therefore

SNR

SNR dB

The lower bound of Proposition 1 is reached only in the very
rare and extreme case where . This implies that
only signal components were filtered out and no denoising was
accomplished.

Proposition 2 (SNR Upper Bound): Imposing (15), there does
not exist an upper bound , where SNR
SNR , that is valid for any given pair.

Proof: To prove this, we need to show only a single case
where the SNR cannot be bounded. Let us assume

. Then, SNR . Since the signal
and noise are not correlated, we have

. We can write also as
. From (15), , and from Theorem

1, ; therefore, . Since
(Theorem 1) we get . This yields SNR

and

SNR SNR

Thus, for any , we can choose a sufficiently small where
the bound does not hold.

Simulations that illustrate worst- and best-case scenarios are
presented in Figs. 3 and 4. A signal that consists of a single
very contrasted step function is shown in Fig. 3. This example
illustrates a best-case scenario for an edge preserving . SNR
resulting from the PDE-based denoising is greatly increased (by

dB). Note that this case approximates an ideal decomposi-
tion, , which differs from the simple case used
in the proof of Proposition 2. A worst-case scenario is illus-
trated in Fig. 4 by means of the checkered-board example. A
very oscillatory signal is being denoised and, in the process,
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Fig. 3. Approaching best-case scenario in piece-wise constant images. In this
example, for V (v) = � , the SNR increases by almost 20 dB from 19.9 to
39.6 dB (the variance of the noise is � of the input noise). Top: (left) f ,
(right) u. Bottom: (left) v, (right) SNR as a function of V (v)=� . In this case,
V = 1:02� ;SNR = 40:2 dB.

Fig. 4. Approaching the worst-case scenario in a checkered-board image. For
V (v) = � , the SNR decreases by almost 3 dB from 19.9 to 17.0 dB. Top:
(left) f , (right) u. Bottom: (left) v, (right) SNR as a function of V (v)=� .

is heavily degraded. The reduction in SNR, compared to SNR ,
is dB, close to the theoretical 3-dB bound.

A. Regular SNR

Our experience shows that in these well-behaved denoising
processes the SNR does not oscillate and has a single maximum.
We use this significant observation for our estimation proce-
dures and would like to assume this property also for the the-
oretical analysis. Let us define first the SNR regularity.

Definition (Regular SNR): We define the function
SNR as regular if (8) is a sufficient condition for
optimality or if the optimum is at the boundaries.

Proposition 3 (Range of Optimal SNR): If the SNR is regular,
then for any pair .

Proof: Let us first show the relation
. On the

Fig. 5. Visualization of Theorem 2: Upper bound of SNR � SNR as a
function of V =� . For V ! � the bound approaches1.

other hand, .
The relation is validated by using (Theorem 1).

We reach the upper bound by the following inequalities:

The second inequality is based on the fact that
for ,

when the SNR is regular.
The lower bound is reached whenever

.
Theorem 2 (Bound on the Optimal SNR): If the SNR is reg-

ular, then for any pair and

SNR SNR

(18)

Proof: By the SNR definition (5) and expanding the vari-
ance expression, we have

SNR SNR

(19)

For the lower bound, we use the relation shown in Proposition 3:
. For the upper bound, we use two upper

bounds on and take their minimum. The first one,
, is a general upper bound on covari-

ance. The second relation, , is outlined in
Proposition 3.

A plot of the upper bound of the optimal SNR with respect to
is depicted in Fig. 5.

In practice, the flow is not performed by directly increasing
, but by decreasing the value of . Therefore, it is instruc-

tive to check the change of , as well as the other ener-
gies,with respect to a change in . In the next proposition, we
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TABLE I
COMPARISON OF METHODS PRESENTED IN SECTION III: DENOISING RESULTS

OF SEVERAL IMAGES WIDELY USED IN IMAGE PROCESSING. THE ORIGINAL

IMAGES WERE DEGRADED BY ADDITIVE WHITE GAUSSIAN

NOISE (� = 10) PRIOR TO THEIR PROCESSING

Fig. 6. Denoising part of the Boats image. Top row: (left) s and (right) f .
Middle row: (left) u by our direct estimation (right) u by standard method
(V (v) = � ). Bottom row: (left) SNR and (right)@cov(n; v)=@V (v) as a func-
tion of V (v)=� .

show that as decreases, the total energy strictly decreases,
the energy term increases whereas the energy
term decreases.

Proposition 4 (Energy Change as a Function of ): The en-
ergy parts of (4) vary as a function of as follows:

(20)

The proof is in the Appendix.

V. VARIATIONAL DENOISING EXPERIMENTS

We compare our two methods for finding with the standard
method of imposing (15) and with the optimal , which maxi-
mizes the SNR. Six classical benchmark images are processed:
Cameraman, Lena, Boats, Barbara, Toys, and Sailboat. The

Fig. 7. Top row: f . Second row: (left)s, n. Third row: (left) u, v by our indirect
estimation. Bottom row: (left) u, v by standard method (V (v) = � ).

summary of the results is shown in Table I. Both of our methods
are quite close to the optimal denoising (less than 0.1-dB
difference on average) and perform better than the standard
scheme.

In Figs. 6 and 7, results are shown for the direct and indirect
estimations, respectively. Qualitatively, the proposed method
(with both estimation techniques) tends to better preserve the
textural information than the standard method.

We used , which can be viewed as the
Vogel–Oman [21] regularization of TV [18] with or the
Charbonnier [5] process. The image grey-level range is 1:256,
so edges are well preserved. Other details about this experiment
can be found in the appendix.

In Fig. 8, the terms SNR and are
plotted as functions of the normalized variance . It
is apparent that the SNR is smooth and behaves regularly, in
accordance with our assumptions. An interesting phenomenon
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Fig. 8. (Left) SNR as a function of V (v)=� . (Right) d cov(n; v)=dV (v) as
a function of V (v)=� , as computed by (solid)indirect estimation and (dashed)
the ground truth. Graphs depict processing of the following natural images (from
top): Cameraman, Lena, Toys, Boats.

is that the covariance derivative estimation tends to be more ac-
curate near the critical point where .
Naturally, this is advantageous to our algorithm. We currently
have no explanation for this behavior.

VI. EVOLUTIONARY FLOWS

The process of the estimation of the optimal solution can be
similarly formulated in evolutionary flows that do not have a fi-
delity term, e.g., [9], [11], [15], [23], [24]. We refer the reader
to [16] and [19] to learn more on the close connections between
variational denoising and nonlinear diffusion methods, and the
similar role of the weight and time parameters. In the evolu-
tionary case, one has to select the best stopping time . Our
definitions are changed somewhat but, essentially, have the same
sense. The process is

(21)

where is the adaptive diffusion coefficient. For convex
processes one has to validate that is convex [1]. We

Fig. 9. Processing a step image (as in Fig. 3). SNR plot as a function of t.
Stopping time is sufficiently close to the optimal selection by both methods of
Mrazek–Navara and ours.

define . In this formulation, is
defined as . Other similar
changes in notations are straightforward. For example, the indi-
rect estimation of (9) for evolutionary flows is

(22)

The detailed algorithm for implementing this method is in the
Appendix. Note that we use (time) as the scale parameter (and
not ); though almost always increases with time,
we cannot guarantee it.

A. Comparison to Previous Stopping Mechanisms

A comprehensive study of the stopping time problem is dis-
cussed in [11]. Here, we relate to the most recent method pro-
posed by Mrazek and Navara [11] and the more classical one
suggested by Weickert in [24].

The former aims at finding the point in time of minimal cor-
relation between and

(23)

where

The underlying assumption of the method is that carries
most of the noise at the beginning of the denoising process. As

it is argued that a reasonable decomposition
would be at a time where the correlation between and is
minimal (in practice, the first local minimum is sought).

Weickert’s method requires that

(24)

or, equivalently, , which can also be written as

(25)

All three methods of imposing (15), [11], [24] work well
on piecewise smooth images (without fine-scale features), see
Fig. 9. In all three methods, the decomposition is near
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Fig. 10. A checkered-board image (medium contrast)with noise: Top: (Left)
SNR as a function of t, (right) corr(u; v) as a function of t, (bottom)
d cov(n; v)=dV (v) as a function of t. Whereas the criterion of (23) cannot be
used in this example (no local minimum near 0), our estimation of the general
criterion stated in (8) works well also on highly textured signals (stopping time
is T = 0:12 versus the optimal T = 0:09).

Fig. 11. Processing Barbara image. Left: SNR plot as a function of t. Right:
d cov(n;v)=dV (v) as a function of t.

, which approaches the optimal decomposition in these
cases. Using the method of [24], the process is often stopped
considerably before the optimal time.

The other approaches differ from each other and from our
proposed method in the nonideal cases of most natural images,
where images contain textured regions and fine details.

The main advantage of the method proposed in [11] is that
no knowledge of the noise variance is required. It is also easy to
compute, without any need for estimations. It is, however, not
always practical to use this method for all classes of images.
If the denoising process smoothes also some significant com-
ponents of the signal, such that we cannot assume , the
stopping criterion of (23) may produce undesirable results. Ac-
tually, its performance in terms of SNR, cannot be bound from
below such as is determined by Proposition 1. One can con-
struct examples where the stopping time should be near ,
whereas decreases for a very long duration. This can
be illustrated, for example, by the checkered-board image. The
curves of the SNR function and the correlation are depicted in
Fig. 10. In a more realistic example of processing the Barbara
image (Fig. 11), the results are not as extreme, but image is con-
siderably over smoothed.

Fig. 12. Processing Barbara image. corr(u;v) as a function of t. The minimum
is marked with “X.” As seen in the SNR plot, the minimum correlation is not
attained near the time with the largest SNR.

Fig. 13. Effects of stopping criterion on processing results of different stopping
times, processing Barbara image (head part is shown). Top left: Noisy image f .
Right: Weickert’s method (24). Bottom left: Mrazek–Navara (23). Right: Our
method of direct estimation.

The method of [24] is similar in its spirit to imposing (15).
Here, however, the term is being deducted, resulting
in an early stopping of the process (especially when and are
highly correlated as in the case of textured images). In any case,
the stopping time is in the “safe” regime (and, thus,
its performance has a lower bound).

The differences between our method and those of [24] and
[11] are illustrated in In Figs. 11–13. The Barbara image, con-
taminated by additive white Gaussian noise is pro-
cessed by the nonlinear diffusion (21), with .
The image contains smooth regions and highly textured ones.
This breaks the implicit assumption of both [11] and [24], which
regards as mostly containing noise. In partly textured images,

contains both noise and texture. In the case of [24], the term
is large, and the process stops too early. In the case of

[11], the consequences are more severe and is min-
imal only when the texture is smoothed out (see Fig. 12 for a
plot of the correlation function). In terms of SNR, applying the
method of [11] to this image results in a drop of more than 3 dB
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below SNR . The SNR results are: SNR SNR
SNR SNR SNR ,

which stand for the SNR of the input image, the optimal de-
noising, the method of [24], the method of [11], and our direct
estimation method (attaching a “noise patch”), respectively. For
the image results, see Fig. 13.

VII. CONCLUSION

Most image denoising processes are quite sensitive to the
choice and fine tuning of various parameters. In order to reach
fully automatic denoising procedures, systematic methodolo-
gies for determining the appropriate parameters of a given image
are a prerequisite. This problem motivated us to develop a new
method for the optimal choice of the scale of interest, a sig-
nificant parameter in PDE-based denoising, represented by the
weight of the fidelity term in the variational formulation, or
by the stopping time in evolutionary processes.

Our criterion is to maximize the SNR, resulting from the ap-
plication of a PDE-based denoising process. We provide two
practical alternatives for estimating this condition, by observing
that the filtering of the noise with respect to the weight or the
time parameters is in some sense decoupled of the filtering of
the clean image. Thus, we can study the behavior of a noise with
similar statistics with respect to the nonlinear filtering process
and utilize it for the approximation. This is done without as-
suming any knowledge of the clean image. Our method yields
with sufficient accuracy the first local maximum of the SNR
with respect to the variance of the residual part (or time in
nonlinear diffusion). In principle, there can be additional local
maxima at larger scales with higher values of SNR. In practice,
however, we have not encountered a natural image nor man-
aged to generate a synthetic one, wherein the SNR depicts more
than a single maximum. Our experience leads us to the empir-
ical conclusion that such cases with peculiar SNR are quite rare
in convex PDE-based processing.

We compare the performance of our algorithm with the per-
formance of those obtained by means of previously proposed
algorithms [11], [18], [24] and demonstrate that our method
achieves better results on a series of benchmark images.

Bounds on the SNR of the optimal strategy (which we esti-
mate) and the one used by ROF [18] are presented. These are
proved for all signal and noise pairs which obey a strong decor-
relation property (10) and a nonenhancement property (11), with
respect to the process. Further studies may extend this frame-
work by finding new bounds and relations or, perhaps, by using
more relaxed assumptions. At this stage, we have not found a
numerical example where these assumptions are violated.

We should also comment that the SNR criterion is not always
in accord with human-based subjective criteria of quality evalu-
ations. For the purpose of achieving this, another, more sophisti-
cated, criteria may also be applied for parameter selection using
the spirit of the methods presented here. For a recent report ap-
plying this method to a generalized Hilbert-space SNR, we refer
the reader to [2]. Thus, whereas the criterion developed and ap-
plied in this study yields sufficiently promising results, it may be

further elaborated and, perhaps, combined with additional cri-
teria under the variational framework.

We have restricted the analysis, for practical reasons, to ex-
amination of the widely studied classical case of additive white
Gaussian noise. Filtering other types of additive and uncorre-
lated noise may be analyzed in a similar manner. Generaliza-
tions to other regularization processes, and to nonstationary spa-
tially varying parameters [8], [25] are under current investiga-
tion.

APPENDIX

PROOF OF THEOREM 1

The covariance matrix of has 25 ele-
ments. Since , the matrix is symmetric.
The diagonal is the variance of each element, which is non neg-
ative. Therefore, we have to check the covariance of the 10 ele-
ments of the upper right triangle.

We recall the identity

In the sequel, we consider all ten possible signal pairs and show
that their covariance is nonnegative

Since and are not correlated, we have

Once we prove , then we readily have
and

.
We follow the spirit of the proof of Meyer [12]. As the

decomposition minimizes the energy of (4), we can write for any
function and scalar the following inequality:

(26)

Replacing by , we get

Replacing by and dividing both sides by , we get

In the limit, as , the right term on the right-hand side
vanishes. Since is increasing, the term in the integral is non-
negative.
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Let us first examine an equivalent minimization problem to
minimizing (4). Since , then that minimizes
is

We can disregard expressions that do not involve and, there-
fore, the equivalent energy functional to be minimized is

(27)

where . Since
at least one of the terms or

must be nonnegative. We will now show, by contradiction, that
it is not possible that the other term be negative. Let us as-
sume, without loss of generality, that and

. We denote the optimal (minimal) energy of
(27) with as . The energy can be written as

(28)

On the other hand, according to condition (10), ,
and we have

In the above final expression, adding the term
, we obtain the right hand side of ex-

pression (28). Since we assume , we get the
following contradiction:

Similarly, the opposite case , and
is not possible.

This follows directly from condition (11), as
and .

PROOF OF PROPOSITION 4

Proof: Part I:
Let us define as the solution for with .

Then for any , where , we have

Part II:
We examine both energies together and show that the only

possible option is that decreases and increases as de-
creases. Let us state the four possible options as decreases:

a) is increasing and is nondecreasing;
b) is nonincreasing and is decreasing;
c) is increasing and is decreasing;
d) is nonincreasing and is nondecreasing.
Option a) is contradicted by setting the pair in the

energy with , reaching the contradiction
. Option b) is contradicted by set-

ting the pair in the energy with , reaching
the contradiction .

Option c) is somewhat more subtle. We assume that
decreases by some measure . Then, must

be bounded by [else, we reach
an immediate contradiction similar to option a)]. In this case,
we get the following inequalities:

Since the term is positive, we reach the contradiction
.

Option d) is, therefore, the only valid one.

DETAILED ALGORITHMS

We give below the general algorithm that covers both de-
noising methods (energy based/time flow) and both estimations
(direct/indirect). When there is a difference in the algorithm,
we write the energy based first and the time flow second in
curly brackets: . Explanations about param-
eters and a few remarks appear hereafter.

Main
1) Parameters: .
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2) Set .
3) Initialize according to method.
4) Loop:

a) .
b) Compute by (4) with (use as initial ap-

proximation (21), evolving by .
c) .
d) Estimated covariance derivative ac-

cording to method.
e) until ( [or( )].

5) (If direct method, remove patch from ).
6) Return .
Direct Method
Initialization: adding a patch to the right of the image.
i) mean value of right column of image.

ii) patch of random noise with variance .
iii) .
iv) (concatenate patch to right of image). We

define , where contains the input image
and contains the patch.

Estimation of covariance.
i) .

ii) [discrete covariance, see (29)].
iii) .
Indirect Method
Precomputing a discrete estimation of .

1) Parameters: .
2) noise patch.
3) Loop :

a) .
b) Compute as in Main.
c) [see (29)].
d)

.
4) Return vector .
Estimation of covariance.

1)
.

Remarks.
• Parameters (in brackets are values used for processing nat-

ural images).
1) : Size of patch [direct— (image length) pixels,

indirect 80 80 pixels.
2) : Number of precomputed points, that is, different

values or time points for indirect method (30); the
main loop should do at most iterations.

3) : Initial (1), —ratio of successive (0.9).
4) : Time between consecutive timepoints [we used

, three iterations of (where
)].

It is important to note that this parameters mainly control
the step resolution and no tuning is needed for different
images. We used the same values, in brackets, for our ex-
periments on natural images.

• Discrete covariance

(29)

where is the number of pixels in (or ).
• With regard to the indirect method, in the specific imple-

mentation presented here, where the values/time points
of the Main phase are exactly as in the Precomputing phase,
one can actually omit the multiplication and division by

in the computation of DEcov and
(we kept it to be consistent with our formula-

tion).
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